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Abstract—Is mobile privacy getting better or worse over time? 
In this paper, we address this question by studying privacy leaks 
from historical and current versions of 512 popular Android 
apps, covering 7,665 app releases over 8 years of app version 
history. Through automated and scripted interaction with apps 
and analysis of the network traffic they generate on real mobile 
devices, we identify how privacy changes over time for individual 
apps and in aggregate. We find several trends that include 
increased collection of personally identifiable information (PII) 
over time across most apps, slow adoption of HTTPS to secure 
the information sent to other parties, and a large number of 
third parties being able to link user activity and locations across 
apps. Interestingly, while privacy is getting worse in aggregate, 
we find that the privacy risk of individual apps varies greatly 
over time, and a substantial fraction of apps see little change 
or even improvement in privacy. Given these trends, we propose 
metrics for quantifying privacy risk and for providing this risk 
assessment proactively to help users balance the risks and benefits 
of installing new versions of apps. 

I. INTRODUCTION 

As mobile devices and apps become increasingly present 
in our everyday lives, the potential for accessing and sharing 
personal information has grown. The corresponding privacy 
risks from using these apps have received significant attention, 
not only from users who are at risk [53], but also from 
regulators who enforce laws that protect them [25]. 

A key problem with the above trend is that once personal 
information is shared with another party, it can potentially 
be linked to that individual forever. Thus, monitoring privacy 
implications of mobile apps should not focus just on a snapshot 
of their behavior, but also on how their behavior evolved over 
time. In fact, because apps are regularly updated with new 
versions (as frequently as once a month on average [12], [19]) 
that fix bugs, add improve performance, add features, and even 
change what is shared with other parties, it is essential to study 
app behavior across versions. 

In this paper, we are the first to conduct a comprehensive, 
longitudinal study of the privacy implications of using multiple 
versions of popular mobile apps across each app’s lifetime. We 
focus specifically on Android apps1 and identify when person­
ally identifiable information (PII) appears in Internet traffic 
while using them. Through hybrid automated and scripted 
interactions with 512 apps (across 7,665 distinct versions), we 
compile a dataset that informs what information is exposed 
over the Internet (identifiers, locations, passwords, etc.), how 

it is exposed (encrypted or plaintext), and to whom that 
information is exposed (first or third party). We analyze this 
dataset to understand how privacy has changed over time (for 
individual apps and in aggregate across popular apps), why 
these trends occur, and what their implications are. 

Our work substantially extends existing mobile privacy 
research (e.g., [23], [42], [47], [48]) by focusing on multiple 
versions of apps instead of individual versions. Moreover, most 
existing longitudinal studies infer the privacy implications by 
monitoring library use, permission requests, and by using static 
analysis [12], [15], [51], [52]. We differ from this work in that 
we detect actual PII transmitted in network traffic to other 
parties while an app is used. 

Gathering a longitudinal view of the privacy implications 
of using apps over time poses the following challenges: 

•	 Monitoring app behavior across versions for large numbers 
of apps requires a methodology that scales accordingly. 
Manually logging into apps and interacting with them can 
comprehensively trigger privacy leaks, but this is infeasible 
at scale. Instead, we use a semi-automated approach that in­
corporates random interactions [32] and manually generated 
scripts for logging into apps. 
•	 We need a way to identify the privacy risks for each 

app. To this end, we analyze network traffic2 generated 
by the mobile device running the app, using both simple 
text matching on known identifiers and machine-learning 
inference [48] to extract identifiers not known in advance. 
•	 We need a systematic, configurable, and meaningful way 

to compare the privacy guarantees of the apps (and their 
versions). To this end, we identify several metrics that 
provide insight into privacy trends and implications. 

Using the above approach, our study is the first to reveal 
the following key findings regarding the privacy implications 
across multiple versions of popular apps: 

On average, privacy has worsened over time. We analyze pri­
vacy risks along multiple attributes (what PII is leaked, to how 
many destinations, and whether it is encrypted) independently 
and in combination. We find that apps increasingly leak more 
types of PII and to more domains over time, but HTTPS 
adoption has seen slow growth. When combining these factors, 
we find that about a quarter of apps (26.3%) are getting better 
with respect to privacy, but twice as many are getting worse 

2We focus only on IP traffic. A recent study [42] showed that less than 1% 
1The only platform where we can access historical versions of apps. of leaks occur over non-IP traffic (i.e., SMS). 



over time (51.1%), with only a small fraction (9.5%) staying 
the same or exhibiting highly variable privacy risks between 
versions (13.1%). 

Snapshots of privacy leaks from single versions of apps are 
incomplete. For all but 7% of the apps in our dataset, studying 
one version will miss PII gathered across all versions of the 
app. We also find that the set of PII leaked by an app changes 
frequently across versions. 

HTTPS adoption is slow. Unlike recent trends in HTTPS 
adoption for Web traffic, we find that apps are slow to adopt 
HTTPS. In fact, from the moment we see that a domain first 
starts supporting HTTPS, it takes five years for at least half 
of the apps in our study to start using it. Overall, the fraction 
of flows using HTTPS has remained nearly constant over the 
time period covered by our study. 

Third-party tracking is pervasive. While previous work using 
small snapshots of time demonstrates that third parties collect 
substantial amounts of PII, we find the problem to be even 
worse when considering PII leaks across versions. We find that 
there is little correlation between the amount of traffic to a third 
party and the volume of PII it leaks. In addition, we analyze 
how third parties (among which several are not highlighted in 
previous studies) collect locations, email addresses and gender 
along with tracking identifiers, enabling fine-grained tracking 
of users and their daily activities. 

In summary, our key contributions are: (1) a large-scale 
privacy analysis across multiple apps and app versions, (2) a 
dataset of network traffic generated by running apps, along 
with labels describing the PII contained in them, and (3) 
an analysis of the origins and privacy implications of these 
information leaks. Our dataset is available via an interactive 
web interface: 

https://recon.meddle.mobi/appversions/ 

II. RELATED WORK 

A large body of related work investigates the problem of 
privacy from mobile apps and the network traffic they generate. 
They focus on identifying personal information that is (or 
might be) exposed to other parties over the Internet, using 
one or more of the following complementary approaches. 

Static analysis. This technique entails analyzing an app’s 
bytecode using symbolic execution [56] and/or control flow 
graphs [10], [11], [22]. Several academic studies leverage static 
analysis to audit third-party library use [17], [49], to inspect 
app permissions and their associated system calls [11], [40], 
and to analyze HTTPS usage [24], [26]. This approach is 
appealing because it enables large-scale app analysis without 
the overhead of running or interacting with apps. However, 
static analysis may identify privacy leaks in code that is 
rarely or never executed; further, it cannot analyze dynamically 
loaded code (which may constitute as much as 30% of code 
in benign apps [42]). 

Dynamic analysis. In contrast to static analysis, dynamic 
analysis tracks system calls and access to sensitive information 
at runtime. In this approach, the runtime (e.g., the OS) is in­
strumented to track memory references to targeted information 
(e.g., PII) and taint the memory it is copied into. This taint 

propagates as the information is copied and mutated; ultimately 
when it is copied to a sink (e.g., network interface) it is 
flagged (e.g., as a PII leak). TaintDroid [23] is commonly used 
for dynamic analysis of Android apps.3 While taint tracking 
can ensure coverage of all PII leaks (even those that are 
obfuscated), it requires some form of interaction with running 
apps to trigger leaks. Typically, researchers use automated “UI 
monkeys” [32], [43] for random exploration or more structured 
approaches [16], [36] to generate synthetic user actions; how­
ever, prior work showed that this can underestimate PII leaks 
compared to manual (human) interactions [48]. 

Network traffic analysis. This approach relies on the obser­
vation that PII exposure almost always occurs over Internet 
traffic. Thus, network traffic analysis focuses on identifying 
PII contained in app-generated IP traffic [39], [47], [48], [50]. 
The benefit of this approach is that it works across platforms 
without the need for custom mobile OSes or access to app 
source code, and thus is easy to deploy to user devices for 
the purpose of real-time analysis and detection of PII leaks. 
A drawback is that it requires the ability to reliably identify 
PII (which may be encrypted and/or obfuscated) in network 
traffic. All of the above approaches support TLS interception to 
access plaintext traffic to search for PII. The approaches differ 
in what they search for: most on-device approaches search for 
known PII stored on the device [39], [47], [48], [50], whereas 
ReCon [48] also uses a machine-learning approach to infer 
a broader range of PII that includes user input. All of these 
approaches are susceptible to missing PII leaks from apps that 
use encryption that defends against TLS interception, or that 
use non-trivial obfuscation of PII [21]. 

