
Proceedings on Privacy Enhancing Technologies 2018

Steven Englehardt*, Jeffrey Han, and Arvind Narayanan*

I never signed up for this!

Privacy implications of email tracking

Abstract: We show that the simple act of viewing emails
contains privacy pitfalls for the unwary. We assembled
a corpus of commercial mailing-list emails, and find a
network of hundreds of third parties that track email
recipients via methods such as embedded pixels. About
30% of emails leak the recipient’s email address to one or
more of these third parties when they are viewed. In the
majority of cases, these leaks are intentional on the part
of email senders, and further leaks occur if the recipi
ent clicks links in emails. Mail servers and clients may
employ a variety of defenses, but we analyze 16 servers
and clients and find that they are far from comprehen
sive. We propose, prototype, and evaluate a new defense,
namely stripping tracking tags from emails based on en
hanced versions of existing web tracking protection lists.

1 Introduction

Email began as a non-interactive protocol for sending
simple textual messages. But modern email clients sup
port much of the functionality of the web, and the ex
plosion of third-party web tracking has also extended to
emails, especially mailing lists. Surprisingly, while there
is a vast literature on web tracking, email tracking has
seen little research.

The ostensible purpose of email tracking is for
senders to know which emails have been read by which
recipients. Numerous companies offer such services to
email senders [11, 14, 22], and mail clients that have
privacy features advertise them as a way for users to
protect their privacy from email senders [20, 31, 42]. But
we find that email tracking is far more sophisticated: a
large network of third parties also receive this informa
tion, and it is linked to users’ cookies, and hence to

*Corresponding Author: Steven Englehardt: Princeton

University,

Jeffrey Han: Princeton University, E-mail:

*Corresponding Author: Arvind Narayanan: Princeton

University,

their activities across the web. Worse, with many email
clients, third-party trackers receive the user’s email ad
dress when the user views emails. Further, when users
click links in emails, regardless of the email client, we
find additional leaks of the email address to trackers.
These privacy breaches are our primary interest in this
work.

We show that much of the time, leaks of email ad
dresses to third parties are intentional on the part of
commercial email senders. The resulting links between
identities and web history profiles belie the claim of
“anonymous” web tracking. The practice enables on-
boarding, or online marketing based on offline activity
[9], as well as cross-device tracking, or linking between
different devices of the same user [12]. And although
email addresses are not always shared with third par
ties in plaintext—sometimes they are hashed—we argue
that hashing does little to protect privacy in this context
(Section 8).

Email tracking is possible because modern graph
ical email clients allow rendering a subset of HTML.
JavaScript is invariably stripped, but embedded images
and stylesheets are allowed. These are downloaded and
rendered by the email client when the user views the
email (unless they are proxied by the user’s email server;
of the providers we studied (Section 6.2), only Gmail
and Yandex do so). Crucially, many email clients, and
almost all web browsers, in the case of webmail, send
third-party cookies with these requests, allowing link
ing to web profiles. The email address is leaked by being
encoded as a parameter into these third-party URLs.

When links in emails pointing to the sender’s web
site are clicked, the resulting leaks are outside the con
trol of the email client or the email server. Even if
the link doesn’t contain any identifier, the web browser
that opens the link will send the user’s cookie with the
request. The website can then link the cookie to the
user’s email address; this link may have been estab
lished when the user provided her email address to the
sender via a web form. Finally, the sender can pass on
the email address—and other personally identifiable in
formation (PII), if available—to embedded third parties
using methods such as redirects and referrer headers.

2 I never signed up for this! Privacy implications of email tracking

We now outline the methods we used, our findings,
and our proposed defenses against email tracking.

1.1 Methods

Building on the OpenWPM web crawler [17], we created
a tool to automatically search for mailing list subscrip
tion forms on websites and fill them in. It is challenging
to scale such a tool due to numerous idiosyncrasies of
websites (Section 3). Our crawler visited 15,700 sites
and attempted to sign up for emails on each of these.
The resulting corpus contains 12,618 emails from 902
distinct senders. The tool may be of independent in
terest for studying questions such as PII leakage from
contact forms [38].

Next, we discuss how we detect instances of PII in
network traffic (Section 4.1). This is a challenging prob
lem because data might be encoded or hashed, possibly
iteratively (e.g., double hashing or base-64 encoded and
then hashed). In this study we focus exclusively on leaks
of email addresses, but our techniques are agnostic to
the type of PII. We examine leaks in network traffic re
sulting from a simulation of a user reading the corpus of
emails collected as above (Section 4). We also simulated
the user clicking on a sample of the links in the emails
received, and looked for leaks in the resulting web traffic
(Section 5).

We present a set of heuristics to classify such leak
age as intentional or accidental (Section 4.1). Inten
tional leakage suggests a business relationship between
the party sending the information and the party receiv
ing it, whereas accidental leakage happens due to poor
programming practices [23, 24].

Email providers (e.g., Gmail, employers) and email
clients (e.g., Apple Mail, Thunderbird) may both em
ploy measures to mitigate email tracking, such as prox
ying of images1 or suppressing cookies. We built a tool
that allows users and researchers to test the behavior
of email providers and clients to assess the ability of
email senders and third parties to track users. We use
it ourselves to survey 16 email clients (Section 6.2).

1 Providers proxy resources by rewriting all remote resources
in an email to point to a location on the provider’s server. The
provider requests the resource from the third-party server, rather
than the user requesting it directly.

1.2 The state of email tracking

Email tracking is pervasive. We find that 85% of emails
in our corpus contain embedded third-party content,
and 70% contain resources categorized as trackers by
popular tracking-protection lists. There are an average
of 5.2 and a median of 2 third parties per email which
embeds any third-party content, and nearly 900 third
parties contacted at least once. But the top ones are fa
miliar: Google-owned third parties (Doubleclick, Google
APIs, etc.) are present in one-third of emails.

We simulate users viewing emails in a full-fledged
email client (Section 4). We find that about 29% of
emails leak the user’s email address to at least one third
party, and about 19% of senders sent at least one email
that had such a leak. The majority of these leaks (62%)
are intentional, based on our heuristics. Tracking protec
tion is helpful, but not perfect: it reduces the number
of email leaks by 87%. Interestingly, the top trackers
that receive these leaked emails are different from the
top web trackers. We present a case study of the most-
common tracker, LiveIntent (Section 4.5).

We also simulate users clicking on links in emails,
which causes a page to load in a full-fledged web browser
(Section 5). We find that 11% of links contain embedded
content requests that leak the email address to a third
party, and at least 35% of senders include at least one
such link in one email. The top third-party domains and
organizations that receive these leaked email addresses
are substantially similar to the list of top third parties
overall.

1.3 Evaluating and improving defenses

We identify five possible defenses against email track
ing: content proxying, HTML filtering, cookie blocking,
referrer blocking, and request blocking. There are three
possible ways to deploy defenses: by the mail server,
the mail user agent, or the web user agent (i.e., the
browser that handles links that are clicked on emails).
We present a systematization of how each of these enti
ties could deploy each of these defenses (Section 6.1).

The defenses that can be deployed by web browsers
to protect against leaks of emails are nearly identical
to defenses against web tracking in general. This is a
mature area of research and there are numerous tools
on the market based on filter lists. Based on our data
analysis, we identify a list of 27,125 distinct URLs (from
133 domains) that receive leaked email addresses and
are not blocked by prominent filter lists, presumably

3 I never signed up for this! Privacy implications of email tracking

because these trackers are specific to emails (Section 7).
We believe that these would make useful additions to
existing filter lists. Except for this contribution, we focus
our analysis of defenses on mail servers and mail user
agents rather than web browsers.

Based on our analysis of 16 email servers and clients
(Section 6.2) we find that a patchwork of defenses are
employed, and no setup offers complete protection from
the threats we identify. Perhaps the best option for
privacy-conscious users today is to use webmail and in
stall tracker-blocking extensions such as uBlock Origin
or Ghostery.

We show that HTML filtering can be an effective
defense. The idea is to rewrite email bodies to remove
tracking elements. This can be done by either the mail
server or the mail user agent. We prototype an element
filtering tool based on existing tracking-protection lists
and evaluate its effectiveness (Section 7).

2 Related work

Email secuity and privacy. The literature on email
security and privacy has focused on authentication of
emails and the privacy of email contents. For exam
ple, Durumeric et al. found that the long tail of SMTP
servers largely fail to deploy encryption and authenti
cation, leaving users vulnerable to downgrade attacks,
which are widespread in the wild [15]. Holz et al. also
found that email is poorly secured in transit, often
due to configuration errors [21]. We study an orthog
onal problem. Securing email in transit will not defend
against email tracking, and vice versa.

Third-party web tracking. Email tracking is an
outgrowth of third-party web tracking, which has grown
tremendously in prevalence and complexity since the
1990s [13, 26, 28, 35]. Today Google is the most promi
nent tracker, through various third-party domains, and
can track users across nearly 80% of sites [27]. Web
tracking has expanded from simple HTTP cookies to in
clude more persistent tracking techniques to “respawn”
or re-instantiate HTTP cookies through Flash cookies
[37], cache E-Tags, and HTML5 localStorage [10]. Over
all, tracking is moving from stateful to stateless tech
niques: device fingerprinting attempts to identify users
by a combination of the device’s properties [16, 25]. Such
techniques have advanced quickly [19, 30, 33], and are
now widespread on the web [7, 8, 17, 32]. These tech
niques allow trackers to compile unique browsing histo
ries, but they do not link histories to identity.

Compared to web tracking, email tracking does not
use fingerprinting because (most) email clients prohibit
JavaScript. On the other hand, email readily provides
a unique, persistent, real-world identifier, namely the
email address. Web tracking researchers have created a
number of tools for detecting and measuring tracking
and privacy, such as FPDetective [8], OpenWPM [17],
and FourthParty [28]. We use OpenWPM for most of
our measurements in this paper.

