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Privacy implications of email tracking
 
Abstract: We show that the simple act of viewing emails 
contains privacy pitfalls for the unwary. We assembled 
a corpus of commercial mailing-list emails, and find a 
network of hundreds of third parties that track email 
recipients via methods such as embedded pixels. About 
30% of emails leak the recipient’s email address to one or 
more of these third parties when they are viewed. In the 
majority of cases, these leaks are intentional on the part 
of email senders, and further leaks occur if the recipi
ent clicks links in emails. Mail servers and clients may 
employ a variety of defenses, but we analyze 16 servers 
and clients and find that they are far from comprehen
sive. We propose, prototype, and evaluate a new defense, 
namely stripping tracking tags from emails based on en
hanced versions of existing web tracking protection lists. 

1 Introduction 

Email began as a non-interactive protocol for sending 
simple textual messages. But modern email clients sup
port much of the functionality of the web, and the ex
plosion of third-party web tracking has also extended to 
emails, especially mailing lists. Surprisingly, while there 
is a vast literature on web tracking, email tracking has 
seen little research. 

The ostensible purpose of email tracking is for 
senders to know which emails have been read by which 
recipients. Numerous companies offer such services to 
email senders [11, 14, 22], and mail clients that have 
privacy features advertise them as a way for users to 
protect their privacy from email senders [20, 31, 42]. But 
we find that email tracking is far more sophisticated: a 
large network of third parties also receive this informa
tion, and it is linked to users’ cookies, and hence to 
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their activities across the web. Worse, with many email 
clients, third-party trackers receive the user’s email ad
dress when the user views emails. Further, when users 
click links in emails, regardless of the email client, we 
find additional leaks of the email address to trackers. 
These privacy breaches are our primary interest in this 
work. 

We show that much of the time, leaks of email ad
dresses to third parties are intentional on the part of 
commercial email senders. The resulting links between 
identities and web history profiles belie the claim of 
“anonymous” web tracking. The practice enables on-
boarding, or online marketing based on offline activity 
[9], as well as cross-device tracking, or linking between 
different devices of the same user [12]. And although 
email addresses are not always shared with third par
ties in plaintext—sometimes they are hashed—we argue 
that hashing does little to protect privacy in this context 
(Section 8). 

Email tracking is possible because modern graph
ical email clients allow rendering a subset of HTML. 
JavaScript is invariably stripped, but embedded images 
and stylesheets are allowed. These are downloaded and 
rendered by the email client when the user views the 
email (unless they are proxied by the user’s email server; 
of the providers we studied (Section 6.2), only Gmail 
and Yandex do so). Crucially, many email clients, and 
almost all web browsers, in the case of webmail, send 
third-party cookies with these requests, allowing link
ing to web profiles. The email address is leaked by being 
encoded as a parameter into these third-party URLs. 

When links in emails pointing to the sender’s web
site are clicked, the resulting leaks are outside the con
trol of the email client or the email server. Even if 
the link doesn’t contain any identifier, the web browser 
that opens the link will send the user’s cookie with the 
request. The website can then link the cookie to the 
user’s email address; this link may have been estab
lished when the user provided her email address to the 
sender via a web form. Finally, the sender can pass on 
the email address—and other personally identifiable in
formation (PII), if available—to embedded third parties 
using methods such as redirects and referrer headers. 
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We now outline the methods we used, our findings, 
and our proposed defenses against email tracking. 

1.1 Methods 

Building on the OpenWPM web crawler [17], we created 
a tool to automatically search for mailing list subscrip
tion forms on websites and fill them in. It is challenging 
to scale such a tool due to numerous idiosyncrasies of 
websites (Section 3). Our crawler visited 15,700 sites 
and attempted to sign up for emails on each of these. 
The resulting corpus contains 12,618 emails from 902 
distinct senders. The tool may be of independent in
terest for studying questions such as PII leakage from 
contact forms [38]. 

Next, we discuss how we detect instances of PII in 
network traffic (Section 4.1). This is a challenging prob
lem because data might be encoded or hashed, possibly 
iteratively (e.g., double hashing or base-64 encoded and 
then hashed). In this study we focus exclusively on leaks 
of email addresses, but our techniques are agnostic to 
the type of PII. We examine leaks in network traffic re
sulting from a simulation of a user reading the corpus of 
emails collected as above (Section 4). We also simulated 
the user clicking on a sample of the links in the emails 
received, and looked for leaks in the resulting web traffic 
(Section 5). 

We present a set of heuristics to classify such leak
age as intentional or accidental (Section 4.1). Inten
tional leakage suggests a business relationship between 
the party sending the information and the party receiv
ing it, whereas accidental leakage happens due to poor 
programming practices [23, 24]. 

Email providers (e.g., Gmail, employers) and email 
clients (e.g., Apple Mail, Thunderbird) may both em
ploy measures to mitigate email tracking, such as prox
ying of images1 or suppressing cookies. We built a tool 
that allows users and researchers to test the behavior 
of email providers and clients to assess the ability of 
email senders and third parties to track users. We use 
it ourselves to survey 16 email clients (Section 6.2). 

1 Providers proxy resources by rewriting all remote resources 
in an email to point to a location on the provider’s server. The 
provider requests the resource from the third-party server, rather 
than the user requesting it directly. 

1.2 The state of email tracking 

Email tracking is pervasive. We find that 85% of emails 
in our corpus contain embedded third-party content, 
and 70% contain resources categorized as trackers by 
popular tracking-protection lists. There are an average 
of 5.2 and a median of 2 third parties per email which 
embeds any third-party content, and nearly 900 third 
parties contacted at least once. But the top ones are fa
miliar: Google-owned third parties (Doubleclick, Google 
APIs, etc.) are present in one-third of emails. 

We simulate users viewing emails in a full-fledged 
email client (Section 4). We find that about 29% of 
emails leak the user’s email address to at least one third 
party, and about 19% of senders sent at least one email 
that had such a leak. The majority of these leaks (62%) 
are intentional, based on our heuristics. Tracking protec
tion is helpful, but not perfect: it reduces the number 
of email leaks by 87%. Interestingly, the top trackers 
that receive these leaked emails are different from the 
top web trackers. We present a case study of the most-
common tracker, LiveIntent (Section 4.5). 

We also simulate users clicking on links in emails, 
which causes a page to load in a full-fledged web browser 
(Section 5). We find that 11% of links contain embedded 
content requests that leak the email address to a third 
party, and at least 35% of senders include at least one 
such link in one email. The top third-party domains and 
organizations that receive these leaked email addresses 
are substantially similar to the list of top third parties 
overall. 

1.3 Evaluating and improving defenses 

We identify five possible defenses against email track
ing: content proxying, HTML filtering, cookie blocking, 
referrer blocking, and request blocking. There are three 
possible ways to deploy defenses: by the mail server, 
the mail user agent, or the web user agent (i.e., the 
browser that handles links that are clicked on emails). 
We present a systematization of how each of these enti
ties could deploy each of these defenses (Section 6.1). 

The defenses that can be deployed by web browsers 
to protect against leaks of emails are nearly identical 
to defenses against web tracking in general. This is a 
mature area of research and there are numerous tools 
on the market based on filter lists. Based on our data 
analysis, we identify a list of 27,125 distinct URLs (from 
133 domains) that receive leaked email addresses and 
are not blocked by prominent filter lists, presumably 
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because these trackers are specific to emails (Section 7). 
We believe that these would make useful additions to 
existing filter lists. Except for this contribution, we focus 
our analysis of defenses on mail servers and mail user 
agents rather than web browsers. 

Based on our analysis of 16 email servers and clients 
(Section 6.2) we find that a patchwork of defenses are 
employed, and no setup offers complete protection from 
the threats we identify. Perhaps the best option for 
privacy-conscious users today is to use webmail and in
stall tracker-blocking extensions such as uBlock Origin 
or Ghostery. 

We show that HTML filtering can be an effective 
defense. The idea is to rewrite email bodies to remove 
tracking elements. This can be done by either the mail 
server or the mail user agent. We prototype an element 
filtering tool based on existing tracking-protection lists 
and evaluate its effectiveness (Section 7). 

2 Related work 

Email secuity and privacy. The literature on email 
security and privacy has focused on authentication of 
emails and the privacy of email contents. For exam
ple, Durumeric et al. found that the long tail of SMTP 
servers largely fail to deploy encryption and authenti
cation, leaving users vulnerable to downgrade attacks, 
which are widespread in the wild [15]. Holz et al. also 
found that email is poorly secured in transit, often 
due to configuration errors [21]. We study an orthog
onal problem. Securing email in transit will not defend 
against email tracking, and vice versa. 

