
Bug Fixes, Improvements, ... and Privacy Leaks

A Longitudinal Study of PII Leaks Across Android App Versions

Jingjing Ren1, Martina Lindorfer2, Daniel J. Dubois1

Ashwin Rao3, David Choffnes1 and Narseo Vallina-Rodriguez4,5

1Northeastern University,2University of California, Santa Barbara

3University of Helsinki, 4IMDEA Networks Institute, 5ICSI

Abstract—Is mobile privacy getting better or worse over time?
In this paper, we address this question by studying privacy leaks
from historical and current versions of 512 popular Android
apps, covering 7,665 app releases over 8 years of app version
history. Through automated and scripted interaction with apps
and analysis of the network traffic they generate on real mobile
devices, we identify how privacy changes over time for individual
apps and in aggregate. We find several trends that include
increased collection of personally identifiable information (PII)
over time across most apps, slow adoption of HTTPS to secure
the information sent to other parties, and a large number of
third parties being able to link user activity and locations across
apps. Interestingly, while privacy is getting worse in aggregate,
we find that the privacy risk of individual apps varies greatly
over time, and a substantial fraction of apps see little change
or even improvement in privacy. Given these trends, we propose
metrics for quantifying privacy risk and for providing this risk
assessment proactively to help users balance the risks and benefits
of installing new versions of apps.

I. INTRODUCTION

As mobile devices and apps become increasingly present
in our everyday lives, the potential for accessing and sharing
personal information has grown. The corresponding privacy
risks from using these apps have received significant attention,
not only from users who are at risk [53], but also from
regulators who enforce laws that protect them [25].

A key problem with the above trend is that once personal
information is shared with another party, it can potentially
be linked to that individual forever. Thus, monitoring privacy
implications of mobile apps should not focus just on a snapshot
of their behavior, but also on how their behavior evolved over
time. In fact, because apps are regularly updated with new
versions (as frequently as once a month on average [12], [19])
that fix bugs, add improve performance, add features, and even
change what is shared with other parties, it is essential to study
app behavior across versions.

In this paper, we are the first to conduct a comprehensive,
longitudinal study of the privacy implications of using multiple
versions of popular mobile apps across each app’s lifetime. We
focus specifically on Android apps1 and identify when person­
ally identifiable information (PII) appears in Internet traffic
while using them. Through hybrid automated and scripted
interactions with 512 apps (across 7,665 distinct versions), we
compile a dataset that informs what information is exposed
over the Internet (identifiers, locations, passwords, etc.), how

it is exposed (encrypted or plaintext), and to whom that
information is exposed (first or third party). We analyze this
dataset to understand how privacy has changed over time (for
individual apps and in aggregate across popular apps), why
these trends occur, and what their implications are.

Our work substantially extends existing mobile privacy
research (e.g., [23], [42], [47], [48]) by focusing on multiple
versions of apps instead of individual versions. Moreover, most
existing longitudinal studies infer the privacy implications by
monitoring library use, permission requests, and by using static
analysis [12], [15], [51], [52]. We differ from this work in that
we detect actual PII transmitted in network traffic to other
parties while an app is used.

Gathering a longitudinal view of the privacy implications
of using apps over time poses the following challenges:

•	 Monitoring app behavior across versions for large numbers
of apps requires a methodology that scales accordingly.
Manually logging into apps and interacting with them can
comprehensively trigger privacy leaks, but this is infeasible
at scale. Instead, we use a semi-automated approach that in­
corporates random interactions [32] and manually generated
scripts for logging into apps.
•	 We need a way to identify the privacy risks for each

app. To this end, we analyze network traffic2 generated
by the mobile device running the app, using both simple
text matching on known identifiers and machine-learning
inference [48] to extract identifiers not known in advance.
•	 We need a systematic, configurable, and meaningful way

to compare the privacy guarantees of the apps (and their
versions). To this end, we identify several metrics that
provide insight into privacy trends and implications.

Using the above approach, our study is the first to reveal
the following key findings regarding the privacy implications
across multiple versions of popular apps:

On average, privacy has worsened over time. We analyze pri­
vacy risks along multiple attributes (what PII is leaked, to how
many destinations, and whether it is encrypted) independently
and in combination. We find that apps increasingly leak more
types of PII and to more domains over time, but HTTPS
adoption has seen slow growth. When combining these factors,
we find that about a quarter of apps (26.3%) are getting better
with respect to privacy, but twice as many are getting worse

2We focus only on IP traffic. A recent study [42] showed that less than 1%
1The only platform where we can access historical versions of apps. of leaks occur over non-IP traffic (i.e., SMS).

over time (51.1%), with only a small fraction (9.5%) staying
the same or exhibiting highly variable privacy risks between
versions (13.1%).

Snapshots of privacy leaks from single versions of apps are
incomplete. For all but 7% of the apps in our dataset, studying
one version will miss PII gathered across all versions of the
app. We also find that the set of PII leaked by an app changes
frequently across versions.

HTTPS adoption is slow. Unlike recent trends in HTTPS
adoption for Web traffic, we find that apps are slow to adopt
HTTPS. In fact, from the moment we see that a domain first
starts supporting HTTPS, it takes five years for at least half
of the apps in our study to start using it. Overall, the fraction
of flows using HTTPS has remained nearly constant over the
time period covered by our study.

Third-party tracking is pervasive. While previous work using
small snapshots of time demonstrates that third parties collect
substantial amounts of PII, we find the problem to be even
worse when considering PII leaks across versions. We find that
there is little correlation between the amount of traffic to a third
party and the volume of PII it leaks. In addition, we analyze
how third parties (among which several are not highlighted in
previous studies) collect locations, email addresses and gender
along with tracking identifiers, enabling fine-grained tracking
of users and their daily activities.

In summary, our key contributions are: (1) a large-scale
privacy analysis across multiple apps and app versions, (2) a
dataset of network traffic generated by running apps, along
with labels describing the PII contained in them, and (3)
an analysis of the origins and privacy implications of these
information leaks. Our dataset is available via an interactive
web interface:

https://recon.meddle.mobi/appversions/

II. RELATED WORK

A large body of related work investigates the problem of
privacy from mobile apps and the network traffic they generate.
They focus on identifying personal information that is (or
might be) exposed to other parties over the Internet, using
one or more of the following complementary approaches.

Static analysis. This technique entails analyzing an app’s
bytecode using symbolic execution [56] and/or control flow
graphs [10], [11], [22]. Several academic studies leverage static
analysis to audit third-party library use [17], [49], to inspect
app permissions and their associated system calls [11], [40],
and to analyze HTTPS usage [24], [26]. This approach is
appealing because it enables large-scale app analysis without
the overhead of running or interacting with apps. However,
static analysis may identify privacy leaks in code that is
rarely or never executed; further, it cannot analyze dynamically
loaded code (which may constitute as much as 30% of code
in benign apps [42]).

Dynamic analysis. In contrast to static analysis, dynamic
analysis tracks system calls and access to sensitive information
at runtime. In this approach, the runtime (e.g., the OS) is in­
strumented to track memory references to targeted information
(e.g., PII) and taint the memory it is copied into. This taint

propagates as the information is copied and mutated; ultimately
when it is copied to a sink (e.g., network interface) it is
flagged (e.g., as a PII leak). TaintDroid [23] is commonly used
for dynamic analysis of Android apps.3 While taint tracking
can ensure coverage of all PII leaks (even those that are
obfuscated), it requires some form of interaction with running
apps to trigger leaks. Typically, researchers use automated “UI
monkeys” [32], [43] for random exploration or more structured
approaches [16], [36] to generate synthetic user actions; how­
ever, prior work showed that this can underestimate PII leaks
compared to manual (human) interactions [48].

Network traffic analysis. This approach relies on the obser­
vation that PII exposure almost always occurs over Internet
traffic. Thus, network traffic analysis focuses on identifying
PII contained in app-generated IP traffic [39], [47], [48], [50].
The benefit of this approach is that it works across platforms
without the need for custom mobile OSes or access to app
source code, and thus is easy to deploy to user devices for
the purpose of real-time analysis and detection of PII leaks.
A drawback is that it requires the ability to reliably identify
PII (which may be encrypted and/or obfuscated) in network
traffic. All of the above approaches support TLS interception to
access plaintext traffic to search for PII. The approaches differ
in what they search for: most on-device approaches search for
known PII stored on the device [39], [47], [48], [50], whereas
ReCon [48] also uses a machine-learning approach to infer
a broader range of PII that includes user input. All of these
approaches are susceptible to missing PII leaks from apps that
use encryption that defends against TLS interception, or that
use non-trivial obfuscation of PII [21].

Longitudinal analysis. Some existing longitudinal studies use
static analysis to study how apps across several categories [52],
and finance apps in particular [51], change over time in terms
of Android permission requests and security features and
vulnerabilities, including HTTP(S) usage. Similarly, Book et
al. conduct a longitudinal analysis of ad libraries [15], but
they focus only on permission usage. While partially sharing
the goals of our work, these studies do not actually execute
and analyze apps, and thus are subject to both false positives
(by looking at permissions and code paths that are not used)
and false negatives (by not covering code that is dynamically
loaded at runtime).

To the best of our knowledge, our study provides the
first longitudinal analysis of privacy risks in network traffic
generated by running app versions that span each app’s
lifetime. Compared to the related work presented above, our
work complements and substantially extends it: the primary
distinction is that we study privacy across versions (and thus
over time), whereas most previous work consists of one-off
studies that focus on individual versions of apps available at
a certain moment in time. Moreover, since we monitor the
traffic exchanged by actual apps running on real devices, we
overcome some of the limitations of the static and dynamic
analysis approaches described above.

III. GOALS AND PII DEFINITIONS

The primary goal of this work is to understand the privacy
implications of using and updating popular Android apps over

3A limitation is that it does not support recent Android OS versions.

2

https://recon.meddle.mobi/appversions/

Category PII Type
Unique Identifier (ID) Android advertising ID (Ad ID), IMEI, Android ID,

MAC address (MAC Addr), IMSI, Google service
framework ID (GSF ID), SIM card ID (SIM ID),
Hardware serial number (HW Serial)

Personal Information (User) email address, first name, last name, date of birth
(DOB), phone number, contact information, gender

Location GPS location (Location), zip code (Zip)
Credential username, password

TABLE I: List of PII categories and types.

time. As privacy is a top-cited reason for why users do not
install app updates [53], studying PII leaks from apps across
versions can help users make more informed decisions. Fur­
thermore, this information can assist regulators when auditing
and enforcing privacy rules for mobile apps [25]. An explicit
non-goal of this work is coverage of all versions of all apps;
rather, we focus on a diverse set of 512 popular Android apps.

A. PII Considered in This Work

Personally identifiable information (PII) is a generic term
for describing “information that can be used to distinguish or
trace an individual’s identity" [37]. In this paper, we define
PII to be a subset of this, based on textual data that can be
gathered and shared by mobile apps. Specifically, we consider
PII listed in the “PII Type” column in Table I. This list is
based on a combination of PII accessible from Android APIs,
user-supplied information, and inferred user information that
leaked in network traffic as reported in previous work [39],
[47], [48], [50].

