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ABSTRACT 
Web browsers have become the predominant means for developing 
and deploying applications, and thus they often handle sensitive 
data such as social interactions or financial credentials and infor-
mation. As a consequence, defensive measures such as TLS, the 
Same-Origin Policy (SOP), and Content Security Policy (CSP) are 
critical for ensuring that sensitive data remains in trusted hands. 

Browser extensions, while a useful mechanism for allowing third-
party extensions to core browser functionality, pose a security risk 
in this regard since they have access to privileged browser APIs 
that are not necessarily restricted by the SOP or CSP. Because of 
this, they have become a major vector for introducing malicious 
code into the browser. Prior work has led to improved security 
models for isolating and sandboxing extensions, as well as tech-
niques for identifying potentially malicious extensions. The area 
of privacy-violating browser extensions has so far been covered 
by manual analysis and systems performing search on specific text 
on network traffic. However, comprehensive content-agnostic sys-
tems for identifying tracking behavior at the network level are an 
area that has not yet received significant attention. 

In this paper, we present a dynamic technique for identifying 
privacy-violating extensions in Web browsers that relies solely on 
observations of the network traffic patterns generated by browser 
extensions. We then present Ex-Ray, a prototype implementation 
of this technique for the Chrome Web browser, and use it to eval-
uate all extensions from the Chrome store with more than 1,000 
installations (10,691 in total). Our evaluation finds new types of 
tracking behavior not covered by state of the art systems. Finally, 
we discuss potential browser improvements to prevent abuse by 
future user-tracking extensions. 

1 INTRODUCTION 
The browser has become the primary interface for interactions 
with the Internet, from writing emails, to listening to music, to on-
line banking. The shift of applications from the desktop to the Web 
has made the browser the de-facto operating system. To augment 
this experience browsers offer a powerful interface to access and 
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modify websites. Among the available functionalities, extensions 
can modify HTTP requests and responses, inject content into web-
sites, or execute programs as a background activity. This allows 
for extensions that manage passwords, remove ads, or store book-
marks in the cloud. 

The downside of this powerful interface is that malicious actions 
at the extension level can lead to problems across all online activi-
ties for a user. Extensions can be considered as the “most danger-
ous code in the browser” [9]. Previous research found extensions 
to inject or replace ads [1, 10, 29], causing monetary damage to con-
tent creators and, in turn, consumers. To detect privacy-invasive 
extensions, previous work used dynamic taint analysis to find spy-
ware in Internet Explorer Browser Helper Objects (BHOs) [5]. With 
previous research in mind, browser vendors can work to restrict 
malicious extensions. 

Google Chrome is considered the state of the art in secure brows-
ing. Chrome extensions can only be installed through a central-
ized store, and before being admitted they have to pass a review 
process. Similar to Android apps, Chrome extensions can request 
permissions to perform certain activities, and users can use this in-
formation to decide whether they want to install the extension or 
not. Furthermore, if an extension is considered malicious after ad-
mission to the store, it can be remotely removed from clients. With 
all these security features in mind, privacy in Chrome extensions 
is still an open issue. 

This work aims to understand to what extent browser exten-
sions violate user privacy expectations. In preliminary experiments, 
we found suspicious activity in popular browser extensions and 
confirmed that data is not only leaked, but furthermore is pro-
cessed by third parties. By presenting unique URLs to multiple 
extensions, we were able to link incoming connections on a hon-
eypot to the particular extension responsible for leaking user data. 

Inspired by these findings, we introduce Ex-Ray, a system that 
can automatically detect history-stealing browser extensions with-
out depending on the specific protocol used or leaking methodol-
ogy. Our automated approach is based on analyzing the network 
traffic generated by dynamically exercising unmodified extensions. 
Extensions under test are executed within an instrumented browser 
multiple times, and all network traffic generated during execution 
is recorded. We decided to focus on the network activity gener-
ated by browser extensions because, while their code and logic can 
change, they ultimately need to send the acquired information to 
their controller, and this will be observable from network traffic. 
Thus, our approach builds on a fundamental invariant of tracking 
and user privacy violation. Furthermore, long term studies of mal-
ware have highlighted network activity as a particularly effective 
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medium for detecting malicious activity [12]. We model features 
that are intrinsic to the network traffic generated by trackers to dis-
tinguish malicious from benign traffic. We create complementary 
detection systems in unsupervised and supervised fashion, and a 
triage system which can classify the likelihood of a leak, easing 
the burden on security analysts to identify misbehaving extensions. 
After identifying a set of extensions that leak private information 
by looking at their network traffic, we develop a complementary 
component that can infer if an extension is leaking sensitive infor-
mation by looking at the API calls that it invokes. 

Ex-Ray automatically flagged 212 potential trackers in the top 
10,691 extensions with a false detection rate of 0.27%. Our sys-
tem has found two tracking extensions which were not detected 
by previous systems because they were leaking information using 
a different channel than what was expected by those tools. More 
precisely, one extension made use of strong encryption to obfus-
cate its behavior, and the other used WebSockets to exfiltrate user 
information as opposed to HTTP(S). 

In summary, the contributions of this work are as follows: 

•	 We developed the first unsupervised system to detect history-
stealing browser extensions based on network traffic alone 
that is also robust against obfuscation. 

•	 We quantify the magnitude of user data leakage and in-
troduce a scoring system that is used to triage extensions. 
Prioritized extensions are manually vetted and the result-
ing labeled dataset is made available to the research com-
munity.1 

•	 We created a machine learning approach to classify exten-
sions that we use on API call traces generated by an instru-
mented browser. This approach reaches 96.43% F-Measure 
value and the recall value is constantly over 99%. 

2 MOTIVATION 
This work focuses on tracking data collected from browsing be-
havior that is sent to third parties. As opposed to previous work 
on history-leaking browser extensions [24], we aim for a system 
that will detect leaks regardless of how they are transmitted or 
collected. We target tracking either through background scripts 
or modification to pages. The main difference between these two 
approaches is that in the Web such trackers are only present on 
websites that opt-in to use them. From a user’s perspective, tools 
that remove these trackers are available and well understood. Con-
versely, tracking in extensions can cover all websites a user visits, 
and there is no opt-in mechanism. Furthermore, no tools are read-
ily available that would warn a user of such behavior or block it. 

Transferring the current host or URL can be a necessary part of 
the functionality of an extension – for example, to check against 
an online blacklist such as an adult content filter. However, we 
found that often extensions also transfer URLs if no such checking 
is necessary, or could be expected by the extension’s description, 
exposing all browsing habits of a user and creating a breach of pri-
vacy. Furthermore, the specification of such functionality is often 
buried deep in an extension’s description, if present at all. Web 

1https://github.com/mweissbacher/exray-data 

users are concerned about how their privacy is impacted [2, 15], 
but are often unaware of what a privacy policy is.2 

To provide additional context behind this sort of systemic privacy-
violating behavior on the part of browser extensions, we present 
a detailed case study on a large actor in the history data collec-
tion market in Appendix A. In it, we demonstrate how a single li-
brary was tied to browsing data exfiltration in 42 extensions with 
over 8 million installations. The extensions were deleted from the 
Chrome Web Store within 24 hours of reporting. 