PII leakage. Leaks of PII of logged-in users from
first-party websites to third parties are rampant; the
early papers on this problem were by Krishnamurthy et
al. [23, 24]. PII leaks enable trackers to potentially at
tach identities to browsing histories. More recent work
includes detection of PII leakage to third parties in
smartphone apps [34, 40], PII leakage in contact forms
[38], PII leakage that enables cross-device tracking [12],
and data leakage due to browser extensions [39].

The common problem faced by these authors (and
by us) is that PII may be obfuscated. When the data col
lection is crowdsourced [34, 40] rather than automated,
there is the further complication that the strings that
constitute PII are not specified by the researcher and
thus not known in advance. On the other hand, crowd-
sourced data collection allows obtaining numerous in
stances of each type of leak, which might make detection
easier.

Various approaches are seen in prior work. Ren et
al. employ heuristics for splitting fields in network traf
fic and detecting likely keys; they then apply machine
learning to discriminate between PII and other fields
[34]. Starov et al. apply differential testing, that is, vary
ing the PII entered into the system and detecting the
resulting changes in information flows [38]. This is chal
lenging to apply in our context, because we observed fre
quent A/B testing in the commercial emails in our cor
pus, which makes it tricky to attribute observed changes
to PII. This is an area for future work. Finally, our own
approach is most similar to that of Brookman et al. [12]
and Starov et al. [39] who test combinations of encod
ings and/or hashes.

3 Collecting a dataset of emails

We now describe how we assembled a large-scale cor
pus of mailing-list emails. We do not attempt to study
a “typical” user’s mailbox, since we have no empirical
data from real users’ mailboxes. Rather, our goal in as
sembling a large corpus is to study the overall landscape

4 I never signed up for this! Privacy implications of email tracking

High-level architecture of crawler.
Assemble a list of sites. For each site:
–	 Find pages potentially containing forms. For

each page:
–	 Find the best form on the page via top-

down form detection and bottom-up form
detection. If a form was found:
∗	 Fill in the form
∗	 Fill in any secondary forms if necessary
∗	 Once a form has been submitted, skip

the rest of the pages and continue to
next site

High-level architecture of server.
Receive and store email. For each email:
–	 Check for and process confirmation links.

Fig. 1. High-level architecture of the email collection system,
with the individual modules italicized.

of third-party tracking of emails: identify as many track
ers as possible (feeding into our enhancements to exist
ing tracking-protection lists) and as many interesting
behaviors as possible (such as different hashes and en
codings of emails addresses).

To achieve scale, we use an automated approach.
We created a web crawler based on the OpenWPM web
privacy measurement tool [17] to search for and fill in
forms that appear to be mailing-list subscriptions. The
crawler has five modules, and the server that processes
emails has two modules. They are both described at a
high level in Fig. 1. We now describe each of the seven
modules in turn.

Assemble a list of sites. Alexa maintains a pub
lic list of the top 1 million websites based on monthly
traffic statistics, as well as rankings of the top 500 web
sites by category. We used the “Shopping” and “News”
categories, since we found them more likely to contain
newsletters. In addition, we visited the top 14,700 sites
of the 1 million sites, for a total of 15,700 sites.

Detect and rank forms. When the crawler cannot
locate a form on the landing page, it searches through all
internal links (<a> tags) in the DOM until a page con
taining a suitable form is found. A ranked list of terms,
shown in Table 1, is used to prioritize the links most
likely to contain a mailing list. On each page, forms are
detected using both a top-down and bottom-up proce
dure. The top-down procedure examines all fields con
tained in <form> elements. Forms which have a higher
z-index and more input fields are given a higher rank,

while forms which appear to be part of user account reg
istration are given a lower rank. If no <form> elements
are found, we attempt to discover forms contained in al
ternative containers (e.g., forms in <div> containers) us
ing a bottom-up procedure. We start with each <input>
element and recursively examine its parents until one
with a submit button is found. For further details, see
Top-down form detection and Bottom-up form detection
in Appendix Section 10.1.

Fill in the form. Once a form is found, the crawler
must fill out the input fields such that all inputs vali
date. The crawler fills all visible form fields, including:
<input> tags, <select> tags (i.e., dropdown lists), and
other submit <button> tags. Most websites use the gen
eral text type for all text inputs. We surveyed a number
of top websites to determine common naming practices
for input fields, and filled the fields with the data of the
expected type. For example, name fields were filled with
a generic first and last name. After submitting a form,
we wait for a few seconds and re-run the procedure to
fill follow-up fields, if required. For further details, see
Determining form field type and Handling two-part form
submissions in Appendix Section 10.1.

Receive and store email. We set up an SMTP
server to receive emails. The server accepts any mail sent
to an existing email address, and rejects it otherwise. It
then parses the contents of the mail and logs metadata
(such as the sender address, subject text, and recipient
address) to a central database. All textual portions of
the message contents are written to disk. We provide
implementation details in Appendix Section 10.2.

Check for and process confirmation links. Our
server will check the first email sent to each email ad
dress to determine if the mailing list requires additional
user interaction to confirm the subscription. If the ini
tial email’s subject or rendered body text includes the
keywords “confirm”, “verify”, “validate”, or “activate”,
we extract potential confirmation links from the email.
For HTML emails we collect links which match these
keywords along with additional lower-priority keywords
“subscribe” or “click”. For plain-text emails we simply
choose the longest link text. Emails with the past-tense
keywords “confirmed”, “subscribed”, and “activated” in
subject lines are skipped, as are links with the text “un
subscribe”, “cancel”, “deactivate”, and “view”. If any
link is found, it is visited using OpenWPM.

Form submission measurement. Our crawler
discovered and attempted to submit forms on 3,335
sites. We received at least one email from 1,242 (37%) of
those sites. To understand the types of form submission
failures, we ran a follow-up measurement in August 2017

5 I never signed up for this! Privacy implications of email tracking

Description Keywords Location

Email list registration newsletter, weekly ad, subscribe, inbox, email, sale alert link text
Generic registration signup, sign up, sign me up, register, create, join link text
Generic articles/posts /article, news/, /2017 link URL
Selecting language/region /us/, =us&, en-us link URL
Blacklist unsubscribe, mobile, phone link text

Table 1. The web crawler chooses links to click based on keywords that appear in the link text or URL. The keywords were generated
by iterating on an initial set of terms, optimizing for the success of mailing list sign-ups on the top sites. We created an initial set of
search terms and manually observed the crawler interact with the top pages. Each time the crawler missed a mailing list sign-up form
or failed to go to a page containing a sign-up form, we inspected the page and updated the set of keywords. This process was repeated
until the crawler was successful on the sampled sites.

Submission classification % of sampled sites

Total successful submissions 38%
→Mailing lists subscription 32%
→User account registration 6%

Failed: required a CAPTCHA 16%
Failed: unsupported form fields 25%
Unable to classify via screenshots 21%

Table 2. Submission success status of a sample of 252 of the
3,335 form submissions made during the sign-up crawl. The suc
cess and failure classification was determined through a manual
review of screenshots taken before and after an attempted form
submission.

where we took screenshots of the pages before and after
the initial and follow-up form submissions. We manu
ally examined a random sample of sites on which a form
submission was attempted. We summarize the results in
Table 2.

When filling forms, our crawler will interact with
user account registration forms, mailing list sign-up
forms, and contact forms. The successful submissions
were mostly mailing list sign-ups and a small number of
user account registrations, which are included as they
can be tied to a mailing list. The failed submissions were
mostly caused by forms other than mailing lists. In fact,
more than 70% of the failures caused by a captcha or
unsupported field were not mailing list form submis
sions. Overall, only 11% of the sampled mailing list in
teractions resulted in a captcha. Since our primary fo
cus is mailing lists, we leave the evaluation of complex
and captcha-protected forms to future work.

Email corpus. The assembled corpus contains a
total of 12,618 HTML emails from 902 sites. We re
ceived an average of around 14 emails per site and a
median of 5. A few sites had very active mailing lists,
with 20 sites sending over 100 emails during the test
period. We observe that we received no spam, which
we confirmed both by manual inspection of a sample of

emails as well as by finding an exact one-to-one corre
spondence between the 902 senders in our dataset and
the unique email addresses that we generated. This en
sures that the results represent the behavior of the sites
where we registered, rather than spammers.

4 Privacy leaks when viewing
emails

4.1 Measurement methodology

Simulating a webmail client. To measure web track
ing in email bodies we render the emails using a simu
lated webmail client in an OpenWPM instance. Many
webmail clients remove a subset of HTML tags from
the email body to restrict the capabilities of rendered
content. In particular, Javascript is exclusively removed,
while iframe tags and CSS [6] have mixed support. We
simulate a permissive webmail client, one which disables
Javascript and removes the Referer header from all re
quests, but applies no other restrictions to the rendered
content.

The email content is served on localhost, but is
accessed through the domain localtest.me (which re
solves to localhost) to avoid any special handling the
browser may have for the local network. We configure
OpenWPM to run 15 measurement instances in parallel.
Each email is loaded twice in its own measurement in
stance: once with a fresh profile, and then again keeping
the same browser profile after sleeping for 10 seconds.
This is intended to allow remote content on the page to
load both with and without browser state present. In
deed we observe some tracking images which redirect to
new domains upon every subsequent reload of the same
email.

localtest.me

6 I never signed up for this! Privacy implications of email tracking

Classifying third-party content. Many email
clients load embedded content directly from remote
servers (we further explore the properties of email
clients in Section 6.2). Thus, remote content present
in multiple emails can track users in the same way
third-party content can track users across sites on the
web. However, unlike the web there isn’t always a
clear distinction of which requests are “third-party” and
which are “first-party”. For example, all resources loaded
by webmail clients are considered third-party by the
browser. We consider any request to a domain2 which
is different than both the domain on which we signed
up for the mailing list and the domain of the sender’s
email address to be a third-party request.