B. Threat Model and PII Leaks

We define privacy risks and PII leaks in the context of the
following threat model. We assume that the adversary seeks to
collect PII from an app running on a user’s mobile device.
The adversary is any party that receives this information
via network connections established when running an app,
including the following:

•	 App provider, i.e., the company that releases an app, also
referred to as the first party.
•	 Other parties, e.g., the ones that are contacted by an app as

part of advertising, analytics, or other services, also referred
to as a third party.
•	 Eavesdroppers, who observe network traffic (e.g., an ISP,

an adversary listening to unencrypted WiFi traffic, or one
that taps an Internet connection).

We define two goals of an adversary that motivate our
definition of PII leak as a privacy risk:

Data aggregation. This occurs when first or third parties collect
information about a user over time, including which apps they
use, how often they use them, where they are located when they
do so, etc. The risk from this kind of information gathering
is that it can be used to build rich profiles of individuals,
which can in turn be used for targeted advertising [14], price
discrimination [35], and other differential treatment driven by
algorithms using this information [34].

Eavesdropping. In this scenario, the adversary learns a user’s
information passively by observing network traffic (e.g., plain-
text PII leaks). This presents a privacy risk to users in that it

Number of APKs [unique apps] 7,665 [512]
Versions per app (mean) 15.0
Versions per app (median) 14
HTTP(S) flows per app (mean) 94.7
Total HTTP(S) traffic 33.6 GB (pcap format)
Total number of flows 675,898
Unique third-party domains 1,913
APK release date range 8 years

TABLE II: Dataset description.

constitutes a third party for which the user did not explicitly
consent to collect data. Furthermore, it can constitute a security
risk when information exposed to unauthorized third parties
includes credentials (i.e., username and password).

We define a PII leak to be any case where information
listed in Table I is transmitted to first or third parties, with
the exception of credentials that are sent to first parties via
encrypted channels. The latter is excluded because it is exclu­
sively provided intentionally by a user. We cannot in general
determine whether other cases of PII are intentionally disclosed
to other parties (and/or required for app functionality), so we
include them in our analysis for completeness. Note that the
goal of this work is to increase privacy transparency, so we
leave the decisions as to what constitutes an unintentional and
important leak to the users of our dataset and analysis. For
example, our interactive tool [8] allows users to set preferences
for the importance of each type of leak.

IV. METHODOLOGY

In this paper, we identify and analyze PII leaks using
network traffic analysis on flows generated by automated and
scripted interactions with multiple versions of popular Android
apps. Our methodology consists of four high-level steps: (1)
selecting apps for analysis, (2) collecting historical and current
versions for each app, (3) interacting with these APKs (i.e.,
unique versions of each app), and (4) identifying and labeling
PII leaks. Table II summarizes our dataset. We conclude with
a description of the assumptions, limitations, and validation of
our approach.

A. App Selection

We selected 512 apps for analysis in this study, using the
following criteria.

•	 Popularity. We started with the set of apps that was either
in the top 600 popular free apps according to the Google
Play Store ranking, or in the top 50 in each app category, as
of January 10, 2017. We exclude apps that require financial
accounts or verified identities (e.g., bank and credit card
accounts, social security numbers, etc.).
•	 Multiple versions. As our study is longitudinal across

versions, we considered only apps with more than three ver­
sions compatible with our analysis testbed, which includes
devices running Android 4.4.4 and Android 6.0. These OS
versions run on approximately 50% of Android devices as
of May, 2017 [28].
•	 Amenable to traffic analysis. As discussed in Section IV-C,

we collect both unencrypted (HTTP) traffic and the plaintext
context of encrypted (HTTPS) traffic via TLS intercep­
tion [6]. We exclude 26 apps (e.g., Choice of Love, Nokia

3

Health Mae and Line Webtoon - Free Comics) where most
versions crash or hang when opened, or that do not permit
TLS interception as explained in Sec. IV-E.

B. APK Collection

After identifying apps to analyze, we gather their historical
and current versions, and label their release dates.

Finding app versions. Until recently, it was not generally
known how to access any version of an app except for the most
recent one from the Google Play Store. However, Backes et
al. [12] reported an undocumented API of the Google Play
Store that provides downloads of arbitrary version of an app
(i.e., its Android Package Kit, or APK, file), as long as the
app’s version code4 is provided. The authors identify several
patterns, which we build upon, to identify app version codes.
From our 512 selected apps, we downloaded 7,665 APKs.
Some apps have hundreds of versions, and testing all of them
would be prohibitively expensive. Thus, in cases where there
are more than 30 app versions, we sort them chronologically
and pick 30 versions that are evenly distributed.

Inferring APK release date. The API that we use for
downloading APKs does not provide the release date for each
app, information that is essential for understanding how app
behavior changes over time. To address this, we leverage the
fact that developers who release a new version of an app must
update the version code in several files inside the APK.5 We
thus infer the release date based on the modification time of
these files, which assumes that the developers’ OS timestamps
correctly. Of the 7,665 APKs we downloaded, 429 APKs
had timestamps that were obviously incorrect (e.g., a date
before Android’s first release on August 21, 2008 or a date
in the future). For these cases, we manually checked release
dates with several third-party services [1]–[3], [7] that provide
release dates for the last three years.

To understand how well our heuristics work, we manually
cross-validated the release dates of 77 APKs by comparing
the file modification times and release dates found using the
above third-party services [1]–[3], [7]). We find that 88% of
inferred release dates differ with the public record by less than
a week, and only 2 cases have a difference of 30 days or
more. We investigated these last two cases and found that the
difference in release date is likely due to a developer error,
not an incorrect inference. Namely, these are cases where the
developer released a new version of the app without updating
the version string in the APK. As a result, the date from
the third-party services did not correspond to the APK we
investigated. The average interval between each update across
apps is 47 days, with a standard deviation of 181. Note that
21% of the 512 apps first appeared before January 1st, 2012
and exactly half appeared before August 22nd, 2014.

C. Interaction and Traffic Collection

In this step, we interact with each APK and collect the
network traffic generated as a result from these interactions.

4An integer value that can be incremented by arbitrary values from one
version to the next.

5AndroidManifest.xml and META-INF/MANIFEST.MF

Test environment. We conduct experiments using five
Android devices: one Nexus 6P phone and one Nexus 5X
phone, both with Android 6.0.0; and three Nexus 5 phones
with Android 4.4.4. We use real Android devices instead
of emulated ones to avoid scenarios where apps and third-
party libraries detect the analysis environment and modify
their behavior accordingly. It has been shown that emulators
are easy to fingerprint [46], [55], a fact that is exploited for
example by ad libraries to only show ads and leak data when
executed on a real device [45].

Interaction with apps. Measuring PII leaks from apps re­
quires interacting with them, and the gold standard for doing so
is via natural human interaction. However, manually interact­
ing with each of the selected 512 apps (7,665 unique versions)
is not practical. Thus, we use Android’s UI/Application Exer­
ciser Monkey [32], a tool that automatically generates pseudo-
random UI interaction events (swipes, taps, etc.) for an app.
While a number of other approaches for automation have been
proposed, a recent study [18]) showed that Monkey exhibited
good coverage of privacy leaks (and sometimes found more
leaks) than other automated tools. Completely random events
would prevent apples-to-apples comparison among versions
of the same app, so we specify the same random seed that
generates the sequence of events for interaction with all of
an app’s versions.6 Specifically, we use Monkey to generate
approximately 5,000 user events by specifying five seeds for
1,000 events each.7 We use 5,000 events because it allows us
to test a large number of APKs in a reasonable amount of time,
and because previous work [41] found that longer interaction
times do not substantially impact the set of PII that leaked.
We cross-validate our dataset with a human interactions in
Section IV-F.

Many apps (75 in our study) require users to log in
with a username and password before allowing access to app
functionality. Thus, failure to login can potentially severely
underestimate the amount of PII leaked. We created accounts
for testing with each of these apps, but manually logging into
each version is prohibitively expensive. We avoided this by
recording the login events in one version and replaying the
events in other versions, using the RERAN [27] tool. We
conduct both the record and replay of login actions on the
same device to ensure a consistent UI layout.

Recording network traffic. For each experiment, we run one
app at a time. To collect network traffic while interacting with
the apps, we redirect the traffic to a proxy server that records
plaintext traffic and that uses TLS interception (using mitm­
proxy [6]) to record the plaintext content of HTTPS requests.
For apps that prevent TLS interception via certificate pinning,
we use JustTrustMe [5], a tool that modifies Android in such
a way that certificate validation using built-in OS libraries
always succeeds. We test such apps only on devices running
Android 4.4.4 (the Nexus 5 devices) because JustTrustMe does
not support later OS versions.

6Note, however, that we do not explicitly account for changes in UI or
functionality over time because doing so requires manual analysis and is
infeasible at this scale. However, we rely on the randomness of Monkey to
probabilistically exercise UIs and functionality as they change.

7Batches of events were required to allow sufficient time for apps to process
interaction events; failure to do so led to crashes or exiting before the events
complete.

4

http:META-INF/MANIFEST.MF

D. Privacy Attributes

After the completion of the experiments, we analyze net­
work traffic according to the following three privacy attributes
to assist in our subsequent analysis of network flows.

1) PII Leaks: We label each flow with the PII that it
leaks in two phases. First, we use simple string matching to
identify PII that is static and known in advance (e.g., unique
identifiers, personal information, zip code, and credentials).
This approach, however, cannot be reliably applied to dynamic
values (e.g., fine-grained GPS locations) and to data not
directly input into an app (e.g., gender).

For these cases, we use ReCon [48], which uses machine-
learning to infer when PII is leaked without needing to rely
on exact string matching. The key intuition behind ReCon is
that PII is often leaked in a structured format (e.g., key/value
pairs such as password=R3Con or adId:93A48DF23), and
that the text surrounding PII leaks can become a reliable
indicator of a leak. ReCon uses a machine-learning classifier to
reliably identify when the contents of network traffic contain a
leak (e.g., in a simple case, looking for password=), without
needing to know the precise PII values. We manually validated
all cases of inferred PII leaks to ensure their correctness.

2) Transport Security: This study focuses exclusively on
HTTP and HTTPS traffic. In addition to the standard ports 80
and 443, we also include port 8080 for HTTP traffic and ports
587, 465, 993, 5222, 5228 and 8883 for HTTPS traffic. We
find that only 0.5% of the flows in our dataset use other ports.

3) First and Third Party Communication: An important
privacy concern is who receives the PII. In a network flow,
this corresponds to the owner of the traffic’s destination. We
distinguish between first-party second-level domains (hereafter
simply referred to as domains), in which case the developer of
an app also owns the domain, and third-party domains, which
include ad networks, trackers, social networks, and any other
party that an app contacts. For instance, facebook.com is a
first party to the Facebook app, but it is a third party to a game
app that uses it to share results on Facebook.