2.1 HTTP URL Honeypot 
To gain insight into the environment in which trackers operate, 
we configured a honeypot. To test whether leaked URLs are ac-
cessed after being received by trackers, we exercised extensions 
with domain names into which we encode their unique extension 
ID. While executing in our container, extensions only interact with 
local Web and DNS servers. However, we operate a Web server on 
the public Internet to monitor client connections for such URLs. 
As these domains are used uniquely for our experiments, HTTP 
connections indicate leaks linkable to extensions. The connection 
and execution times are displayed in Figure 1, and discussed in 
more detail in Section 4. The confirmation that trackers are acting 
on leaked data motivated further steps in this work. After exclud-
ing VPN and proxy extensions, we received incoming connections 
from 38 extensions out of all Chrome extensions with more than 
1,000 users. 

2.2 Types of Trackers 
Chrome offers a powerful interface to extensions, and while it can 
be used to enhance the browsing experience, it can also be mis-
used to violate user privacy. There are multiple ways to collect 
and exfiltrate browsing history. 

Much like trackers that are added to Web pages by their authors, 
extensions can leak history by adding trackers to the body of Web 
pages. An example of third-party tracking is the Facebook “Like” 
button. These can be blocked by extensions such as Ghostery. A 
more robust solution is sending collected history data via requests 
of extension background scripts. Such requests are not subject to 
interception by other extensions, and cannot be blocked as tracker 
objects. Compared to tracking via inserting trackers into pages, 
better coverage can be achieved. 

To acquire browsing data, extensions can intercept requests made 
by websites via the chrome.webRequest API, or poll tabs for the 
URL using chrome.tabs. For past browsing behavior, the chrome.-
history API can be used. Diverse options to collect data render 
finding a unified way to identify tracking extensions challenging. 

2.3 Threat Model 
Based on our honeypot results, we assume the following attacker 
model. In our scenario the attacker is the owner of, or someone 
who controls the content of, browser extensions. We assume many 
users will install these extensions with a cursory reading of the 
extension’s description. While permissions can restrict the behav-
ior of browser extensions, capturing and exfiltrating history can 

2http://www.pewresearch.org/fact-tank/2014/12/04/half-of-americans-dont-kno 
w-what-a-privacy-policy-is/ 
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Figure 1: Extension execution with unique URLs compared to incoming connections to those URLs from the public Internet.
These connections confirm that leaked browsing history is used by the receivers, often immediately upon execution.

be performed with modest permissions that would not raise suspi-
cion. For instance, the browsing history permission is categorized
as low alert by Google.

The goal of our attacker is to indiscriminately capture URLs of
pages visited by the user while the extension is executed. Further-
more, we assume the adversary collects data with the purpose of
analysis or monetization. As the value of traffic patterns decreases
over time, we assume the attacker to be inclined to leak sooner
rather than later, which seems to be confirmed by our honeypot ex-
periments. A successful attacker would decrease the user’s privacy
as compared to using a browser without the extension in question.

We exclude from our threat model extensions that openly re-
quire the sharing of browsing history as part of their functionality,
such as VPNs. Also, we consider leaks purposeful and supposedly
accidental as equal, as we cannot reason well about developer in-
tent. As detecting and hiding malicious behavior is an arms race,
we prefer to be conservative and assume the attacker could esca-
late the sophistication of their evasion techniques in the future.

3 OUR APPROACH
In this section we describe the design of the approach underly-
ing Ex-Ray. To identify privacy-violating extensions, we exercise
them in multiple stages, varying the amount of private data sup-
plied to the browser, and in turn to the extension under test. Based
on the type of extension, the traffic usage can change depending
on the number of visited sites. However, the underlying assump-
tion is that benign extension traffic should not be influenced by
the size of the browsing history.

3.1 Overview
A high level overview of Ex-Ray is shown in Figure 2. The three
main components of the system are summarized as follows:

1) Unsupervised learning: We use counterfactual analy-
sis to detect history-stealing extensions based on network
traffic. This component is fully unsupervised and, by def-
inition, prone to misinterpretations.

2) Triage-based analysis: We manually vet the output of
our unsupervised system, i.e., we verify which extensions

UNSUPERVISED

SUPERVISED

Vetted
Dataset

CAUSALITY TRIAGE

Unlabeled
Dataset

LEARNINGDETECTION

{leaking,	
not-leaking}

Figure 2: Ex-Ray architectural overview. A classification
system combines unsupervised and supervisedmethods. Af-
ter triaging unsupervised results, a vetted dataset is used to
classify extensions based on n-grams of API calls.

are factually leaking andwhich are not. As themanual ver-
ification is costly, we rely on a scoring system that ranks
extensions based on how likely they are to be leaking in-
formation to aid the process.

3) Supervised learning: We systematize the identification
of suspicious extensions using supervised learning over
the resulting labeled dataset. This component takes into
account the behavior of the extension and builds a model
that detects history leaks (i.e., it looks at theAPI callsmade
by the browser extension when executed).

We see different types of tracking used in browser extensions.
Some intercept requests and issue additional requests to trackers.
Others transfer aggregate data periodically, while still others insert
trackers into every visited page. An integral part of all trackers
is transferring data to an external server—simply put, this crucial
step is what enables trackers to track.

Our work focuses on indiscriminate tracking across all pages.
To track, a history item (hi ) generated by the browser will be re-
ported either in isolation or in aggregate. In either case, the size
of history items affects network behavior. We argue that network
data generated by an effective tracker, independently of protocol
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(a) Tracking extension. (b) Benign extensions. 

Figure 3: Comparison in change of traffic between exten-
sions leaking history and benign ones. With increasing his-
tory, each bar displays the change of sent data. For exten-
sions that leak, sent data projects an ascending slope as a 
function of size of history. 

and whether plain, encrypted, or otherwise obfuscated has to grow 
as a function of history. 

We execute extensions in multiple stages increasing the amount 
of private information. Each hi should contain less information 
than the following stage, hi < hi+1. We increase the size of hi 
in each stage, extending the length of the testing URLs. For exam-
ple, example.com/example/index.html in stage 0, and example.com 

/example/<500characters>/index.html in stage 10. The expected 
growth in traffic is h∆. This intuition is confirmed from Figures 3a 
and 3b where the boxplots clearly show that trackers usually send 
more data when there is more history to leak while the amount of 
data is constant across the different stages for benign extensions. 