Third-party web tracking. Email tracking is an 
outgrowth of third-party web tracking, which has grown 
tremendously in prevalence and complexity since the 
1990s [13, 26, 28, 35]. Today Google is the most promi
nent tracker, through various third-party domains, and 
can track users across nearly 80% of sites [27]. Web 
tracking has expanded from simple HTTP cookies to in
clude more persistent tracking techniques to “respawn” 
or re-instantiate HTTP cookies through Flash cookies 
[37], cache E-Tags, and HTML5 localStorage [10]. Over
all, tracking is moving from stateful to stateless tech
niques: device fingerprinting attempts to identify users 
by a combination of the device’s properties [16, 25]. Such 
techniques have advanced quickly [19, 30, 33], and are 
now widespread on the web [7, 8, 17, 32]. These tech
niques allow trackers to compile unique browsing histo
ries, but they do not link histories to identity. 

Compared to web tracking, email tracking does not 
use fingerprinting because (most) email clients prohibit 
JavaScript. On the other hand, email readily provides 
a unique, persistent, real-world identifier, namely the 
email address. Web tracking researchers have created a 
number of tools for detecting and measuring tracking 
and privacy, such as FPDetective [8], OpenWPM [17], 
and FourthParty [28]. We use OpenWPM for most of 
our measurements in this paper. 

PII leakage. Leaks of PII of logged-in users from 
first-party websites to third parties are rampant; the 
early papers on this problem were by Krishnamurthy et 
al. [23, 24]. PII leaks enable trackers to potentially at
tach identities to browsing histories. More recent work 
includes detection of PII leakage to third parties in 
smartphone apps [34, 40], PII leakage in contact forms 
[38], PII leakage that enables cross-device tracking [12], 
and data leakage due to browser extensions [39]. 

The common problem faced by these authors (and 
by us) is that PII may be obfuscated. When the data col
lection is crowdsourced [34, 40] rather than automated, 
there is the further complication that the strings that 
constitute PII are not specified by the researcher and 
thus not known in advance. On the other hand, crowd-
sourced data collection allows obtaining numerous in
stances of each type of leak, which might make detection 
easier. 

Various approaches are seen in prior work. Ren et 
al. employ heuristics for splitting fields in network traf
fic and detecting likely keys; they then apply machine 
learning to discriminate between PII and other fields 
[34]. Starov et al. apply differential testing, that is, vary
ing the PII entered into the system and detecting the 
resulting changes in information flows [38]. This is chal
lenging to apply in our context, because we observed fre
quent A/B testing in the commercial emails in our cor
pus, which makes it tricky to attribute observed changes 
to PII. This is an area for future work. Finally, our own 
approach is most similar to that of Brookman et al. [12] 
and Starov et al. [39] who test combinations of encod
ings and/or hashes. 

3 Collecting a dataset of emails 

We now describe how we assembled a large-scale cor
pus of mailing-list emails. We do not attempt to study 
a “typical” user’s mailbox, since we have no empirical 
data from real users’ mailboxes. Rather, our goal in as
sembling a large corpus is to study the overall landscape 
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High-level architecture of crawler. 
Assemble a list of sites. For each site: 
–	 Find pages potentially containing forms. For 

each page: 
–	 Find the best form on the page via top-

down form detection and bottom-up form 
detection. If a form was found: 
∗	 Fill in the form 
∗	 Fill in any secondary forms if necessary 
∗	 Once a form has been submitted, skip 

the rest of the pages and continue to 
next site 

High-level architecture of server. 
Receive and store email. For each email: 
–	 Check for and process confirmation links. 

Fig. 1. High-level architecture of the email collection system, 
with the individual modules italicized. 

of third-party tracking of emails: identify as many track
ers as possible (feeding into our enhancements to exist
ing tracking-protection lists) and as many interesting 
behaviors as possible (such as different hashes and en
codings of emails addresses). 

To achieve scale, we use an automated approach. 
We created a web crawler based on the OpenWPM web 
privacy measurement tool [17] to search for and fill in 
forms that appear to be mailing-list subscriptions. The 
crawler has five modules, and the server that processes 
emails has two modules. They are both described at a 
high level in Fig. 1. We now describe each of the seven 
modules in turn. 

Assemble a list of sites. Alexa maintains a pub
lic list of the top 1 million websites based on monthly 
traffic statistics, as well as rankings of the top 500 web
sites by category. We used the “Shopping” and “News” 
categories, since we found them more likely to contain 
newsletters. In addition, we visited the top 14,700 sites 
of the 1 million sites, for a total of 15,700 sites. 

Detect and rank forms. When the crawler cannot 
locate a form on the landing page, it searches through all 
internal links (<a> tags) in the DOM until a page con
taining a suitable form is found. A ranked list of terms, 
shown in Table 1, is used to prioritize the links most 
likely to contain a mailing list. On each page, forms are 
detected using both a top-down and bottom-up proce
dure. The top-down procedure examines all fields con
tained in <form> elements. Forms which have a higher 
z-index and more input fields are given a higher rank, 

while forms which appear to be part of user account reg
istration are given a lower rank. If no <form> elements 
are found, we attempt to discover forms contained in al
ternative containers (e.g., forms in <div> containers) us
ing a bottom-up procedure. We start with each <input> 
element and recursively examine its parents until one 
with a submit button is found. For further details, see 
Top-down form detection and Bottom-up form detection 
in Appendix Section 10.1. 

Fill in the form. Once a form is found, the crawler 
must fill out the input fields such that all inputs vali
date. The crawler fills all visible form fields, including: 
<input> tags, <select> tags (i.e., dropdown lists), and 
other submit <button> tags. Most websites use the gen
eral text type for all text inputs. We surveyed a number 
of top websites to determine common naming practices 
for input fields, and filled the fields with the data of the 
expected type. For example, name fields were filled with 
a generic first and last name. After submitting a form, 
we wait for a few seconds and re-run the procedure to 
fill follow-up fields, if required. For further details, see 
Determining form field type and Handling two-part form 
submissions in Appendix Section 10.1. 

Receive and store email. We set up an SMTP 
server to receive emails. The server accepts any mail sent 
to an existing email address, and rejects it otherwise. It 
then parses the contents of the mail and logs metadata 
(such as the sender address, subject text, and recipient 
address) to a central database. All textual portions of 
the message contents are written to disk. We provide 
implementation details in Appendix Section 10.2. 

Check for and process confirmation links. Our 
server will check the first email sent to each email ad
dress to determine if the mailing list requires additional 
user interaction to confirm the subscription. If the ini
tial email’s subject or rendered body text includes the 
keywords “confirm”, “verify”, “validate”, or “activate”, 
we extract potential confirmation links from the email. 
For HTML emails we collect links which match these 
keywords along with additional lower-priority keywords 
“subscribe” or “click”. For plain-text emails we simply 
choose the longest link text. Emails with the past-tense 
keywords “confirmed”, “subscribed”, and “activated” in 
subject lines are skipped, as are links with the text “un
subscribe”, “cancel”, “deactivate”, and “view”. If any 
link is found, it is visited using OpenWPM. 

Form submission measurement. Our crawler 
discovered and attempted to submit forms on 3,335 
sites. We received at least one email from 1,242 (37%) of 
those sites. To understand the types of form submission 
failures, we ran a follow-up measurement in August 2017 
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Description Keywords Location 

Email list registration newsletter, weekly ad, subscribe, inbox, email, sale alert link text 
Generic registration signup, sign up, sign me up, register, create, join link text 
Generic articles/posts /article, news/, /2017 link URL 
Selecting language/region /us/, =us&, en-us link URL 
Blacklist unsubscribe, mobile, phone link text 

Table 1. The web crawler chooses links to click based on keywords that appear in the link text or URL. The keywords were generated 
by iterating on an initial set of terms, optimizing for the success of mailing list sign-ups on the top sites. We created an initial set of 
search terms and manually observed the crawler interact with the top pages. Each time the crawler missed a mailing list sign-up form 
or failed to go to a page containing a sign-up form, we inspected the page and updated the set of keywords. This process was repeated 
until the crawler was successful on the sampled sites. 

Submission classification % of sampled sites 

Total successful submissions 38% 
→Mailing lists subscription 32% 
→User account registration 6% 

Failed: required a CAPTCHA 16% 
Failed: unsupported form fields 25% 
Unable to classify via screenshots 21% 

Table 2. Submission success status of a sample of 252 of the 
3,335 form submissions made during the sign-up crawl. The suc
cess and failure classification was determined through a manual 
review of screenshots taken before and after an attempted form 
submission. 

where we took screenshots of the pages before and after 
the initial and follow-up form submissions. We manu
ally examined a random sample of sites on which a form 
submission was attempted. We summarize the results in 
Table 2. 