Our domain categorization works in two steps. We first
take all the domains that we observed in our experiments and
build a graph of these domains, where each node represents a
domain and each edge connects domains belonging to the same
owner. We then match the owner of each connected subgraph
of domains to the developer of an app and consequently label
them as first-party domains for that app. Our approach is sim­
ilar to related work focusing on identifying the organizations
behind third-party ad and tracking services [54], which found
that current domain classification lists are incomplete and too
web-centric to accurately identify mobile third-party domains.

Ownership of domains. To identify a domain’s owner,
we leverage WHOIS information, which contains the name,
email address and physical address of the registrant unless the
registration is protected by WHOIS privacy. As a preprocessing
step, we first discard any WHOIS entries that are protected
by WHOIS privacy. We then connect domains as belonging
to the same owner based on (1) the registrant’s name and
organization, and (2) their email (excluding generic abuse-
related email address from the registrar). This method allows
us to group together disparate domains that belong to the same

owner, e.g., we can identify instagram.com, whatsapp.com
and atlassbx.com as Facebook-owned services.

Ownership of apps. To identify the developer of an app, we
use information from the Google Play Store listing, which con­
tains the name of the developer, and optionally their website,
email address and physical address. Some developers use third-
party services (e.g., Facebook pages) in lieu of hosting their
own website, or free email providers, such as Gmail. We filter
out such cases from our analysis. Since Google recommends
using “Internet domain ownership as the basis for [...] package
names (in reverse)” [29], in the simplest case the package
name embeds one of the developer’s domains. Otherwise, we
compare the developer information from Google Play against
WHOIS records for a domain as detailed below.

First-party identification. We identify traffic to a domain
as first party when information about the owner of the domain
matches information about the owner of an app. We label any
domain collected from the app’s Google Play Store listing as
first party, as well as the domain in the app’s package name.
We also label as first party any domains that are registered
to the same name, organization, physical address, or email
address as the ones listed for the developer in Google Play.
To account for any inconsistencies in the representation of the
physical addresses, we first convert them with geopy [4] to
their coordinates through the Google Geocoding API [30].

Third-party identification. We label as third party all the
domains that have not been labeled as first party according to
the previous paragraph. This includes ad and tracker domains,
content hosting services or any third-party domain an app
contacts to fetch content.8 Our classification is skewed towards
finding potential third-party services; we validate parts of our
approach in Section IV-F.

E. Assumptions and Limitations

Our approach uses several assumptions and heuristics to
inform our longitudinal analysis of privacy across app versions.
We now discuss these assumptions and the corresponding
limitations of our study.

Coverage. We do not cover all apps or all app versions,
but rather focus on a set containing many versions of popular
apps across multiple categories of the Google Play Store.
We believe this is sufficient to understand privacy trends for
important apps, but our results provide at best a conservative
underestimate of the PII exposed across versions and over time.

TLS interception. TLS interception works when apps trust
our self-signed root certificates, or when they use built-in
Android libraries to validate pinned certificates. We are also
constrained by JustTrustMe. As a result, we cannot intercept
TLS traffic for 11 apps that possibly use non-native TLS
libraries (e.g., Dropbox, MyFitnessPal, Snapchat, Twitter).

Obfuscation. Due to the inherent limitation of network
traffic analysis, we do not detect PII leaks using non-trivial
obfuscation, as it requires static or dynamic code analysis.

8This includes domains provided to their customers by Google App Engine
or Amazon Web Services. We argue that even if the services running on these
platforms belong to a first party, communication to these platforms are still
third-party communication because developers do not have ownership of, or
full control over, the platform.

5

http:atlassbx.com
http:whatsapp.com
http:instagram.com
http:facebook.com

In such cases, we will underestimate PII leaks. However, we
do handle non-ASCII content encodings and obfuscation. For
the former, we examine the Content-Encoding field in the
HTTP header, and decode gzip flows (2.5% of total flows).
For the latter, we apply standard hash functions (MD5, SHA1,
SHA256, SHA512) on our set of known PII, and match on the
result. This yielded 4,969 leaks in 4,251 flows.

Testing old versions today. We assume old versions of apps
exhibit the same behavior today as when they were initially
released. However, for a variety of reasons (e.g., different
behavior of the domain contacted, or the domain no longer
is registered), this might not always be true. It is likely that
this means we will underestimate the PII leaked by apps (e.g.,
if a domain does not resolve to an IP).

Because we could not run old versions of these apps
at the time they were released, we must use heuristics to
determine whether our analysis might be impacted by such
factors. During the course of our experiments, we found that
the behavior of leaks and domains contacted did not change
significantly over several months; as such, we do not think this
an issue for recently released app versions.

For older versions of apps, we assume that DNS and
HTTP failures potentially indicate apps that no longer function
similarly to when they were first released. Thus, we exclude
APKs for which more than 10% of DNS requests fail or 10%
HTTP responses are error codes (4xx or 5xx response codes).
This removed 15 apps (2.8% of the original selected apps).

F. Validation

To improve confidence in the accuracy and representative­
ness of our measurements, we validated several critical aspects
of our approach as follows.

Automated interaction. A limitation of automated interac­
tions with apps is that they may not elicit the same privacy-
related behavior as user interactions. To estimate this gap,
we compare our results with those from the natural human
interactions made available by the Lumen [47] project, which
provides on-device privacy analysis and has thousands of users.
Lumen maps network flows to the source APKs and destination
domains, and also labels any PII that matches those stored
on the device. We found 983 APKs that appear in both our
and Lumen’s datasets; of those there are 380 APKs in which
both datasets reveal PII leaks. The latter corresponds to 122
distinct apps (24% of the 512 apps in this study) that cover
23 app categories. On average, our dataset missed 0.41 PII
types per APK found by Lumen, with a range of 0–3 missing
types from automated tests. The most frequently missed types
include Android ID (52%), email (15%), MAC address (12%)
and IMEI (11%). Similarly, the number of unique domains and
protocol pairs per app missed by our automated tests compared
to Lumen is 2.36 (standard deviation of 4.42). On the other
hand, Lumen missed on average 1.38 PII types per APK that
our approach found (with a range of 0—6 types). The most
common missed types are advertiser ID (27%), hardware serial
(18%), Android ID (15%) and Location (15%). In summary,
human interactions find different PII leak types and traffic to
different domains, as expected; however, the gap between these
two datasets is relatively small on average. As a result, we

believe our analysis covers most of the behavior one would
expect to see in the wild.

Repeatability. A potential problem of our study is that our
automated tests use only one round of 5,000 interaction events
for each APK. It is unclear a priori whether this approach will
yield similar results over time, and thus might be biased in
some way. To test whether this is the case, we repeated the
experiments for the five apps (105 APKs) that have a large
variance in leaked PII types across versions. In particular, we
performed a pairwise comparison between the PII types leaked
by different versions of each app and selected the apps with
the largest number of distinct sets of PII types across versions.
For each APK, we performed the same experiment each day
at approximately the same time of day, for ten days. After
we collect the traffic ten times, we compare the number of
unique PII leak types, the number of domains contacted, and
the fraction of flows using HTTPS. We find that the change in
results over repeated experiments is small: for more than 90%
of tested APKs, the variation across experiments is generally
no more than one PII type, two domains, and a fraction of
HTTPS traffic of no more than 6.0%.

Domain categorization. Our approach to distinguish be­
tween first-party and third-party domains largely relies on
WHOIS data, which is known for its incompleteness and noise.
To validate our approach we manually verified the domain
classification for a subset of 20 apps, which we selected
randomly from all apps that leak PII and contacted more than
one domain in our experiments. We inspected 550 app/domain
pairs (343 unique domains), 60 of which our approach labeled
as first-party domains and the remaining 490 as third-party
domains. We find that all of these first-party labels are indeed
correct, with only a small number of false negatives: our
approach missed 5 first-party domains for 3 apps. Overall,
we find those results encouraging as our study is focused on
analyzing third-party services.

V. LONGITUDINAL ANALYSIS

This section presents our analyses and findings regarding
changes in PII leaks across app versions and time. Section V-A
presents the case of a single notable app (Pinterest). In Sec­
tion V-B, we provide a summary of all the PII leaked across
all APKs in our dataset. Section V-C focuses on how specific
types of PII are leaked over time for each app. We analyze
trends in HTTPS adoption and third-party destinations in
Secs. V-D and V-E. Section V-F summarizes our key findings.

A. A Notable Example: Pinterest

To demonstrate our analysis of privacy attributes, we use
the Pinterest app as an in-depth example. In Figures 1a and 1b
we show how PII leaks and network flows with third-party
services change in the Pinterest app across different versions.9

In the plots, each app version is identified by a different version
code on the x-axis, sorted in ascending chronological order.

Figure 1a shows how many times each PII type is leaked
across all network flows for each version, where the y-axis
for each timeseries represents the number of times it is leaked
during an experiment. The number below the PII type is the

9Similar plots for every app in our dataset can be found online [8].

6

Password
2

1st/HTTP

1st/HTTPS

3rd/HTTP

3rd/HTTPSGender
3

Location
4

Android ID
232

GSF ID
1

2 3 4
2

0
3

2
7

1
3

0
1

4
0

2
5

0
2

6
0

2
0

1
6

0
3

1
0

2
6

0
4

0
5

2
6

0
6

0
6

2

Version

Ad ID
12

(a) PII types, by destination type and protocol.

pinterest(235)
HTTP

HTTPS
google(3)

flurry(9)

branch(4)

crashlytics(2)

adjust(2)

yoz(3)

pinimg(3)

doubleclick(2)

target(2)

2 3 4
2
0
3

2
7
1

3
0
1

4
0
2

5
0
2

6
0
2
0
1

6
0
3
1
0
2

6
0
4
0
5
2

6
0
6
0
6
2

Version

facebook(1)

(b) Domains, by protocol

Fig. 1: Example app privacy attributes for Pinterest. The
x-axis corresponds to chronological versions of the app. In (a),
the y-axis of each stacked bar plot is the number of times a
version leaks a PII type, and the bar plots are colored according
to the domain type and the communication channel; in (b), the
y-axis of each stacked bar plot is the number of times a version
contacts a domain, and the bar plots are colored according to
protocol. For (a) and (b), the number to the left of each y-
axis is the maximum y value across all versions. For more
examples for other apps, see [8].

maximum number of times any version of Pinterest leaked
the PII type. The stacked bars are colored according to the
domain type and protocol. The plot shows that the app sends
user passwords to a third party10 and starts leaking gender,
location, advertiser ID and GSF ID in more recent versions.
In addition, the frequency of Android ID leaks increases by
two orders of magnitude.

B. Summary of Results

This section focuses on a summary of PII leaked across
all versions (APKs) of all apps that we tested, and their
implications for privacy risks over time.

Table III depicts our results, where each row is a PII
type, and each column counts the number of instances falling
into a given category. The table is sorted in descending order
according to the number of apps leaking each type.