For deterministic tracking, the traffic deltas of adjacent measure-
ments should project an ascending slope. However, the browser 
history may be sent compressed in order to send as few bytes as 
possible and avoid the leak being visible as plain text in the pay-
load. This operation would reduce the number of bytes sent while 
retaining the same amount of information (entropy). Per informa-
tion theory, message entropy has an upper bound that cannot be 
exceeded. As consequence, the size of compressed messages has a 
lower bound as a function of the message entropy. For our exper-
iments, we used compression tools (bzip2, 7zip, xz) to establish a 
practical lower bound of sent data for each stage as 289 Bytes, 6.9 
KB, 14 KB and 30 KB. 

Extensions that use trackers establish connections with each ex-
ecution. Consequently, any group of hosts that results in less mea-
surements than the number of executions will not be considered 
for further analysis. Examples of hosts that extensions only con-
nect to occasionally are ads. 

3.2 Network Counterfactual Analysis 
The goal of this phase is to model the way in which modifica-
tions to the browsing history influence observed network traffic. 

Figure 3 shows that there is a monotonic increase in sent traffic 
between successive stages of privacy-violating extension. Exten-
sions that, on the contrary, are privacy-respecting show no sig-
nificant difference. An observation we made during the analysis 
of traffic behavior is that privacy-violating extensions might ex-
hibit non-leaking behavior when connecting to certain domains. 
Thus, it is important to consider individual flows when building 
our model. Additionally, we observed that variations exhibited by 
privacy-violating extensions are well-fit by linear regression. 

Thus, we use linear regression on each set of flows to estimate 
the optimal set of parameters that support the identification of 
history-leaking extensions. We aim to establish a causality relation 
between two variables: (i) the amount of raw data sent through 
the network, and (ii) the amount of history leaked to a given do-
main. For this, we rely on the counterfactual analysis model by 
Lewis [13], where: 

The model establishes that, in a fully controlled 
environment, if we have tests in which we change 
only one input variable, and we observe a change 
in the output, then the variable and the output are 
linked by a relation of causality. 

In our case, the input variable is the amount of history, the out-
put is the number of bytes sent in the different flows, and the tests 
are run with both malware and benign samples. Our framework 
allows us to evaluate this relationship by means of different statis-
tical tests, such as Bayesian inference. This is ideal for situations 
were there is no deterministic relationship between the variables, 
such as in targeted advertisement tracking. Although our frame-
work is designed to model these scenarios, in practice, we observed 
that leaking extensions behave in a deterministic fashion. 

In order to systematically identify the conditions under which 
the causality link is established, we run three steps. The first step 
is performed before applying linear regression, while the second 
and third steps are based on the linear regression parameters. 

(1)	 Minimum Intercept. While the extension might com-
municate to a domain in all given stages, the content trans-
mitted may not contain a privacy leak. This step verifies 
whether the amount of data sent exceeds a certain thresh-
old. This threshold is set based on the size of the history 
compressed as described in Section 3.1. 

(2)	 Minimum Slope. In this work we are primarily inter-
ested in extensions that actively track users. This type 
of extensions is expected to leak as much history data as 
possible from the user. This implies that the relationship 
between stages is expected to be linear and have a con-
stant variance, modulo any sort of attempt at obfuscation. 
Based on this, we set a threshold to the slope in order to 
exclude all those extensions that do not fully meet these 
two criteria. 

(3)	 Level of Confidence. Depending on the extension, the 
fitted regression model might not always be strictly lin-
ear. We can choose to apply certain bounds (lower, upper, 
or both) from a fitted model to adjust the precision of the 
output. Choosing bounds that are very close to the fitted 
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model will give a higher level of confidence in the deci-
sion. On the contrary, a very relaxed model will capture 
boundary cases at the cost of introducing false positives. 

We define the term flagging policy as the set of parameters used 
for these checks. A strict policy is a policy in which parameters se-
lect a restricted area and flag less flows than a relaxed policy which 
flags many more flows as suspected of leaking browsing history. 

The notion of confidence described above and the use of the 
different policies is precisely what motivates our triage system de-
scribed next. 

3.3 Extension Triage 
After determining which extensions could potentially be leaking 
history in an unsupervised way, we manually vet those results. 
The goal of this phase is to design a score that quantifies history 
leakage and prioritize the manual analysis. For that, we first define 
a function L that estimates the number of URLs leaked between 
two controlled experiments such that 

|sj | − |si |
L(si , sj ) = . (1)

τ 

Here, |sj | and |si | are the number of bytes sent to a given domain 
in stages i and j respectively, while τ is a threshold that estimates 
the expected growth hδ between i and j. This threshold is based 
on the size of the URLs used in the experiment described in Sec-
tion 3.1. We abuse notation for the sake of simplicity and denote s 
when we refer to a transition between two consecutive stages with 
increasing exercised browsing history. 

Given an extension x , we then obtain a score by multiplying the 
number of URLs leaked between two consecutive stages s: 

∏ 
L(s)score(x) = e .	 (2) 

s 

Note that we aim at obtaining a rough understanding of which 
extensions could be leaking URLs. Thus, we are mainly interested 
in high values of L(s). We use an exponential function of L(s) to 
prioritize extensions that are leaking in all stages but also to find a 
trade-off between extensions that only show a leak in some of the 
stages. Positive and large values will then output a high score. 

Negative values of L(s) mean that the total amount of data sent 
in the earliest stage is higher than the amount sent in the latest. 
Intuitively this means that data sent in each stage does not depend 
on the size of URLs in the browser history. Our score then treats 
these cases as an exponential decay function, giving less weight to 
those stages and outputting values closer to score(x) ≃ 0. Like-
wise, when the amount of data exchanged between stages is ex-
actly the same (i.e., L(s) ≃ 0), the scoring function will then output∏ 
score(x) ≃ e0 ≃ 1. One could obtain a probability of the likeli-
hood of a leak by scaling the score to the interval [0, 1]. However, 
as our system currently aims only at prioritizing extensions, giving 
a rough notion of risk (without scaling the output) suffices. Thus, 
we consider the following thresholds as a general rule of thumb 
when triaging extensions: 

not-leaking if score(x) : 1 ⎧⎧⎧(
leak(x) = possibly-leaking if 1 < score(x) : 100 (3)⎧⎧⎧ likely-leaking otherwise. 

Very large values of score(x) show a high confidence that the ex-
tension is aggressively tracking users. 

It is important to highlight that the triage stage is optional. An 
ideal setting with endless human resources would obviate the need 
to prioritize extensions and, thus, render the triage stage merely 
informative. In practice, extension markets are very large and 
human workers tend to be constrained time-wise, which can be 
a bottleneck for the verification process. In this case, having a 
triage system would be valuable. For the purposes of this paper, 
when labeling the outputs given by the unsupervised module, we 
have invested human effort in manually vetting extensions that 
are primarily ranked as likely-leaking (for positive samples) and 
not-leaking (for negative samples). We also look at a fraction of 
possibly-leaking extensions in a best-effort fashion. 