Longitudinal analysis. Some existing longitudinal studies use 
static analysis to study how apps across several categories [52], 
and finance apps in particular [51], change over time in terms 
of Android permission requests and security features and 
vulnerabilities, including HTTP(S) usage. Similarly, Book et 
al. conduct a longitudinal analysis of ad libraries [15], but 
they focus only on permission usage. While partially sharing 
the goals of our work, these studies do not actually execute 
and analyze apps, and thus are subject to both false positives 
(by looking at permissions and code paths that are not used) 
and false negatives (by not covering code that is dynamically 
loaded at runtime). 

To the best of our knowledge, our study provides the 
first longitudinal analysis of privacy risks in network traffic 
generated by running app versions that span each app’s 
lifetime. Compared to the related work presented above, our 
work complements and substantially extends it: the primary 
distinction is that we study privacy across versions (and thus 
over time), whereas most previous work consists of one-off 
studies that focus on individual versions of apps available at 
a certain moment in time. Moreover, since we monitor the 
traffic exchanged by actual apps running on real devices, we 
overcome some of the limitations of the static and dynamic 
analysis approaches described above. 

III. GOALS AND PII DEFINITIONS 

The primary goal of this work is to understand the privacy 
implications of using and updating popular Android apps over 

3A limitation is that it does not support recent Android OS versions. 
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Category PII Type 
Unique Identifier (ID) Android advertising ID (Ad ID), IMEI, Android ID, 

MAC address (MAC Addr), IMSI, Google service 
framework ID (GSF ID), SIM card ID (SIM ID), 
Hardware serial number (HW Serial) 

Personal Information (User) email address, first name, last name, date of birth 
(DOB), phone number, contact information, gender 

Location GPS location (Location), zip code (Zip) 
Credential username, password 

TABLE I: List of PII categories and types. 

time. As privacy is a top-cited reason for why users do not 
install app updates [53], studying PII leaks from apps across 
versions can help users make more informed decisions. Fur­
thermore, this information can assist regulators when auditing 
and enforcing privacy rules for mobile apps [25]. An explicit 
non-goal of this work is coverage of all versions of all apps; 
rather, we focus on a diverse set of 512 popular Android apps. 

A. PII Considered in This Work 

Personally identifiable information (PII) is a generic term 
for describing “information that can be used to distinguish or 
trace an individual’s identity" [37]. In this paper, we define 
PII to be a subset of this, based on textual data that can be 
gathered and shared by mobile apps. Specifically, we consider 
PII listed in the “PII Type” column in Table I. This list is 
based on a combination of PII accessible from Android APIs, 
user-supplied information, and inferred user information that 
leaked in network traffic as reported in previous work [39], 
[47], [48], [50]. 

B. Threat Model and PII Leaks 

We define privacy risks and PII leaks in the context of the 
following threat model. We assume that the adversary seeks to 
collect PII from an app running on a user’s mobile device. 
The adversary is any party that receives this information 
via network connections established when running an app, 
including the following: 

•	 App provider, i.e., the company that releases an app, also 
referred to as the first party. 
•	 Other parties, e.g., the ones that are contacted by an app as 

part of advertising, analytics, or other services, also referred 
to as a third party. 
•	 Eavesdroppers, who observe network traffic (e.g., an ISP, 

an adversary listening to unencrypted WiFi traffic, or one 
that taps an Internet connection). 

We define two goals of an adversary that motivate our 
definition of PII leak as a privacy risk: 

Data aggregation. This occurs when first or third parties collect 
information about a user over time, including which apps they 
use, how often they use them, where they are located when they 
do so, etc. The risk from this kind of information gathering 
is that it can be used to build rich profiles of individuals, 
which can in turn be used for targeted advertising [14], price 
discrimination [35], and other differential treatment driven by 
algorithms using this information [34]. 

Eavesdropping. In this scenario, the adversary learns a user’s 
information passively by observing network traffic (e.g., plain-
text PII leaks). This presents a privacy risk to users in that it 

Number of APKs [unique apps] 7,665 [512 ] 
Versions per app (mean) 15.0 
Versions per app (median) 14 
HTTP(S) flows per app (mean) 94.7 
Total HTTP(S) traffic 33.6 GB (pcap format) 
Total number of flows 675,898 
Unique third-party domains 1,913 
APK release date range 8 years 

TABLE II: Dataset description. 

constitutes a third party for which the user did not explicitly 
consent to collect data. Furthermore, it can constitute a security 
risk when information exposed to unauthorized third parties 
includes credentials (i.e., username and password). 

We define a PII leak to be any case where information 
listed in Table I is transmitted to first or third parties, with 
the exception of credentials that are sent to first parties via 
encrypted channels. The latter is excluded because it is exclu­
sively provided intentionally by a user. We cannot in general 
determine whether other cases of PII are intentionally disclosed 
to other parties (and/or required for app functionality), so we 
include them in our analysis for completeness. Note that the 
goal of this work is to increase privacy transparency, so we 
leave the decisions as to what constitutes an unintentional and 
important leak to the users of our dataset and analysis. For 
example, our interactive tool [8] allows users to set preferences 
for the importance of each type of leak. 

IV. METHODOLOGY 

In this paper, we identify and analyze PII leaks using 
network traffic analysis on flows generated by automated and 
scripted interactions with multiple versions of popular Android 
apps. Our methodology consists of four high-level steps: (1) 
selecting apps for analysis, (2) collecting historical and current 
versions for each app, (3) interacting with these APKs (i.e., 
unique versions of each app), and (4) identifying and labeling 
PII leaks. Table II summarizes our dataset. We conclude with 
a description of the assumptions, limitations, and validation of 
our approach. 

A. App Selection 

We selected 512 apps for analysis in this study, using the 
following criteria. 

•	 Popularity. We started with the set of apps that was either 
in the top 600 popular free apps according to the Google 
Play Store ranking, or in the top 50 in each app category, as 
of January 10, 2017. We exclude apps that require financial 
accounts or verified identities (e.g., bank and credit card 
accounts, social security numbers, etc.). 
•	 Multiple versions. As our study is longitudinal across 

versions, we considered only apps with more than three ver­
sions compatible with our analysis testbed, which includes 
devices running Android 4.4.4 and Android 6.0. These OS 
versions run on approximately 50% of Android devices as 
of May, 2017 [28]. 
•	 Amenable to traffic analysis. As discussed in Section IV-C, 

we collect both unencrypted (HTTP) traffic and the plaintext 
context of encrypted (HTTPS) traffic via TLS intercep­
tion [6]. We exclude 26 apps (e.g., Choice of Love, Nokia 
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Health Mae and Line Webtoon - Free Comics) where most 
versions crash or hang when opened, or that do not permit 
TLS interception as explained in Sec. IV-E. 

B. APK Collection 

After identifying apps to analyze, we gather their historical 
and current versions, and label their release dates. 

Finding app versions. Until recently, it was not generally 
known how to access any version of an app except for the most 
recent one from the Google Play Store. However, Backes et 
al. [12] reported an undocumented API of the Google Play 
Store that provides downloads of arbitrary version of an app 
(i.e., its Android Package Kit, or APK, file), as long as the 
app’s version code4 is provided. The authors identify several 
patterns, which we build upon, to identify app version codes. 
From our 512 selected apps, we downloaded 7,665 APKs. 
Some apps have hundreds of versions, and testing all of them 
would be prohibitively expensive. Thus, in cases where there 
are more than 30 app versions, we sort them chronologically 
and pick 30 versions that are evenly distributed. 

Inferring APK release date. The API that we use for 
downloading APKs does not provide the release date for each 
app, information that is essential for understanding how app 
behavior changes over time. To address this, we leverage the 
fact that developers who release a new version of an app must 
update the version code in several files inside the APK.5 We 
thus infer the release date based on the modification time of 
these files, which assumes that the developers’ OS timestamps 
correctly. Of the 7,665 APKs we downloaded, 429 APKs 
had timestamps that were obviously incorrect (e.g., a date 
before Android’s first release on August 21, 2008 or a date 
in the future). For these cases, we manually checked release 
dates with several third-party services [1]–[3], [7] that provide 
release dates for the last three years. 

To understand how well our heuristics work, we manually 
cross-validated the release dates of 77 APKs by comparing 
the file modification times and release dates found using the 
above third-party services [1]–[3], [7]). We find that 88% of 
inferred release dates differ with the public record by less than 
a week, and only 2 cases have a difference of 30 days or 
more. We investigated these last two cases and found that the 
difference in release date is likely due to a developer error, 
not an incorrect inference. Namely, these are cases where the 
developer released a new version of the app without updating 
the version string in the APK. As a result, the date from 
the third-party services did not correspond to the APK we 
investigated. The average interval between each update across 
apps is 47 days, with a standard deviation of 181. Note that 
21% of the 512 apps first appeared before January 1st, 2012 
and exactly half appeared before August 22nd, 2014. 