When filling forms, our crawler will interact with 
user account registration forms, mailing list sign-up 
forms, and contact forms. The successful submissions 
were mostly mailing list sign-ups and a small number of 
user account registrations, which are included as they 
can be tied to a mailing list. The failed submissions were 
mostly caused by forms other than mailing lists. In fact, 
more than 70% of the failures caused by a captcha or 
unsupported field were not mailing list form submis
sions. Overall, only 11% of the sampled mailing list in
teractions resulted in a captcha. Since our primary fo
cus is mailing lists, we leave the evaluation of complex 
and captcha-protected forms to future work. 

Email corpus. The assembled corpus contains a 
total of 12,618 HTML emails from 902 sites. We re
ceived an average of around 14 emails per site and a 
median of 5. A few sites had very active mailing lists, 
with 20 sites sending over 100 emails during the test 
period. We observe that we received no spam, which 
we confirmed both by manual inspection of a sample of 

emails as well as by finding an exact one-to-one corre
spondence between the 902 senders in our dataset and 
the unique email addresses that we generated. This en
sures that the results represent the behavior of the sites 
where we registered, rather than spammers. 

4 Privacy leaks when viewing 
emails 

4.1 Measurement methodology 

Simulating a webmail client. To measure web track
ing in email bodies we render the emails using a simu
lated webmail client in an OpenWPM instance. Many 
webmail clients remove a subset of HTML tags from 
the email body to restrict the capabilities of rendered 
content. In particular, Javascript is exclusively removed, 
while iframe tags and CSS [6] have mixed support. We 
simulate a permissive webmail client, one which disables 
Javascript and removes the Referer header from all re
quests, but applies no other restrictions to the rendered 
content. 

The email content is served on localhost, but is 
accessed through the domain localtest.me (which re
solves to localhost) to avoid any special handling the 
browser may have for the local network. We configure 
OpenWPM to run 15 measurement instances in parallel. 
Each email is loaded twice in its own measurement in
stance: once with a fresh profile, and then again keeping 
the same browser profile after sleeping for 10 seconds. 
This is intended to allow remote content on the page to 
load both with and without browser state present. In
deed we observe some tracking images which redirect to 
new domains upon every subsequent reload of the same 
email. 

localtest.me
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Classifying third-party content. Many email 
clients load embedded content directly from remote 
servers (we further explore the properties of email 
clients in Section 6.2). Thus, remote content present 
in multiple emails can track users in the same way 
third-party content can track users across sites on the 
web. However, unlike the web there isn’t always a 
clear distinction of which requests are “third-party” and 
which are “first-party”. For example, all resources loaded 
by webmail clients are considered third-party by the 
browser. We consider any request to a domain2 which 
is different than both the domain on which we signed 
up for the mailing list and the domain of the sender’s 
email address to be a third-party request. 

Detecting email leakage. Email addresses leak 
to remote servers through resource requests. Detecting 
these leaks is not as simple as searching for email ad
dresses in requests, since the addresses may be hashed or 
encoded, sometimes iteratively. To detect such leakage 
we develop a methodology that, given a set of encod
ings and hashes, a plaintext email address, and a URL 
token, is able to determine if the token is a transforma
tion of the email address. Starting with the plaintext 
email address we pre-compute a candidate set of tokens 
by applying all supported encodings and hashes itera
tively, stopping once we reach three nested encodings 
or hashes. We then take the URL token and apply all 
supported decodings to the value, checking if the result 
is present in the candidate set. If not, we iteratively 
apply decodings until we reach a level of three nested 
decodings. 

In a preliminary measurement we found no exam
ples of a value that was encoded before being hashed. 
This is unsurprising, as hashed email addresses are used 
to sync data between parties and adding a transforma
tion before the hash would prevent that use case. Thus, 
when analyzing the requests in this dataset, we restrict 
ourselves to at most three nested hashes for a set of 
24 supported hashes, including md5, sha1, sha256. For 
encodings, we apply all possible combinations of 10 en
codings, including base64, urlencoding, and gzip. The 
full list of supported hashes and encodings is given in 
Appendix 10.3. 

Classifying email leakage. Email leaks may not 
be intentional. If an email address is included in the 
query string or path of a document URL it may auto
matically end up in the Referer header of subsequent 

requests from that document. Requests which result in 
a redirect also often add the referrer of the previous re
quest to the query string of the new request. In many 
instances this happens irrespective of the presence of 
an email address in the original request. The situation 
is made more complex on the web since third-party 
Javascript can dynamically build URLs and trigger re
quests. 

The reduced HTML support and lack of Javascript 
execution in email clients makes it possible to deter
mine intentionality for most leaks. When an email is 
rendered, requests can result from three sources: from 
elements embedded in the original HTML, from within 
an embedded iframe (if supported by the client), or from 
a redirected request. 
1.	 If a leak occurs in a Referer header it is uninten

tional. For webmail clients the Referer header (if 
enabled) will be the client itself. A mail sender can 
embed an iframe which loads a URL that includes 
the user’s email address, with the explicit intention 
that the user’s email leak to third parties via the 
Referer header. However, we chose not to include 
this possibility because email senders have multi
ple direct options for sharing information with third 
parties that do not rely on the sparsely supported 
iframe tag. 

2.	 If a leak occurs in a request to a resource embedded 
directly in the HTML of the email body (and is not 
the result of a redirect) it is intentional. We can 
determine intentionality since any request result
ing from an HTML document must have been con
structed by the email sender. Note that this does not 
hold for web documents, since embedded Javascript 
can dynamically construct requests during the page 
visit. 

3.	 If a request results from a redirect, the party re
sponsible for the leak is the party whose request 
(i.e., the triggering URL) responded with a redi
rect to the new location (i.e., the target URL). We 
classify a leak as intentional if the leaked value is 
hashed between the triggering URL and the target 
URL, or if there are more encodings or hashes of 
the leaked value included in the target URL than 
in the triggering URL. If the target URL includes 
a full copy of the triggering URL (in any encoding) 
the leak is unintentional. All other cases are clas
sified as ambiguous, such the case where a target 
URL includes only the query string of the triggering 
URL. 

2 A domain is identified by its public suffix plus the component 
of the hostname immediately preceding its public suffix (PS+1). 
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Measuring blocked tags. Tracking protection tools 
which block resource requests offer users protection 
against the tracking embedded in emails. We evaluate 
the effectiveness of these tools by checking the requests 
in our dataset against two major blocklists, EasyList 
and EasyPrivacy [4]. These lists block advertisement 
and tracking related requests, and are bundled with 
several popular blocking extensions, including AdBlock 
Plus [1] and uBlock Origin [5]. We use the BlockList-
Parser library [3] to determine if a request would have 
been blocked3 by an extension utilizing these lists. We 
classify a request as blocked if it matches any of the 
following three conditions: 
1.	 The request directly matches the filter list 
2.	 The request is the result of a redirect and any re

quest earlier in the redirect was blocked. 
3.	 The request is loaded in an iframe and the iframe 

document request (or any resulting redirect) was 
blocked. 

It is possible to do this classification in an offline fashion 
because of the lack of Javascript support in email clients. 
This removes the need to run measurements with one 
of the aforementioned extensions installed. In environ
ments that support Javascript, content can be loaded 
dynamically and as the result of interactions between 
several scripts. In such an environment it is much more 
difficult to determine which requests would have been 
blocked by a single script appearing on the block list. 

4.2 Email provides much of same tracking 
opportunities as the web 

Remote resources embedded in email content can track 
users across emails. As we show in our survey of email 
clients (Section 6.2), many email clients allow remote 
resources to set persistent cookies and send those cook
ies with resource requests. In total, we find that 10,724 
of the measured emails (85%) embed resources from at 
least one third party, with an average of 5 third parties 
per email. The distribution of embedded third parties 
is far from uniform; we find a median of two per email 
and a small number of emails embedding as many as 50 
third parties (Figure 2). 

3 We set the parser options as we would expect them to be 
set for a request occurring in a webmail client. For example, all 
requests are considered third-party requests. 