3.4 History Leakage Detection 
The last component of our system aims at systematizing the iden-
tification of unwanted extensions from a behavioral point of view. 
For that, we instrument the browser to monitor dynamically rele-
vant behaviors of the extension during runtime. This component 
operates in a fully supervised manner and is composed of the fol-
lowing two phases: 

•	 Learning: The system is trained using the dataset labeled 
in the previous phase, building a model of the most dis-
criminatory runtime behaviors. 

•	 Detection: The system is deployed to detect previously 
unknown privacy-violating extensions. 

Predictions can be then used (i) to obtain a better understand-
ing of how extensions (mis)use the user’s private information; and, 
(ii) to discover previously unknown privacy-violating extensions 
than can then be analyzed by the triage component. As a result, the 
list of labeled samples together with the model can be extended. 

We implemented our classification algorithm using Extra Ran-
domized Trees. We choose this classifier due to its efficiency over 
several types of classification problems [6]. However, our frame-
work accepts a wide range of classifiers. Likewise, the system can 
learn from several types of features. For the purposes of this paper, 
we limit our analysis to behaviors related to history leaking. In par-
ticular, we profile the way in which extensions interact with cer-
tain components of the Application Programming Interface (API) 
exported to extensions by Chrome. 

From all API traces that are extracted, we model the way in 
which consecutive calls are invoked using n-grams. This detec-
tion method has been widely explored for the identification of ma-
licious software. As explained in prior work [25, 28], n-grams are 
particularly useful to model sequences of elements. The number 
associated to the “n” is the length of each examined sequence; the 
system receives labeled sequences and uses them to train a classi-
fier in order to recognize from the sequences of an unknown sam-
ple to which label the sample should be assigned. In our system 
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we tried different depths of the n-grams, namely 1, 2, and 6, and 
the sequences are consecutive API calls invoked by the extension. 

4 EVALUATION 
In this section, we evaluate the performance of Ex-Ray in finding 
extensions that leak browser history. We describe our experimen-
tal methodology and results. 

4.1 Experimental Setting 
An overview of our experimental setup is depicted in Figure 4. 
Next, individual components are discussed in detail. 

Extension Containers. As part of our test environment, we cre-
ated websites that allow scaling the size of a Web client’s browsing 
history without otherwise changing the behavior of websites. We 
use local Web and DNS servers so that the browser can connect 
to our website without sending information to the public Inter-
net. For each execution, we start the experiment from an empty 
cache in a Docker container using an instrumented Chromium bi-
nary. We exercise each extension four times for five minutes each, 
capturing all generated network traffic. Capturing traffic on the 
container level provides a full picture of each extension’s network 
interactions. 

To reduce measurement noise, we block traffic to Google update 
services and CRLsets3 via DNS configuration. We also disable fea-
tures such as SafeBrowsing and account synchronization. 

Considering the maximum URL length of 2,083 characters, we 
increase the length by 500 characters between stages. Other than 
changing the length of URLs used, the pages served to the instru-
mented browsers do not change between stages. The maximum 
length of URLs generated by us is below 1,600, leaving sufficient 
space for trackers that submit URLs as GET parameters. For each 
execution we open 20 pages; thus, if all URLs were transmitted un-
compressed we would expect an increase of 10 KB per stage. We 
store DNS information to group IP traffic by hostname. 

Extension Dataset. We crawled the Chrome Web Store and down-
loaded extensions with 1,000 or more installations. For our analy-
sis, we only consider extensions that can be loaded without crash-
ing. Examples of extensions that could not be loaded are those 
with manifest files that cannot be parsed or referencing files that 
are missing from the packages. We discarded 334 such extensions, 
which left 10,691 extensions for Ex-Ray to analyze. 

To establish baseline ground truth, we searched for different 
types of tracking extensions. We did not use the extensions men-
tioned in Appendix A as they were not available in the store at 
the time of these experiments, and the future behavior of tracker 
endpoints was unclear. 

We mainly relied on two approaches to discover history-leaking 
extensions: 

•	 Heuristic search. We look for suspicious hostnames, key-
words in network traffic, and apply heuristics to traffic pat-
terns. Through manual verification we confirmed 100 be-
nign extensions and 53 privacy-violating extensions. The 

3gvt1.com, redirector.gvt1.com, clients1.google.com, clients4.google.com 
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Figure 4: Ex-Ray extension execution overview. After down-
loading extensions from the Chrome Web Store, we exercise 
them in containers to collect traces for classification. 

dataset contains different types of samples, including ag-
gregate data collection and delivery over HTTP(S) and 
HTTP2. 

•	 Honeypot probe. We registered extensions interacting 
with our honeypot and verified 38 as connecting back from 
the public Internet. Figure 1 shows a map of all incoming 
connections with respect to the time we exercised the ex-
tension with unique URLs in the history. Table 1 shows 
the most installed five malicious extensions with domains 
connecting to the honeypot. Connections often appear im-
mediately after running the extension, but we detected de-
ferred crawls as well. 

We excluded VPN and proxy extensions that redirect traffic via a 
remote address, as these are not part of our threat model. The con-
necting clients performed no malicious activities we could iden-
tify in our log files. The hostnames of clients that connected to 
us varied widely. The most popular one was kontera.com with 
704 connections, followed by AWS endpoints. Interestingly, we 
received many requests from home broadband connections, such 
as *.netbynet.ru, often connecting only once. However, we con-
nected four graphs of extensions that were contacted from the 
same hosts. The biggest graph connects eight extensions with two 
hosts. The other graphs link five, two, and two extensions. We 
compiled the data of possible collaboration into Table 3, which is 
located in the Appendix due to space limitations. 

Twelve of these extensions were removed from the Chrome Web 
Store before our experiments concluded. We did not report these, 
and we have no indication that the removal could be related to 
privacy leaks. 

http:netbynet.ru
http:kontera.com
http:clients4.google.com
http:clients1.google.com
http:redirector.gvt1.com
http:3gvt1.com
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Extension Name installations Connecting from 

Stylish - Custom 1,671,326 *.bb.netbynet.ru, 
themes *.moscow.rt.ru, 

*.spb.ertelecom.ru 

Pop Up Blocker for 1,151,178 *.aws.kontera.com, 
Chrome 176.15.177.229, 

*.bb.netbynet.ru 

Desprotetor de Links 251,016 *.aws.kontera.com, 
*.moscow.rt.ru, 
*.bb.netbynet.ru 

Открытые вкладки 97,204 *.dnepro.net, 
(Open Tabs) 109.166.71.185, 

*.k-telecom.org 

Similar Sites 45,053 *.aws.kontera.com, 
*.moscow.rt.ru, 
*.netbynet.ru 

Table 1: Top five extensions connecting to our honeypot 
with highest installation numbers which are still available 
in the Chrome Web Store. 