The first two columns show the number of apps and APKs
leaking each PII type. In line with previous work [48], we find
that the most commonly leaked PII types are unique identifiers
(more than half of all apps leak an advertiser ID and/or
hardware serial number) and locations (53.1% of apps). We

10We responsibly disclosed this security bug, which Pinterest confirmed and
fixed in later versions not included in this study.

nonetheless still find a substantial fraction of apps (more than
10%) leaking highly personal and security-sensitive informa­
tion such as email addresses (often to analytics services such
as kochava.com and crashlytics), phone numbers (e.g., col­
lected by crashlytics, segment,io, and apptentive), and gender.
However, when focusing on APKs (2nd column), we find that
substantially lower fractions leak each PII type—indicating
that most PII types are not leaked in every app version. We
explore this phenomenon in more detail in Section V-C. In the
table we can also see that there are 13 apps leaking passwords:
6 apps leak passwords in plaintext, and 7 apps send passwords
to third-party domains. Of these apps, in the latest version we
tested (not shown in the table), we discovered that 4 apps still
leak plaintext passwords (Meet24, FastMeet, Waplog, Period
& Ovulation Tracker).11

The next group of columns focuses on the number of
apps and APKs leaking each data type to a first party, either
via HTTP or HTTPS. Here we find that there is no clear
pattern for HTTPS prevalence for PII leaks to first parties,
except for a clear (and easily explained) bias toward password
encryption. When compared with the third column group
(“Leaks to Other Party”), it is clear that the vast majority of
instances of PII leaks go to third parties (with the exception
of passwords, with small but nonzero occurrences). This is
likely explained by the fact that PII is typically harvested
to monetize users via targeted ads, often over HTTPS. This
result is a double-edged sword: encryption improves privacy
from network eavesdroppers, but it also frustrates attempts by
stakeholders (e.g., users, researchers, and regulators) to audit
leaks.

To understand whether certain categories of apps are rela­
tively better or worse for privacy, we grouped them by category
as reported in the Google Play store.12 Table IV provides
results for the top five and bottom five categories in terms
of the average number of PII types that are leaked by apps in
the category. We find that the categories that leak the largest
number of PII types or cases (and contact the most third
party domains) include Lifestyle & Beauty, Games, Finance,
Entertainment and Dating, while Art & Design and Events
leak the fewest. With the exception of Finance, the apps that
leak the most PII types also send a significant fraction of their
traffic (34–47%) without encryption, thus exposing this PII to
network eavesdroppers.

C. Variations in PII Leaks

Since privacy risks across versions of an app rarely stay
the same, a study that looks into a single version of an app is
likely to miss PII leaks affecting a user that regularly uses and
updates the app. In this section, we first quantify how many
PII leaks previous work may miss by focusing on one version,
and then we quantify how the frequency of PII leaks changes
across versions and time.

PII leaks across versions. In Figure 2a we show the CDF
describing the minimum, average, and maximum number of
distinct PII types leaked by individual apps across all their
versions (Min, Average, Max curves); and the CDF describing

11We responsibly disclosed these leaks to the developers.
12We only used the category for the most recent version of the app we

tested, even if the app was in a different category in a previous version.

7

http:kochava.com

#Apps (%Apps) #APKs (%APKs)
Leaks to First Party Leaks to Other Party

HTTP HTTPS HTTP HTTPS
#Apps #APKs #Apps #APKs #Apps #APKs #Apps #APKs

Overall 505 7611 - - - - - - - -
Ad ID 314 (62.2%) 2,270 (29.8%) 23 115 32 227 149 700 282 2,037
Location 268 (53.1%) 1,577 (20.7%) 27 258 41 301 96 450 209 778
HW Serial 254 (50.3%) 1,157 (15.2%) 10 81 21 154 28 170 227 832
IMEI 167 (33.1%) 1,597 (21.0%) 45 443 32 250 62 505 123 1,073
Android ID 124 (24.6%) 1,225 (16.1%) 18 163 28 272 54 423 104 957
GSF ID 108 (21.4%) 504 (6.6%) 0 0 9 68 0 0 99 436
MAC Addr. 71 (14.1%) 649 (8.5%) 8 105 12 116 38 307 25 173
Gender 65 (12.9%) 257 (3.4%) 6 68 5 16 35 106 42 134
Email 43 (8.5%) 280 (3.7%) 12 97 21 124 3 19 14 58
Password 13 (2.6%) 84 (1.1%) 6 48 N/A N/A 0 0 7 36
Last Name 6 (1.2%) 37 (0.5%) 0 0 2 15 0 0 4 22
First Name 6 (1.2%) 37 (0.5%) 0 0 2 15 0 0 4 22
PhoneNo. 3 (0.6%) 18 (0.2%) 0 0 2 15 0 0 2 7
SIM ID 2 (0.4%) 9 (0.1%) 2 9 0 0 0 0 0 0

TABLE III: Summary of PII types leaked by apps/APKs, sorted by number of apps. The majority of apps and APKs leak
at least one PII type. The fractions for the APKs are significantly lower than the ones for the apps, indicating that not every
version leaks PII. Unique IDs and locations are the most common leaks across apps. Unique IDs are leaked to other parties
much more often than to the first party, given the free monetizing model using ads. There are also 13 cases of password leaks.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5 6 7 8

C
D

F
 o

f
A

p
p
s

Number of PII types

Min
Average

Max
Union

(a) Number of unique PII types per app.
Minimum, Average, and Maximum number
of PII leaks across versions; and size of
the union of PII leaked across versions, as
defined in Section V-C.

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 5

 1
0

 1
5

 2
0

 2
5

C
D

F
 o

f
A

P
K

s

PII Severity Score

(b) PII severity score per APK. Most APKs
leak at least one PII type; fortunately, high-
severity PII leaks are rare.

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

-4 -3 -2 -1 0 1 2 3 4

C
D

F
 o

f
A

p
p

s

Slope

(c) PII severity score trend per app. Posi­
tive values (43.6% of apps) indicate that leak
severity gets worse over time, while negative
values (36.4%) indicate severity gets better.
20% of apps do not change in severity.

Fig. 2: Privacy trends by PII type and severity across versions and over time.

App Category Apps APKs #PT #PI #3PD %S
Food & Drink 2 50 2.9 26.3 7.1 52.7
Dating 6 108 2.3 38.4 10.0 60.7
Lifestyle & Beauty 9 137 2.0 40.9 10.7 65.7
Games 76 1231 2.0 70.8 9.7 61.2
Finance 3 28 1.9 42.3 8.2 96.8
... Auto & Vehicles 7 122 0.8 4.6 8.8 84.9
Weather 10 177 0.8 88.5 7.3 47.7
Libraries & Demo 4 51 0.7 29.6 4.1 82.2
Art & Design 6 101 0.7 7.7 5.2 69.3
Events 6 104 0.6 7.9 5.7 95.6

TABLE IV: Average privacy attributes per app category,
sorted by number of unique PII types (PT) leaked. Only
the top and bottom five categories are shown. PI refers to the
number of instances of PII leaks, 3PD refers to the number of
second-level third party domains contacted, and S refers to the
fraction of HTTPS flows. Dating and Food & Drink apps are
among the worst in terms of numbers and types of PII leaks,
and these substantial fractions of their flows are unencrypted.

the number of distinct PII types leaked during the whole
lifetime of the app (i.e., the union of its versions – Union
curve). By looking at the plot we find a substantial gap between
the maximum number of PII types leaked by an app version

and the minimum, validating our hypothesis that a study using
a single version of an app is likely to miss substantial amounts
of PII. Even when focusing only on the version of an app that
leaks the most PII types (Max curve), there is a substantial
fraction of cases (37%, not shown in the figure) that miss at
least one type of PII leaked by a different version. The average
curve is strictly to the left of the union curve, indicating that
a study using an arbitrary app version is likely to miss at least
one type of PII. In summary, for all but 7% of the apps in
our dataset, a study using only one version is guaranteed to
underestimate the PII gathered over the lifetime of the app.

Privacy severity and changes over time. The previous
analysis shows that PII leaks change over time, but do not
give a clear picture of whether these changes lead to greater
or less privacy risk for users. We propose addressing this by
assessing the risk of PII leaked according the severity of each
leaked type. We begin by assigning PII types to n groups, each
of which has similar severity. These groups can be represented
as an n-dimensional bit vector; for each APK we set the mth
most significant bit is set to 1 if the APK leaks PII with severity
m; the bit is set to zero otherwise. Importantly, when this
vector is interpreted as an integer, it follows that privacy is

8

getting worse if the integer value increases between versions,
better if it decreases, and is unchanged if the value is the same.

To provide an example of how this representation informs
our analysis, we use the categories of PII in Table I (left
column) and define PII severity levels in the following order
(from highest to lowest): password (plaintext or to a 3rd party),
username, personal information, geolocation, unique identifier.
For example, consider Pinterest (Fig. 1a). Version 2 has a
vector of 00001, version 60201 has a vector of 00101, 603102
has 10101, and 604052 has 00111. Note that we picked
these values because they seemed reasonable to us; however,
our online interactive tool [8] allows individuals to explore
different relative severity levels and their impact on whether
privacy is getting better or worse.

Figure 2b plots a CDF of every APK’s PII severity score
based on this bitmap representation. We find that nearly two
thirds of APKs leak PII, but almost half of those leak only
unique IDs. We also find a small fraction of APKs leaking
very sensitive information such as passwords (x > 15). To
understand how the severity of PII leaked by each app changes
over time, we find the slope of the linear regression of these
scores for the time-ordered set of APKs belonging to the same
app. If the slope is positive, PII leak severity got worse over
time, negative means better, and values of zero indicate no
change. Figure 2c shows a CDF of these slopes for each app.
The results indicate leak severity is more likely to get worse
(43.6%) than better (36.4%), and a fifth of apps do not change.

Frequency of PII leaks. The previous paragraphs covered
how many versions leaked each PII type at least once, but not
how frequently each version leaked it. This is an important
distinction because frequently leaked PII can heighten privacy
risks—whether it is fine-grained location tracking over time,
or increasing opportunities for network eavesdroppers to learn
a user’s PII from unencrypted traffic. Our analysis is in part
motivated by findings from Harvest, a documentary film that
used ReCon to identify PII leaked over the course of a week
from a woman’s phone.13 Specifically, her GPS location was
leaked on average once every two minutes by the Michaels and
Jo-Ann Fabrics apps. This behavior, thankfully, was isolated
to one version of the apps; however, it raises the question of
how often such “mistakes” occur in app versions.

To explore this issue, we first investigate the average
frequency (i.e., number of times) that each PII type is leaked by
an app over time (Table V). For each app that leaks a given PII
type, we calculate the mean (M) and standard deviation (S) of
the number of times each PII type leaks across versions. The
table shows that Android ID, Location, and Advertising ID
are leaked most frequently on average, and also see the largest
variance in terms of the number of times they are leaked.