Domain % of Emails % of Top 1M 

doubleclick.net 22.2 47.5 
mathtag.com 14.2 7.9 
dotomi.com 12.7 3.5 
adnxs.com 12.2 13.2 
tapad.com 11.0 2.6 
liadm.com 11.0 0.4 
returnpath.net 11.0 <0.1 
bidswitch.net 10.5 4,9 
fonts.googleapis.com 10.2 39.4 
list-manage.com 10.1 <0.1 

Table 3. Top third-party domains by percentage of the 12,618 
emails in the corpus. For comparison, we show the percentage 
of the top 1 million websites on which these third parties are 
present. 

Fig. 2. CDF of third parties per email, aggregating data across 
the initial viewing and re-opening of an email. In addition, 1.4% 
of emails have between 25 and 53 third parties. 

Table 3 shows the top third-party domains present 
in email. Many of these parties also have a large presence 
on the web [17], blurring the line between email and web 
tracking. On webmail clients, requests to these cross-
context third parties will use the same cookies, allowing 
them to track both a user’s web browsing and email 
habits. In total, the emails visited during our crawls 
embed resources from 879 third parties. 

4.3 Leaks of email addresses to third 
parties are common 

In addition to being able to track email habits, 99 third 
parties (11%) also gain access to a user’s email ad
dress, whether in plaintext or hashed. In email clients 
which support cookies, these third parties will receive 
the email address alongside any cookies they’ve set on 
the user’s device. Trackers which are also present on the 
web will thus be able to link this address with the user’s 
browsing history profile. 

Around 19% of the 902 senders leaked the user’s 
email address to a third party in at least one email, 
and in total 29% of emails contain leaks to third par
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ties. We find that a majority of these leaks, 62% of the 
100,963 leaks to third parties, are intentional. These 
intentional leaks mostly occur through remote content 
embedded directly by the sender. Furthermore, 1% of 
leaks are classified as unintentional with the remainder 
considered ambiguous. While we do not attempt to de
termine how these identifiers are being used, plaintext 
and hashed emails can be used for persistent tracking, 
cross-device tracking, and syncing information between 
parties. 

Leak # of Senders # of Recipients 

MD5 100 (11.1%) 38 (38.5%) 
SHA1 64 (7.1%) 19 (19.2%) 
SHA256 69 (7.6%) 13 (13.1%) 
Plaintext Domain 55 (6.1%) 2 (2.0%) 
Plaintext Address 77 (8.5%) 54 (54.5%) 
URL Encoded Address 6 (0.6%) 8 (8.1%) 
SHA1 of MD5* 1 (0.1%) 1 (1.0%) 
SHA256 of MD5* 1 (0.1%) 1 (1.0%) 
MD5 of MD5* 1 (0.1%) 1 (1.0%) 
SHA384 1 (0.1%) 1 (1.0%) 

Table 4. Email address leakage to third parties by encoding. Per
centages are given out of a total of 902 senders and 99 third-

party leak recipients. All hashes are of the full email address.
 
Email “domain” is the part of the address after the “@”.
 
*These appear to be a misuse of LiveIntent’s API (Section 4.5).
 

The leaked addresses are often hashed. Although 
we can detect email addresses hashed with 24 different 
functions and up to three nested layers, we only find 
MD5, SHA1, and SHA256 in frequent use. Table 4 summa
rizes the number of senders and receivers of each encod
ing. The relatively low diversity of hashes and encodings 
suggests that these techniques are not being used to ob
fuscate the collection of email addresses. In fact, the 
query parameters which contain hashed emails some
times identify the hash functions used in the parameter 
name (e.g., a string like ?md5=<md5 hash of email> ap
pearing in the HTTP request). The design of APIs like 
LiveIntent’s, which first receives an email address and 
then syncs with a number of other parties (Section 4.5), 
suggests that these hashed address may be used to share 
or link data from multiple parties. 

Recipient Organization # of Senders 

LiveIntent 68 (7.5%) 
Acxiom 46 (5.1%) 
Litmus Software 28 (3.1%) 
Conversant Media 26 (2.9%) 
Neustar 24 (2.7%) 
apxlv.com 18 (2.0%) 
54.211.147.17 18 (2.0%) 
Trancos 17 (1.9%) 
WPP 17 (1.9%) 
54.82.61.160 16 (1.8%) 

Table 5. Top organizations receiving email address leaks by num
ber of the 902 total senders. A domain is used in place of an 
organization when it isn’t clear which organization it belong to. 

Table 5 identifies the top organizations4 which re
ceive leaked email addresses. This shows that email ad
dress collection from emails is largely consolidated to a 
few major players, which are mostly distinct from the 
popular web trackers. In fact, only one of the top 10 
organizations, Neustar, is found in the top 20 third-
party organizations on the top 1 million websites, as 
measured by Englehardt and Narayanan [17]. Also sur
prising is the prevalence of leaks to IP addresses, which 
accounts for eight of the top 20 domains receiving email 
addresses. This may be due to the relatively ephemeral 
nature of newsletter emails, which removes concerns of 
IP address churn over time. 

4.4 Reopening emails brings in new third 
parties 

Despite the lack of Javascript support, email views are 
dynamic. The email content itself is static, but any re
mote resources embedded in it may return different re
sponses each time the email is viewed, and even redirect 
to different third parties. To examine the effects of this, 
we load every email first with a “clean” browser profile 
and then again without clearing the profile. Surprisingly, 
the average Jaccard similarity [36] between the sets of 
third parties loaded during the first and second views 
of the same email is only 60%. 

The majority of emails—two-thirds—load fewer 
third parties when the email is reopened compared to 
the initial view. However, about 21% of emails load at 

4 We map domains to organizations using the classification pro
vided by Libert [27], adding several new email-specific organi
zations. When an organization could not be found, we use the 
PS+1. 

http:54.211.147.17
http:apxlv.com
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Row Request URL 

0 http://inbox.washingtonexaminer.com/imp?[...]&e=<EMAIL>&p=0 
1 http://p.liadm.com/imp?[...]&m=<MD5(address)>&sh=<SHA1(address)>&sh2=<SHA256(address)> 

&p=0&dom=<EMAIL_DOMAIN> 
2 http://x.bidswitch.net/sync?ssp=liveintent&bidder_id=5298&licd=3357&x=EGF.M[...] 
3 http://x.bidswitch.net/ul_cb/sync?ssp=liveintent&bidder_id=5298&licd=3357&x=EGF.M[...] 
4 http://p.adsymptotic.com/d/px/?_pid=12688&_psign=d3e69[...]&bidswitch_ssp_id=liveintent&_redirect=[...] 
5 http://p.adsymptotic.com/d/px/?_pid=12688&_psign=d3e69[...]&bidswit[...]&_redirect=[...]&_expected_cookie=[...] 
6 http://x.bidswitch.net/sync?dsp_id=126&user_id=84f3[...]&ssp=liveintent 
7 http://i.liadm.com/s/19751?bidder_id=5298&licd=3357&bidder_uuid=<UUID_1> 
8 http://cm.g.doubleclick.net/pixel?google_nid=liveintent_dbm&google_cm&google_sc 
9 http://cm.g.doubleclick.net/pixel?google_nid=liveintent_dbm&google_cm=&google_sc=&google_tc= 
10 http://p.liadm.com/match_g?bidder_id=24314&bidder_uuid=<UUID_2>&google_cver=1 
11 http://x.bidswitch.net/sync?ssp=liveintent&bidder_id=5298&licd= 
12 http://pool.udsp.iponweb.net/sync?ssp=bidswitch&bidswitch_ssp_id=liveintent 

Table 6. Redirect chain from a LiveIntent Email Tracking Pixel. URL query strings are truncated for clarity (using [...]). 

least one resource when an email is reopened that wasn’t 
present the first time. A small number of third parties 
are disproportionately responsible for this—they load 
different sets of additional third parties each time the 
email is opened (Table 14 in the Appendix). 

The number of leaks between email loads stays rela
tively constant, with less than 50 emails leaking to new 
parties on the second load5. However, as the compari
son of Table 14 with Table 5 shows, many of the top 
leak recipients are also responsible for redirecting to the 
highest number of new parties. Thus, reloading an email 
increases the number of potential recipients of a leak if 
the redirectors share data based on the email or email 
hash they receive. 

4.5 Case study: LiveIntent 

LiveIntent receives email addresses from the largest 
number of senders, 68 in total. In this section we 
analyze a sample of the request chains that re
sult in leaks to LiveIntent. Table 6 shows an ex
ample redirect chain of a single pixel embedded in 
an email from the washingtonexaminer.com mailing 
list. The initial request (row 0) is to a subdomain of 
washingtonexaminer.com, and includes the user’s plain-
text email address in the e= query string parameter. The 
domain redirects to liadm.com (row 1), a LiveIntent do
main, and includes the MD5, SHA1, and SHA256 hashes of 
the email address in the parameters m=, sh=, and sh2=. 