4.2 Ex-Ray Results 
Tuning of the Unsupervised Component. The first step of Ex-Ray 

consists of applying linear regression for counterfactual analysis. 
The linear regression test flags flows if they respect the three pa-
rameters explained in Section 3.2. To find the best configuration of 
these parameters, it is necessary to evaluate the results on a labeled 
dataset. We use F-Measure as a comparison metric. The strictest 
policy checks for a minimum of five URLs leaked, a 2% minimum 
slope, and 90% accuracy. This policy results in an F-Measure of 
96.9% and no false positives. 

To obtain better results, in our final configuration we use two 
less strict configurations and flagged as suspicious all flows flagged 
in both engines. Both configurations check for a minimum of two 
URLs leaked and 2% minimum slope. However, there is a difference 
in the last check: while one uses 90% accuracy in checking only the 
lower bound, the other one uses 80% accuracy checking both the 
upper and lower bound. As such, the first and last checks are less 
strict, but the F-Measure does not decrease even if a larger area of 
the feature space can be flagged. The system correctly flags more 
flows as with the stricter configuration, but the flows belong to the 
same extensions already flagged by the previous system. 

Labeling Performance. Ex-Ray flagged 212 extensions out of 10,691 
as history-leaking using linear regression on the traffic sent by ex-
tensions. By checking manually, we noticed that not all the flagged 
extensions were leaking history. Out of 212 samples, 184 did leak, 
two were benign, and 26 we could not confirm as clearly benign. 
It has not been possible to determine if among those 26 extensions 
there were ones leaking or not. Therefore, to provide a conserva-
tive evaluation, we consider Ex-Ray to have 28 benign extensions 
wrongly identified as history-leaking. 

As mentioned earlier, detection systems can be prone to false 
negatives. To measure this for our system, we spot-checked a 

representative sample of extensions reported as benign. To estab-
lish baseline false negatives we scanned our pcap files for leaks 
and reimplemented another system used for brute-force search-
ing extension traffic for obfuscated strings with a fixed set of al-
gorithms [24]. This system flagged 367 extensions which we used 
for our dataset. The false negative samples we subjected to exam-
ination numbered 178. These results lead to a precision of 87%, 
a recall value equal to 50.13%, and an F1-Measure value equal to 
63.66%. The overall accuracy value is 98.03%. These values are 
reached using only the first step of Ex-Ray that is a completely un-
supervised algorithm. As we show below, these results are further 
improved by the next phases of our system. 

Among the extensions flagged by Ex-Ray, there are some inter-
esting case studies (such as the Web of Trust extension) which are 
discussed thoroughly in Section 5.1. 

Prioritizing Extensions. Extensions processed in the previous step 
are then ranked using the score function defined in Section 3.3. 
Ideally, a triage system should prioritize extensions that are more 
likely to be privacy-violating than others. This way, the analyst 
can invest most of their efforts on specimens that are likely to be 
worth exploring. Other than the ranking of extensions, Ex-Ray 
provides a report with an informative breakdown of the contribu-
tion of each network flow to the overall score. This is also useful 
to the analyst for further investigation. We next show snippets of 
a triage report for three extensions that are ranked high, medium, 
and low: 

cicimfkkbejhggfjaabggafffgdnjgjp
 

4e+18 connectionstrenth.com
 

394.88 a.pnamic.com
 

28.22 eluxer.net
 

4.48 rules.similardeals.net
 

1.16 code.jquery.com
 

pmmbokildidpgafchfmebmhpoeiganhj
 

89.22 static-opt1.kizi.com
 

89.22 cdn-opt0.kizi.com
 

89.29 cdn-opt1.kizi.com
 

6.12 tpc.googlesyndication.com
 

3.15 securepubads.g.doubleclick.net
 

pogchimbndbckepmhaagnapfmlfgnala
 

1.00 www.gstatic.com
 

1.00 chromium-i18n.appspot.com
 

1.00 ssl.gstatic.com
 

1.00 localhost
 

0.67 www.google.com
 

The snippet first displays the unique identifier of the extension, 
followed by the score given to each of the network flows used to al-
legedly leak the history. As mentioned before, we group network 
flows by hostname using DNS information captured during the 
execution. When considering the thresholds introduced in Equa-
tion 3, the recommendation given by our triage system for these ex-
tensions is likely-leaking, possibly-leaking, and not-leaking 

respectively. 
As mentioned, these recommendations are manually verified. 

The analysis starts with review of permissions and source code, 

http:www.google.com
http:ssl.gstatic.com
http:chromium-i18n.appspot.com
http:www.gstatic.com
http:securepubads.g.doubleclick.net
http:tpc.googlesyndication.com
http:cdn-opt1.kizi.com
http:cdn-opt0.kizi.com
http:static-opt1.kizi.com
http:code.jquery.com
http:rules.similardeals.net
http:eluxer.net
http:a.pnamic.com
http:connectionstrenth.com
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looking for access to chrome.tabs, chrome.webRequest intercep-
tion, and other methods of history access. Next, an analyst checks 
for elements inserted into the DOM that leak the referrer. Finally, 
requests generated by background scripts and other recorded net-
work traffic is checked. 

To quantify the performance of our triage system, we first study 
how it ranks extensions given by the unsupervised system with re-
spect to the baseline ground truth described above (see Section 4.1). 
73 extensions are flagged as likely-leaking. Out of those, all but 
one were manually verified to leak (99%). 

Next, the analyst is tasked with verifying 121 additional exten-
sions from the possibly-leaking category. Out of those, only one 
is confirmed to be benign, 24 are marked as inconclusive, and the 
rest (80%) are confirmed to leak. When ordering the triage score 
from the bottom, it is easy to find extensions that behave legiti-
mately. For the purpose of this paper, the analyst vetted approxi-
mately 100 extensions as not-leaking. 

We emphasize that the purpose of this phase is not to exhaus-
tively label all leaking extensions, nor to obtain a comprehensive 
understanding of non-leaking extensions. Instead, the aim is to 
obtain a slice of those extensions where the quality of the ground 
truth is enough to apply supervised learning. As a byproduct of 
this manual verification, we have gained a number of insights into 
the ecosystem of unwanted extensions which is discussed later in 
the Section 5. 

Classification Results. Our last experiment evaluates the effec-
tiveness of the supervised system introduced in Section 3.4. We 
aim at understanding the performance of Ex-Ray in classifying 
leaking extensions using API call traces. 

We rely on the dataset labeled and vetted in previous stages of 
our experiment. We split the dataset between training and test-
ing set using a k-fold cross-validation approach, which has been 
widely applied in the past [19]. 

To collect behavioral data from extensions, we implemented a 
Clang LibTooling program that instruments Chromium’s source 
code. In particular, we instrumented the following components of 
the Chromium framework: extensions, chrome/browser/extensions, 
and chrome/browser/extensions.4 

To evaluate the results, we refer to precision (or positive predic-
tive value) and recall (or sensitivity). With reference to detecting 
leaking extensions, we judge the performance by the F1-score, as 
it represents the harmonic mean of precision and recall. For the 
sake of completeness we also report the proportion of correct pre-
dictions (accuracy). 