C. Interaction and Traffic Collection 

In this step, we interact with each APK and collect the 
network traffic generated as a result from these interactions. 

4An integer value that can be incremented by arbitrary values from one 
version to the next. 

5AndroidManifest.xml and META-INF/MANIFEST.MF 

Test environment. We conduct experiments using five 
Android devices: one Nexus 6P phone and one Nexus 5X 
phone, both with Android 6.0.0; and three Nexus 5 phones 
with Android 4.4.4. We use real Android devices instead 
of emulated ones to avoid scenarios where apps and third-
party libraries detect the analysis environment and modify 
their behavior accordingly. It has been shown that emulators 
are easy to fingerprint [46], [55], a fact that is exploited for 
example by ad libraries to only show ads and leak data when 
executed on a real device [45]. 

Interaction with apps. Measuring PII leaks from apps re­
quires interacting with them, and the gold standard for doing so 
is via natural human interaction. However, manually interact­
ing with each of the selected 512 apps (7,665 unique versions) 
is not practical. Thus, we use Android’s UI/Application Exer­
ciser Monkey [32], a tool that automatically generates pseudo-
random UI interaction events (swipes, taps, etc.) for an app. 
While a number of other approaches for automation have been 
proposed, a recent study [18]) showed that Monkey exhibited 
good coverage of privacy leaks (and sometimes found more 
leaks) than other automated tools. Completely random events 
would prevent apples-to-apples comparison among versions 
of the same app, so we specify the same random seed that 
generates the sequence of events for interaction with all of 
an app’s versions.6 Specifically, we use Monkey to generate 
approximately 5,000 user events by specifying five seeds for 
1,000 events each.7 We use 5,000 events because it allows us 
to test a large number of APKs in a reasonable amount of time, 
and because previous work [41] found that longer interaction 
times do not substantially impact the set of PII that leaked. 
We cross-validate our dataset with a human interactions in 
Section IV-F. 

Many apps (75 in our study) require users to log in 
with a username and password before allowing access to app 
functionality. Thus, failure to login can potentially severely 
underestimate the amount of PII leaked. We created accounts 
for testing with each of these apps, but manually logging into 
each version is prohibitively expensive. We avoided this by 
recording the login events in one version and replaying the 
events in other versions, using the RERAN [27] tool. We 
conduct both the record and replay of login actions on the 
same device to ensure a consistent UI layout. 

Recording network traffic. For each experiment, we run one 
app at a time. To collect network traffic while interacting with 
the apps, we redirect the traffic to a proxy server that records 
plaintext traffic and that uses TLS interception (using mitm­
proxy [6]) to record the plaintext content of HTTPS requests. 
For apps that prevent TLS interception via certificate pinning, 
we use JustTrustMe [5], a tool that modifies Android in such 
a way that certificate validation using built-in OS libraries 
always succeeds. We test such apps only on devices running 
Android 4.4.4 (the Nexus 5 devices) because JustTrustMe does 
not support later OS versions. 

6Note, however, that we do not explicitly account for changes in UI or 
functionality over time because doing so requires manual analysis and is 
infeasible at this scale. However, we rely on the randomness of Monkey to 
probabilistically exercise UIs and functionality as they change. 

7Batches of events were required to allow sufficient time for apps to process 
interaction events; failure to do so led to crashes or exiting before the events 
complete. 
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D. Privacy Attributes 

After the completion of the experiments, we analyze net­
work traffic according to the following three privacy attributes 
to assist in our subsequent analysis of network flows. 

1) PII Leaks: We label each flow with the PII that it 
leaks in two phases. First, we use simple string matching to 
identify PII that is static and known in advance (e.g., unique 
identifiers, personal information, zip code, and credentials). 
This approach, however, cannot be reliably applied to dynamic 
values (e.g., fine-grained GPS locations) and to data not 
directly input into an app (e.g., gender). 

For these cases, we use ReCon [48], which uses machine-
learning to infer when PII is leaked without needing to rely 
on exact string matching. The key intuition behind ReCon is 
that PII is often leaked in a structured format (e.g., key/value 
pairs such as password=R3Con or adId:93A48DF23), and 
that the text surrounding PII leaks can become a reliable 
indicator of a leak. ReCon uses a machine-learning classifier to 
reliably identify when the contents of network traffic contain a 
leak (e.g., in a simple case, looking for password=), without 
needing to know the precise PII values. We manually validated 
all cases of inferred PII leaks to ensure their correctness. 

2) Transport Security: This study focuses exclusively on 
HTTP and HTTPS traffic. In addition to the standard ports 80 
and 443, we also include port 8080 for HTTP traffic and ports 
587, 465, 993, 5222, 5228 and 8883 for HTTPS traffic. We 
find that only 0.5% of the flows in our dataset use other ports. 

3) First and Third Party Communication: An important 
privacy concern is who receives the PII. In a network flow, 
this corresponds to the owner of the traffic’s destination. We 
distinguish between first-party second-level domains (hereafter 
simply referred to as domains), in which case the developer of 
an app also owns the domain, and third-party domains, which 
include ad networks, trackers, social networks, and any other 
party that an app contacts. For instance, facebook.com is a 
first party to the Facebook app, but it is a third party to a game 
app that uses it to share results on Facebook. 

Our domain categorization works in two steps. We first 
take all the domains that we observed in our experiments and 
build a graph of these domains, where each node represents a 
domain and each edge connects domains belonging to the same 
owner. We then match the owner of each connected subgraph 
of domains to the developer of an app and consequently label 
them as first-party domains for that app. Our approach is sim­
ilar to related work focusing on identifying the organizations 
behind third-party ad and tracking services [54], which found 
that current domain classification lists are incomplete and too 
web-centric to accurately identify mobile third-party domains. 

Ownership of domains. To identify a domain’s owner, 
we leverage WHOIS information, which contains the name, 
email address and physical address of the registrant unless the 
registration is protected by WHOIS privacy. As a preprocessing 
step, we first discard any WHOIS entries that are protected 
by WHOIS privacy. We then connect domains as belonging 
to the same owner based on (1) the registrant’s name and 
organization, and (2) their email (excluding generic abuse-
related email address from the registrar). This method allows 
us to group together disparate domains that belong to the same 

owner, e.g., we can identify instagram.com, whatsapp.com 
and atlassbx.com as Facebook-owned services. 

Ownership of apps. To identify the developer of an app, we 
use information from the Google Play Store listing, which con­
tains the name of the developer, and optionally their website, 
email address and physical address. Some developers use third-
party services (e.g., Facebook pages) in lieu of hosting their 
own website, or free email providers, such as Gmail. We filter 
out such cases from our analysis. Since Google recommends 
using “Internet domain ownership as the basis for [...] package 
names (in reverse)” [29], in the simplest case the package 
name embeds one of the developer’s domains. Otherwise, we 
compare the developer information from Google Play against 
WHOIS records for a domain as detailed below. 

First-party identification. We identify traffic to a domain 
as first party when information about the owner of the domain 
matches information about the owner of an app. We label any 
domain collected from the app’s Google Play Store listing as 
first party, as well as the domain in the app’s package name. 
We also label as first party any domains that are registered 
to the same name, organization, physical address, or email 
address as the ones listed for the developer in Google Play. 
To account for any inconsistencies in the representation of the 
physical addresses, we first convert them with geopy [4] to 
their coordinates through the Google Geocoding API [30]. 

Third-party identification. We label as third party all the 
domains that have not been labeled as first party according to 
the previous paragraph. This includes ad and tracker domains, 
content hosting services or any third-party domain an app 
contacts to fetch content.8 Our classification is skewed towards 
finding potential third-party services; we validate parts of our 
approach in Section IV-F. 

E. Assumptions and Limitations 

Our approach uses several assumptions and heuristics to 
inform our longitudinal analysis of privacy across app versions. 
We now discuss these assumptions and the corresponding 
limitations of our study. 

Coverage. We do not cover all apps or all app versions, 
but rather focus on a set containing many versions of popular 
apps across multiple categories of the Google Play Store. 
We believe this is sufficient to understand privacy trends for 
important apps, but our results provide at best a conservative 
underestimate of the PII exposed across versions and over time. 

TLS interception. TLS interception works when apps trust 
our self-signed root certificates, or when they use built-in 
Android libraries to validate pinned certificates. We are also 
constrained by JustTrustMe. As a result, we cannot intercept 
TLS traffic for 11 apps that possibly use non-native TLS 
libraries (e.g., Dropbox, MyFitnessPal, Snapchat, Twitter). 

Obfuscation. Due to the inherent limitation of network 
traffic analysis, we do not detect PII leaks using non-trivial 
obfuscation, as it requires static or dynamic code analysis. 