5 We exclude leaks which occur to a different IP address on the 
second load. This occurs in 349 emails, but is less meaningful 
given the dynamic nature of IP address. 

The URL also includes the domain portion of the user’s 
address. 

In rows 2 - 12, the request redirects through several 
other domains and back to itself, exchanging what ap
pear to be partner IDs and bidder IDs. In rows 7 and 
10 LiveIntent receives a UUID from the domain in the 
previous request, which could allow it to exchange in
formation with those trackers outside of the browser. 

4.6 Request blockers help, but don’t fix 
the problem 

Privacy conscious users often deploy blocking exten
sions, such as uBlock Origin, Privacy Badger, or 
Ghostery, to block tracking requests. Since webmail 
clients are browser-based, these blocking extensions can 
also filter requests that occur while displaying email con
tent6. We use our blocked tag detection methodology 
(Section 4.1) to determine which resources would have 
been blocked by the popular EasyList and EasyPrivacy 
blocklists. We then examine the remaining requests to 
determine how frequently email addresses continue to 
leak. 

Overall, the blocklists cut the number of third par
ties receiving leaked email addresses from any sender 
nearly in half, from 99 to 51. Likewise, the number of 
senders which leak email addresses in at least one email 
is greatly reduced, from 19% to just 7%. However, as 
Table 7 shows, a significant number of leaks of both 

6 Thunderbird supports most of the popular Firefox extensions, 
and as such Thunderbird users can also deploy these defenses. 
See Table 12 for more details. 

http://inbox.washingtonexaminer.com/imp?[...]&e=<EMAIL>&p=0
http://p.liadm.com/imp?[...]&m=<MD5(address)>&sh=<SHA1(address)>&sh2=<SHA256(address)>
&p=0&dom=<EMAIL_DOMAIN>
http://x.bidswitch.net/sync?ssp=liveintent&bidder_id=5298&licd=3357&x=EGF.M[...]
http://x.bidswitch.net/ul_cb/sync?ssp=liveintent&bidder_id=5298&licd=3357&x=EGF.M[...]
http://p.adsymptotic.com/d/px/?_pid=12688&_psign=d3e69[...]&bidswitch_ssp_id=liveintent&_redirect=[...]
http://p.adsymptotic.com/d/px/?_pid=12688&_psign=d3e69[...]&bidswit[...]&_redirect=[...]&_expected_cookie=[...]
http://x.bidswitch.net/sync?dsp_id=126&user_id=84f3[...]&ssp=liveintent
http://i.liadm.com/s/19751?bidder_id=5298&licd=3357&bidder_uuid=<UUID_1>
http://cm.g.doubleclick.net/pixel?google_nid=liveintent_dbm&google_cm&google_sc
http://cm.g.doubleclick.net/pixel?google_nid=liveintent_dbm&google_cm=&google_sc=&google_tc=
http://p.liadm.com/match_g?bidder_id=24314&bidder_uuid=<UUID_2>&google_cver=1
http://x.bidswitch.net/sync?ssp=liveintent&bidder_id=5298&licd=
http://pool.udsp.iponweb.net/sync?ssp=bidswitch&bidswitch_ssp_id=liveintent
http:liadm.com
http:washingtonexaminer.com
http:washingtonexaminer.com
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Encoding # of Senders # of Recipients 

Plaintext Address 34 (3.7%) 34 (66.7%) 
MD5 21 (2.3%) 12 (23.5%) 
SHA1 14 (1.6%) 6 (11.8%) 
URL Encoded Address 4 (0.4%) 4 (7.8%) 
SHA256 4 (0.4%) 2 (3.9%) 
SHA384 1 (0.1%) 1 (2.0%) 

Table 7. Encodings used in leaks to third parties after filtering 
requests with EasyList and EasyPrivacy. Totals are given out of 
902 email senders and 51 third-party leak recipients. 

Recipient Domain # of Senders 

mediawallahscript.com 7 
jetlore.com 4 
scrippsnetworks.com 4 
alocdn.com 3 
richrelevance.com 3 
ivitrack.com 2 
intentiq.com 2 
gatehousemedia.com 2 
realtime.email 2 
ziffimages.com 2 

Table 8. The top third-party leak recipient domains after filtering 
requests with EasyList and EasyPrivacy. All recipients receive 
leaks from less than 1% of the 902 senders studied. 

plaintext and email hashes still occur. In Table 8 we see 
that there are still several third-party domains which 
receive email address leaks, despite blocking. Several of 
these domains are known trackers which could be in
cluded in the blocklists. In addition, IP addresses and 
CDN domains are still recipients of leaked email ad
dresses. Blocking on other URL features, such as the 
URL path, could help reduce leaks to these domains. 

5 Privacy leaks when clicking 
links in emails 

In Section 4 we explore the privacy impact of a user 
opening and rendering an email. In this section we ex
plore the privacy impact of a user clicking links within 
an email. Once a user clicks a link in an email, the link is 
typically opened in a web browser. Unlike email clients, 
web browsers will typically support Javascript and ad
vanced features of HTML, creating many potential av
enues for privacy leaks. However, the only way an email 
address can propagate to a page visit is through the di
rect embedding of the address in a link contained in the 
original email body. 

5.1 Measurement methodology 

Sampling links from emails. To evaluate the privacy 
leaks which occur when links in emails are clicked, we 
generate a dataset from the HTML content of all emails 
and visit them individually in an instrumented browser. 
To extract the links from mail content, we parse all 
email bodies with BeautifulSoup [2] and extract the 
src property of all <a> tags. We sample up to 200 unique 
links per sender using the following sampling strategy. 
First, we bin links across all emails from a sender by 
the PS+1 and path of the link. Next, we sample one link 
from each bin without replacement until there are no 
more links or we reach a limit of 200. This helps ensure 
that we have as diverse a set of landing pages as possible 
by stripping fragment and query string identifiers that 
may not influence the landing page. 

Simulating link clicks. To simulate a user click
ing a link, we visit each link in an OpenWPM instance 
using a fresh browser profile. The browser fully loads 
the page and sleeps for 10 seconds before closing. Un
like the email viewing simulation (Section 4), we enable 
both Javascript and Referer headers. This simulation 
replicates what happens when a link is clicked in a stan
dalone email client; only the URL of the clicked link is 
passed to the browser for handling. In a webmail client, 
the initial request resulting from the click may also con
tain a cookie and a Referer header containing the email 
client’s URL. We do not simulate these headers in our 
crawl. 

Detecting email address leakage. To detect 
leakage of email addresses we use the procedure de
scribed in Section 4.1. Since the Referer header is en
abled for these measurements, we consider a party to 
have received a leak if it is contained either in the URL 
or the Referer header of the resource request to that 
party. Email addresses can also be shared with the party 
through the Cookie header, request POST bodies, web-
socket connections, WebRTC connections, and so on. 
We consider these out of scope for this analysis. 

5.2 Results 

We found that about 11% of links contain requests that 
leak the email address to a third party. About 12% of 
all emails contain at least one such link, and among this 
subset, there are an average of 3.5 such links per email. 
The percentage of the 902 senders that leak the email 
address in at least one link in one email is higher: 35.5%. 
Finally, there were over 1,400 distinct third parties that 

http:ziffimages.com
http:gatehousemedia.com
http:intentiq.com
http:ivitrack.com
http:richrelevance.com
http:alocdn.com
http:scrippsnetworks.com
http:jetlore.com
http:mediawallahscript.com
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Recipient Organization # of Senders 

Google 247 (27.4%) 
Facebook 160 (17.7%) 
Twitter 94 (10.4%) 
Adobe 81 (9.0%) 
Microsoft 73 (8.1%) 
Pinterest 72 (8.0%) 
LiveIntent 69 (7.6%) 
Akamai 69 (7.6%) 
Acxiom 68 (7.5%) 
AppNexus 61 (6.8%) 

Table 9. The top leak recipient organizations based on a sample 
of simulated link clicks. All values are out of 902 total senders. 

Recipient Domain # of Senders 

google-analytics.com 200 (22.2%) 
doubleclick.net 196 (21.7%) 
google.com 159 (17.6%) 
facebook.com 154 (17.1%) 
facebook.net 145 (16.1%) 
fonts.googleapis.com 102 (11.3%) 
googleadservices.com 96 (10.6%) 
twitter.com 94 (10.4%) 
googletagmanager.com 87 (9.6%) 
gstatic.com 78 (8.6%) 

Table 10. The top leak recipient domains based on a sample of 
simulated link clicks. All values are out of 902 senders. 

received the email address in one or more of our sim
ulated link clicks. We expect that all statistics in this 
paragraph, except the first, are slight underestimates 
due to our limit of 200 links per sender. 