Detecting email leakage. Email addresses leak
to remote servers through resource requests. Detecting
these leaks is not as simple as searching for email ad
dresses in requests, since the addresses may be hashed or
encoded, sometimes iteratively. To detect such leakage
we develop a methodology that, given a set of encod
ings and hashes, a plaintext email address, and a URL
token, is able to determine if the token is a transforma
tion of the email address. Starting with the plaintext
email address we pre-compute a candidate set of tokens
by applying all supported encodings and hashes itera
tively, stopping once we reach three nested encodings
or hashes. We then take the URL token and apply all
supported decodings to the value, checking if the result
is present in the candidate set. If not, we iteratively
apply decodings until we reach a level of three nested
decodings.

In a preliminary measurement we found no exam
ples of a value that was encoded before being hashed.
This is unsurprising, as hashed email addresses are used
to sync data between parties and adding a transforma
tion before the hash would prevent that use case. Thus,
when analyzing the requests in this dataset, we restrict
ourselves to at most three nested hashes for a set of
24 supported hashes, including md5, sha1, sha256. For
encodings, we apply all possible combinations of 10 en
codings, including base64, urlencoding, and gzip. The
full list of supported hashes and encodings is given in
Appendix 10.3.

Classifying email leakage. Email leaks may not
be intentional. If an email address is included in the
query string or path of a document URL it may auto
matically end up in the Referer header of subsequent

requests from that document. Requests which result in
a redirect also often add the referrer of the previous re
quest to the query string of the new request. In many
instances this happens irrespective of the presence of
an email address in the original request. The situation
is made more complex on the web since third-party
Javascript can dynamically build URLs and trigger re
quests.

The reduced HTML support and lack of Javascript
execution in email clients makes it possible to deter
mine intentionality for most leaks. When an email is
rendered, requests can result from three sources: from
elements embedded in the original HTML, from within
an embedded iframe (if supported by the client), or from
a redirected request.
1.	 If a leak occurs in a Referer header it is uninten

tional. For webmail clients the Referer header (if
enabled) will be the client itself. A mail sender can
embed an iframe which loads a URL that includes
the user’s email address, with the explicit intention
that the user’s email leak to third parties via the
Referer header. However, we chose not to include
this possibility because email senders have multi
ple direct options for sharing information with third
parties that do not rely on the sparsely supported
iframe tag.

2.	 If a leak occurs in a request to a resource embedded
directly in the HTML of the email body (and is not
the result of a redirect) it is intentional. We can
determine intentionality since any request result
ing from an HTML document must have been con
structed by the email sender. Note that this does not
hold for web documents, since embedded Javascript
can dynamically construct requests during the page
visit.

3.	 If a request results from a redirect, the party re
sponsible for the leak is the party whose request
(i.e., the triggering URL) responded with a redi
rect to the new location (i.e., the target URL). We
classify a leak as intentional if the leaked value is
hashed between the triggering URL and the target
URL, or if there are more encodings or hashes of
the leaked value included in the target URL than
in the triggering URL. If the target URL includes
a full copy of the triggering URL (in any encoding)
the leak is unintentional. All other cases are clas
sified as ambiguous, such the case where a target
URL includes only the query string of the triggering
URL.

2 A domain is identified by its public suffix plus the component
of the hostname immediately preceding its public suffix (PS+1).

7 I never signed up for this! Privacy implications of email tracking

Measuring blocked tags. Tracking protection tools
which block resource requests offer users protection
against the tracking embedded in emails. We evaluate
the effectiveness of these tools by checking the requests
in our dataset against two major blocklists, EasyList
and EasyPrivacy [4]. These lists block advertisement
and tracking related requests, and are bundled with
several popular blocking extensions, including AdBlock
Plus [1] and uBlock Origin [5]. We use the BlockList-
Parser library [3] to determine if a request would have
been blocked3 by an extension utilizing these lists. We
classify a request as blocked if it matches any of the
following three conditions:
1.	 The request directly matches the filter list
2.	 The request is the result of a redirect and any re

quest earlier in the redirect was blocked.
3.	 The request is loaded in an iframe and the iframe

document request (or any resulting redirect) was
blocked.

It is possible to do this classification in an offline fashion
because of the lack of Javascript support in email clients.
This removes the need to run measurements with one
of the aforementioned extensions installed. In environ
ments that support Javascript, content can be loaded
dynamically and as the result of interactions between
several scripts. In such an environment it is much more
difficult to determine which requests would have been
blocked by a single script appearing on the block list.

4.2 Email provides much of same tracking
opportunities as the web

Remote resources embedded in email content can track
users across emails. As we show in our survey of email
clients (Section 6.2), many email clients allow remote
resources to set persistent cookies and send those cook
ies with resource requests. In total, we find that 10,724
of the measured emails (85%) embed resources from at
least one third party, with an average of 5 third parties
per email. The distribution of embedded third parties
is far from uniform; we find a median of two per email
and a small number of emails embedding as many as 50
third parties (Figure 2).

3 We set the parser options as we would expect them to be
set for a request occurring in a webmail client. For example, all
requests are considered third-party requests.

Domain % of Emails % of Top 1M

doubleclick.net 22.2 47.5
mathtag.com 14.2 7.9
dotomi.com 12.7 3.5
adnxs.com 12.2 13.2
tapad.com 11.0 2.6
liadm.com 11.0 0.4
returnpath.net 11.0 <0.1
bidswitch.net 10.5 4,9
fonts.googleapis.com 10.2 39.4
list-manage.com 10.1 <0.1

Table 3. Top third-party domains by percentage of the 12,618
emails in the corpus. For comparison, we show the percentage
of the top 1 million websites on which these third parties are
present.

Fig. 2. CDF of third parties per email, aggregating data across
the initial viewing and re-opening of an email. In addition, 1.4%
of emails have between 25 and 53 third parties.

Table 3 shows the top third-party domains present
in email. Many of these parties also have a large presence
on the web [17], blurring the line between email and web
tracking. On webmail clients, requests to these cross-
context third parties will use the same cookies, allowing
them to track both a user’s web browsing and email
habits. In total, the emails visited during our crawls
embed resources from 879 third parties.

4.3 Leaks of email addresses to third
parties are common

In addition to being able to track email habits, 99 third
parties (11%) also gain access to a user’s email ad
dress, whether in plaintext or hashed. In email clients
which support cookies, these third parties will receive
the email address alongside any cookies they’ve set on
the user’s device. Trackers which are also present on the
web will thus be able to link this address with the user’s
browsing history profile.

Around 19% of the 902 senders leaked the user’s
email address to a third party in at least one email,
and in total 29% of emails contain leaks to third par

8 I never signed up for this! Privacy implications of email tracking

ties. We find that a majority of these leaks, 62% of the
100,963 leaks to third parties, are intentional. These
intentional leaks mostly occur through remote content
embedded directly by the sender. Furthermore, 1% of
leaks are classified as unintentional with the remainder
considered ambiguous. While we do not attempt to de
termine how these identifiers are being used, plaintext
and hashed emails can be used for persistent tracking,
cross-device tracking, and syncing information between
parties.

Leak # of Senders # of Recipients

MD5 100 (11.1%) 38 (38.5%)
SHA1 64 (7.1%) 19 (19.2%)
SHA256 69 (7.6%) 13 (13.1%)
Plaintext Domain 55 (6.1%) 2 (2.0%)
Plaintext Address 77 (8.5%) 54 (54.5%)
URL Encoded Address 6 (0.6%) 8 (8.1%)
SHA1 of MD5* 1 (0.1%) 1 (1.0%)
SHA256 of MD5* 1 (0.1%) 1 (1.0%)
MD5 of MD5* 1 (0.1%) 1 (1.0%)
SHA384 1 (0.1%) 1 (1.0%)

Table 4. Email address leakage to third parties by encoding. Per
centages are given out of a total of 902 senders and 99 third-

party leak recipients. All hashes are of the full email address.

Email “domain” is the part of the address after the “@”.

*These appear to be a misuse of LiveIntent’s API (Section 4.5).

The leaked addresses are often hashed. Although
we can detect email addresses hashed with 24 different
functions and up to three nested layers, we only find
MD5, SHA1, and SHA256 in frequent use. Table 4 summa
rizes the number of senders and receivers of each encod
ing. The relatively low diversity of hashes and encodings
suggests that these techniques are not being used to ob
fuscate the collection of email addresses. In fact, the
query parameters which contain hashed emails some
times identify the hash functions used in the parameter
name (e.g., a string like ?md5=<md5 hash of email> ap
pearing in the HTTP request). The design of APIs like
LiveIntent’s, which first receives an email address and
then syncs with a number of other parties (Section 4.5),
suggests that these hashed address may be used to share
or link data from multiple parties.

Recipient Organization # of Senders

LiveIntent 68 (7.5%)
Acxiom 46 (5.1%)
Litmus Software 28 (3.1%)
Conversant Media 26 (2.9%)
Neustar 24 (2.7%)
apxlv.com 18 (2.0%)
54.211.147.17 18 (2.0%)
Trancos 17 (1.9%)
WPP 17 (1.9%)
54.82.61.160 16 (1.8%)

Table 5. Top organizations receiving email address leaks by num
ber of the 902 total senders. A domain is used in place of an
organization when it isn’t clear which organization it belong to.

Table 5 identifies the top organizations4 which re
ceive leaked email addresses. This shows that email ad
dress collection from emails is largely consolidated to a
few major players, which are mostly distinct from the
popular web trackers. In fact, only one of the top 10
organizations, Neustar, is found in the top 20 third-
party organizations on the top 1 million websites, as
measured by Englehardt and Narayanan [17]. Also sur
prising is the prevalence of leaks to IP addresses, which
accounts for eight of the top 20 domains receiving email
addresses. This may be due to the relatively ephemeral
nature of newsletter emails, which removes concerns of
IP address churn over time.