We further investigate whether there are cases of egregious
volumes of PII collection. To isolate this behavior, we calculate
the difference between the minimum and maximum number of
times each PII is leaked for each version, across all versions
of an app. Figure 3a shows the CDF of this difference over
all apps in our dataset. While the majority of apps see small
differences in the frequency of leaks, there is a substantial
fraction (5.6%) that exhibit a several orders of magnitude

13http://www.harvest-documentary.com

PII Type #Apps Mean of Mean Mean of Std.dev.
Ad ID 286 16.29 12.42
Location 256 20.33 11.63
Android ID 119 12.70 9.53
MAC Addr. 56 6.27 6.16
IMEI 140 7.87 5.68
GSF ID 109 8.55 5.37
Email 36 7.42 2.99
Gender 63 4.99 1.81
Password 13 2.48 0.92
HW Serial 240 2.16 0.76

TABLE V: Frequency of apps leaking each PII type, sorted
by the mean of standard deviation. For each app, we
calculate the mean (M) and the standard deviation (S) of the
number of times each PII type leaks across versions. We show
the mean of M an S across apps. The table shows that location
and unique IDs are the most tracked information, and that the
number of times they leak takes on a wide range of values.

difference. To put this in context, some versions of apps
leak PII once every 1 to 10 seconds on average during an
experiment. Example apps include AccuWeather, Learn 50
Languages, Akinator the Genie FREE, and JW Library, which
leak either location or unique ID, or both, nearly constantly.

In summary, not only are the types of PII leaks changing
across versions, but also the number of times it is leaked over
short periods of time. This has significant privacy implications
for users who do not want their online activity and locations
tracked with fine granularity.

D. HTTPS Adoption Trends

Given developments in the US and abroad concerning pri­
vacy, including reports of widespread Internet surveillance [13]
and recent legislation permitting ISPs to sell user information
gleaned from network traffic [44], there has been a push to
encrypt Internet traffic to the greatest extent possible. Given the
vast amount of personal information stored on mobile devices,
HTTPS adoption by mobile apps can be perceived, at first, as
a positive industry move. In this section, we investigate the
extent to which apps adopt HTTPS across versions.

Aggregate results. We begin by studying the extent to
which apps (across all versions) exclusively use HTTP and
HTTPS, or some combination of the two. We group results
according to the destination second-level domain. Table VI
shows the results of our analysis for all domains, as well as
those previously identified as either first or third party. Across
all app/domain pairs, we see that HTTPS-only adoption is the
dominant behavior, with substantial fractions of app/domain
pairs that use HTTP, and a relatively small fraction where
both HTTP and HTTPS are used for the same domain. The
latter case is particularly interesting, because we know the
domain supports HTTPS but for some reason14 some of the
connections are established using plaintext.

When focusing on first- versus third-party communication,
we find that most of the HTTPS adoption comes from traffic
to third-party domains. In contrast, first-party domains are
nearly evenly distributed across the three categories. It is not

14For example, the overhead of maintaining and establishing TLS connec­
tions, or to permit caching of static content, or because HTTP URIs are hard-
coded into apps.

9

http://www.harvest-documentary.com

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 10 100 1000 10000

C
D

F
 o

f
A

P
K

s

Differences in the number of leaking times

Android ID
Location

Ad ID
IMEI

GSF ID

 0

 20

 40

 60

 80

 100

 5

 2
5

 1
2
5

 6
2
5

 3
1
2
5

C
D

F
 o

f
D

o
m

a
in

s

Number of Days

Θ=10%
Θ=50%
Θ=90%

 0

 20

 40

 60

 80

 100

-0
.2

-0
.1 0

 0
.1

 0
.2

 0
.3

 0
.4

 0
.5

 0
.6

 0
.7

 0
.8

C
D

F
 o

f
A

p
p
s

Slope

HTTPS Traffic
HTTPS Leaks

(a) Largest frequency difference (b) CDF of days over Θ% of apps to (c) CDF of the slope of %HTTPS of traf­
(logscale) per app. There is a substantial adopt HTTPS per domain. Mobile apps fic/leaks per app. A positive value indicates
fraction (5.6%) of apps that exhibit a adopt HTTPS extremely slowly: for half of an overall increase from the first version; a
several orders of magnitude difference in the domains, it takes over two years for negative value shows the opposite. HTTPS
the frequency of PII leaks across versions. only 10% of apps to adopt HTTPS; and adoption does not change much for most apps

five years for over 50% of apps.	 over time, and there is no clear trend showing
its increased adoption.

Fig. 3: Privacy trends by PII frequency and HTTPS adoption across versions and over time.

party app/domain pairs (#apps) HTTP HTTPS both
all 12,143 (505) 3,559 6,791 1793

29.3% 55.9% 14.8%
first 703 (338) 268 225 210

38.1% 32.0% 29.9%
third 11,440 (502) 3,291 6,566 1583

28.8% 57.4% 13.8%

TABLE VI: Summary of domains by protocol. The domains
are separated into those that use HTTP only, HTTPS only,
and both protocols. The majority of all flows use HTTPS, but
this is largely due to communication with third-party sites.
Substantial fractions of domains see flows without encryption
and only a third of first party domains exclusively use HTTPS.

clear why third parties use encryption more often, but reasons
might include improving privacy from eavesdroppers, ensuring
integrity against man-in-the-middle attacks, or making it more
difficult to audit the information they gather. Likewise, the
increased prevalence of mixed HTTP(S) usage for first-party
domains might be due to reasons such as scarce resources
for handling TLS connections, lack of need to secure content
transfers, and/or mismanagement from small operators.

Speed of HTTPS adoption. We now focus on the domains
that we know support HTTPS because we saw at least one
flow from one APK that uses HTTPS for that domain. Once
a domain supports HTTPS at a given date, we expect that any
APKs contacting that domain in the future should be able to
use HTTPS. However, there are many reasons why HTTPS
adoption may not occur immediately for all other apps (e.g.,
due to using old versions of third-party libraries, or due to
policy decisions to limit use of HTTPS). In Figure 3b, we
investigate how long it takes a certain fraction (Θ%) of apps
to adopt HTTPS for a domain, relative to the first day the
domain supports HTTPS. The graph clearly shows that HTTPS
adoption in mobile apps is exceedingly slow: for half of the
domains we studied, it takes more than two years for only 10%
of apps to adopt HTTPS. To achieve 50% HTTPS adoption
(Θ = 50% curve), it takes five years from the moment the

domain starts supporting HTTPS.15 This is in stark contrast to
web traffic, where the only requirement for widespread HTTPS
adoption is that the server supports TLS and makes it the
default way to access the site.

The key take-away is that improving privacy for the con­
tents of app-generated traffic through HTTPS adoption is a
slow process. This may explain why recent efforts by app
stores to require HTTPS by default (or otherwise discourage
HTTP use) [20], [38] have faced delayed enforcement [9].

Fraction of HTTPS traffic over time. While the previous
paragraphs focus on how long it takes apps to start using
HTTPS, we now focus on the question of the fraction of app­
generated traffic using HTTPS over time. We analyze this by
producing a timeseries of the fraction of flows that use HTTPS
across versions of each app in our study. We then find the
slope of the linear regression of this fraction for each app,
and plot the CDF of these values as the red line in Figure 3c.
Positive values indicate an increased fraction of HTTPS traffic
over time for an app, while negative values indicate a smaller
fraction. The figure shows two key trends. First, most of the
values are near zero, indicating that HTTPS adoption does not
change much over time. This is consistent with our results
above. Second, with the exception of outliers, the number of
apps that use more and less HTTPS over time are essentially
equal—implying no evidence to support an increasing overall
trend of HTTPS adoption as seen in Web traffic.

A particular concern for plaintext traffic is when it contains
users’ PII, as they might be exposed to eavesdroppers as well
as to the destination domain. We now investigate whether, over
time, apps are increasingly using HTTPS when flows contain
PII, to mitigate this additional privacy risk. Similar to the
previous analysis, we do this using the slope of the linear
regression for the fraction of PII leaks over HTTPS across
versions of an app. The blue line in Figure 3c plots the CDF
of this slope over all apps. Again, we find that the dominant
trend is that HTTPS adoption does not change much over time,
even for PII leaks.

15The curves for Θ=75% and 90% are nearly identical to 50%.

10

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0

 2
0

 4
0

 6
0

 8
0

 1
0

0

 1
2

0

 1
4

0

C
D

F
 o

f
A

P
K

s

#Unique Domains

 1.6

 1.8

 2

 2.2

 2.4

 2.6

 2.8

 3

 3.2

0
1
/0

1
/1

2

0
7
/0

1
/1

2

0
1
/0

1
/1

3

0
7
/0

1
/1

3

0
1
/0

1
/1

4

0
7
/0

1
/1

4

0
1
/0

1
/1

5

0
7
/0

1
/1

5

0
1
/0

1
/1

6

0
7
/0

1
/1

6

0
1
/0

1
/1

7

N
u
m

b
e
r

o
f
D

o
m

a
in

s

 0

 0.1

 0.2

 0.3

 0.4

 0.5

0
7

/0
1

/1
2

0
1

/0
1

/1
3

0
7

/0
1

/1
3

0
1

/0
1

/1
4

0
7

/0
1

/1
4

0
1

/0
1

/1
5

0
7

/0
1

/1
5

0
1

/0
1

/1
6

0
7

/0
1

/1
6

0
1

/0
1

/1
7

F
ra

c
ti
o

n
 o

f
A

P
K

s

AD ID

Android ID

GSF ID

IMEI

MAC Addr.

(a) Number of unique domains per APK. (b) Timeseries of average number of unique (c) Timeseries for fractions of APKs
The vast majority of APKs contact more than domains receiving PII leaks, bucketed by leaking one type of unique ID, bucketed
one domain, and more than a quarter contact month. The number has nearly doubled since by month. At around 2014 (the vertical
10 or more domains. 2012, indicating that users’ mobile activities line), when Google opened the use of Ad

are increasingly monitored by several parties.	 ID to third parties, the usage increases,
and other IDs (Android ID, GSF ID, IMEI,
MAC Address) decline.

Fig. 4: Privacy trends by domain and tracking identifier across versions and over time.

 1

 10

 100

 1000

01
/0

1/
08

01
/0

1/
09

01
/0

1/
10

01
/0

1/
11

01
/0

1/
12

01
/0

1/
13

01
/0

1/
14

01
/0

1/
15

01
/0

1/
16

01
/0

1/
17

01
/0

1/
18

N
u
m

b
e
r

o
f
a
p
p
s

 0

 1

 2

 3

 4

 5

 6

 7

0
1
/0

1
/1

3

0
7
/0

1
/1

3

0
1
/0

1
/1

4

0
7
/0

1
/1

4

0
1
/0

1
/1

5

0
7
/0

1
/1

5

0
1
/0

1
/1

6

0
7
/0

1
/1

6

0
1
/0

1
/1

7

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18

0
7
/0

1
/1

3

0
1
/0

1
/1

4

0
7
/0

1
/1

4

0
1
/0

1
/1

5

0
7
/0

1
/1

5

0
1
/0

1
/1

6

0
7
/0

1
/1

6

0
1
/0

1
/1

7

Location

Gender

Ad ID

Android ID

HW Serial

IMEI

Mac Addr.