Table 9 shows the top organizations that receive 
leaked email addresses, and Table 10 shows the top do
mains. Over a quarter of senders leak the email address 
to Google in at least one link. 

The most striking difference between these results 
and the corresponding results for viewing emails is that 
these lists look very similar to the list of top third party 
trackers [17], with the addition of a small number of 
organizations specific to email tracking. This motivates 
the privacy concern that identities could potentially be 
attached to third-party web tracking profiles. 

6 Evaluation of defenses 

6.1 Landscape of defenses 

Defenses against tracking can be employed by several 
parties. We ignore mail senders and trackers themselves, 

since email tracking is a thriving commercial space and 
our evidence suggests that senders by and large coop
erate with trackers to leak email addresses. We instead 
focus on parties who have an incentive to protect the 
recipient’s privacy, namely the recipient’s mail server, 
mail user agent, and the web browser. 

The lines between these roles can be blurry, so we 
illustrate with two examples. Consider a user reading 
Yahoo mail via Firefox. The email server is Yahoo, the 
email client is Firefox together with Yahoo mail’s client-
side JavaScript, and the web browser is again Fire
fox. Or consider a user reading her university mail, via 
Gmail’s IMAP feature, on her iPhone. For our purposes, 
both the university and Gmail count as email servers, 
since either of them is in a position to employ defenses. 
The email client is the Gmail iOS app, and the web 
browser is Safari. 

Defense Email server Email client Web browser 
Content proxying X 
HTML filtering X X 
Cookie blocking X X 
Referrer blocking X X X 
Request blocking X X 

Table 11. Applicability of each of the five possible defenses to 
each of the three contexts in which they may be deployed. An X 
indicates that the defense is applicable. 

Table 11 summarizes the applicability of various de
fenses to the three roles. We discuss each in turn. 

Content proxying. Email tracking is possible be
cause of embedded content such as images and CSS (cas
cading style sheets). To prevent this, some email servers, 
notably Gmail, proxy embedded content. Thus, when 
the recipient views the email, the mail user agent does 
not make any requests to third parties. 

This defense doesn’t prevent the recipient email ad
dress being leaked to third parties, since it is leaked 
by being encoded in the URL. In fact, it hinders ef
forts by the mail client to prevent email address leakage 
(see request blocking below). However, it prevents third 
parties from learning the user’s IP address, client device 
properties, and when the email was read (depending on 
how the proxy is configured). Most importantly, it pre
vents the third-party cookie from being sent, and thus 
prevents the third party from linking the user’s email 
address to a tracking profile. In this way it is a comple
ment to cookie blocking. 

This defense can be deployed by the email server. 
Conceivably the email client might have its own server 

http:gstatic.com
http:googletagmanager.com
http:twitter.com
http:googleadservices.com
http:fonts.googleapis.com
http:facebook.net
http:facebook.com
http:google.com
http:doubleclick.net
http:google-analytics.com
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component through which embedded resources are prox
ied, but no email clients currently work this way, and 
further, it would introduce its own privacy vulnerabili
ties, so we ignore this possibility. 

HTML filtering. HTML filtering refers to modify
ing the contents of HTML emails to mitigate tracking. It 
may be applied by the email server or the client, but it is 
more suitable to the server since the client can generally 
achieve the same effect in other ways, e.g., by request 
blocking or modifying the rendering engine. It is rarely 
applied today, and only in minimal ways. In Section 7 we 
prototype a comprehensive HTML filtering technique. 

HTML filtering modifies the content of the email 
body, and thus might interfere with some email au
thentication methods, notably Domain Keys Identified 
Email (DKIM). However, since filtering is carried out 
by the recipient’s mail server (Mail Transfer Agent) and 
not by intermediate mail relays, filtering can be done af
ter the signature has been verified, and thus there is no 
impact on email authentication. 

The following three techniques are applicable in one 
of two scenarios: when the email client requests embed
ded resources, or when the web browser handles clicks 
on links in emails. 

Cookie blocking. Cookie blocking in the email 
client prevents third-party cookies from being sent when 
embedded content is requested. It is especially relevant 
in the webmail context, where the cookie allows third 
parties to link an email address to a web browsing pro
file. Even otherwise, blocking cookies is helpful since it 
makes it harder for third parties to compile a profile of 
the recipient’s email viewing (they can always do this for 
the subset of emails where the email address is leaked). 

Referrer blocking. If the email client sends the 
Referer header when loading embedded resources, it 
can allow several types of leaks. Depending on the imple
mentation, the referrer may encode which client is being 
used and which specific email is being read. If the recip
ient forwarded an email to someone else and the email is 
being viewed in a different user’s mailbox, it could leak 
this information. Worse, if the client supports iframes 
in emails, and the email address happens to be in the 
iframe URL, all requests to resources embedded in that 
iframe will accidentally leak the email address. For all 
these reasons, referrer blocking is a privacy-enhancing 
measure. There is little legitimate use for the referrer 
header in the context of email. While clients can cer
tainly block the header (as can web browsers), servers 
can do this as well, by rewriting HTML to add the 
rel=“noreferrer” attribute to links and inserting a Re
ferrer Policy via the meta tag. 

Request blocking. Request blocking is a powerful 
technique which is well known due to ad blockers and 
other browser privacy extensions. It relies on manually 
compiled filter lists containing thousands of regular ex
pressions that define third-party content to be blocked. 
The most widely used ad-blocking list is EasyList, and 
the most widely used tracker-blocking list is EasyPri
vacy. Filter list based blocking introduces false positives 
and false negatives [43], but the popularity of ad block
ing suggests that many users find the usability trade-off 
to be acceptable. While request-blocking extensions are 
supported primarily by web browsers, some email clients 
also have support for them, notably Thunderbird. 

6.2 Survey of email clients 

We built an email privacy tester to discover which de
fenses are deployed by which popular email servers and 
clients.7 Browser support for tracking protection has 
been extensively studied elsewhere [29], so we do not 
consider it here. 

The email privacy tester allows the researcher to en
ter an email address and the name of an email client, 
and then sends an email to that address containing a 
tracking image and a link. The image and the link both 
have unique URLs. The researcher views the email in 
the specified email client, and then clicks on the link. 
The server records the following information: the email 
address, the email client, the IP address, timestamp, 
and headers sent for both the image and the link re
quests. The list of headers includes the cookie, referrer, 
and user agent. 

We created accounts with a total of 9 email 
providers and tested them with a total of 16 email clients 
using various devices available in our lab. We analyzed 
the data recorded by the email privacy tester, and sum
marize the results in Table 12. We found that if de
fenses are deployed by email servers at all, they are only 
enabled for specific email clients (typically the default 
webmail client). Therefore we do not report on servers 
separately, but instead fold it into the analysis of clients. 
We also found that HTML filtering in a general form is 
not deployed, but only in the limited form of image and 
referrer blocking, so we report on that instead. We sum
marize our findings in Table 12. 

7 https://emailtracking.openwpm.com/ 

https://emailtracking.openwpm.com/
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Mail Client Platform Proxies Content Blocks Images Blocks Referrers Blocks Cookies Ext. Support 

Gmail Web Yes No* L: Yes, I: Yes† Yes† Yes 
Yahoo! Mail Web No Yes L: Yes, I: No No Yes 
Outlook Web App Web No Yes No No Yes 
Outlook.com Web No No* No No Yes 
Yandex Mail Web Yes No* L: Yes, I: Yes† Yes† Yes 
GMX Web No No* No No Yes 
Zimbra Web No Yes No No Yes 
163.com Web No No* No No Yes 
Sina Web No No No No Yes 
Apple Mail iOS No No* Yes Yes No 
Gmail iOS Yes No Yes Yes No 
Gmail Android Yes No Yes Yes No 
Apple Mail Desktop No No* Yes Yes No 
Windows Mail Desktop No No* Yes No No 
Outlook 2016 Desktop No Yes Yes No No 
Thunderbird Desktop No Yes Yes Optional (Default: No) Yes 

Table 12. A survey of the privacy impacting features of email clients. We explore whether the client proxies image requests, blocks 
images by default, blocks referrer headers from being sent (with image requests “I:” and with link clicks “L:”), blocks external re
sources from settings cookies, and whether or not the client supports request blocking extensions — either through the browser (for 
web clients) or directly (in the case of Thunderbird). 
*Images are only blocked for messages considered spam. 
† Blocking occurs as a result of proxied content. 