8This includes domains provided to their customers by Google App Engine 
or Amazon Web Services. We argue that even if the services running on these 
platforms belong to a first party, communication to these platforms are still 
third-party communication because developers do not have ownership of, or 
full control over, the platform. 
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In such cases, we will underestimate PII leaks. However, we 
do handle non-ASCII content encodings and obfuscation. For 
the former, we examine the Content-Encoding field in the 
HTTP header, and decode gzip flows (2.5% of total flows). 
For the latter, we apply standard hash functions (MD5, SHA1, 
SHA256, SHA512) on our set of known PII, and match on the 
result. This yielded 4,969 leaks in 4,251 flows. 

Testing old versions today. We assume old versions of apps 
exhibit the same behavior today as when they were initially 
released. However, for a variety of reasons (e.g., different 
behavior of the domain contacted, or the domain no longer 
is registered), this might not always be true. It is likely that 
this means we will underestimate the PII leaked by apps (e.g., 
if a domain does not resolve to an IP). 

Because we could not run old versions of these apps 
at the time they were released, we must use heuristics to 
determine whether our analysis might be impacted by such 
factors. During the course of our experiments, we found that 
the behavior of leaks and domains contacted did not change 
significantly over several months; as such, we do not think this 
an issue for recently released app versions. 

For older versions of apps, we assume that DNS and 
HTTP failures potentially indicate apps that no longer function 
similarly to when they were first released. Thus, we exclude 
APKs for which more than 10% of DNS requests fail or 10% 
HTTP responses are error codes (4xx or 5xx response codes). 
This removed 15 apps (2.8% of the original selected apps). 

F. Validation 

To improve confidence in the accuracy and representative­
ness of our measurements, we validated several critical aspects 
of our approach as follows. 

Automated interaction. A limitation of automated interac­
tions with apps is that they may not elicit the same privacy-
related behavior as user interactions. To estimate this gap, 
we compare our results with those from the natural human 
interactions made available by the Lumen [47] project, which 
provides on-device privacy analysis and has thousands of users. 
Lumen maps network flows to the source APKs and destination 
domains, and also labels any PII that matches those stored 
on the device. We found 983 APKs that appear in both our 
and Lumen’s datasets; of those there are 380 APKs in which 
both datasets reveal PII leaks. The latter corresponds to 122 
distinct apps (24% of the 512 apps in this study) that cover 
23 app categories. On average, our dataset missed 0.41 PII 
types per APK found by Lumen, with a range of 0–3 missing 
types from automated tests. The most frequently missed types 
include Android ID (52%), email (15%), MAC address (12%) 
and IMEI (11%). Similarly, the number of unique domains and 
protocol pairs per app missed by our automated tests compared 
to Lumen is 2.36 (standard deviation of 4.42). On the other 
hand, Lumen missed on average 1.38 PII types per APK that 
our approach found (with a range of 0—6 types). The most 
common missed types are advertiser ID (27%), hardware serial 
(18%), Android ID (15%) and Location (15%). In summary, 
human interactions find different PII leak types and traffic to 
different domains, as expected; however, the gap between these 
two datasets is relatively small on average. As a result, we 

believe our analysis covers most of the behavior one would 
expect to see in the wild. 

Repeatability. A potential problem of our study is that our 
automated tests use only one round of 5,000 interaction events 
for each APK. It is unclear a priori whether this approach will 
yield similar results over time, and thus might be biased in 
some way. To test whether this is the case, we repeated the 
experiments for the five apps (105 APKs) that have a large 
variance in leaked PII types across versions. In particular, we 
performed a pairwise comparison between the PII types leaked 
by different versions of each app and selected the apps with 
the largest number of distinct sets of PII types across versions. 
For each APK, we performed the same experiment each day 
at approximately the same time of day, for ten days. After 
we collect the traffic ten times, we compare the number of 
unique PII leak types, the number of domains contacted, and 
the fraction of flows using HTTPS. We find that the change in 
results over repeated experiments is small: for more than 90% 
of tested APKs, the variation across experiments is generally 
no more than one PII type, two domains, and a fraction of 
HTTPS traffic of no more than 6.0%. 

Domain categorization. Our approach to distinguish be­
tween first-party and third-party domains largely relies on 
WHOIS data, which is known for its incompleteness and noise. 
To validate our approach we manually verified the domain 
classification for a subset of 20 apps, which we selected 
randomly from all apps that leak PII and contacted more than 
one domain in our experiments. We inspected 550 app/domain 
pairs (343 unique domains), 60 of which our approach labeled 
as first-party domains and the remaining 490 as third-party 
domains. We find that all of these first-party labels are indeed 
correct, with only a small number of false negatives: our 
approach missed 5 first-party domains for 3 apps. Overall, 
we find those results encouraging as our study is focused on 
analyzing third-party services. 

V. LONGITUDINAL ANALYSIS 

This section presents our analyses and findings regarding 
changes in PII leaks across app versions and time. Section V-A 
presents the case of a single notable app (Pinterest). In Sec­
tion V-B, we provide a summary of all the PII leaked across 
all APKs in our dataset. Section V-C focuses on how specific 
types of PII are leaked over time for each app. We analyze 
trends in HTTPS adoption and third-party destinations in 
Secs. V-D and V-E. Section V-F summarizes our key findings. 

A. A Notable Example: Pinterest 

To demonstrate our analysis of privacy attributes, we use 
the Pinterest app as an in-depth example. In Figures 1a and 1b 
we show how PII leaks and network flows with third-party 
services change in the Pinterest app across different versions.9 

In the plots, each app version is identified by a different version 
code on the x-axis, sorted in ascending chronological order. 

Figure 1a shows how many times each PII type is leaked 
across all network flows for each version, where the y-axis 
for each timeseries represents the number of times it is leaked 
during an experiment. The number below the PII type is the 

9Similar plots for every app in our dataset can be found online [8]. 

6 



Password
2

1st/HTTP

1st/HTTPS

3rd/HTTP

3rd/HTTPSGender
3

Location
4

Android ID
232

GSF ID
1

2 3 4
2

0
3

2
7

1
3

0
1

4
0

2
5

0
2

6
0

2
0

1
6

0
3

1
0

2
6

0
4

0
5

2
6

0
6

0
6

2

Version

Ad ID
12

(a) PII types, by destination type and protocol. 

pinterest(235)
HTTP

HTTPS
google(3)

flurry(9)

branch(4)

crashlytics(2)

adjust(2)

yoz(3)

pinimg(3)

doubleclick(2)

target(2)

2 3 4
2
0
3

2
7
1

3
0
1

4
0
2

5
0
2

6
0
2
0
1

6
0
3
1
0
2

6
0
4
0
5
2

6
0
6
0
6
2

Version

facebook(1)

(b) Domains, by protocol 

Fig. 1: Example app privacy attributes for Pinterest. The 
x-axis corresponds to chronological versions of the app. In (a), 
the y-axis of each stacked bar plot is the number of times a 
version leaks a PII type, and the bar plots are colored according 
to the domain type and the communication channel; in (b), the 
y-axis of each stacked bar plot is the number of times a version 
contacts a domain, and the bar plots are colored according to 
protocol. For (a) and (b), the number to the left of each y-
axis is the maximum y value across all versions. For more 
examples for other apps, see [8]. 

maximum number of times any version of Pinterest leaked 
the PII type. The stacked bars are colored according to the 
domain type and protocol. The plot shows that the app sends 
user passwords to a third party10 and starts leaking gender, 
location, advertiser ID and GSF ID in more recent versions. 
In addition, the frequency of Android ID leaks increases by 
two orders of magnitude. 

B. Summary of Results 

This section focuses on a summary of PII leaked across 
all versions (APKs) of all apps that we tested, and their 
implications for privacy risks over time. 

Table III depicts our results, where each row is a PII 
type, and each column counts the number of instances falling 
into a given category. The table is sorted in descending order 
according to the number of apps leaking each type. 

The first two columns show the number of apps and APKs 
leaking each PII type. In line with previous work [48], we find 
that the most commonly leaked PII types are unique identifiers 
(more than half of all apps leak an advertiser ID and/or 
hardware serial number) and locations (53.1% of apps). We 

10We responsibly disclosed this security bug, which Pinterest confirmed and 
fixed in later versions not included in this study. 

nonetheless still find a substantial fraction of apps (more than 
10%) leaking highly personal and security-sensitive informa­
tion such as email addresses (often to analytics services such 
as kochava.com and crashlytics), phone numbers (e.g., col­
lected by crashlytics, segment,io, and apptentive), and gender. 
However, when focusing on APKs (2nd column), we find that 
substantially lower fractions leak each PII type—indicating 
that most PII types are not leaked in every app version. We 
explore this phenomenon in more detail in Section V-C. In the 
table we can also see that there are 13 apps leaking passwords: 
6 apps leak passwords in plaintext, and 7 apps send passwords 
to third-party domains. Of these apps, in the latest version we 
tested (not shown in the table), we discovered that 4 apps still 
leak plaintext passwords (Meet24, FastMeet, Waplog, Period 
& Ovulation Tracker).11 

The next group of columns focuses on the number of 
apps and APKs leaking each data type to a first party, either 
via HTTP or HTTPS. Here we find that there is no clear 
pattern for HTTPS prevalence for PII leaks to first parties, 
except for a clear (and easily explained) bias toward password 
encryption. When compared with the third column group 
(“Leaks to Other Party”), it is clear that the vast majority of 
instances of PII leaks go to third parties (with the exception 
of passwords, with small but nonzero occurrences). This is 
likely explained by the fact that PII is typically harvested 
to monetize users via targeted ads, often over HTTPS. This 
result is a double-edged sword: encryption improves privacy 
from network eavesdroppers, but it also frustrates attempts by 
stakeholders (e.g., users, researchers, and regulators) to audit 
leaks. 