Contacted

Has leaks

(a) doubleclick (logscale) (b) supersonicads	 (c) applovin

Fig. 5: Third-party domain PII leaks. Each graph represents a timeseries for a selected domain, with data aggregated into
one-month buckets. We depict the number of apps that contact the domain in red, and the number of apps leaking to the domain
in green. The other lines represent the number of apps leaking the corresponding PII type to the domain. Over time, more apps
leak PII to each of these domains; further, in the case of doubleclick the number of PII types being leaked has increased.

E. Third-Party Characterization

In this section, we focus on the third parties that gather PII
from apps, what information they gather across all apps in our
study, and the implications of this data collection.

Summary of PII leaks. We now focus on the information
gathered by third parties across all apps and versions in our
study. We summarize our findings in Table VII, which shows
information about PII leaks to third-party domains, sorted by
the number of unique PII types gathered across all APKs. We
show only the top 10 domains due to space limitations.

The table highlights a variety of domains that engage in
broad-spectrum user tracking, usually focusing on unique iden­
tifiers, but also including sensitive information such as phone
numbers and locations. Interestingly, there is little correlation
between the number of flows to a domain and the number of
those flows containing PII. For example, vungle.com leaked
PII in 780 out of 1,405 flows, while doubleclick.net (one of
the most frequently contacted domains) leaked PII in only 5%
of its flows (not shown in the table). The table also shows that
many domains receive more than one type of tracking identifier
(e.g., Ad ID, Android ID, IMEI, GSF ID, IMEI), which allows
them to continue to uniquely identify users even if the Ad ID
is reset by a user. Other third-party domains, such as CDNs,

are frequently contacted, but do not receive PII (e.g., fbcdn.net,
idomob.com, ytimg.com).

Domains contacted over time. In addition to studying
the PII leaked to each domain, it is important to understand
how many domains apps contact over multiple versions and
how this changes over time. Figure 4a shows a CDF of the
number of domains contacted by each APK; we find that
the vast majority of APKs contact more than one domain,
and approximately one quarter of them contact 10 or more
domains. To understand how this behavior changes over time
Fig. 4b presents a timeseries of the average number of domains
contacted by APKs, grouped by release date. Most notably,
we find that this average has nearly doubled since 2012, with
substantial increases in just the past two years. Thus, not only
are large amounts of PII exposed to other parties, but each
users’ activity in an app tends to be tracked by more parties.

High-risk tracking. Some third-party domains track both
unique identifiers and other more personal information like
location, email address and gender, which allow the domain to
link individuals and personal information (including locations
of interest such as home, work, etc.) to tracking identifiers. In
other words, even if a third party makes a link between unique
ID and a sensitive piece of personal information once, it can
tie this personal information to unique ID without collecting

11

vungle.com
doubleclick.net
fbcdn.net
idomob.com
ytimg.com

domain # flows # PII leaks # app # APK PII types
google[*] 170,374 22,383 369 1937 HW Serial, Location, IMEI, Ad ID, GSF ID, Android ID, Gender, MAC Addr.,

First Name, Last Name
crashlytics.com 6,653 1,146 110 621 Ad ID, Android ID, PhoneNo., HW Serial, Email, IMEI
vungle.com 1,405 780 21 132 Ad ID, Location, Android ID, HW Serial, MAC Addr., Gender
adjust.com 1,186 650 31 176 Ad ID, Android ID, IMEI, Password, HW Serial, MAC Addr.
supersonicads.com 791 613 9 36 Ad ID, HW Serial, IMEI, Location, Android ID, MAC Addr.
amazon-adsystem.com 1,315 438 15 71 MAC Addr., HW Serial, Android ID, IMEI, Ad ID, Location
kochava.com 633 338 21 80 Android ID, Ad ID, IMEI, Email, MAC Addr., Gender
tapjoyads.com 5,503 5,390 43 440 IMEI, MAC Addr., HW Serial, Android ID, Ad ID
mopub.com 7,560 3,657 38 235 Ad ID, Android ID, Gender, Location, IMEI
applovin.com 5,591 2,360 26 149 Ad ID, Android ID, IMEI, Gender, Location

TABLE VII: Top 10 third-party domains by flows and leaks across all apps, sorted by the number of PII types, then the
number of PII leaks (also see full table online [8]). Third-party domains track mostly different unique identifiers and there is
little correlation between the number of contacted flows and the number of flows having PII. We group the following domains
as google[*]: google.com, googleapis.com, doubleclick.net, google-analytics.com, gstatic.com, googleusercontent.com,
googleadservices.com.

the former in the future. This is particularly problematic for
user privacy, since it erodes their ability to control how they
are monitored and allows cross-app tracking.

We extracted the set of domains that tie tracking identifiers
with other personal information and list the top 10 (out of 95)
in Table VIII. Not surprisingly, common advertising domains
such as Google-owned domains doubleclick, googleapis,
googleadservices appear at the top of the list. In addition,
we find high-risk tracking from less known domains, such as
startappservice, doubleverify, and smartadserver.

Per-domain tracking variations over time. We now investi­
gate the time-evolution of how domains track various PII types,
using a case study of three examples: the frequently contacted
domain doubleclick.net, the less-frequently contacted ap­

16plovin.com, and the rarely contacted supersonicads.com.
For each of these domains, we determine the number of apps
that send PII to them during each month, and plot this in
Figure 5. In line with our previous results, we see variations
not only in the number of apps that send a given type of PII
to a domain, but also which PII types are sent. Figure 5a
shows that doubleclick started transmitting gender in 2014.
In the same year, it briefly collected IMEI, HW Serial, and
Android ID, then stopped doing so. We see similar behavior for
supersonicads (Figure 5b) for three of its gathered PII types
(IMEI, HW Serial, and Android ID); additionally, they stopped
collecting MAC address in 2014. This likely coincides with
Google’s requirements for new apps to use the user-resettable
Ad ID for tracking users instead of persistent identifiers, such
as the IMEI and Android ID, with enforcement of the Ad ID
for new and updated apps in the Play Store starting in August
2014 [31], [33]. We found this led to more apps using Ad ID
instead of other identifiers (Figure 4c). We found that applovin
sends gender information until 2014.

In summary, we find that an important factor for higher
privacy risks over time is the increased number of third-party
domains that are contacted by apps and that receive PII.

F. Summary and Discussion

We analyzed app privacy leaks over time across three di­
mensions (PII leaks, HTTPS adoption, and domains contacted)
independently, and found that by most measures app privacy

16We focus on three due to space limitations; more examples are online [8].

domain PII Types leaked with ID # apps # APKs
google[*] Location, Gender, First Name, 124 387

Last Name, Email
kochava Email, Gender 8 36

vungle Location, Gender 7 34
mopub Gender, Location 6 13

doubleverify Location 5 7
aerserv Location 4 10

smartadserver Location 3 7
aniview Location 3 7

mmnetwork Location 3 9
56txs4 Gender 3 11

TABLE VIII: Summary of domains that track non-ID PII
along with unique ID. There are several domains conducting
high risk tracking that traditionally get less attention that
Google-owned domains. The google[*] entry represents the
same domains as specified in Table VII.

is more often getting worse as users upgrade apps. In the next
section, we explore combinations of these dimensions and their
implications for privacy.

We showed that a single version of an app is not enough
to assess its privacy over time. This motivates the need for
continuous privacy monitoring across versions of apps as they
appear. To this end, we will make our data and analysis code
publicly available, and investigate how to fully automate our
experimental testbed.

Our analysis shows that HTTPS adoption is slow for mobile
apps. This exposes users’ app interactions, and potentially PII,
to a larger set of network observers. The problem is often
challenging to fix because it might require changes both at
servers (to support HTTPS), and in the app code and/or the
libraries they include (to use HTTPS).

Finally, we found that as users interact with apps over
time a large number of domains are able to gather and link
significant amounts of users’ PII. This highlights the need to
understand how other parties gather PII longitudinally, and
motivates the need for tools that allow users to limit them.

VI. MULTIDIMENSIONAL ANALYSIS

The previous sections analyzed privacy one attribute at a
time; here, we focus on an APK’s privacy implications when
considering a combination of privacy attributes. For example,
such analysis can indicate that an app leaking PII over insecure

12

http:supersonicads.com
http:plovin.com
http:doubleclick.net
http:googleadservices.com
http:googleusercontent.com
http:gstatic.com
http:google-analytics.com
http:doubleclick.net
http:googleapis.com
http:google.com

Notation Explanation

s(t) ∈ 0, . . . , 5 Privacy severity level for PII type t.
s(t):={ID=1; location=2; user-info=3; username=4; password=5}

PII type risk for ai,j , where τ is the set of types leaked and ν
is the value corresponding to the most severe set of privacy leaks
observed.

Ri,j ∈ [0, 1]

1 2s(t)−1Ri,j = ν t∈τ

Destination domain risk (3rd party vs 1st party) for ai,j , where
hi,j is the number flows generated by ai,j , and ρi,j is the
number of flows in hi,j to third party domains.

Di,j ∈ [0, 1]

w i
ρi,jDi,j = min , 1 maxj hi,j

Protocol risk (plaintext vs encrypted) for ai,j , where πi,j is the
number of flows in hi,j that are in plaintext.

πi,j

Pi,j ∈ [0, 1]

Pi,j = hi,j

risk(x, y) ∈ [0, 1] Combined risk using normalized euclidean distance.
risk(x, y, z) ∈ [0, 1] risk(x, y) = √1 x2 + y2

2
1risk(x, y, z) = √ x2 + y2 + z2
3

TABLE IX: Definition of the privacy risk dimensions and
risk combination metrics we consider for the multidimen­
sional analysis.

connections is riskier than one leaking the same PII over
encrypted connections.

In the next section we formalize the three risk dimensions
we consider in our multidimensional analysis. We then analyze
their combination in Section VI-B. Finally, in Section VI-C we
present a tool that can help individuals to visualize our dataset
and understand app privacy risks in a user-friendly way.

A. Privacy Dimensions

The privacy dimensions we consider in our multidimen­
sional analysis are based on the privacy attributes introduced
in Section IV-D, but normalized as real number between 0
and 1, with 1 indicating the highest privacy risk. Table IX
shows the formal definition of each of them. For each APK
j from app i (ai,j) in our dataset, we define: (i) PII type risk
Ri,j , based on the bit vector representation in Section V-C;
(ii) Destination domain risk Di,j , as the sum of the flows that
leak to third-party domains divided by the maximum number
of flows generated by an APK of app i; (iii) Protocol risk Pi,j ,
as the percentage of flows that are sent without encryption.

Ri,j indicates how many PII types have been leaked and
how severe they are. Its value will be one if the most severe
set of observed PII types have been leaked. Di,j indicates how
much the APK is communicating with third-party domains. Its
value will be one if all the flows of the APK that generates
the most flows are sent to third parties. Finally, Pi,j indicates
the amount of unencrypted traffic. Its value is one when all
the traffic is sent over unencrypted connections.