7 Proposed defense 

We argue that tracking protection should be at the cen
ter of a defensive strategy against email tracking. It can 
be employed either via HTML filtering on the server or 
via request blocking on the client. Tracking protection 
(and ad blocking) based on filter lists has proven to be 
effective and popular in web browsers, and its limita
tions manageable. The other defenses we examined all 
have serious drawbacks: for example, content proxying 
comes at a cost to the email server and makes email 
leaks worse, and cookie blocking is at best a partial so
lution. 

We propose to improve tracking protection in two 
ways. 

Server-side email content filtering. First, we 
prototype a server-side HTML filtering module. We use 
the existing, standard EasyList and EasyPrivacy filter 
lists. Our filtering script is written in Python using the 
BlockListParser library [3]. It scans for any HTML con
tent (text/html) in email bodies, parses those contents, 
identifies embedded resources (images or CSS) whose 
URLs match one of the regular expressions in the filter 
lists, strips them out, and rewrites the HTML. 

To test the effectiveness of HTML filtering, we ran 
our leak detection procedure on the filtered corpus of 
emails. We exclude one sender due to a measurement 
issue. We found that 11.0% of senders will leak email ad

dresses to a third party in at least one email, and 11.5% 
of emails contain embedded resources which leak email 
to a third-party. Overall, 62 third parties received leaked 
email addresses, down from 99. As tracking-protection 
lists improve (see below), we can expect these numbers 
to decrease further. These numbers are very close to 
the corresponding numbers for request blocking (Sec
tion 4.6). The two techniques aren’t identical: the one 
difference is that in static files, filtering is limited to the 
URLs present in the body of the HTML and will miss 
those that result from a redirect. However, this differ
ence is small, and we conclude that HTML filtering is 
essentially as effective as request blocking. 

Note that webmail users can already enjoy track
ing protection, but server-side deployment will help all 
users, including those who use email clients that don’t 
support request-blocking extensions. 

Filling gaps in tracking-protection lists. As a 
second line of defense, we use our dataset to identify 
a list of 27,125 URLs representing 133 distinct parties 
which contain leaks of email addresses, but which aren’t 
blocked by EasyList or EasyPrivacy. These include first 
parties in addition to third parties. We are able to iden
tify first-party tracking URLs by observing groups of 
URLs of similar structure across different first-party do
mains. For example, 51 email senders leak the user’s 
email address to a URL of the form li.<public suffix 
+ 1>/imp, which appears to be part of LiveIntent’s API 
(Section 4.5). We summarize the most common struc
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tures in the leaking URLs missed by tracking protection 
lists in Table 13. 

URL Pattern # of Senders 

li.<PS+1>/imp 51 (5.7%) 
partner.<PS+1>/ 7 (0.7%) 
stripe.<PS+1>/stripe/image 4 (0.4%) 
p.<PS+1>/esp/open 4 (0.4%) 
api.<PS+1>/layouts/section<N> 4 (0.4%) 
<PS+1>/customer-service 3 (0.3%) 
mi.<PS+1>/p/rp 3 (0.3%) 
dmtk.<PS+1>/ 3 (0.3%) 
links.<PS+1>/e/open 3 (0.3%) 
eads.<PS+1>/imp 3 (0.3%) 

Table 13. The top URL patterns from URLs which leak email ad
dresses and are missed by tracking protection lists (Section 4.6). 
The patterns are generated by stripping request URLs to host-
name and path, replacing the public suffix plus one with <PS+1>, 
replacing integers with <N>, and stripping the last portion of the 
path if it ends with a file extension. The patterns are ranked by 
the number of senders which make at least one leaking request 
matching that pattern in any of the sender’s emails. All values are 
given out of the total of 902 senders studied. 

We suspect that the reason so many trackers are 
missed is that many of them are not active in the regu
lar web tracking space. We have made the list of leaking 
URLs missed by tracking protection lists publicly avail
able.8 It should be straightforward to add regular ex
pressions to filter lists based on these URLs; we suggest 
that filter list creators should regularly conduct scans 
of email corpora to identify new trackers. 

8 Discussion and conclusion 

Privacy risks of email tracking. Email security and 
privacy has not received much research attention despite 
its central importance in digital life. We showed that 
commercial emails contain a high density of third-party 
trackers. This is of concern not only because trackers 
can learn the recipient’s IP address, when emails were 
opened, and so on, but also because these third parties 
are by and large the same ones that are involved in web 
tracking. This means that trackers can connect email 
addresses to browsing histories and profiles, which leads 
to further privacy breaches such as cross-device tracking 

8 https://gist.github.com/englehardt/ 
6438c5d775ffd535b317d5c6ce3cde61 

and linking of online and offline activities. Indeed, email 
is an underappreciated avenue for straightforward cross-
device tracking, since recipients tend to view emails on 
multiple devices. 

The advice provided by many mail clients may mis
lead users into thinking the privacy risks associated with 
remote content are fairly limited. The remote content 
help pages of Gmail [20], Yahoo! Mail [42], and Thun
derbird [31] all discuss the threat strictly in terms of 
the email sender learning information about the user, 
rather than a number of third parties. 

Even network adversaries can benefit from the leaks 
in emails. The NSA is known to piggyback on advertis
ing cookies for surveillance [18], and our work suggests 
one way in which a surveillance agency might attach 
identities to web activity records, in line with the find
ings of Englehardt et al. [18]. Indeed, nearly 91% of 
URLs containing leaks of emails are sent in plaintext. 

Ineffectiveness of hashing. The putative justi
fication for email address leaks in the online ad tech 
industry is that the address is hashed. However, hash
ing of PII, including emails, is not a meaningful pri
vacy protection. This is folk knowledge in the security 
community, but bears repeating. Compared to hashing 
of passwords, there are several reasons why hashing of 
email addresses is far more easily reversible via vari
ants of a dictionary attack. First, while (at least) some 
users attempt to maximize the entropy of passwords, 
most users aim to pick memorable emails, and hence the 
set of potential emails is effectively enumerable. Due to 
GPUs, trillions of hashes can be attempted at low cost. 
Second, unlike password hashing, salting is not applica
ble to email hashing since multiple third parties need to 
be able to independently derive the same hash from the 
email address. 

Perhaps most importantly, if the adversary’s goal 
is to retrieve records corresponding to a known email 
address or set of email addresses, then hashing is 
pointless—the adversary can simply hash the email ad
dresses and then look them up. For example, if the ad
versary is a surveillance agency, as discussed above, and 
seeks to retrieve network logs corresponding to a given 
email address, this is trivially possible despite hashing. 

Limitations. We mention several limitations of our 
work. First, despite the large number of heuristics that 
went into identifying and submitting forms, it is a fun
damentally hard problem, and our crawler fails in many 
cases, including pages requiring complex mouse interac
tions, pages containing very poorly structured HTML, 
and captcha-protected form submission pages. More
over, it is difficult to programmatically distinguish be

https://gist.github.com/englehardt/6438c5d775ffd535b317d5c6ce3cde61
https://gist.github.com/englehardt/6438c5d775ffd535b317d5c6ce3cde61
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tween successful and failed form submissions. Looking 
at received network data is impractical, since responses 
could easily include text for both success and failure 
messages. On the other hand, looking only at changes 
in the rendered text on the webpage is more feasible, 
but would require handling many possible edge cases 
(e.g., page redirects, alerts, pop-up windows, iframes) 
and might still be too unreliable to use as a metric for 
success. 

Second, our corpus of emails is not intended to be 
representative, and we are unable to draw conclusions 
about the extent of tracking in the typical user’s mail
box. 

Third, our simulation of a user viewing emails as
sumes a permissive user agent. We expect that this 
closely approximates a webmail setup with default 
browser settings (on browsers except Safari, which 
blocks third-party cookies by default), but we have not 
tested this assumption. 

Future work. Finally, we mention several potential 
areas of future work. 

Mailing list managers. It would be helpful to bet
ter understand the relationship between email senders 
and mailing list managers (such as Constant Contact). 
To what extent is email tracking driven by senders ver
sus mailing list managers? When a sender sets up a 
marketing campaign with a mailing list manager, is the 
tracking disclosed to the sender? 

PII leakage in registration forms. Researchers have 
previously found leakage of PII to third parties in con
tact forms on websites [38]. As far as we know, there has 
been no large-scale study of PII leakage in registration 
forms, where more sensitive information is often present 
(e.g. phone numbers, street addresses, and passwords). 
Recording and analyzing the third-party requests made 
during our crawls is an important area for further inves
tigation. 