To understand whether certain categories of apps are rela­
tively better or worse for privacy, we grouped them by category 
as reported in the Google Play store.12 Table IV provides 
results for the top five and bottom five categories in terms 
of the average number of PII types that are leaked by apps in 
the category. We find that the categories that leak the largest 
number of PII types or cases (and contact the most third 
party domains) include Lifestyle & Beauty, Games, Finance, 
Entertainment and Dating, while Art & Design and Events 
leak the fewest. With the exception of Finance, the apps that 
leak the most PII types also send a significant fraction of their 
traffic (34–47%) without encryption, thus exposing this PII to 
network eavesdroppers. 

C. Variations in PII Leaks 

Since privacy risks across versions of an app rarely stay 
the same, a study that looks into a single version of an app is 
likely to miss PII leaks affecting a user that regularly uses and 
updates the app. In this section, we first quantify how many 
PII leaks previous work may miss by focusing on one version, 
and then we quantify how the frequency of PII leaks changes 
across versions and time. 

PII leaks across versions. In Figure 2a we show the CDF 
describing the minimum, average, and maximum number of 
distinct PII types leaked by individual apps across all their 
versions (Min, Average, Max curves); and the CDF describing 

11We responsibly disclosed these leaks to the developers. 
12We only used the category for the most recent version of the app we 

tested, even if the app was in a different category in a previous version. 

7 

http:kochava.com


#Apps (%Apps) #APKs (%APKs) 
Leaks to First Party Leaks to Other Party 

HTTP HTTPS HTTP HTTPS 
#Apps #APKs #Apps #APKs #Apps #APKs #Apps #APKs 

Overall 505 7611 - - - - - - - -
Ad ID 314 (62.2%) 2,270 (29.8%) 23 115 32 227 149 700 282 2,037 
Location 268 (53.1%) 1,577 (20.7%) 27 258 41 301 96 450 209 778 
HW Serial 254 (50.3%) 1,157 (15.2%) 10 81 21 154 28 170 227 832 
IMEI 167 (33.1%) 1,597 (21.0%) 45 443 32 250 62 505 123 1,073 
Android ID 124 (24.6%) 1,225 (16.1%) 18 163 28 272 54 423 104 957 
GSF ID 108 (21.4%) 504 (6.6%) 0 0 9 68 0 0 99 436 
MAC Addr. 71 (14.1%) 649 (8.5%) 8 105 12 116 38 307 25 173 
Gender 65 (12.9%) 257 (3.4%) 6 68 5 16 35 106 42 134 
Email 43 (8.5%) 280 (3.7%) 12 97 21 124 3 19 14 58 
Password 13 (2.6%) 84 (1.1%) 6 48 N/A N/A 0 0 7 36 
Last Name 6 (1.2%) 37 (0.5%) 0 0 2 15 0 0 4 22 
First Name 6 (1.2%) 37 (0.5%) 0 0 2 15 0 0 4 22 
PhoneNo. 3 (0.6%) 18 (0.2%) 0 0 2 15 0 0 2 7 
SIM ID 2 (0.4%) 9 (0.1%) 2 9 0 0 0 0 0 0 

TABLE III: Summary of PII types leaked by apps/APKs, sorted by number of apps. The majority of apps and APKs leak 
at least one PII type. The fractions for the APKs are significantly lower than the ones for the apps, indicating that not every 
version leaks PII. Unique IDs and locations are the most common leaks across apps. Unique IDs are leaked to other parties 
much more often than to the first party, given the free monetizing model using ads. There are also 13 cases of password leaks. 
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Fig. 2: Privacy trends by PII type and severity across versions and over time. 

App Category Apps APKs #PT #PI #3PD %S 
Food & Drink 2 50 2.9 26.3 7.1 52.7 
Dating 6 108 2.3 38.4 10.0 60.7 
Lifestyle & Beauty 9 137 2.0 40.9 10.7 65.7 
Games 76 1231 2.0 70.8 9.7 61.2 
Finance 3 28 1.9 42.3 8.2 96.8 
... Auto & Vehicles 7 122 0.8 4.6 8.8 84.9 
Weather 10 177 0.8 88.5 7.3 47.7 
Libraries & Demo 4 51 0.7 29.6 4.1 82.2 
Art & Design 6 101 0.7 7.7 5.2 69.3 
Events 6 104 0.6 7.9 5.7 95.6 

TABLE IV: Average privacy attributes per app category, 
sorted by number of unique PII types (PT) leaked. Only 
the top and bottom five categories are shown. PI refers to the 
number of instances of PII leaks, 3PD refers to the number of 
second-level third party domains contacted, and S refers to the 
fraction of HTTPS flows. Dating and Food & Drink apps are 
among the worst in terms of numbers and types of PII leaks, 
and these substantial fractions of their flows are unencrypted. 

the number of distinct PII types leaked during the whole 
lifetime of the app (i.e., the union of its versions – Union 
curve). By looking at the plot we find a substantial gap between 
the maximum number of PII types leaked by an app version 

and the minimum, validating our hypothesis that a study using 
a single version of an app is likely to miss substantial amounts 
of PII. Even when focusing only on the version of an app that 
leaks the most PII types (Max curve), there is a substantial 
fraction of cases (37%, not shown in the figure) that miss at 
least one type of PII leaked by a different version. The average 
curve is strictly to the left of the union curve, indicating that 
a study using an arbitrary app version is likely to miss at least 
one type of PII. In summary, for all but 7% of the apps in 
our dataset, a study using only one version is guaranteed to 
underestimate the PII gathered over the lifetime of the app. 

Privacy severity and changes over time. The previous 
analysis shows that PII leaks change over time, but do not 
give a clear picture of whether these changes lead to greater 
or less privacy risk for users. We propose addressing this by 
assessing the risk of PII leaked according the severity of each 
leaked type. We begin by assigning PII types to n groups, each 
of which has similar severity. These groups can be represented 
as an n-dimensional bit vector; for each APK we set the mth 
most significant bit is set to 1 if the APK leaks PII with severity 
m; the bit is set to zero otherwise. Importantly, when this 
vector is interpreted as an integer, it follows that privacy is 
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getting worse if the integer value increases between versions, 
better if it decreases, and is unchanged if the value is the same. 

To provide an example of how this representation informs 
our analysis, we use the categories of PII in Table I (left 
column) and define PII severity levels in the following order 
(from highest to lowest): password (plaintext or to a 3rd party), 
username, personal information, geolocation, unique identifier. 
For example, consider Pinterest (Fig. 1a). Version 2 has a 
vector of 00001, version 60201 has a vector of 00101, 603102 
has 10101, and 604052 has 00111. Note that we picked 
these values because they seemed reasonable to us; however, 
our online interactive tool [8] allows individuals to explore 
different relative severity levels and their impact on whether 
privacy is getting better or worse. 

Figure 2b plots a CDF of every APK’s PII severity score 
based on this bitmap representation. We find that nearly two 
thirds of APKs leak PII, but almost half of those leak only 
unique IDs. We also find a small fraction of APKs leaking 
very sensitive information such as passwords (x > 15). To 
understand how the severity of PII leaked by each app changes 
over time, we find the slope of the linear regression of these 
scores for the time-ordered set of APKs belonging to the same 
app. If the slope is positive, PII leak severity got worse over 
time, negative means better, and values of zero indicate no 
change. Figure 2c shows a CDF of these slopes for each app. 
The results indicate leak severity is more likely to get worse 
(43.6%) than better (36.4%), and a fifth of apps do not change. 

Frequency of PII leaks. The previous paragraphs covered 
how many versions leaked each PII type at least once, but not 
how frequently each version leaked it. This is an important 
distinction because frequently leaked PII can heighten privacy 
risks—whether it is fine-grained location tracking over time, 
or increasing opportunities for network eavesdroppers to learn 
a user’s PII from unencrypted traffic. Our analysis is in part 
motivated by findings from Harvest, a documentary film that 
used ReCon to identify PII leaked over the course of a week 
from a woman’s phone.13 Specifically, her GPS location was 
leaked on average once every two minutes by the Michaels and 
Jo-Ann Fabrics apps. This behavior, thankfully, was isolated 
to one version of the apps; however, it raises the question of 
how often such “mistakes” occur in app versions. 