Table 2 shows results over a five-fold split using random sam-
pling. Classification results indicate that we can accurately iden-
tify when extensions are leaking by examining their behavior. Af-
ter evaluating different sizes of n-grams, we obtained our best re-
sults with n = 2 at 96.43% F1 followed by n = 6. When looking 
at the histogram of APIs executed by the extension (n = 1), the 
performance drops about 7%. 

Among the most informative features in our best setting, we can 
observe calls to different API packages related to the manipulation 

4Excluding unit tests files, we inserted 11,132 trace points in 923 files collecting 6,125 
function parameters. 

Type Prec. Recall ACC F1 

n-gram=1 87.36% 98.19% 87.30% 92.46% 
n-gram=2 93.56% 99.49% 94.14% 96.43% 
n-gram=6 92.18% 99.23% 92.70% 95.58% 

Table 2: n-gram classification results for varying n. 

of URLs such as extensions.common.url_pattern, as well as the ma-
nipulation of runtime code (JavaScript) associated with the prefer-
ences of an extension. In particular, the following two API calls are 
predominantly seen together in history-leaking extensions: exten-
sions.browser.extension_prefs.GetExtensionPref() - chrome.browser.-
extensions.shared_user_script_master.GetScriptsMetadata(). 

5 DISCUSSION 
In this section, we describe and discuss a number of findings re-
sulting from this work. First, we present two new types of track-
ing behavior found using our system. We then present the most 
prevalent types of trackers and discuss their fundamental differ-
ences together with the issues due to invasive tracking. Finally, 
we discuss evasion strategies. 

5.1 High Profile Leaks 
We cover two particularly relevant cases. These pose new chal-
lenges as they are immune to state of the art privacy leak detection 
systems. Both were discovered through unsupervised detection by 
Ex-Ray. 

WOT: Web of Trust, Website Reputation Ratings. Web of Trust 
(WOT) is a widely used extension with 1.2M installations. The ex-
tension gives users a ranking of trustworthiness of visited websites. 
WOT came under scrutiny in March 2016 when it was found to be 
selling browsing data.5 A feature that distinguishes WOT from 
other extensions is usage of strong encryption at the extension 
level. It comes with a cryptographic library (crypto.js) that en-
crypts tracking payloads with RC4 on top of transfer via HTTPS, 
thus hiding contents from data leakage analysis systems that can 
interpose on and inspect HTTPS content. This extension was auto-
matically flagged by Ex-Ray with a triage score of 61,598 (outstand-
ing, given that > 1 is considered suspicious) and is undetectable by 
currently available systems that rely on string matching and can 
be evaded by the use of encryption [24]. 

The permissions requested by WOT are access to all sites, the 
ability to modify requests, and access to all tabs. The library will 
track every visited website, including websites on internal networks. 
POST data or keystrokes are not monitored, however. 

While the history leak is part of the advertised functionality, 
less invasive ways of implementation are possible. Either storing 
the reputation database in the extension, or only sending the do-
main portion to the server, as opposed to the whole URL. For ex-
ample, Google Safe Browsing offers similar functionality via an 
offline database. 

5https://thehackernews.com/2016/11/web-of-trust-addon.html 

https://thehackernews.com/2016/11/web-of-trust-addon.html
http:crypto.js
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CouponMate: Coupon Codes & Deals. CouponMate is a shop-
ping application that offers to help users search for applicable coupons. 
This extension collects and leaks browsing data via WebSockets, a 
recently-standardized protocol not analyzed by prior work [24], 
but one that is rising in popularity. In our dataset we found that 
103 (0.96%) of extensions use WebSockets. Unlike previous work, 
Ex-Ray is oblivious to protocols and flagged this extension with a 
triage score of 20.1, which is a high alert for a human analyst. 

Similarly to Web of Trust, the leaks are part of the main function-
ality. However, implementing it in a more privacy-aware fashion 
is possible. For example by adding a button to perform a search 
for coupons on demand, as opposed to sending every URL. 

5.2 Browser-enabled Tracking 
Trackers are popular on websites and well-studied. However, they 
are fundamentally different from tracking in browser extensions. 
Websites need to opt-in to use a tracker, and their scope is lim-
ited to their own website unless purposefully shared. Furthermore, 
visitors can use tracker-blockers to opt-out of tracking with ex-
tensions such as Ghostery. Conversely, in browser extensions the 
scope of tracking is not limited to a single website, but collects in-
formation on all websites the extension has permission to access. 
Furthermore, no tools exist to reduce the impact on privacy. 

Mozilla Firefox. Using a prototype we developed for Firefox ex-
tensions, we scanned the most popular available ones in the store. 
We found five extensions with over 400,000 total installations which 
were tracking user behavior outside of extensions, and reported 
them to Mozilla. Out of these, three were removed from the store 
because they did not disclose tracking in their privacy statement. 
However, this type of tracking is generally tolerated for Firefox, 
and as a result we have not further pursued notifications on that 
platform. 

5.3 Foundations Towards Solutions 
A combination of these suggested solutions would mitigate the 
problem of invasive tracking in browser extensions: 

•	 Analyze extensions submitted to extension stores with tools 
that check for tracking behavior, such as our proposed sys-
tem Ex-Ray. Users can then be warned that their browsing 
history will potentially be leaked. 

•	 Implement a new browser extension API to inspect and 
block traffic to trackers generated by other extensions in 
background scripts. No such API currently exists. Filter-
ing approaches have proven effective for tracking on web-
sites. This could be used in conjunction with established 
blacklists (e.g.: EasyList), or further extended with entries 
generated by systems such as Ex-Ray. An integration into 
this model could help filter background traffic. 

•	 Consider invasive tracking as a violation of the single pur-
pose rule in extension stores, analogously to ad injection. 
Such a policy would incentivize authors to prevent leaks 
themselves. 

5.4 Evasion 
Malware evading detection systems is a well-explored area and 
is part of the arms race between attackers and defenders. Exam-
ples of this include fingerprinting analysis environments or creat-
ing more stealthy programs. While no ultimate solutions exist for 
these problems, Ex-Ray addresses tracking at a fundamental level. 

Another approach would be to lay dormant and only leak at a 
later point in time. However, we have seen with our honeypot ex-
periments that if leaks are utilized, this often happens immediately. 
Furthermore, there is an economic incentive on the part of attack-
ers to obtain and monetize leaked history as quickly as possible 
before its value begins to degrade. 

Extensions could also pad sent history to show stable traffic be-
havior or create noise. However, this would either limit the leak-
age capacity or be easy to detect from simple checks applied by cur-
rent defense systems if extensions regularly send large amounts of 
data to mask leakage. 