B. Combining Dimensions

We now combine the normalized risk metrics, choosing
two or all three dimensions, and analyze how these combined
privacy metrics change over time. We currently treat each
dimension with equal weight, but note that different relative
privacy concerns (e.g., PII leaks matter more than domains) can
be captured by changing the relative weight of each dimension.

We begin by analyzing the two-dimensional combinations
of privacy metrics, depicted using heatmaps in Figure 6. Each
cell at (x,y) indicates the number of apps with risk scores of
x and y, with red indicating five or more apps. Focusing on
the combination of PII types leaked and destinations contacted
(Figure 6a), we see several clusters emerge. The high density in
the bottom left corner indicates that most APKs send relatively
low-risk PII to relatively few domains. The points in the top
left indicate that when high risk PII is exposed by apps,
they tend to leak it to few domains (with the exception of
Pinterest, which contacts a large number of domains). Last,
there are several apps that send moderately high risk PII to
many domains (right side of the figure).

When focusing on Figures 6b and 6c, we find that app
behavior is fairly evenly spread across the x-axis range—
indicating that there is no strong correlation between the frac­
tion of TLS connections (x-axis) and privacy leaks (Fig. 6b)
or number of domains contacted (Fig. 6c). The exception is
that higher risk PII tends to leaked from apps using mostly
encrypted connections (top left), aside from a few cases near
x = 0.5 (FastMeet, Meet24, Pinterest, Here WeGo - Offline
Maps & GPS, ViewRanger Trails & Maps).

Based on the plots in Figure 6, we now define the risk ag­
gregation function, which measures the normalized Euclidean
distance between two different types of risk (see Table IX).
This function captures the combination of different risks as
a single number between 0 and 1.17 Moreover, because the
function is based on Euclidean distance, it generalizes to
arbitrary numbers of dimensions.

We first use the aggregate risk function to show in Figure 7a
how all the possible combinations of the risk are distributed
across all APKs in our dataset. The figure shows that most
APKs are neither very low or very high risk, and that the set
of all APKs in our dataset are fairly evenly spread across the
range of risk scores. Of course, because this does not consider
time, it does not indicate whether recently released APKs are
relatively higher or lower risk.

Is privacy getting better or worse? We investigate this
question with Figure 7b, which shows a time series of the
average privacy risk for APKs, grouped by release date. The
figure shows a clear trend towards higher three-dimensional
privacy risk over time (i.e., risk(Ri,j , Di,j , Pi,j)), with most
of the increase attributable to the combination of more PII
types being leaked and to more domains (the risk(Ri,j , Di,j)
curve). Thus, when it comes to leaking PII and contacting third
parties, apps have gotten substantially worse over time.

To further analyze privacy risk changes, we conduct an
app-focused analysis where we plot the combined risk score
over time for each app (over all its APKs) and find the slope of
the linear regression over these scores, as well as the standard
deviation of the scores. Using this data, we categorize privacy
risks per app as getting better, getting worse, staying similar, or
exhibiting high variability over time. Algorithm 1 presents our
classification logic when focusing on the combined score for R
and D for each app. At a high level, we require that the slope
and absolute difference between scores be sufficiently large to

17Again, different scaling factors on each dimension can represent different
relative risks between dimensions.

13

(a) Ri,j vs Di,j (b) Ri,j vs Pi,j	 (c) Di,j vs Pi,j

Fig. 6: Two-dimensional risk analysis. These plots are heat maps, where each cell represents the number of APKs ai,j in our
dataset exhibiting the corresponding risk values x and y. Each axis represents one of the following privacy risks: PII type risk
(Ri,j), destination domain risk (Di,j), and protocol risk (Pi,j). Colors indicate the number of APKs with a given combined risk
value, with red representing five or more APKs.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0

 0
.2

 0
.4

 0
.6

 0
.8 1

C
D

F
 o

f
A

P
K

s

Combined risk

(R,D,P)

(R,D)

(D,P)

(R,P)

(a) Multidimensional combined risk by
APK. CDF of combined risk over all
the APKs in our dataset. APKs are fairly
evenly distributed across the risk spectrum.

 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

0
1
/0

1
/1

2

0
7
/0

1
/1

2

0
1
/0

1
/1

3

0
7
/0

1
/1

3

0
1
/0

1
/1

4

0
7
/0

1
/1

4

0
1
/0

1
/1

5

0
7
/0

1
/1

5

0
1
/0

1
/1

6

0
7
/0

1
/1

6

0
1
/0

1
/1

7

C
o
m

b
in

e
d
 r

is
k

(R,D,P)

(R,D)

(D,P)

(R,P)

(b) Longitudinal variation of combined
risk. The x-axis represents APK release
time and the y-axis represents the com­
bined risk(...) metrics. Risk increases over
time, and PII types and domains are by far
the dominant factors for this trend.

(c) Privacy risk visualization tool.
Screenshot of a tool that visualizes longi­
tudinal privacy risks for the apps in our
dataset, available at [8].

Fig. 7: Multi-dimensional privacy risk analysis and visualization tool.

indicate that an app’s privacy became worse or better. If the
difference is not large and there is a relatively large standard
deviation, then we indicate that the app is highly variable;
otherwise, the app’s privacy is labeled as similar.18

Algorithm 1 Trend Categorization Algorithm

1: function TREND(AP P)
2: X ← list of versions
3: Y ← list of normalized euclidean distance of (R, D)
4: Std ← Standard deviation of Y
5: s ← Slope of the linear regression line of (X, Y)
6: Y' ← s · X + intercept
7: D ← Y ' − Y '

max min
8: Trend ← “similar”
9: if D ≥ θD then

10: if s > 0 then Trend ← “worse”
11: else Trend ← “better”
12:	 else if Std > θS then Trend ← “variable”

return Trend

Using this approach, we calculated the following fractions
of apps in each category: better (26.3%), worse (51.1%),
similar (9.5%) and variable (13.1%). Thus, while a quarter of
apps are getting better with respect to privacy, twice as many

18The thresholds (θD , θS) were chosen heuristically, using 0.1 for both.

are getting worse over time and only a small fraction stay the
same.

C. Privacy Risk Visualization

We built a web-based interactive tool that allows indi­
viduals to explore the privacy risk data for any app in our
dataset (Fig. 7c), showing how privacy risks changed across
all versions of each app that the user selects. For this tool,
we currently focus primarily on PII leak types, and allow
the user to set relative leak severity for each PII category
(denoted as s(t) in Table IX); further, we compress our binary
representation into a scale of 0 to 6 so that it is easier to
understand for those who do not regularly think in terms of
bit vectors. As part of ongoing work, we are investigating other
intuitive ways to present our findings using a single score.

VII. CONCLUSION

This paper provides the first longitudinal study of the
privacy impact of using popular Android apps and updating
to new versions over time. We found that the PII shared with
other parties changes over time, with the following trends:
(1) overall privacy tends to worsen across versions; (2) the
types of gathered PII change across versions, limiting the
generalizability of single-version studies; (3) HTTPS adoption
is relatively slow for mobile apps; (4) third parties not only
track users pervasively, but also gather sufficient information

14

to know what apps a user interacts with, when they do so, and
where they are located when they do. Our dataset is available
at: https://recon.meddle.mobi/appversions/.

A naïve interpretation of our observed privacy trends is
that users should stop updating apps; however, new versions
of apps also contain bug fixes and improvements (e.g., critical
security updates). Thus, what is needed is information that
helps users make informed decisions when deciding whether
to update the app given a set of changes in a new version.
We envision that our online tool [8] can in part fill this need.
Further, we recommend users to install tools like ReCon [48],
Lumen [47], or AntMonitor [39] to block unwanted privacy
leaks that come from newer versions of apps.

REFERENCES

[1]	 AndroidAPKsFree - Free Apps (apk) Download for AndroidTM. http:
//www.androidapksfree.com/.

[2]	 APK4Fun - Download APK for Fun Android Apps & Games. https:
//www.apk4fun.com/.

[3]	 Download APK free online downloader | APKPure.com. https://
apkpure.com/.

[4]	 geopy. https://github.com/geopy/geopy.
[5]	 JustTrustMe. https://github.com/Fuzion24/JustTrustMe.
[6]	 mitmproxy. https://mitmproxy.org/.
[7]	 Monetize, advertise and analyze Android apps | AppBrain.com. http:

//www.appbrain.com/.
[8]	 Supplemental data. https://appversions.github.io.
[9]	 APPLE. Supporting App Transport Security. https://developer.apple.

com/news/?id=12212016b, December 2016.
[10]	 ARZT, S., RASTHOFER, S., FRITZ, C., BODDEN, E., BARTEL, A.,

KLEIN, J., LE TRAON, Y., OCTEAU, D., AND MCDANIEL, P. Flow-
Droid: Precise Context, Flow, Field, Object-sensitive and Lifecycle­
aware Taint Analysis for Android Apps. In Proc. of PLDI (2014).

[11]	 AU, K. W. Y., ZHOU, Y. F., HUANG, Z., AND LIE, D. PScout:
Analyzing Android Permission Specification. In Proc. of ACM CCS
(2012).

[12]	 BACKES, M., BUGIEL, S., AND DERR, E. Reliable Third-Party Library
Detection in Android and its Security Applications. In Proc. of ACM
CCS (2016).

[13]	 BALL, J., SCHNEIER, B., AND GREENWALD, G. NSA and
GCHQ target Tor network that protects anonymity of web
users. http://www.theguardian.com/world/2013/oct/04/nsa-gchq-attack­
tor-network-encryption, October 2013.

[14]	 BASHIR, M. A., ARSHAD, S., ROBERTSON, W., AND WILSON, C.
Tracing Information Flows Between Ad Exchanges Using Retargeted
Ads. In Proc. of USENIX Security (2016).

[15]	 BOOK, T., PRIDGEN, A., AND WALLACH, D. S. Longitudinal Analysis
of Android Ad Library Permissions. In Proc. of MoST (2013).

[16]	 CARTER, P., MULLINER, C., LINDORFER, M., ROBERTSON, W., AND
KIRDA, E. CuriousDroid: Automated User Interface Interaction for
Android Application Analysis Sandboxes. In Proc. of FC (2016).

[17]	 CHEN, T., ULLAH, I., KAAFAR, M. A., AND BORELI, R. Information
Leakage through Mobile Analytics Services. In Proc. of ACM HotMo­
bile (2014).

[18]	 CHOUDHARY, S. R., GORLA, A., AND ORSO, A. Automated Test Input
Generation for Android: Are We There Yet? In Proc. of the IEEE/ACM
International Conference on Automated Software Engineering (ASE)
(2015).

[19]	 COMINO, S., MANENTI, F. M., AND MARIUZZO, F. Updates Manage­
ment in Mobile Applications. iTunes vs Google Play. In SSRN (2016).

[20]	 CONGER, K. Apple will require HTTPS connections for iOS apps by
the end of 2016. https://techcrunch.com/2016/06/14/apple-will-require­
https-connections-for-ios-apps-by-the-end-of-2016, June 2016.