To explore this issue, we first investigate the average 
frequency (i.e., number of times) that each PII type is leaked by 
an app over time (Table V). For each app that leaks a given PII 
type, we calculate the mean (M) and standard deviation (S) of 
the number of times each PII type leaks across versions. The 
table shows that Android ID, Location, and Advertising ID 
are leaked most frequently on average, and also see the largest 
variance in terms of the number of times they are leaked. 

We further investigate whether there are cases of egregious 
volumes of PII collection. To isolate this behavior, we calculate 
the difference between the minimum and maximum number of 
times each PII is leaked for each version, across all versions 
of an app. Figure 3a shows the CDF of this difference over 
all apps in our dataset. While the majority of apps see small 
differences in the frequency of leaks, there is a substantial 
fraction (5.6%) that exhibit a several orders of magnitude 

13http://www.harvest-documentary.com 

PII Type #Apps Mean of Mean Mean of Std.dev. 
Ad ID 286 16.29 12.42 
Location 256 20.33 11.63 
Android ID 119 12.70 9.53 
MAC Addr. 56 6.27 6.16 
IMEI 140 7.87 5.68 
GSF ID 109 8.55 5.37 
Email 36 7.42 2.99 
Gender 63 4.99 1.81 
Password 13 2.48 0.92 
HW Serial 240 2.16 0.76 

TABLE V: Frequency of apps leaking each PII type, sorted 
by the mean of standard deviation. For each app, we 
calculate the mean (M) and the standard deviation (S) of the 
number of times each PII type leaks across versions. We show 
the mean of M an S across apps. The table shows that location 
and unique IDs are the most tracked information, and that the 
number of times they leak takes on a wide range of values. 

difference. To put this in context, some versions of apps 
leak PII once every 1 to 10 seconds on average during an 
experiment. Example apps include AccuWeather, Learn 50 
Languages, Akinator the Genie FREE, and JW Library, which 
leak either location or unique ID, or both, nearly constantly. 

In summary, not only are the types of PII leaks changing 
across versions, but also the number of times it is leaked over 
short periods of time. This has significant privacy implications 
for users who do not want their online activity and locations 
tracked with fine granularity. 

D. HTTPS Adoption Trends 

Given developments in the US and abroad concerning pri­
vacy, including reports of widespread Internet surveillance [13] 
and recent legislation permitting ISPs to sell user information 
gleaned from network traffic [44], there has been a push to 
encrypt Internet traffic to the greatest extent possible. Given the 
vast amount of personal information stored on mobile devices, 
HTTPS adoption by mobile apps can be perceived, at first, as 
a positive industry move. In this section, we investigate the 
extent to which apps adopt HTTPS across versions. 

Aggregate results. We begin by studying the extent to 
which apps (across all versions) exclusively use HTTP and 
HTTPS, or some combination of the two. We group results 
according to the destination second-level domain. Table VI 
shows the results of our analysis for all domains, as well as 
those previously identified as either first or third party. Across 
all app/domain pairs, we see that HTTPS-only adoption is the 
dominant behavior, with substantial fractions of app/domain 
pairs that use HTTP, and a relatively small fraction where 
both HTTP and HTTPS are used for the same domain. The 
latter case is particularly interesting, because we know the 
domain supports HTTPS but for some reason14 some of the 
connections are established using plaintext. 

When focusing on first- versus third-party communication, 
we find that most of the HTTPS adoption comes from traffic 
to third-party domains. In contrast, first-party domains are 
nearly evenly distributed across the three categories. It is not 

14For example, the overhead of maintaining and establishing TLS connec­
tions, or to permit caching of static content, or because HTTP URIs are hard-
coded into apps. 
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Fig. 3: Privacy trends by PII frequency and HTTPS adoption across versions and over time. 

party app/domain pairs (#apps) HTTP HTTPS both 
all 12,143 (505) 3,559 6,791 1793 

29.3% 55.9% 14.8% 
first 703 (338) 268 225 210 

38.1% 32.0% 29.9% 
third 11,440 (502) 3,291 6,566 1583 

28.8% 57.4% 13.8% 

TABLE VI: Summary of domains by protocol. The domains 
are separated into those that use HTTP only, HTTPS only, 
and both protocols. The majority of all flows use HTTPS, but 
this is largely due to communication with third-party sites. 
Substantial fractions of domains see flows without encryption 
and only a third of first party domains exclusively use HTTPS. 

clear why third parties use encryption more often, but reasons 
might include improving privacy from eavesdroppers, ensuring 
integrity against man-in-the-middle attacks, or making it more 
difficult to audit the information they gather. Likewise, the 
increased prevalence of mixed HTTP(S) usage for first-party 
domains might be due to reasons such as scarce resources 
for handling TLS connections, lack of need to secure content 
transfers, and/or mismanagement from small operators. 

Speed of HTTPS adoption. We now focus on the domains 
that we know support HTTPS because we saw at least one 
flow from one APK that uses HTTPS for that domain. Once 
a domain supports HTTPS at a given date, we expect that any 
APKs contacting that domain in the future should be able to 
use HTTPS. However, there are many reasons why HTTPS 
adoption may not occur immediately for all other apps (e.g., 
due to using old versions of third-party libraries, or due to 
policy decisions to limit use of HTTPS). In Figure 3b, we 
investigate how long it takes a certain fraction (Θ%) of apps 
to adopt HTTPS for a domain, relative to the first day the 
domain supports HTTPS. The graph clearly shows that HTTPS 
adoption in mobile apps is exceedingly slow: for half of the 
domains we studied, it takes more than two years for only 10% 
of apps to adopt HTTPS. To achieve 50% HTTPS adoption 
(Θ = 50% curve), it takes five years from the moment the 

domain starts supporting HTTPS.15 This is in stark contrast to 
web traffic, where the only requirement for widespread HTTPS 
adoption is that the server supports TLS and makes it the 
default way to access the site. 

The key take-away is that improving privacy for the con­
tents of app-generated traffic through HTTPS adoption is a 
slow process. This may explain why recent efforts by app 
stores to require HTTPS by default (or otherwise discourage 
HTTP use) [20], [38] have faced delayed enforcement [9]. 

Fraction of HTTPS traffic over time. While the previous 
paragraphs focus on how long it takes apps to start using 
HTTPS, we now focus on the question of the fraction of app­
generated traffic using HTTPS over time. We analyze this by 
producing a timeseries of the fraction of flows that use HTTPS 
across versions of each app in our study. We then find the 
slope of the linear regression of this fraction for each app, 
and plot the CDF of these values as the red line in Figure 3c. 
Positive values indicate an increased fraction of HTTPS traffic 
over time for an app, while negative values indicate a smaller 
fraction. The figure shows two key trends. First, most of the 
values are near zero, indicating that HTTPS adoption does not 
change much over time. This is consistent with our results 
above. Second, with the exception of outliers, the number of 
apps that use more and less HTTPS over time are essentially 
equal—implying no evidence to support an increasing overall 
trend of HTTPS adoption as seen in Web traffic. 

A particular concern for plaintext traffic is when it contains 
users’ PII, as they might be exposed to eavesdroppers as well 
as to the destination domain. We now investigate whether, over 
time, apps are increasingly using HTTPS when flows contain 
PII, to mitigate this additional privacy risk. Similar to the 
previous analysis, we do this using the slope of the linear 
regression for the fraction of PII leaks over HTTPS across 
versions of an app. The blue line in Figure 3c plots the CDF 
of this slope over all apps. Again, we find that the dominant 
trend is that HTTPS adoption does not change much over time, 
even for PII leaks. 

15The curves for Θ=75% and 90% are nearly identical to 50%. 
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10 or more domains. 2012, indicating that users’ mobile activities line), when Google opened the use of Ad 

are increasingly monitored by several parties.	 ID to third parties, the usage increases, 
and other IDs (Android ID, GSF ID, IMEI, 
MAC Address) decline. 

Fig. 4: Privacy trends by domain and tracking identifier across versions and over time. 
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Fig. 5: Third-party domain PII leaks. Each graph represents a timeseries for a selected domain, with data aggregated into 
one-month buckets. We depict the number of apps that contact the domain in red, and the number of apps leaking to the domain 
in green. The other lines represent the number of apps leaking the corresponding PII type to the domain. Over time, more apps 
leak PII to each of these domains; further, in the case of doubleclick the number of PII types being leaked has increased. 

E. Third-Party Characterization 

In this section, we focus on the third parties that gather PII 
from apps, what information they gather across all apps in our 
study, and the implications of this data collection. 