6 RELATED WORK 
As with any Web application, browser extensions are third-party 
code. However, these programs operate with elevated privileges 
and have access to powerful APIs that can allow access to all con-
tent within the browser. Permission systems allow developers to 
restrict their programs, but extensions have been shown to over-
request permissions, effectively de-sensitivizing users. Heule et 
al. [9] showed that 71% of the top 500 Chrome extensions use per-
missions that support leaking private information. They proposed 
an extension design based on mandatory access control to protect 
user privacy when browsing. 

Previous work on privacy-violating browser extensions has found 
them to be a prevalent problem. It was shown that official exten-
sion store quality checks fail to remove such perpetrators. Blog 
posts have manually analyzed extensions [3, 27] and Starov et al. stud-
ied leaks based on keyword search [24]. In contrast, Ex-Ray does 
not require searching for particular strings and is oblivious to the 
protocols used by extensions. 

IBEX [8] is a research framework to statically verify access con-
trol and data flow policies of extensions. Developers have to au-
thor their extensions in high-level type safe languages; .NET and 
a JavaScript subset are supported. Policies are specified in Datalog 
and allow for finer-grained control as compared to contemporary 
permission systems. 

Egele et al. [5] used a dynamic taint analysis approach based on 
the QEMU system emulator to detect spyware in Internet Explorer 
Browser Helper Objects (BHO). BHOs are classified as malicious if 
they leak sensitive information on the process level. 

Hulk [10] is a system that was used for the first large-scale dy-
namic analysis of Chrome extensions. The authors introduced the 
concept of Honeypages. This technique generates Web content tai-
lored to an extension to trigger malicious behavior driven by ex-
pectations of the extension. 

To monetize extensions, maliciously-inclined authors may add 
or replace ads in the browser with their own. In 2015, a study 
found 249 Chrome extensions in the Chrome Web Store injecting 
unwanted ads [26]. The authors identified two drops in their mea-
surement of ad injection. They correlate to Chrome blocking side 
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loading of extensions, and introduction of the single purpose rule 
to the Chrome store. 

Contemporary websites use a plethora of third-party services 
that enable developers to quickly add functionality. As a downside, 
user privacy suffers, since when websites include content from a re-
mote source the trust a user puts into a website is delegated. Nick-
iforakis et al. [18] studied these delegations and highlighted how 
widespread this behavior is. As an example, Google Analytics was 
included in 68% of the top 10,000 websites. 

Third-party tracking on websites has been studied extensively. 
Browsing on seemingly unrelated sites can be observed by third-
party trackers and combined into a comprehensive browsing his-
tory. Mayer et al. introduced the FourthParty measurement plat-
form [17], discussing privacy implications, technology, and policy 
perspectives of third-party tracking. Roesner et al. [20] developed 
client-side defenses to classify and prevent third-party tracking. 
Recent work has analyzed the history of Web tracking via the In-
ternet Archive’s Wayback Machine [11]. The authors found that 
tracking has steadily increased since 1996. Tracking on the Web 
has never been as pervasive as it is now. 

Browsers are not the only platform prone to leaks of private 
data. In PiOS [4], Egele et al. statically analyzed applications from 
iOS app stores. While only a few applications were identified as 
leaking private user data, more than half leaked unique phone iden-
tifiers that can be used by third parties to profile users. Similarly, 
AndroidLeaks [7] uses data-flow analysis to evaluate Android ap-
plications for leaks of private data; they verified leaks in 2,342 ap-
plications. Lever et al. show in a longitudinal study of malware [12] 
that analysis of network traffic is a key factor to early detection. 

In the first step of Ex-Ray, we apply linear regression in or-
der to evaluate causality relations [13]. Counterfactual analysis 
is a relatively simple, but powerful model which has been used 
in malware traffic analysis before [16]. The authors focused on 
distinguishing when a certain kind of malware sample acted dif-
ferently from usual behavior due to certain user activity (triggers). 
As the work presented noise and some mislabeled conversations, 
the authors applied Bayesian Inference to assess causality between 
specific user actions and malware families. In our case, the ab-
sence of false positives among the extensions that were not leak-
ing avoided the use of statistical methods to determine whether 
there is a relation of causality between being a browser extension 
leaking browser history or not. Linear regression [21] is widely 
used, for instance as a preparatory step before applying machine 
learning [23], or as an embedded technique as in SVM [22]. 

7 LIMITATIONS 
Ex-Ray’s goal is to flag extensions that collect private data such as 
browsing history and exfiltrate it to third parties. An actor with 
the goal to collect user data is interested in collecting it in real time, 
which is supported by the samples we analyzed. 

It is possible that extensions only exfiltrate data after waiting for 
a period longer than our tests. However, this is at odds with eco-
nomic incentives due to the decreasing value of leaked data over 
time, and is thus unlikely from the perspective of the malicious 

actor. Tracking for the purpose of analysis of large-scale user be-
havior requires timely data on all websites. The scope of our work 
is identifying wholesale tracking through extensions. 

Extensions that are narrow in scope, e.g., that collect data for a 
specific website, would not be flagged by our system. We consider 
stealing of private data on a wider scale. To enhance our system, 
an approach similar to honeypages in Hulk [10] could be used. 

Malicious software that only triggers on narrow conditions can 
be impossible to exercise. For example, authors could assemble 
code based on environmental parameters unknown to analysts. A 
famous example is the Gauss malware.6 This malware will only 
trigger on computers that have a specific configuration and is oth-
erwise not decryptable. Global efforts to analyze this malware 
have failed to date. 

Knowing the specifics of our tool, malicious developers could 
apply evasion techniques, for example transferring a constant amount 
of data per visited website by padding URLs or captured keystrokes. 
Evasion is a general concern for any detection system and there ex-
ist several avenues to address this [14]. 

8 CONCLUSION 
With this paper we introduce new methods of detecting privacy-
violating browser extensions independently of their protocol. We 
use a combination of supervised and unsupervised methods to find 
features characteristic to tracking in extensions. We present Ex-
Ray, a prototype implementation of our approach for the Chrome 
browser, and find two extensions in the official Chrome Web Store 
which leak private information in previously undetectable ways. 
Privacy leaks in browser extensions are in an arms race, with ex-
tensions evading known methods of detection of previous work. 
We suggest that extensions should be both tested more rigorously 
when admitted to the store, as well as monitored while they exe-
cute within browsers. 
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A	 CASE STUDY OF A LARGE HISTORY DATA 
COLLECTOR 

As case study we look into SimilarWeb, one of the actors in data 
collection in browser extensions. We conducted this study before 
developing Ex-Ray, as the findings turned out to be symptomatic 
for a wider range of extensions, the findings motivated develop-
ment of our system [27]. 

SimilarWeb is a company that offers insights into third-party 
Web analytics. To the end user the functionality is similar to Google 
Analytics, except that visitors can see traffic details of websites 
neither they or SimilarWeb are affiliated with. This is useful for 
analysis of competitors, or to explore new markets for a product. 