[21]	 CONTINELLA, A., FRATANTONIO, Y., LINDORFER, M., PUCCETTI,
A., ZAND, A., KRUEGEL, C., AND VIGNA, G. Obfuscation-Resilient
Privacy Leak Detection for Mobile Apps Through Differential Analysis.
In Proc. of NDSS (2017).

[22]	 EGELE, M., KRUEGEL, C., KIRDA, E., AND VIGNA, G. PiOS:
Detecting Privacy Leaks in iOS Applications. In Proc. of NDSS (2011).

[23]	 ENCK, W., GILBERT, P., CHUN, B.-G., COX, L. P., JUNG, J., MC­
DANIEL, P., AND SHETH, A. N. TaintDroid: An Information-Flow
Tracking System for Realtime Privacy Monitoring on Smartphones. In
Proc. of USENIX OSDI (2010).

[24]	 FAHL, S., HARBACH, M., MUDERS, T., SMITH, M., BAUMGÄRTNER,
L., AND FREISLEBEN, B. Why Eve and Mallory Love Android: An
Analysis of Android SSL (In)Security. In Proc. of ACM CCS (2012).

[25]	 FTC. Mobile Privacy Disclosures: Building Trust Through Trans­
parency. FTC Staff Report (Feb 2013).

[26]	 GEORGIEV, M., IYENGAR, S., JANA, S., ANUBHAI, R., BONEH, D.,
AND SHMATIKOV, V. The Most Dangerous Code in the World:
Validating SSL Certificates in Non-browser Software. In Proc. of ACM
CCS (2012).

[27]	 GOMEZ, L., NEAMTIU, I., AZIM, T., AND MILLSTEIN, T. RERAN:
Timing- and Touch-sensitive Record and Replay for Android. In Proc.
of ICSE (2013).

[28]	 GOOGLE. Android Developers Dashboards. https://developer.android.
com/about/dashboards/index.html.

[29]	 GOOGLE. App Manifest. https://developer.android.com/guide/topics/
manifest/manifest-element.html.

[30]	 GOOGLE. Google Maps Geocoding API. https://developers.google.
com/maps/documentation/geocoding.

[31]	 GOOGLE. Google Play Console Help: Advertising ID. https://support.
google.com/googleplay/android-developer/answer/6048248.

[32]	 GOOGLE. UI/Application Exerciser Monkey. https://developer.android.
com/tools/help/monkey.html.

[33]	 GOOGLE. Google Play Services 4.0. https://android-developers.
googleblog.com/2013/10/google-play-services-40.html, October 2013.

[34]	 HANNAK, A., SAPIEZYNSKI, P., MOLAVI KAKHKI, A., KRISHNA­
MURTHY, B., LAZER, D., MISLOVE, A., AND WILSON, C. Measuring
Personalization of Web Search. In Proc. of WWW (2013).

[35]	 HANNAK, A., SOELLER, G., LAZER, D., MISLOVE, A., AND WIL­
SON, C. Measuring Price Discrimination and Steering on E-commerce
Web Sites. In Proc. of IMC (2014).

[36]	 HAO, S., LIU, B., NATH, S., HALFOND, W. G., AND GOVINDAN,
R. PUMA: Programmable UI-automation for Large-scale Dynamic
Analysis of Mobile Apps. In Proc. of MobiSys (2014).

[37]	 JOHNSON, III, C. US Office of Management and Budget Mem­
orandum M-07-16. http://www.whitehouse.gov/sites/default/files/omb/
memoranda/fy2007/m07-16.pdf, May 2007.

[38]	 KLYUBIN, A. Protecting against unintentional regressions to cleartext
traffic in your Android apps. https://security.googleblog.com/2016/04/
protecting-against-unintentional.html, April 2016.

[39]	 LE, A., VARMARKEN, J., LANGHOFF, S., SHUBA, A., GJOKA, M.,
AND MARKOPOULOU, A. AntMonitor: A System for Monitoring
from Mobile Devices. In Proc. of Workshop on Crowdsourcing and
Crowdsharing of Big (Internet) Data (2015).

[40]	 LEONTIADIS, I., EFSTRATIOU, C., PICONE, M., AND MASCOLO, C.
Don’t kill my ads! Balancing Privacy in an Ad-Supported Mobile
Application Market. In Proc. of ACM HotMobile (2012).

[41]	 LEUNG, C., REN, J., CHOFFNES, D., AND WILSON, C. Should you
use the app for that?: Comparing the privacy implications of app-and
web-based online services. In Proc. of IMC (2016).

[42]	 LINDORFER, M., NEUGSCHWANDTNER, M., WEICHSELBAUM, L.,
FRATANTONIO, Y., VAN DER VEEN, V., AND PLATZER, C. Andrubis ­
1,000,000 Apps Later: A View on Current Android Malware Behaviors.
In Proc. of BADGERS (2014).

[43]	 MACHIRY, A., TAHILIANI, R., AND NAIK, M. Dynodroid: An Input
Generation System for Android Apps. In Proc. of the Joint Meeting on
Foundations of Software Engineering (ESEC/FSE) (2013).

[44]	 NAYLOR, B. Congress Overturns Internet Privacy Regula­
tion. http://www.npr.org/2017/03/28/521831393/congress-overturns­
internet-privacy-regulation, March 2017.

15

https://recon.meddle.mobi/appversions/
http://www.androidapksfree.com/
http://www.androidapksfree.com/
https://www.apk4fun.com/
https://www.apk4fun.com/
https://apkpure.com/
https://apkpure.com/
https://github.com/geopy/geopy
https://github.com/Fuzion24/JustTrustMe
https://mitmproxy.org/
http://www.appbrain.com/
http://www.appbrain.com/
https://appversions.github.io
https://developer.apple.com/news/?id=12212016b
https://developer.apple.com/news/?id=12212016b
http://www.theguardian.com/world/2013/oct/04/nsa-gchq-attack-tor-network-encryption
http://www.theguardian.com/world/2013/oct/04/nsa-gchq-attack-tor-network-encryption
https://techcrunch.com/2016/06/14/apple-will-require-https-connections-for-ios-apps-by-the-end-of-2016
https://techcrunch.com/2016/06/14/apple-will-require-https-connections-for-ios-apps-by-the-end-of-2016
https://developer.android.com/about/dashboards/index.html
https://developer.android.com/about/dashboards/index.html
https://developer.android.com/guide/topics/manifest/manifest-element.html
https://developer.android.com/guide/topics/manifest/manifest-element.html
https://developers.google.com/maps/documentation/geocoding
https://developers.google.com/maps/documentation/geocoding
https://support.google.com/googleplay/android-developer/answer/6048248
https://support.google.com/googleplay/android-developer/answer/6048248
https://developer.android.com/tools/help/monkey.html
https://developer.android.com/tools/help/monkey.html
https://android-developers.googleblog.com/2013/10/google-play-services-40.html
https://android-developers.googleblog.com/2013/10/google-play-services-40.html
http://www.whitehouse.gov/sites/default/files/omb/memoranda/fy2007/m07-16.pdf
http://www.whitehouse.gov/sites/default/files/omb/memoranda/fy2007/m07-16.pdf
https://security.googleblog.com/2016/04/protecting-against-unintentional.html
https://security.googleblog.com/2016/04/protecting-against-unintentional.html
http://www.npr.org/2017/03/28/521831393/congress-overturns-internet-privacy-regulation
http://www.npr.org/2017/03/28/521831393/congress-overturns-internet-privacy-regulation
http:AppBrain.com
http:APKPure.com

[45]	 PAN, X., WANG, X., DUAN, Y., WANG, X., AND YIN, H. Dark
Hazard: Learning-based, Large-scale Discovery of Hidden Sensitive
Operations in Android Apps. In Proc. of NDSS (2017).

[46]	 PETSAS, T., VOYATZIS, G., ATHANASOPOULOS, E., POLYCHRON­
AKIS, M., AND IOANNIDIS, S. Rage Against the Virtual Machine:
Hindering Dynamic Analysis of Android Malware. In Proc. of the
European Workshop on System Security (EuroSec) (2014).

[47]	 RAZAGHPANAH, A., VALLINA-RODRIGUEZ, N., SUNDARESAN, S.,
KREIBICH, C., GILL, P., ALLMAN, M., AND PAXSON, V. Haystack:
In Situ Mobile Traffic Analysis in User Space. arXiv preprint
arXiv:1510.01419 (2015).

[48]	 REN, J., RAO, A., LINDORFER, M., LEGOUT, A., AND CHOFFNES,
D. R. ReCon: Revealing and Controlling Privacy Leaks in Mobile
Network Traffic. In Proc. of MobiSys (2016).

[49]	 SENEVIRATNE, S., KOLAMUNNA, H., AND SENEVIRATNE, A. A
Measurement Study of Tracking in Paid Mobile Applications. In Proc.
of ACM WiSec (2015).

[50]	 SONG, Y., AND HENGARTNER, U. PrivacyGuard: A VPN-based
Platform to Detect Information Leakage on Android Devices. In Proc.
of ACM SPSM (2015).

[51]	 TAYLOR, V. F., AND MARTINOVIC, I. Short Paper: A Longitudinal
Study of Financial Apps in the Google Play Store. In Proc. of FC
(2017).

[52]	 TAYLOR, V. F., AND MARTINOVIC, I. To Update or Not to Update:
Insights From a Two-Year Study of Android App Evolution. In Proc.
of ASIACCS (2017).

[53]	 TIAN, Y., LIU, B., DAI, W., UR, B., TAGUE, P., AND CRANOR,
L. F. Supporting Privacy-Conscious App Update Decisions with User
Reviews. In Proc. of ACM SPSM (2015).

[54]	 VALLINA-RODRIGUEZ, N., SUNDARESAN, S., RAZAGHPANAH, A.,
NITHYANAND, R., ALLMAN, M., KREIBICH, C., AND GILL, P. Track­
ing the Trackers: Towards Understanding the Mobile Advertising and
Tracking Ecosystem. In Proc. of the Workshop on Data and Algorithmic
Transparency (DAT) (2016).

[55]	 VIDAS, T., AND CHRISTIN, N. Evading Android Runtime Analysis via
Sandbox Detection. In Proc. of ASIACCS (2014).

[56]	 YANG, Z., YANG, M., ZHANG, Y., GU, G., NING, P., AND WANG,
X. AppIntent: Analyzing Sensitive Data Transmission in Android for
Privacy Leakage Detection. In Proc. of ACM CCS (2013).

16

	Introduction
	Related Work
	Goals and PII Definitions
	PII Considered in This Work
	Threat Model and PII Leaks

	Methodology
	App Selection
	APK Collection
	Interaction and Traffic Collection
	Privacy Attributes
	PII Leaks
	Transport Security
	First and Third Party Communication

	Assumptions and Limitations
	Validation

	Longitudinal Analysis
	A Notable Example: Pinterest
	Summary of Results
	Variations in PII Leaks
	HTTPS Adoption Trends
	Third-Party Characterization
	Summary and Discussion

	Multidimensional Analysis
	Privacy Dimensions
	Combining Dimensions
	Privacy Risk Visualization

	Conclusion
	References