4.4 Reopening emails brings in new third
parties

Despite the lack of Javascript support, email views are
dynamic. The email content itself is static, but any re
mote resources embedded in it may return different re
sponses each time the email is viewed, and even redirect
to different third parties. To examine the effects of this,
we load every email first with a “clean” browser profile
and then again without clearing the profile. Surprisingly,
the average Jaccard similarity [36] between the sets of
third parties loaded during the first and second views
of the same email is only 60%.

The majority of emails—two-thirds—load fewer
third parties when the email is reopened compared to
the initial view. However, about 21% of emails load at

4 We map domains to organizations using the classification pro
vided by Libert [27], adding several new email-specific organi
zations. When an organization could not be found, we use the
PS+1.

http:54.211.147.17
http:apxlv.com

9 I never signed up for this! Privacy implications of email tracking

Row Request URL

0 http://inbox.washingtonexaminer.com/imp?[...]&e=<EMAIL>&p=0
1 http://p.liadm.com/imp?[...]&m=<MD5(address)>&sh=<SHA1(address)>&sh2=<SHA256(address)>

&p=0&dom=<EMAIL_DOMAIN>
2 http://x.bidswitch.net/sync?ssp=liveintent&bidder_id=5298&licd=3357&x=EGF.M[...]
3 http://x.bidswitch.net/ul_cb/sync?ssp=liveintent&bidder_id=5298&licd=3357&x=EGF.M[...]
4 http://p.adsymptotic.com/d/px/?_pid=12688&_psign=d3e69[...]&bidswitch_ssp_id=liveintent&_redirect=[...]
5 http://p.adsymptotic.com/d/px/?_pid=12688&_psign=d3e69[...]&bidswit[...]&_redirect=[...]&_expected_cookie=[...]
6 http://x.bidswitch.net/sync?dsp_id=126&user_id=84f3[...]&ssp=liveintent
7 http://i.liadm.com/s/19751?bidder_id=5298&licd=3357&bidder_uuid=<UUID_1>
8 http://cm.g.doubleclick.net/pixel?google_nid=liveintent_dbm&google_cm&google_sc
9 http://cm.g.doubleclick.net/pixel?google_nid=liveintent_dbm&google_cm=&google_sc=&google_tc=
10 http://p.liadm.com/match_g?bidder_id=24314&bidder_uuid=<UUID_2>&google_cver=1
11 http://x.bidswitch.net/sync?ssp=liveintent&bidder_id=5298&licd=
12 http://pool.udsp.iponweb.net/sync?ssp=bidswitch&bidswitch_ssp_id=liveintent

Table 6. Redirect chain from a LiveIntent Email Tracking Pixel. URL query strings are truncated for clarity (using [...]).

least one resource when an email is reopened that wasn’t
present the first time. A small number of third parties
are disproportionately responsible for this—they load
different sets of additional third parties each time the
email is opened (Table 14 in the Appendix).

The number of leaks between email loads stays rela
tively constant, with less than 50 emails leaking to new
parties on the second load5. However, as the compari
son of Table 14 with Table 5 shows, many of the top
leak recipients are also responsible for redirecting to the
highest number of new parties. Thus, reloading an email
increases the number of potential recipients of a leak if
the redirectors share data based on the email or email
hash they receive.

4.5 Case study: LiveIntent

LiveIntent receives email addresses from the largest
number of senders, 68 in total. In this section we
analyze a sample of the request chains that re
sult in leaks to LiveIntent. Table 6 shows an ex
ample redirect chain of a single pixel embedded in
an email from the washingtonexaminer.com mailing
list. The initial request (row 0) is to a subdomain of
washingtonexaminer.com, and includes the user’s plain-
text email address in the e= query string parameter. The
domain redirects to liadm.com (row 1), a LiveIntent do
main, and includes the MD5, SHA1, and SHA256 hashes of
the email address in the parameters m=, sh=, and sh2=.

5 We exclude leaks which occur to a different IP address on the
second load. This occurs in 349 emails, but is less meaningful
given the dynamic nature of IP address.

The URL also includes the domain portion of the user’s
address.

In rows 2 - 12, the request redirects through several
other domains and back to itself, exchanging what ap
pear to be partner IDs and bidder IDs. In rows 7 and
10 LiveIntent receives a UUID from the domain in the
previous request, which could allow it to exchange in
formation with those trackers outside of the browser.

4.6 Request blockers help, but don’t fix
the problem

Privacy conscious users often deploy blocking exten
sions, such as uBlock Origin, Privacy Badger, or
Ghostery, to block tracking requests. Since webmail
clients are browser-based, these blocking extensions can
also filter requests that occur while displaying email con
tent6. We use our blocked tag detection methodology
(Section 4.1) to determine which resources would have
been blocked by the popular EasyList and EasyPrivacy
blocklists. We then examine the remaining requests to
determine how frequently email addresses continue to
leak.

Overall, the blocklists cut the number of third par
ties receiving leaked email addresses from any sender
nearly in half, from 99 to 51. Likewise, the number of
senders which leak email addresses in at least one email
is greatly reduced, from 19% to just 7%. However, as
Table 7 shows, a significant number of leaks of both

6 Thunderbird supports most of the popular Firefox extensions,
and as such Thunderbird users can also deploy these defenses.
See Table 12 for more details.

http://inbox.washingtonexaminer.com/imp?[...]&e=<EMAIL>&p=0
http://p.liadm.com/imp?[...]&m=<MD5(address)>&sh=<SHA1(address)>&sh2=<SHA256(address)>
&p=0&dom=<EMAIL_DOMAIN>
http://x.bidswitch.net/sync?ssp=liveintent&bidder_id=5298&licd=3357&x=EGF.M[...]
http://x.bidswitch.net/ul_cb/sync?ssp=liveintent&bidder_id=5298&licd=3357&x=EGF.M[...]
http://p.adsymptotic.com/d/px/?_pid=12688&_psign=d3e69[...]&bidswitch_ssp_id=liveintent&_redirect=[...]
http://p.adsymptotic.com/d/px/?_pid=12688&_psign=d3e69[...]&bidswit[...]&_redirect=[...]&_expected_cookie=[...]
http://x.bidswitch.net/sync?dsp_id=126&user_id=84f3[...]&ssp=liveintent
http://i.liadm.com/s/19751?bidder_id=5298&licd=3357&bidder_uuid=<UUID_1>
http://cm.g.doubleclick.net/pixel?google_nid=liveintent_dbm&google_cm&google_sc
http://cm.g.doubleclick.net/pixel?google_nid=liveintent_dbm&google_cm=&google_sc=&google_tc=
http://p.liadm.com/match_g?bidder_id=24314&bidder_uuid=<UUID_2>&google_cver=1
http://x.bidswitch.net/sync?ssp=liveintent&bidder_id=5298&licd=
http://pool.udsp.iponweb.net/sync?ssp=bidswitch&bidswitch_ssp_id=liveintent
http:liadm.com
http:washingtonexaminer.com
http:washingtonexaminer.com

10 I never signed up for this! Privacy implications of email tracking

Encoding # of Senders # of Recipients

Plaintext Address 34 (3.7%) 34 (66.7%)
MD5 21 (2.3%) 12 (23.5%)
SHA1 14 (1.6%) 6 (11.8%)
URL Encoded Address 4 (0.4%) 4 (7.8%)
SHA256 4 (0.4%) 2 (3.9%)
SHA384 1 (0.1%) 1 (2.0%)

Table 7. Encodings used in leaks to third parties after filtering
requests with EasyList and EasyPrivacy. Totals are given out of
902 email senders and 51 third-party leak recipients.

Recipient Domain # of Senders

mediawallahscript.com 7
jetlore.com 4
scrippsnetworks.com 4
alocdn.com 3
richrelevance.com 3
ivitrack.com 2
intentiq.com 2
gatehousemedia.com 2
realtime.email 2
ziffimages.com 2

Table 8. The top third-party leak recipient domains after filtering
requests with EasyList and EasyPrivacy. All recipients receive
leaks from less than 1% of the 902 senders studied.

plaintext and email hashes still occur. In Table 8 we see
that there are still several third-party domains which
receive email address leaks, despite blocking. Several of
these domains are known trackers which could be in
cluded in the blocklists. In addition, IP addresses and
CDN domains are still recipients of leaked email ad
dresses. Blocking on other URL features, such as the
URL path, could help reduce leaks to these domains.

5 Privacy leaks when clicking
links in emails

In Section 4 we explore the privacy impact of a user
opening and rendering an email. In this section we ex
plore the privacy impact of a user clicking links within
an email. Once a user clicks a link in an email, the link is
typically opened in a web browser. Unlike email clients,
web browsers will typically support Javascript and ad
vanced features of HTML, creating many potential av
enues for privacy leaks. However, the only way an email
address can propagate to a page visit is through the di
rect embedding of the address in a link contained in the
original email body.

5.1 Measurement methodology

Sampling links from emails. To evaluate the privacy
leaks which occur when links in emails are clicked, we
generate a dataset from the HTML content of all emails
and visit them individually in an instrumented browser.
To extract the links from mail content, we parse all
email bodies with BeautifulSoup [2] and extract the
src property of all <a> tags. We sample up to 200 unique
links per sender using the following sampling strategy.
First, we bin links across all emails from a sender by
the PS+1 and path of the link. Next, we sample one link
from each bin without replacement until there are no
more links or we reach a limit of 200. This helps ensure
that we have as diverse a set of landing pages as possible
by stripping fragment and query string identifiers that
may not influence the landing page.