Using the free version of their service, the presented informa-
tion includes information on visitors, search, and advertising. The 
data is detailed, including number of visitors, average visit dura-
tion, search keywords used, countries of origin, referring sites, des-
tination sites that the visitors leave through, and others. 

A.1 Origins of Data 
As the company does not have direct access to these data sources, 
the displayed data must be extrapolated from data which is acces-
sible to them. This high resolution of data without direct access 
motivated further investigations. Their website suggest use of four 
types of data sources including A panel of monitored devices, cur-
rently the largest in the industry. 

A.2 SimilarWeb Chrome Extension 
As first step we analyzed the extension offered on their website. 
The offered main functionality consists of suggesting sites similar 
to the one currently seen. After reviewing their code and analyz-
ing network traffic, we noticed suspicious behavior. The extension 
intercepts requests for all websites and reports any URL or search 
query to SimilarWeb in real time, including metadata such as re-
ferrers. We noticed that the JavaScript library used for tracking 
was developed by another company, Upalytics.7 The purpose of 
this library is to track user behavior in Chrome extensions, other 
platforms are advertised on their website as well, including mobile 
and desktop. Since this was an external library, we suspected it 
might be used in other extensions as well. 

A.3 Finding More Extensions 
After crawling the Chrome extension store we found 42 suspicious 
extensions by searching for code similarities. To verify malicious 
behavior we manually analyzed each extension under the aspect 
of four questions: 

•	 Does the extension have the capability to exfiltrate private 
data? 

•	 Does tracking happen “out of the box,” or does the user 
have to opt-in? 

•	 Is this behavior mentioned in the terms of service? 
•	 If not, is there a link in the terms of service that explains 

the behavior of the extension? 

All suspicious extensions were able to collect history, all but one 
were tracking out of the box. The only extension that offered opt-
in was SpeakIt!, however, they only switched to that model after a 
user complained about the included spyware on an issue tracker.8 

Of these 42 extensions 19 explain their data collection practices in 
the terms of service, while 23 do not. Furthermore, out of these 23 
extensions 12 have no URL where this would be explained. One 
URL that is used across 13 extensions to explain the privacy ram-
ifications is http://addons-privacy.com. The text is a copy of the 

7http://www.upalytics.com 
8https://github.com/skechboy/SpeakIt/issues/12 
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(b) Graph linking domain names by IP relationships used in 42 ex-
tensions to covertly collect browsing history. 

Figure 5: Domains receiving data from the upalytics.com li-
brary reported to a network of domains that can be linked 
by IP neighborship. 

upalytics.com privacy policy rendered into a PNG image. The 
content explains that personal information including browsing his-
tory and IP data will be collected. Throughout the document in-
stead of specific company names only general language such as 
“our product” or “company” is used. It can be used as a template 
for any extension using such tracking. While the URL is shared be-
tween extensions, the developers have no obvious connection. Six 
of the remaining domains point to the same IP address. Some ver-
sions of the privacy policy reference California Civil Code Section 
1798.83, which allows for inquiry about usage of personal informa-
tion for direct marketing purposes.9 We sent emails to two of the 
email addresses, we received responses after less than a month. 

The extensions used nine different hardcoded hostnames to receive 
tracking information, we found relations linking all 42 extensions. 
All endpoint domains, addons-privacy.com, and upalytics.com 

were registered by Domains by Proxy, a service used to obfuscate 
ownership of domain names by hiding WHOIS records.10 All ex-
tensions were reporting to subdomains http://lb.*. Some of the 
names of the domains appear to be misleading, suggesting updates 
or being a searchhelper. Two of the domains (connectupdate.com, 
secureweb24.net) were registered 13 seconds apart. Also, the ro-
bots.txt file used in all cases is the same. 

Furthermore, all these IPs belong to the same hoster, XLHost. 
Eight out of nine of these hosts have all addresses in a /18 net-
work, half of the IPs of the upalytics.com endpoint are in another 
XLHost network. All IPs in use are unique, however, this involves 
consecutive IP addresses and other neighborhood relationships. 

All hosts used round robin DNS, using multiple IPs for each do-
main name. To examine this closer we compared the distance of IP 
addresses used by these extensions for tracking. In Figure 5b, the 
nodes are the nine domain names in use, edges are the grade of dis-
tance. By taking into account distances of up to four, we can link 
together all hostnames used in all 42 extensions. For example: IPs 
1.1.1.1 and 1.1.1.3 have a distance of two. As for the labels, the 
edge between similarsites.com and thetrafficstat.net reads 
6x2. This means that the domains share six IP addresses with a 
distance of two. Figure 5a visualizes the distance relationship be-
tween lb.crdui.com and lb.datarating.com. 

A.5 Reported Extensions 
After reporting our findings, all extensions were removed from 
the Chrome store within 24 hours, including the official Similar-
Web and SimilarSites extensions - a partner site. We hope that loss 
of installations from the Chrome store will deter developers from 
bundling malicious libraries in the future. 

B	 POSSIBLE COLLABORATION OF 
TRACKERS 

In our honeypot experiment we use URLs unique to each extension. 
Should we receive incoming connections to such URLs we can link 
them to the extension which leaked it. As described in Section 4.1 
we receive incoming connections often briefly after executing an 
extension. Other than the behavior over time, another aspect is 
possible collaboration between extension authors. 

When multiple hosts connect to the same generated URL, or 
hosts connect to multiple URLs unique to an extension, we group 
them together. These groups are indicators for a possible form of 
data sharing or shared infrastructure between trackers. An overview 
of these groups is shown in Table 3. 

9https://epic.org/privacy/profiling/sb27.html 
10https://www.domainsbyproxy.com 
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Extension Name Connecting from 

Sochabra for Stand Alone [translated] centro-77.grapeshot.co.uk 

UpTop centro-78.grapeshot.co.uk 

500px image downloader ec2-176-34-94-65.eu-west-1.compute.amazonaws.com 

BazaarHero ec2-54-195-168-122.eu-west-1.compute.amazonaws.com 

DealBeaver ec2-54-246-25-158.eu-west-1.compute.amazonaws.com 

EyeEm Image Downloader 
Facebook Image downloader 
Flickr image downloader 
Image Downloader for Facebook & Instagram 
Pinterest Image downloader 
ABC ad blocking China special edition [translated] nat-service.aws.kontera.com 

CTRL-ALT-DEL new tab 
Desprotetor de Links 
Pop up blocker for Chrome 
Similar Sites 
Chistodeti 199.175.48.183 

Woopages static.36.51.9.176.clients.your-server.de 

Table 3: In our honeypot probe we observed hosts that connected to multiple URLs unique to extensions, and conversely URLs 
that received connections from multiple hosts. These relations are possible indicators for a form of data sharing or shared 
infrastructure between trackers. Each line in this table consists of such a connected group. 
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