Summary of PII leaks. We now focus on the information 
gathered by third parties across all apps and versions in our 
study. We summarize our findings in Table VII, which shows 
information about PII leaks to third-party domains, sorted by 
the number of unique PII types gathered across all APKs. We 
show only the top 10 domains due to space limitations. 

The table highlights a variety of domains that engage in 
broad-spectrum user tracking, usually focusing on unique iden­
tifiers, but also including sensitive information such as phone 
numbers and locations. Interestingly, there is little correlation 
between the number of flows to a domain and the number of 
those flows containing PII. For example, vungle.com leaked 
PII in 780 out of 1,405 flows, while doubleclick.net (one of 
the most frequently contacted domains) leaked PII in only 5% 
of its flows (not shown in the table). The table also shows that 
many domains receive more than one type of tracking identifier 
(e.g., Ad ID, Android ID, IMEI, GSF ID, IMEI), which allows 
them to continue to uniquely identify users even if the Ad ID 
is reset by a user. Other third-party domains, such as CDNs, 

are frequently contacted, but do not receive PII (e.g., fbcdn.net, 
idomob.com, ytimg.com). 

Domains contacted over time. In addition to studying 
the PII leaked to each domain, it is important to understand 
how many domains apps contact over multiple versions and 
how this changes over time. Figure 4a shows a CDF of the 
number of domains contacted by each APK; we find that 
the vast majority of APKs contact more than one domain, 
and approximately one quarter of them contact 10 or more 
domains. To understand how this behavior changes over time 
Fig. 4b presents a timeseries of the average number of domains 
contacted by APKs, grouped by release date. Most notably, 
we find that this average has nearly doubled since 2012, with 
substantial increases in just the past two years. Thus, not only 
are large amounts of PII exposed to other parties, but each 
users’ activity in an app tends to be tracked by more parties. 

High-risk tracking. Some third-party domains track both 
unique identifiers and other more personal information like 
location, email address and gender, which allow the domain to 
link individuals and personal information (including locations 
of interest such as home, work, etc.) to tracking identifiers. In 
other words, even if a third party makes a link between unique 
ID and a sensitive piece of personal information once, it can 
tie this personal information to unique ID without collecting 
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vungle.com
doubleclick.net
fbcdn.net
idomob.com
ytimg.com


domain # flows # PII leaks # app # APK PII types 
google[*] 170,374 22,383 369 1937 HW Serial, Location, IMEI, Ad ID, GSF ID, Android ID, Gender, MAC Addr., 

First Name, Last Name 
crashlytics.com 6,653 1,146 110 621 Ad ID, Android ID, PhoneNo., HW Serial, Email, IMEI 
vungle.com 1,405 780 21 132 Ad ID, Location, Android ID, HW Serial, MAC Addr., Gender 
adjust.com 1,186 650 31 176 Ad ID, Android ID, IMEI, Password, HW Serial, MAC Addr. 
supersonicads.com 791 613 9 36 Ad ID, HW Serial, IMEI, Location, Android ID, MAC Addr. 
amazon-adsystem.com 1,315 438 15 71 MAC Addr., HW Serial, Android ID, IMEI, Ad ID, Location 
kochava.com 633 338 21 80 Android ID, Ad ID, IMEI, Email, MAC Addr., Gender 
tapjoyads.com 5,503 5,390 43 440 IMEI, MAC Addr., HW Serial, Android ID, Ad ID 
mopub.com 7,560 3,657 38 235 Ad ID, Android ID, Gender, Location, IMEI 
applovin.com 5,591 2,360 26 149 Ad ID, Android ID, IMEI, Gender, Location 

TABLE VII: Top 10 third-party domains by flows and leaks across all apps, sorted by the number of PII types, then the 
number of PII leaks (also see full table online [8]). Third-party domains track mostly different unique identifiers and there is 
little correlation between the number of contacted flows and the number of flows having PII. We group the following domains 
as google[*]: google.com, googleapis.com, doubleclick.net, google-analytics.com, gstatic.com, googleusercontent.com, 
googleadservices.com. 

the former in the future. This is particularly problematic for 
user privacy, since it erodes their ability to control how they 
are monitored and allows cross-app tracking. 

We extracted the set of domains that tie tracking identifiers 
with other personal information and list the top 10 (out of 95) 
in Table VIII. Not surprisingly, common advertising domains 
such as Google-owned domains doubleclick, googleapis, 
googleadservices appear at the top of the list. In addition, 
we find high-risk tracking from less known domains, such as 
startappservice, doubleverify, and smartadserver. 

Per-domain tracking variations over time. We now investi­
gate the time-evolution of how domains track various PII types, 
using a case study of three examples: the frequently contacted 
domain doubleclick.net, the less-frequently contacted ap­

16plovin.com, and the rarely contacted supersonicads.com. 
For each of these domains, we determine the number of apps 
that send PII to them during each month, and plot this in 
Figure 5. In line with our previous results, we see variations 
not only in the number of apps that send a given type of PII 
to a domain, but also which PII types are sent. Figure 5a 
shows that doubleclick started transmitting gender in 2014. 
In the same year, it briefly collected IMEI, HW Serial, and 
Android ID, then stopped doing so. We see similar behavior for 
supersonicads (Figure 5b) for three of its gathered PII types 
(IMEI, HW Serial, and Android ID); additionally, they stopped 
collecting MAC address in 2014. This likely coincides with 
Google’s requirements for new apps to use the user-resettable 
Ad ID for tracking users instead of persistent identifiers, such 
as the IMEI and Android ID, with enforcement of the Ad ID 
for new and updated apps in the Play Store starting in August 
2014 [31], [33]. We found this led to more apps using Ad ID 
instead of other identifiers (Figure 4c). We found that applovin 
sends gender information until 2014. 

In summary, we find that an important factor for higher 
privacy risks over time is the increased number of third-party 
domains that are contacted by apps and that receive PII. 

F. Summary and Discussion 

We analyzed app privacy leaks over time across three di­
mensions (PII leaks, HTTPS adoption, and domains contacted) 
independently, and found that by most measures app privacy 

16We focus on three due to space limitations; more examples are online [8]. 

domain PII Types leaked with ID # apps # APKs 
google[*] Location, Gender, First Name, 124 387 

Last Name, Email 
kochava Email, Gender 8 36 

vungle Location, Gender 7 34 
mopub Gender, Location 6 13 

doubleverify Location 5 7 
aerserv Location 4 10 

smartadserver Location 3 7 
aniview Location 3 7 

mmnetwork Location 3 9 
56txs4 Gender 3 11 

TABLE VIII: Summary of domains that track non-ID PII 
along with unique ID. There are several domains conducting 
high risk tracking that traditionally get less attention that 
Google-owned domains. The google[*] entry represents the 
same domains as specified in Table VII. 

is more often getting worse as users upgrade apps. In the next 
section, we explore combinations of these dimensions and their 
implications for privacy. 

We showed that a single version of an app is not enough 
to assess its privacy over time. This motivates the need for 
continuous privacy monitoring across versions of apps as they 
appear. To this end, we will make our data and analysis code 
publicly available, and investigate how to fully automate our 
experimental testbed. 

Our analysis shows that HTTPS adoption is slow for mobile 
apps. This exposes users’ app interactions, and potentially PII, 
to a larger set of network observers. The problem is often 
challenging to fix because it might require changes both at 
servers (to support HTTPS), and in the app code and/or the 
libraries they include (to use HTTPS). 

Finally, we found that as users interact with apps over 
time a large number of domains are able to gather and link 
significant amounts of users’ PII. This highlights the need to 
understand how other parties gather PII longitudinally, and 
motivates the need for tools that allow users to limit them. 

VI. MULTIDIMENSIONAL ANALYSIS 

The previous sections analyzed privacy one attribute at a 
time; here, we focus on an APK’s privacy implications when 
considering a combination of privacy attributes. For example, 
such analysis can indicate that an app leaking PII over insecure 
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Notation Explanation 

s(t) ∈ 0, . . . , 5 Privacy severity level for PII type t. 
s(t):={ID=1; location=2; user-info=3; username=4; password=5} 

PII type risk for ai,j , where τ is the set of types leaked and ν 
is the value corresponding to the most severe set of privacy leaks 
observed. 

Ri,j ∈ [0, 1] 

 
1 2s(t)−1Ri,j = ν t∈τ 

Destination domain risk (3rd party vs 1st party) for ai,j , where 
hi,j is the number flows generated by ai,j , and ρi,j is the 
number of flows in hi,j to third party domains. 

Di,j ∈ [0, 1] 

w i 
ρi,jDi,j = min , 1 maxj hi,j 

Protocol risk (plaintext vs encrypted) for ai,j , where πi,j is the 
number of flows in hi,j that are in plaintext. 