Simulating link clicks. To simulate a user click
ing a link, we visit each link in an OpenWPM instance
using a fresh browser profile. The browser fully loads
the page and sleeps for 10 seconds before closing. Un
like the email viewing simulation (Section 4), we enable
both Javascript and Referer headers. This simulation
replicates what happens when a link is clicked in a stan
dalone email client; only the URL of the clicked link is
passed to the browser for handling. In a webmail client,
the initial request resulting from the click may also con
tain a cookie and a Referer header containing the email
client’s URL. We do not simulate these headers in our
crawl.

Detecting email address leakage. To detect
leakage of email addresses we use the procedure de
scribed in Section 4.1. Since the Referer header is en
abled for these measurements, we consider a party to
have received a leak if it is contained either in the URL
or the Referer header of the resource request to that
party. Email addresses can also be shared with the party
through the Cookie header, request POST bodies, web-
socket connections, WebRTC connections, and so on.
We consider these out of scope for this analysis.

5.2 Results

We found that about 11% of links contain requests that
leak the email address to a third party. About 12% of
all emails contain at least one such link, and among this
subset, there are an average of 3.5 such links per email.
The percentage of the 902 senders that leak the email
address in at least one link in one email is higher: 35.5%.
Finally, there were over 1,400 distinct third parties that

http:ziffimages.com
http:gatehousemedia.com
http:intentiq.com
http:ivitrack.com
http:richrelevance.com
http:alocdn.com
http:scrippsnetworks.com
http:jetlore.com
http:mediawallahscript.com

11 I never signed up for this! Privacy implications of email tracking

Recipient Organization # of Senders

Google 247 (27.4%)
Facebook 160 (17.7%)
Twitter 94 (10.4%)
Adobe 81 (9.0%)
Microsoft 73 (8.1%)
Pinterest 72 (8.0%)
LiveIntent 69 (7.6%)
Akamai 69 (7.6%)
Acxiom 68 (7.5%)
AppNexus 61 (6.8%)

Table 9. The top leak recipient organizations based on a sample
of simulated link clicks. All values are out of 902 total senders.

Recipient Domain # of Senders

google-analytics.com 200 (22.2%)
doubleclick.net 196 (21.7%)
google.com 159 (17.6%)
facebook.com 154 (17.1%)
facebook.net 145 (16.1%)
fonts.googleapis.com 102 (11.3%)
googleadservices.com 96 (10.6%)
twitter.com 94 (10.4%)
googletagmanager.com 87 (9.6%)
gstatic.com 78 (8.6%)

Table 10. The top leak recipient domains based on a sample of
simulated link clicks. All values are out of 902 senders.

received the email address in one or more of our sim
ulated link clicks. We expect that all statistics in this
paragraph, except the first, are slight underestimates
due to our limit of 200 links per sender.

Table 9 shows the top organizations that receive
leaked email addresses, and Table 10 shows the top do
mains. Over a quarter of senders leak the email address
to Google in at least one link.

The most striking difference between these results
and the corresponding results for viewing emails is that
these lists look very similar to the list of top third party
trackers [17], with the addition of a small number of
organizations specific to email tracking. This motivates
the privacy concern that identities could potentially be
attached to third-party web tracking profiles.

6 Evaluation of defenses

6.1 Landscape of defenses

Defenses against tracking can be employed by several
parties. We ignore mail senders and trackers themselves,

since email tracking is a thriving commercial space and
our evidence suggests that senders by and large coop
erate with trackers to leak email addresses. We instead
focus on parties who have an incentive to protect the
recipient’s privacy, namely the recipient’s mail server,
mail user agent, and the web browser.

The lines between these roles can be blurry, so we
illustrate with two examples. Consider a user reading
Yahoo mail via Firefox. The email server is Yahoo, the
email client is Firefox together with Yahoo mail’s client-
side JavaScript, and the web browser is again Fire
fox. Or consider a user reading her university mail, via
Gmail’s IMAP feature, on her iPhone. For our purposes,
both the university and Gmail count as email servers,
since either of them is in a position to employ defenses.
The email client is the Gmail iOS app, and the web
browser is Safari.

Defense Email server Email client Web browser
Content proxying X
HTML filtering X X
Cookie blocking X X
Referrer blocking X X X
Request blocking X X

Table 11. Applicability of each of the five possible defenses to
each of the three contexts in which they may be deployed. An X
indicates that the defense is applicable.

Table 11 summarizes the applicability of various de
fenses to the three roles. We discuss each in turn.

Content proxying. Email tracking is possible be
cause of embedded content such as images and CSS (cas
cading style sheets). To prevent this, some email servers,
notably Gmail, proxy embedded content. Thus, when
the recipient views the email, the mail user agent does
not make any requests to third parties.

This defense doesn’t prevent the recipient email ad
dress being leaked to third parties, since it is leaked
by being encoded in the URL. In fact, it hinders ef
forts by the mail client to prevent email address leakage
(see request blocking below). However, it prevents third
parties from learning the user’s IP address, client device
properties, and when the email was read (depending on
how the proxy is configured). Most importantly, it pre
vents the third-party cookie from being sent, and thus
prevents the third party from linking the user’s email
address to a tracking profile. In this way it is a comple
ment to cookie blocking.

This defense can be deployed by the email server.
Conceivably the email client might have its own server

http:gstatic.com
http:googletagmanager.com
http:twitter.com
http:googleadservices.com
http:fonts.googleapis.com
http:facebook.net
http:facebook.com
http:google.com
http:doubleclick.net
http:google-analytics.com

12 I never signed up for this! Privacy implications of email tracking

component through which embedded resources are prox
ied, but no email clients currently work this way, and
further, it would introduce its own privacy vulnerabili
ties, so we ignore this possibility.

HTML filtering. HTML filtering refers to modify
ing the contents of HTML emails to mitigate tracking. It
may be applied by the email server or the client, but it is
more suitable to the server since the client can generally
achieve the same effect in other ways, e.g., by request
blocking or modifying the rendering engine. It is rarely
applied today, and only in minimal ways. In Section 7 we
prototype a comprehensive HTML filtering technique.

HTML filtering modifies the content of the email
body, and thus might interfere with some email au
thentication methods, notably Domain Keys Identified
Email (DKIM). However, since filtering is carried out
by the recipient’s mail server (Mail Transfer Agent) and
not by intermediate mail relays, filtering can be done af
ter the signature has been verified, and thus there is no
impact on email authentication.

The following three techniques are applicable in one
of two scenarios: when the email client requests embed
ded resources, or when the web browser handles clicks
on links in emails.

Cookie blocking. Cookie blocking in the email
client prevents third-party cookies from being sent when
embedded content is requested. It is especially relevant
in the webmail context, where the cookie allows third
parties to link an email address to a web browsing pro
file. Even otherwise, blocking cookies is helpful since it
makes it harder for third parties to compile a profile of
the recipient’s email viewing (they can always do this for
the subset of emails where the email address is leaked).

Referrer blocking. If the email client sends the
Referer header when loading embedded resources, it
can allow several types of leaks. Depending on the imple
mentation, the referrer may encode which client is being
used and which specific email is being read. If the recip
ient forwarded an email to someone else and the email is
being viewed in a different user’s mailbox, it could leak
this information. Worse, if the client supports iframes
in emails, and the email address happens to be in the
iframe URL, all requests to resources embedded in that
iframe will accidentally leak the email address. For all
these reasons, referrer blocking is a privacy-enhancing
measure. There is little legitimate use for the referrer
header in the context of email. While clients can cer
tainly block the header (as can web browsers), servers
can do this as well, by rewriting HTML to add the
rel=“noreferrer” attribute to links and inserting a Re
ferrer Policy via the meta tag.

Request blocking. Request blocking is a powerful
technique which is well known due to ad blockers and
other browser privacy extensions. It relies on manually
compiled filter lists containing thousands of regular ex
pressions that define third-party content to be blocked.
The most widely used ad-blocking list is EasyList, and
the most widely used tracker-blocking list is EasyPri
vacy. Filter list based blocking introduces false positives
and false negatives [43], but the popularity of ad block
ing suggests that many users find the usability trade-off
to be acceptable. While request-blocking extensions are
supported primarily by web browsers, some email clients
also have support for them, notably Thunderbird.

6.2 Survey of email clients

We built an email privacy tester to discover which de
fenses are deployed by which popular email servers and
clients.7 Browser support for tracking protection has
been extensively studied elsewhere [29], so we do not
consider it here.

The email privacy tester allows the researcher to en
ter an email address and the name of an email client,
and then sends an email to that address containing a
tracking image and a link. The image and the link both
have unique URLs. The researcher views the email in
the specified email client, and then clicks on the link.
The server records the following information: the email
address, the email client, the IP address, timestamp,
and headers sent for both the image and the link re
quests. The list of headers includes the cookie, referrer,
and user agent.

We created accounts with a total of 9 email
providers and tested them with a total of 16 email clients
using various devices available in our lab. We analyzed
the data recorded by the email privacy tester, and sum
marize the results in Table 12. We found that if de
fenses are deployed by email servers at all, they are only
enabled for specific email clients (typically the default
webmail client). Therefore we do not report on servers
separately, but instead fold it into the analysis of clients.
We also found that HTML filtering in a general form is
not deployed, but only in the limited form of image and
referrer blocking, so we report on that instead. We sum
marize our findings in Table 12.