Cookie syncing. It would be interesting to find out 
if cookie syncing occurs when viewing emails—a process 
in which different trackers exchange and link together 
their own IDs for the same user. Past work has shown 
that this happens among the vast majority of top third 
parties on the web [17], so we suspect that it occurs 
through email as well. 

A/B testing. We notice some clear instances of A/B 
testing in our data, as might be expected in market
ing campaigns. Specifically, we registered multiple email 
addresses on some sites at roughly the same time, and 
found several emails sent at nearly the same time (mil
liseconds apart) with different subject lines and email 
bodies advertising different products. We have not at

tempted to reverse-engineer or systematically analyze 
these differences, but it may be interesting to see if and 
how the received content changes in response to read 
receipts, click-through metrics, or other types of user 
interactions. 

Differential testing. Despite testing for various en
codings, hashes, and combinations, it is possible that 
we have missed some leaks of email addresses. We can
not hope to exhaustively test for all combinations of 
encodings and hashes. Instead, we propose differential 
testing: by registering multiple email addresses on the 
same site, we can look for parameters in URLs that are 
different for different email addresses, which are sugges
tive of transformed email addresses. The difficulty with 
this approach is that A/B testing, mentioned above, is 
a confound. 

In summary, we hope that our work leads to greater 
awareness of the privacy risks of email tracking, spurs 
further research on the topic, and paves the way for 
deployment of robust defenses. 
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10 Appendix 

10.1 Form discovery and filling 
methodology 

Choosing pages on which to search for forms. The 
crawler searches through all links (<a> tags) on the land
ing page to find pages that are most likely to contain a 
mailing list form. It does this by matching the link text 
and URL against a ranked list of terms, which are shown 
in Table 1. As an initial step, we filter out invisible 
links and links to external sites. We check that the link 
text does not contain words in our blacklist, which aims 
to avoid unsubscribe pages and phone-based registra
tion. If we have found any links that match, the crawler 
clicks on the one with the highest rank, then runs the 
form-finding procedure on the new page and any newly 
opened pop-up windows. If no forms are found, it goes 
back and repeats this process for the remaining links. 
The reason for clicking on generic article links is that 
we have come across several news sites with newsletter 
forms only within article pages. We also make sure to 
select the English language or US/English locale when 
available, since our keywords are in English. 

Top-down form detection. For each page the 
crawler visits, it first searches through the HTML DOM 
for any potential email registration forms. When sites 
use the standard <form> element, it can simply iterate 
through each form’s input fields (<input> tags) and see 
if any text fields ask for an email address (by matching 
on input type and keywords). If so, it marks the form as 

a candidate, and then chooses the best candidate using 
the following criteria (in order): 
1.	 Always return the topmost form. Any form stacked 

on top of other elements is probably a modal or dia
log, and we find that the most common use of these 
components is to promote a site’s mailing lists. We 
rely on the z-index CSS property, which specifies the 
stacking order of an element in relation to others (as 
a relative, arbitrary integer). Note that most DOM 
elements take the default z-index value of auto, in
heriting the actual value from its parent; thus, the 
crawler recursively checks a form’s parent elements 
until it finds a non-auto value, or reaches the root 
of the DOM tree. To break ties, it also searches for 
the literal strings “modal” or “dialog” within the 
form’s HTML, since we find that such components 
are usually descriptively named. 

2.	 Rank login forms lower. This is the other class of 
forms that often asks for an email address, so the 
crawler explicitly checks for the strings “login”, “log 
in”, and “sign in” within a form’s HTML to avoid 
these when other candidates are present. 

3.	 Prefer forms with more input fields. This is mainly 
helpful for identifying the correct follow-up form: if 
we submit our email address in the footer of a page, 
the same footer might be present on the page we get 
redirected to. In this scenario, the form we want to 
pick is the longer one. 

Additionally, registration forms are sometimes found 
inside of inline frames (<iframe> tag), which are ef
fectively separate HTML pages embedded in the main 
page. If necessary, we iterate through each frame and 
apply the same procedure to locate registration forms 
within them. 

Bottom-up form detection. A growing number 
of sites place logical forms inside of generic container 
elements (e.g., <div> or <span> tags), without using any 
<form> tags. Therefore if top-down form detection fails, 
we take a bottom-up approach: the crawler first iterates 
through all the <input> elements on the page to check 
if any email address fields exist at all, then recursively 
examines their parents to find the first container that 
also contains a submit button. This container is usually 
the smallest logical form unit that includes all of the 
relevant input fields. 

Determining form field type. Once a form is 
discovered, we need to determine which fields are con
tained in the form and fill each field with valid data. 
We skip any invisible elements, since a real user would 
not be expected to fill them. Some fields can be iden
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tified by their type attribute alone—for example, tel 
for phone numbers and email for email addresses—but 
these specific types were introduced in the relatively re
cent HTML5 standard [41], and most websites still use 
the general text type for all text inputs. In our sur
vey of the top sites, we found that contextual hints are 
scattered across many tag attributes, with the most fre
quent being name, class, id, placeholder, value, for, 
and title. In addition, tags that contain HTML bod
ies (such as <button> tags) often contain hints in the 
innerHTML. 

Handling two-part form submissions After 
submitting a form, we are sometimes prompted to fill 
out another longer form before the registration is ac
cepted. This second form might appear on the same 
page (i.e., using JavaScript), or on a separate page ei
ther through a redirect or as a pop-up window. We take 
a simplistic approach: the crawler waits a few seconds, 
then applies the same form-finding procedure first on 
any pop-up windows and then on the original window. 
This approach may have the effect of submitting the 
same form twice, but we argue that this does not pro
duce any adverse results—duplicate form submissions 
are a plausible user interaction that web services should 
be expected to handle gracefully. 

10.2 Mail server implementation 

The mail server receives emails using SubEtha SMTP, a 
library offering a simple low-level API to handle incom
ing mail. The server accepts any mail sent to (RCPT TO) 
an existing email address, and rejects it otherwise. The 
mail contents (DATA) are parsed in MIME format using 
the JavaMail API, and the raw message contents are 
written to disk. MIME messages consist of a set of head
ers and a content body, with the required Content-Type 
header indicating the format of the content; notably, a 
multipart content body contains additional MIME mes
sage subparts, enabling messages to be arranged in a 
tree structure. To save disk space, we recursively scan 
multipart MIME messages for subparts with content 
types that are non-text (text/*), such as attached im
ages or other data, and discard them before storing the 
messages since we do not examine any non-textual con
tent. 

10.3 Supported hash functions and 
encodings for leak detection 

Supported hashes and checksums: md2, md4, md5, 
sha, sha1, sha256, sha224, sha384, sha3-224, sha3
256, sha3-384, sha3-512, murmurhash2 (signed and 
unsigned), murmurhash3 32-bit, murmurhash3 64-bit, 
murmurhash3 128-bit, ripemd160, whirlpool, blake2b, 
blake2s, crc32, adler32 

Supported encodings: base16, base32, base58, 
base64, urlencoding, deflate, gzip, zlib, entity, yenc 

10.4 Top parties redirecting to new third 
parties on email reload 

Avg add’l 
Redirecting Party Organization parties #S #E 

pippio.com Acxiom 5.7 7 32 
liadm.com* LiveIntent 3.7 68 1097 
rlcdn.com Acxiom 1.7 11 551 
imiclk.com MediaMath 1.3 2 4 
mathtag.com MediaMath 1.1 11 382 
alcmpn.com ALC† 0.8 6 132 
emltrk.com Litmus 0.7 41 638 
acxiom-online.com Acxiom 0.4 2 33 
dyneml.com PowerInbox 0.1 3 13 
adnxs.com AppNexus 0.1 19 277 

Table 14. Top parties by average number of new third-party re
sources in a redirect chain when an email is reloaded. The num
ber of senders (# S) out of 902 total and the number of emails 
(#E) out of 12,618 total on which this occurs is given for each 
redirecting party. We exclude redirecting parties that only exhibit 
this behavior in emails from a single sender. In total, there are 12 
parties which exhibit this type of redirect behavior. 
* Includes statistics for chains which redirect to http://p.liadm. 
com/imp in the first redirect. We observe a common pattern of 
URLs of the form li.firstparty.com redirecting first to this end
point which then redirects to a number of other third parties. 
† American List Counsel 

pippio.com
liadm.com
rlcdn.com
imiclk.com
mathtag.com
alcmpn.com
emltrk.com
acxiom-online.com
dyneml.com
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li.firstparty.com
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