πi,j 

Pi,j ∈ [0, 1] 

Pi,j = hi,j 

risk(x, y) ∈ [0, 1] Combined risk using normalized euclidean distance.  
risk(x, y, z) ∈ [0, 1] risk(x, y) = √1 x2 + y2 

2  
1risk(x, y, z) = √ x2 + y2 + z2 
3

TABLE IX: Definition of the privacy risk dimensions and 
risk combination metrics we consider for the multidimen­
sional analysis. 

connections is riskier than one leaking the same PII over 
encrypted connections. 

In the next section we formalize the three risk dimensions 
we consider in our multidimensional analysis. We then analyze 
their combination in Section VI-B. Finally, in Section VI-C we 
present a tool that can help individuals to visualize our dataset 
and understand app privacy risks in a user-friendly way. 

A. Privacy Dimensions 

The privacy dimensions we consider in our multidimen­
sional analysis are based on the privacy attributes introduced 
in Section IV-D, but normalized as real number between 0 
and 1, with 1 indicating the highest privacy risk. Table IX 
shows the formal definition of each of them. For each APK 
j from app i (ai,j ) in our dataset, we define: (i) PII type risk 
Ri,j , based on the bit vector representation in Section V-C; 
(ii) Destination domain risk Di,j , as the sum of the flows that 
leak to third-party domains divided by the maximum number 
of flows generated by an APK of app i; (iii) Protocol risk Pi,j , 
as the percentage of flows that are sent without encryption. 

Ri,j indicates how many PII types have been leaked and 
how severe they are. Its value will be one if the most severe 
set of observed PII types have been leaked. Di,j indicates how 
much the APK is communicating with third-party domains. Its 
value will be one if all the flows of the APK that generates 
the most flows are sent to third parties. Finally, Pi,j indicates 
the amount of unencrypted traffic. Its value is one when all 
the traffic is sent over unencrypted connections. 

B. Combining Dimensions 

We now combine the normalized risk metrics, choosing 
two or all three dimensions, and analyze how these combined 
privacy metrics change over time. We currently treat each 
dimension with equal weight, but note that different relative 
privacy concerns (e.g., PII leaks matter more than domains) can 
be captured by changing the relative weight of each dimension. 

We begin by analyzing the two-dimensional combinations 
of privacy metrics, depicted using heatmaps in Figure 6. Each 
cell at (x,y) indicates the number of apps with risk scores of 
x and y, with red indicating five or more apps. Focusing on 
the combination of PII types leaked and destinations contacted 
(Figure 6a), we see several clusters emerge. The high density in 
the bottom left corner indicates that most APKs send relatively 
low-risk PII to relatively few domains. The points in the top 
left indicate that when high risk PII is exposed by apps, 
they tend to leak it to few domains (with the exception of 
Pinterest, which contacts a large number of domains). Last, 
there are several apps that send moderately high risk PII to 
many domains (right side of the figure). 

When focusing on Figures 6b and 6c, we find that app 
behavior is fairly evenly spread across the x-axis range— 
indicating that there is no strong correlation between the frac­
tion of TLS connections (x-axis) and privacy leaks (Fig. 6b) 
or number of domains contacted (Fig. 6c). The exception is 
that higher risk PII tends to leaked from apps using mostly 
encrypted connections (top left), aside from a few cases near 
x = 0.5 (FastMeet, Meet24, Pinterest, Here WeGo - Offline 
Maps & GPS, ViewRanger Trails & Maps). 

Based on the plots in Figure 6, we now define the risk ag­
gregation function, which measures the normalized Euclidean 
distance between two different types of risk (see Table IX). 
This function captures the combination of different risks as 
a single number between 0 and 1.17 Moreover, because the 
function is based on Euclidean distance, it generalizes to 
arbitrary numbers of dimensions. 

We first use the aggregate risk function to show in Figure 7a 
how all the possible combinations of the risk are distributed 
across all APKs in our dataset. The figure shows that most 
APKs are neither very low or very high risk, and that the set 
of all APKs in our dataset are fairly evenly spread across the 
range of risk scores. Of course, because this does not consider 
time, it does not indicate whether recently released APKs are 
relatively higher or lower risk. 

Is privacy getting better or worse? We investigate this 
question with Figure 7b, which shows a time series of the 
average privacy risk for APKs, grouped by release date. The 
figure shows a clear trend towards higher three-dimensional 
privacy risk over time (i.e., risk(Ri,j , Di,j , Pi,j )), with most 
of the increase attributable to the combination of more PII 
types being leaked and to more domains (the risk(Ri,j , Di,j ) 
curve). Thus, when it comes to leaking PII and contacting third 
parties, apps have gotten substantially worse over time. 

To further analyze privacy risk changes, we conduct an 
app-focused analysis where we plot the combined risk score 
over time for each app (over all its APKs) and find the slope of 
the linear regression over these scores, as well as the standard 
deviation of the scores. Using this data, we categorize privacy 
risks per app as getting better, getting worse, staying similar, or 
exhibiting high variability over time. Algorithm 1 presents our 
classification logic when focusing on the combined score for R 
and D for each app. At a high level, we require that the slope 
and absolute difference between scores be sufficiently large to 

17Again, different scaling factors on each dimension can represent different 
relative risks between dimensions. 
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(a) Ri,j vs Di,j (b) Ri,j vs Pi,j	 (c) Di,j vs Pi,j 

Fig. 6: Two-dimensional risk analysis. These plots are heat maps, where each cell represents the number of APKs ai,j in our 
dataset exhibiting the corresponding risk values x and y. Each axis represents one of the following privacy risks: PII type risk 
(Ri,j ), destination domain risk (Di,j ), and protocol risk (Pi,j ). Colors indicate the number of APKs with a given combined risk 
value, with red representing five or more APKs. 
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(c) Privacy risk visualization tool. 
Screenshot of a tool that visualizes longi­
tudinal privacy risks for the apps in our 
dataset, available at [8]. 

Fig. 7: Multi-dimensional privacy risk analysis and visualization tool. 

indicate that an app’s privacy became worse or better. If the 
difference is not large and there is a relatively large standard 
deviation, then we indicate that the app is highly variable; 
otherwise, the app’s privacy is labeled as similar.18 

Algorithm 1 Trend Categorization Algorithm 

1: function TREND(AP P ) 
2: X ← list of versions 
3: Y ← list of normalized euclidean distance of (R, D) 
4: Std ← Standard deviation of Y 
5: s ← Slope of the linear regression line of (X, Y) 
6: Y' ← s · X + intercept 
7: D ← Y ' − Y '

max min 
8: Trend ← “similar” 
9: if D ≥ θD then 

10: if s > 0 then Trend ← “worse” 
11: else Trend ← “better” 
12:	 else if Std > θS then Trend ← “variable” 

return Trend 

Using this approach, we calculated the following fractions 
of apps in each category: better (26.3%), worse (51.1%), 
similar (9.5%) and variable (13.1%). Thus, while a quarter of 
apps are getting better with respect to privacy, twice as many 

18The thresholds (θD , θS ) were chosen heuristically, using 0.1 for both. 

are getting worse over time and only a small fraction stay the 
same. 

C. Privacy Risk Visualization 

We built a web-based interactive tool that allows indi­
viduals to explore the privacy risk data for any app in our 
dataset (Fig. 7c), showing how privacy risks changed across 
all versions of each app that the user selects. For this tool, 
we currently focus primarily on PII leak types, and allow 
the user to set relative leak severity for each PII category 
(denoted as s(t) in Table IX); further, we compress our binary 
representation into a scale of 0 to 6 so that it is easier to 
understand for those who do not regularly think in terms of 
bit vectors. As part of ongoing work, we are investigating other 
intuitive ways to present our findings using a single score. 

VII. CONCLUSION 

This paper provides the first longitudinal study of the 
privacy impact of using popular Android apps and updating 
to new versions over time. We found that the PII shared with 
other parties changes over time, with the following trends: 
(1) overall privacy tends to worsen across versions; (2) the 
types of gathered PII change across versions, limiting the 
generalizability of single-version studies; (3) HTTPS adoption 
is relatively slow for mobile apps; (4) third parties not only 
track users pervasively, but also gather sufficient information 
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to know what apps a user interacts with, when they do so, and 
where they are located when they do. Our dataset is available 
at: https://recon.meddle.mobi/appversions/. 

A naïve interpretation of our observed privacy trends is 
that users should stop updating apps; however, new versions 
of apps also contain bug fixes and improvements (e.g., critical 
security updates). Thus, what is needed is information that 
helps users make informed decisions when deciding whether 
to update the app given a set of changes in a new version. 
We envision that our online tool [8] can in part fill this need. 
Further, we recommend users to install tools like ReCon [48], 
Lumen [47], or AntMonitor [39] to block unwanted privacy 
leaks that come from newer versions of apps. 
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