7 https://emailtracking.openwpm.com/

https://emailtracking.openwpm.com/

I never signed up for this! Privacy implications of email tracking 13

Mail Client Platform Proxies Content Blocks Images Blocks Referrers Blocks Cookies Ext. Support

Gmail Web Yes No* L: Yes, I: Yes† Yes† Yes
Yahoo! Mail Web No Yes L: Yes, I: No No Yes
Outlook Web App Web No Yes No No Yes
Outlook.com Web No No* No No Yes
Yandex Mail Web Yes No* L: Yes, I: Yes† Yes† Yes
GMX Web No No* No No Yes
Zimbra Web No Yes No No Yes
163.com Web No No* No No Yes
Sina Web No No No No Yes
Apple Mail iOS No No* Yes Yes No
Gmail iOS Yes No Yes Yes No
Gmail Android Yes No Yes Yes No
Apple Mail Desktop No No* Yes Yes No
Windows Mail Desktop No No* Yes No No
Outlook 2016 Desktop No Yes Yes No No
Thunderbird Desktop No Yes Yes Optional (Default: No) Yes

Table 12. A survey of the privacy impacting features of email clients. We explore whether the client proxies image requests, blocks
images by default, blocks referrer headers from being sent (with image requests “I:” and with link clicks “L:”), blocks external re
sources from settings cookies, and whether or not the client supports request blocking extensions — either through the browser (for
web clients) or directly (in the case of Thunderbird).
*Images are only blocked for messages considered spam.
† Blocking occurs as a result of proxied content.

7 Proposed defense

We argue that tracking protection should be at the cen
ter of a defensive strategy against email tracking. It can
be employed either via HTML filtering on the server or
via request blocking on the client. Tracking protection
(and ad blocking) based on filter lists has proven to be
effective and popular in web browsers, and its limita
tions manageable. The other defenses we examined all
have serious drawbacks: for example, content proxying
comes at a cost to the email server and makes email
leaks worse, and cookie blocking is at best a partial so
lution.

We propose to improve tracking protection in two
ways.

Server-side email content filtering. First, we
prototype a server-side HTML filtering module. We use
the existing, standard EasyList and EasyPrivacy filter
lists. Our filtering script is written in Python using the
BlockListParser library [3]. It scans for any HTML con
tent (text/html) in email bodies, parses those contents,
identifies embedded resources (images or CSS) whose
URLs match one of the regular expressions in the filter
lists, strips them out, and rewrites the HTML.

To test the effectiveness of HTML filtering, we ran
our leak detection procedure on the filtered corpus of
emails. We exclude one sender due to a measurement
issue. We found that 11.0% of senders will leak email ad

dresses to a third party in at least one email, and 11.5%
of emails contain embedded resources which leak email
to a third-party. Overall, 62 third parties received leaked
email addresses, down from 99. As tracking-protection
lists improve (see below), we can expect these numbers
to decrease further. These numbers are very close to
the corresponding numbers for request blocking (Sec
tion 4.6). The two techniques aren’t identical: the one
difference is that in static files, filtering is limited to the
URLs present in the body of the HTML and will miss
those that result from a redirect. However, this differ
ence is small, and we conclude that HTML filtering is
essentially as effective as request blocking.

Note that webmail users can already enjoy track
ing protection, but server-side deployment will help all
users, including those who use email clients that don’t
support request-blocking extensions.

Filling gaps in tracking-protection lists. As a
second line of defense, we use our dataset to identify
a list of 27,125 URLs representing 133 distinct parties
which contain leaks of email addresses, but which aren’t
blocked by EasyList or EasyPrivacy. These include first
parties in addition to third parties. We are able to iden
tify first-party tracking URLs by observing groups of
URLs of similar structure across different first-party do
mains. For example, 51 email senders leak the user’s
email address to a URL of the form li.<public suffix
+ 1>/imp, which appears to be part of LiveIntent’s API
(Section 4.5). We summarize the most common struc

14 I never signed up for this! Privacy implications of email tracking

tures in the leaking URLs missed by tracking protection
lists in Table 13.

URL Pattern # of Senders

li.<PS+1>/imp 51 (5.7%)
partner.<PS+1>/ 7 (0.7%)
stripe.<PS+1>/stripe/image 4 (0.4%)
p.<PS+1>/esp/open 4 (0.4%)
api.<PS+1>/layouts/section<N> 4 (0.4%)
<PS+1>/customer-service 3 (0.3%)
mi.<PS+1>/p/rp 3 (0.3%)
dmtk.<PS+1>/ 3 (0.3%)
links.<PS+1>/e/open 3 (0.3%)
eads.<PS+1>/imp 3 (0.3%)

Table 13. The top URL patterns from URLs which leak email ad
dresses and are missed by tracking protection lists (Section 4.6).
The patterns are generated by stripping request URLs to host-
name and path, replacing the public suffix plus one with <PS+1>,
replacing integers with <N>, and stripping the last portion of the
path if it ends with a file extension. The patterns are ranked by
the number of senders which make at least one leaking request
matching that pattern in any of the sender’s emails. All values are
given out of the total of 902 senders studied.

We suspect that the reason so many trackers are
missed is that many of them are not active in the regu
lar web tracking space. We have made the list of leaking
URLs missed by tracking protection lists publicly avail
able.8 It should be straightforward to add regular ex
pressions to filter lists based on these URLs; we suggest
that filter list creators should regularly conduct scans
of email corpora to identify new trackers.

8 Discussion and conclusion

Privacy risks of email tracking. Email security and
privacy has not received much research attention despite
its central importance in digital life. We showed that
commercial emails contain a high density of third-party
trackers. This is of concern not only because trackers
can learn the recipient’s IP address, when emails were
opened, and so on, but also because these third parties
are by and large the same ones that are involved in web
tracking. This means that trackers can connect email
addresses to browsing histories and profiles, which leads
to further privacy breaches such as cross-device tracking

8 https://gist.github.com/englehardt/
6438c5d775ffd535b317d5c6ce3cde61

and linking of online and offline activities. Indeed, email
is an underappreciated avenue for straightforward cross-
device tracking, since recipients tend to view emails on
multiple devices.

The advice provided by many mail clients may mis
lead users into thinking the privacy risks associated with
remote content are fairly limited. The remote content
help pages of Gmail [20], Yahoo! Mail [42], and Thun
derbird [31] all discuss the threat strictly in terms of
the email sender learning information about the user,
rather than a number of third parties.

Even network adversaries can benefit from the leaks
in emails. The NSA is known to piggyback on advertis
ing cookies for surveillance [18], and our work suggests
one way in which a surveillance agency might attach
identities to web activity records, in line with the find
ings of Englehardt et al. [18]. Indeed, nearly 91% of
URLs containing leaks of emails are sent in plaintext.

Ineffectiveness of hashing. The putative justi
fication for email address leaks in the online ad tech
industry is that the address is hashed. However, hash
ing of PII, including emails, is not a meaningful pri
vacy protection. This is folk knowledge in the security
community, but bears repeating. Compared to hashing
of passwords, there are several reasons why hashing of
email addresses is far more easily reversible via vari
ants of a dictionary attack. First, while (at least) some
users attempt to maximize the entropy of passwords,
most users aim to pick memorable emails, and hence the
set of potential emails is effectively enumerable. Due to
GPUs, trillions of hashes can be attempted at low cost.
Second, unlike password hashing, salting is not applica
ble to email hashing since multiple third parties need to
be able to independently derive the same hash from the
email address.

Perhaps most importantly, if the adversary’s goal
is to retrieve records corresponding to a known email
address or set of email addresses, then hashing is
pointless—the adversary can simply hash the email ad
dresses and then look them up. For example, if the ad
versary is a surveillance agency, as discussed above, and
seeks to retrieve network logs corresponding to a given
email address, this is trivially possible despite hashing.

Limitations. We mention several limitations of our
work. First, despite the large number of heuristics that
went into identifying and submitting forms, it is a fun
damentally hard problem, and our crawler fails in many
cases, including pages requiring complex mouse interac
tions, pages containing very poorly structured HTML,
and captcha-protected form submission pages. More
over, it is difficult to programmatically distinguish be

https://gist.github.com/englehardt/6438c5d775ffd535b317d5c6ce3cde61
https://gist.github.com/englehardt/6438c5d775ffd535b317d5c6ce3cde61

15 I never signed up for this! Privacy implications of email tracking

tween successful and failed form submissions. Looking
at received network data is impractical, since responses
could easily include text for both success and failure
messages. On the other hand, looking only at changes
in the rendered text on the webpage is more feasible,
but would require handling many possible edge cases
(e.g., page redirects, alerts, pop-up windows, iframes)
and might still be too unreliable to use as a metric for
success.

Second, our corpus of emails is not intended to be
representative, and we are unable to draw conclusions
about the extent of tracking in the typical user’s mail
box.

Third, our simulation of a user viewing emails as
sumes a permissive user agent. We expect that this
closely approximates a webmail setup with default
browser settings (on browsers except Safari, which
blocks third-party cookies by default), but we have not
tested this assumption.

Future work. Finally, we mention several potential
areas of future work.

Mailing list managers. It would be helpful to bet
ter understand the relationship between email senders
and mailing list managers (such as Constant Contact).
To what extent is email tracking driven by senders ver
sus mailing list managers? When a sender sets up a
marketing campaign with a mailing list manager, is the
tracking disclosed to the sender?

PII leakage in registration forms. Researchers have
previously found leakage of PII to third parties in con
tact forms on websites [38]. As far as we know, there has
been no large-scale study of PII leakage in registration
forms, where more sensitive information is often present
(e.g. phone numbers, street addresses, and passwords).
Recording and analyzing the third-party requests made
during our crawls is an important area for further inves
tigation.

Cookie syncing. It would be interesting to find out
if cookie syncing occurs when viewing emails—a process
in which different trackers exchange and link together
their own IDs for the same user. Past work has shown
that this happens among the vast majority of top third
parties on the web [17], so we suspect that it occurs
through email as well.

A/B testing. We notice some clear instances of A/B
testing in our data, as might be expected in market
ing campaigns. Specifically, we registered multiple email
addresses on some sites at roughly the same time, and
found several emails sent at nearly the same time (mil
liseconds apart) with different subject lines and email
bodies advertising different products. We have not at

tempted to reverse-engineer or systematically analyze
these differences, but it may be interesting to see if and
how the received content changes in response to read
receipts, click-through metrics, or other types of user
interactions.

Differential testing. Despite testing for various en
codings, hashes, and combinations, it is possible that
we have missed some leaks of email addresses. We can
not hope to exhaustively test for all combinations of
encodings and hashes. Instead, we propose differential
testing: by registering multiple email addresses on the
same site, we can look for parameters in URLs that are
different for different email addresses, which are sugges
tive of transformed email addresses. The difficulty with
this approach is that A/B testing, mentioned above, is
a confound.

In summary, we hope that our work leads to greater
awareness of the privacy risks of email tracking, spurs
further research on the topic, and paves the way for
deployment of robust defenses.

9 Acknowledgements

We would like to thank the anonymous reviewers, Aylin
Caliskan, Paul-Olivier Dehaye, Joel Reardon, and Paul
Van Oorschot for their helpful comments. We’re also
grateful to Günes Acar, Paul Ellenbogen, Marc Juarez,
Harry Kalodner, Marcela Melara, and Laura Roberts for
their assistance in compiling data for our email survey.

This work was supported by NSF Grant CNS
1526353, by a research grant from Mozilla, and by Ama
zon AWS Cloud Credits for Research.

References

[1]	 Adblock Plus - Surf the web without annoying ads! https:
//adblockplus.org/. Online; accessed 2017-09-05.

[2]	 BeautifulSoup. https://www.crummy.com/software/
BeautifulSoup/. Online; accessed 2017-09-05.

[3]	 BlockListParser. https://github.com/shivamagarwal-iitb/
BlockListParser. Online; accessed 2017-09-05.

[4]	 EasyList and EasyPrivacy. https://easylist.to/. Online;
accessed 2017-09-05.

[5]	 uBlock Origin - An efficient blocker for Chromium and Fire
fox. Fast and lean. https://github.com/gorhill/uBlock/.
Online; accessed 2017-09-05.

[6]	 CSS Support Guide for Email Clients. Campaign Source,
https://www.campaignmonitor.com/css/ (Archive: https:
//www.webcitation.org/6rLLXBX0E), 2014.

https://adblockplus.org/
https://adblockplus.org/
https://www.crummy.com/software/BeautifulSoup/
https://www.crummy.com/software/BeautifulSoup/
https://github.com/shivamagarwal-iitb/BlockListParser
https://github.com/shivamagarwal-iitb/BlockListParser
https://easylist.to/
https://github.com/gorhill/uBlock/
https://www.campaignmonitor.com/css/
https://www.webcitation.org/6rLLXBX0E
https://www.webcitation.org/6rLLXBX0E

16 I never signed up for this! Privacy implications of email tracking

[7]	 Gunes Acar, Christian Eubank, Steven Englehardt, Marc
Juarez, Arvind Narayanan, and Claudia Diaz. The web never
forgets: Persistent tracking mechanisms in the wild. In Pro
ceedings of ACM CCS, pages 674–689. ACM, 2014.

[8]	 Gunes Acar, Marc Juarez, Nick Nikiforakis, Claudia Diaz,
Seda Gürses, Frank Piessens, and Bart Preneel. Fpdetective:
dusting the web for fingerprinters. In Proceedings of the
2013 ACM SIGSAC conference on Computer & communica
tions security, pages 1129–1140. ACM, 2013.

[9]	 Julia Angwin. Why online tracking is getting creepier. ProP
ublica, Jun 2014.

[10] Mika D Ayenson, Dietrich James Wambach, Ashkan Soltani,
Nathan Good, and Chris Jay Hoofnagle. Flash cookies and
privacy II: Now with html5 and etag respawning. 2011.

[11] Bananatag. Email Tracking for Gmail, Outlook and other
clients. https://bananatag.com/email-tracking/. Online;
accessed 2017-09-04.

[12] Justin Brookman, Phoebe Rouge, Aaron Alva Alva, and
Christina Yeung. Cross-device tracking: Measurement and
disclosures. In Proceedings of the Privacy Enhancing Tech
nologies Symposium, 2017.

[13] Ceren Budak, Sharad Goel, Justin Rao, and Georgios Zervas.
Understanding emerging threats to online advertising. In
Proceedings of the ACM Conference on Economics and
Computation, 2016.

[14] ContactMonkey.	 Email Tracking for Outlook and Gmail.
https://www.contactmonkey.com/email-tracking. Online;
accessed 2017-09-04.

[15] Zakir Durumeric, David Adrian, Ariana Mirian, James Kas
ten, Elie Bursztein, Nicolas Lidzborski, Kurt Thomas, Vijay
Eranti, Michael Bailey, and J Alex Halderman. Neither snow
nor rain nor mitm...: An empirical analysis of email deliv
ery security. In Proceedings of the 2015 ACM Conference
on Internet Measurement Conference, pages 27–39. ACM,
2015.

[16] Peter Eckersley.	 How unique is your web browser? In In
ternational Symposium on Privacy Enhancing Technologies
Symposium, pages 1–18. Springer, 2010.

[17] Steven Englehardt and Arvind Narayanan.	 Online tracking:
A 1-million-site measurement and analysis. In ACM Confer
ence on Computer and Communications Security, 2016.

[18] Steven Englehardt, Dillon Reisman, Christian Eubank, Pe
ter Zimmerman, Jonathan Mayer, Arvind Narayanan, and
Edward W Felten. Cookies that give you away: The surveil
lance implications of web tracking. In Proceedings of the
24th Conference on World Wide Web, 2015.

[19] David Fifield and Serge Egelman. Fingerprinting web users
through font metrics. In International Conference on Finan
cial Cryptography and Data Security, 2015.

[20] Gmail Help.	 Choose whether to show images. https://
support.google.com/mail/answer/145919. Online; accessed
2017-09-06.

[21] Ralph Holz, Johanna Amann, Olivier Mehani, Mohamed Ali
Kâafar, and Matthias Wachs. TLS in the wild: An internet
wide analysis of tls-based protocols for electronic commu
nication. In 23nd Annual Network and Distributed System
Security Symposium, NDSS 2016, San Diego, California,
USA, February 21-24, 2016, 2016.

[22] HubSpot.	 Start Email Tracking Today. https://www.
hubspot.com/products/sales/email-tracking. Online; ac

cessed 2017-09-04.
[23] Balachander Krishnamurthy, Konstantin Naryshkin, and

Craig Wills. Privacy leakage vs. protection measures: the
growing disconnect. In Proceedings of the Web, 2011.

[24] Balachander Krishnamurthy and Craig E Wills. On the leak
age of personally identifiable information via online social
networks. In Proceedings of the 2nd ACM workshop on
Online social networks, pages 7–12. ACM, 2009.

[25] Pierre Laperdrix, Walter Rudametkin, and Benoit Baudry.
Beauty and the beast: Diverting modern web browsers to
build unique browser fingerprints. In 37th IEEE Symposium
on Security and Privacy, 2016.

[26] Adam Lerner, Anna Kornfeld Simpson, Tadayoshi Kohno,
and Franziska Roesner. Internet jones and the raiders of the
lost trackers: An archaeological study of web tracking from
1996 to 2016. In 25th USENIX Security Symposium, 2016.

[27] Timothy Libert. Exposing the invisible web: An analysis of
third-party http requests on 1 million websites. International
Journal of Communication, 9:18, 2015.

[28] Jonathan R Mayer and John C Mitchell. Third-party web
tracking: Policy and technology. In 2012 IEEE Symposium
on Security and Privacy. IEEE, 2012.

[29] Georg Merzdovnik, Markus Huber, Damjan Buhov, Nick
Nikiforakis, Sebastian Neuner, Martin Schmiedecker, and
Edgar Weippl. Block me if you can: A large-scale study of
tracker-blocking tools. In Proceedings of the 2nd IEEE Euro
pean Symposium on Security and Privacy (IEEE EuroS&P),
2017.

[30] Keaton Mowery and Hovav Shacham. Pixel perfect: Finger
printing canvas in HTML5. W2SP, 2012.

[31] Mozilla Support.	 Remote Content in Messages. https://
support.mozilla.org/en-US/kb/remote-content-in-messages.
Online; accessed 2017-09-04.

[32] Nick Nikiforakis, Alexandros Kapravelos, Wouter Joosen,
Christopher Kruegel, Frank Piessens, and Giovanni Vigna.
Cookieless monster: Exploring the ecosystem of web-based
device fingerprinting. In Security and privacy (SP), 2013
IEEE symposium on, pages 541–555. IEEE, 2013.

[33] Lukasz Olejnik, Gunes Acar, Claude Castelluccia, and Clau
dia Diaz. The leaking battery A privacy analysis of the
HTML5 Battery Status API. Technical report, 2015.

[34] Jingjing Ren, Ashwin Rao, Martina Lindorfer, Arnaud
Legout, and David Choffnes. Recon: Revealing and control
ling pii leaks in mobile network traffic. In Proceedings of the
14th Annual International Conference on Mobile Systems,
Applications, and Services, pages 361–374. ACM, 2016.

[35] Franziska Roesner, Tadayoshi Kohno, and David Wetherall.
Detecting and defending against third-party tracking on
the web. In Proceedings of the 9th USENIX conference
on Networked Systems Design and Implementation, pages
12–12. USENIX Association, 2012.

[36] scikit-learn.	 Jaccard Similarity Score. http://scikit-learn.
org/stable/modules/generated/sklearn.metrics.jaccard_
similarity_score.html. Online; accessed 2017-09-05.

[37] Ashkan Soltani, Shannon Canty, Quentin Mayo, Lauren
Thomas, and Chris Jay Hoofnagle. Flash cookies and pri
vacy. In AAAI spring symposium: intelligent information
privacy management, volume 2010, pages 158–163, 2010.

[38] Oleksii Starov, Phillipa Gill, and Nick Nikiforakis. Are you
sure you want to contact us? quantifying the leakage of pii

https://bananatag.com/email-tracking/
https://www.contactmonkey.com/email-tracking
https://support.google.com/mail/answer/145919
https://support.google.com/mail/answer/145919
https://www.hubspot.com/products/sales/email-tracking
https://www.hubspot.com/products/sales/email-tracking
https://support.mozilla.org/en-US/kb/remote-content-in-messages
https://support.mozilla.org/en-US/kb/remote-content-in-messages
http://scikit-learn.org/stable/modules/generated/sklearn.metrics.jaccard_similarity_score.html
http://scikit-learn.org/stable/modules/generated/sklearn.metrics.jaccard_similarity_score.html
http://scikit-learn.org/stable/modules/generated/sklearn.metrics.jaccard_similarity_score.html

17 I never signed up for this! Privacy implications of email tracking

via website contact forms. Proceedings on Privacy Enhanc
ing Technologies, 2016(1):20–33, 2016.

[39] Oleksii Starov and Nick Nikiforakis.	 Extended tracking
powers: Measuring the privacy diffusion enabled by browser
extensions. In Proceedings of the 26th International Confer
ence on World Wide Web, pages 1481–1490, 2017.

[40] Narseo Vallina-Rodriguez, Christian Kreibich, Mark Allman,
and Vern Paxson. Lumen: Fine-grained visibility and control
of mobile traffic in user-space. 2017.

[41] W3C.	 4.10 Forms - HTML5. https://www.w3.org/TR/
html5/forms.html. Online; accessed 2017-09-07.

[42] Yahoo Help.	 Block images in your incoming Yahoo Mail
emails. https://help.yahoo.com/kb/SLN5043.html. Online;
accessed 2017-09-06.

[43] Zhonghao Yu, Sam Macbeth, Konark Modi, and Josep M
Pujol. Tracking the trackers. In Proceedings of the 25th
International Conference on World Wide Web, pages 121–
132. International World Wide Web Conferences Steering
Committee, 2016.

10 Appendix

10.1 Form discovery and filling
methodology

Choosing pages on which to search for forms. The
crawler searches through all links (<a> tags) on the land
ing page to find pages that are most likely to contain a
mailing list form. It does this by matching the link text
and URL against a ranked list of terms, which are shown
in Table 1. As an initial step, we filter out invisible
links and links to external sites. We check that the link
text does not contain words in our blacklist, which aims
to avoid unsubscribe pages and phone-based registra
tion. If we have found any links that match, the crawler
clicks on the one with the highest rank, then runs the
form-finding procedure on the new page and any newly
opened pop-up windows. If no forms are found, it goes
back and repeats this process for the remaining links.
The reason for clicking on generic article links is that
we have come across several news sites with newsletter
forms only within article pages. We also make sure to
select the English language or US/English locale when
available, since our keywords are in English.

Top-down form detection. For each page the
crawler visits, it first searches through the HTML DOM
for any potential email registration forms. When sites
use the standard <form> element, it can simply iterate
through each form’s input fields (<input> tags) and see
if any text fields ask for an email address (by matching
on input type and keywords). If so, it marks the form as

a candidate, and then chooses the best candidate using
the following criteria (in order):
1.	 Always return the topmost form. Any form stacked

on top of other elements is probably a modal or dia
log, and we find that the most common use of these
components is to promote a site’s mailing lists. We
rely on the z-index CSS property, which specifies the
stacking order of an element in relation to others (as
a relative, arbitrary integer). Note that most DOM
elements take the default z-index value of auto, in
heriting the actual value from its parent; thus, the
crawler recursively checks a form’s parent elements
until it finds a non-auto value, or reaches the root
of the DOM tree. To break ties, it also searches for
the literal strings “modal” or “dialog” within the
form’s HTML, since we find that such components
are usually descriptively named.

2.	 Rank login forms lower. This is the other class of
forms that often asks for an email address, so the
crawler explicitly checks for the strings “login”, “log
in”, and “sign in” within a form’s HTML to avoid
these when other candidates are present.

3.	 Prefer forms with more input fields. This is mainly
helpful for identifying the correct follow-up form: if
we submit our email address in the footer of a page,
the same footer might be present on the page we get
redirected to. In this scenario, the form we want to
pick is the longer one.

Additionally, registration forms are sometimes found
inside of inline frames (<iframe> tag), which are ef
fectively separate HTML pages embedded in the main
page. If necessary, we iterate through each frame and
apply the same procedure to locate registration forms
within them.

Bottom-up form detection. A growing number
of sites place logical forms inside of generic container
elements (e.g., <div> or tags), without using any
<form> tags. Therefore if top-down form detection fails,
we take a bottom-up approach: the crawler first iterates
through all the <input> elements on the page to check
if any email address fields exist at all, then recursively
examines their parents to find the first container that
also contains a submit button. This container is usually
the smallest logical form unit that includes all of the
relevant input fields.

Determining form field type. Once a form is
discovered, we need to determine which fields are con
tained in the form and fill each field with valid data.
We skip any invisible elements, since a real user would
not be expected to fill them. Some fields can be iden

https://www.w3.org/TR/html5/forms.html
https://www.w3.org/TR/html5/forms.html
https://help.yahoo.com/kb/SLN5043.html

18 I never signed up for this! Privacy implications of email tracking

tified by their type attribute alone—for example, tel
for phone numbers and email for email addresses—but
these specific types were introduced in the relatively re
cent HTML5 standard [41], and most websites still use
the general text type for all text inputs. In our sur
vey of the top sites, we found that contextual hints are
scattered across many tag attributes, with the most fre
quent being name, class, id, placeholder, value, for,
and title. In addition, tags that contain HTML bod
ies (such as <button> tags) often contain hints in the
innerHTML.

Handling two-part form submissions After
submitting a form, we are sometimes prompted to fill
out another longer form before the registration is ac
cepted. This second form might appear on the same
page (i.e., using JavaScript), or on a separate page ei
ther through a redirect or as a pop-up window. We take
a simplistic approach: the crawler waits a few seconds,
then applies the same form-finding procedure first on
any pop-up windows and then on the original window.
This approach may have the effect of submitting the
same form twice, but we argue that this does not pro
duce any adverse results—duplicate form submissions
are a plausible user interaction that web services should
be expected to handle gracefully.

10.2 Mail server implementation

The mail server receives emails using SubEtha SMTP, a
library offering a simple low-level API to handle incom
ing mail. The server accepts any mail sent to (RCPT TO)
an existing email address, and rejects it otherwise. The
mail contents (DATA) are parsed in MIME format using
the JavaMail API, and the raw message contents are
written to disk. MIME messages consist of a set of head
ers and a content body, with the required Content-Type
header indicating the format of the content; notably, a
multipart content body contains additional MIME mes
sage subparts, enabling messages to be arranged in a
tree structure. To save disk space, we recursively scan
multipart MIME messages for subparts with content
types that are non-text (text/*), such as attached im
ages or other data, and discard them before storing the
messages since we do not examine any non-textual con
tent.

10.3 Supported hash functions and
encodings for leak detection

Supported hashes and checksums: md2, md4, md5,
sha, sha1, sha256, sha224, sha384, sha3-224, sha3
256, sha3-384, sha3-512, murmurhash2 (signed and
unsigned), murmurhash3 32-bit, murmurhash3 64-bit,
murmurhash3 128-bit, ripemd160, whirlpool, blake2b,
blake2s, crc32, adler32

Supported encodings: base16, base32, base58,
base64, urlencoding, deflate, gzip, zlib, entity, yenc

10.4 Top parties redirecting to new third
parties on email reload

Avg add’l
Redirecting Party Organization parties #S #E

pippio.com Acxiom 5.7 7 32
liadm.com* LiveIntent 3.7 68 1097
rlcdn.com Acxiom 1.7 11 551
imiclk.com MediaMath 1.3 2 4
mathtag.com MediaMath 1.1 11 382
alcmpn.com ALC† 0.8 6 132
emltrk.com Litmus 0.7 41 638
acxiom-online.com Acxiom 0.4 2 33
dyneml.com PowerInbox 0.1 3 13
adnxs.com AppNexus 0.1 19 277

Table 14. Top parties by average number of new third-party re
sources in a redirect chain when an email is reloaded. The num
ber of senders (# S) out of 902 total and the number of emails
(#E) out of 12,618 total on which this occurs is given for each
redirecting party. We exclude redirecting parties that only exhibit
this behavior in emails from a single sender. In total, there are 12
parties which exhibit this type of redirect behavior.
* Includes statistics for chains which redirect to http://p.liadm.
com/imp in the first redirect. We observe a common pattern of
URLs of the form li.firstparty.com redirecting first to this end
point which then redirects to a number of other third parties.
† American List Counsel

pippio.com
liadm.com
rlcdn.com
imiclk.com
mathtag.com
alcmpn.com
emltrk.com
acxiom-online.com
dyneml.com
adnxs.com
http://p.liadm.com/imp
http://p.liadm.com/imp
li.firstparty.com

	I never signed up for this! Privacy implications of email tracking
	1 Introduction
	1.1 Methods
	1.2 The state of email tracking
	1.3 Evaluating and improving defenses

	2 Related work
	3 Collecting a dataset of emails
	4 Privacy leaks when viewing emails
	4.1 Measurement methodology
	4.2 Email provides much of same tracking opportunities as the web
	4.3 Leaks of email addresses to third parties are common
	4.4 Reopening emails brings in new third parties
	4.5 Case study: LiveIntent
	4.6 Request blockers help, but don't fix the problem

	5 Privacy leaks when clicking links in emails
	5.1 Measurement methodology
	5.2 Results

	6 Evaluation of defenses
	6.1 Landscape of defenses
	6.2 Survey of email clients

	7 Proposed defense
	8 Discussion and conclusion
	9 Acknowledgements
	10 Appendix
	10.1 Form discovery and filling methodology
	10.2 Mail server implementation
	10.3 Supported hash functions and encodings for leak detection
	10.4 Top parties redirecting to new third parties on email reload

