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Abstract
 

Differential privacy is a formal mathematical formal mathematical framework for guaranteeing 
privacy protection when analyzing or releasing statistical data. Recently emerging from the the­
oretical computer science literature, differential privacy is now in initial stages of implementation 
and use in various academic, industry, and government settings. 

This document is a primer on differential privacy. Using intuitive illustrations and limited math­
ematical formalism, this primer provides an introduction to differential privacy for non-technical 
practitioners, who are increasingly tasked with making decisions with respect to differential privacy 
as it grows more widespread in use. In particular, the examples in this document illustrate ways 
in which social science and legal audiences can conceptualize the guarantees provided by differen­
tial privacy with respect to the decisions they make when managing personal data about research 
subjects and informing them about the privacy protection they will be afforded. 
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Audience 

The goal of this primer is to introduce the reader to the concept of differential privacy, a new formal 
mathematical model of privacy protection. Differential privacy is used in some of the privacy-
preserving tools for social scientists being developed by the Privacy Tools for Sharing Research 
Data project at Harvard University,1 as well as many other projects across academia and industry, 
including implementations by statistical agencies such as the U.S. Census Bureau and companies 
such as Google and Apple.2 

This document is written for a broad, non-technical audience, with the goal of presenting a 
generally accessible overview of the mathematical concepts underlying differential privacy. While 
this article is written with analysts of privacy-sensitive data in mind, some sections take the point 
of view of a data subject, i.e., an individual whose personal data are used in a statistical analysis. 
The perspective of the data subject is used, in particular, where we discuss how differential privacy 
controls the increase in risk to individuals due to the contribution of their privacy-sensitive data to 
a data analysis. 

We hope that this way of describing the features of differential privacy will help social science 
researchers understand the guarantees provided by differential privacy, informing future decisions 
regarding whether to use differential privacy in their research process and, if so, what types of 
promises they should make to their research subjects about the guarantees differential privacy pro­
vides. In addition, these illustrations are intended to help legal scholars and policymakers consider 
how current and future legal frameworks and instruments will apply to tools based on formal pri­
vacy models such as differential privacy. For step-by-step guidance on using differential privacy, 
additional resources, such as documentation for individual software implementations relying on 
differential privacy, should be consulted. 

1 Introduction 

A common challenge in empirical social science is the sharing of privacy-sensitive data for the 
purposes of replication and secondary research. Social science research data often contain personal 
information about individual participants that is considered sensitive or confidential. Improper dis­
closure of such data can have adverse consequences for a research subject’s relationships, reputation, 
employability, insurability, or financial status, or even lead to civil liability, criminal penalties, or 
bodily harm. Due to these and related concerns, a large body of laws, regulations, ethical codes, 
institutional policies, contracts, and best practices has emerged to address potential privacy-related 
harms resulting from human subjects research. 

1.1 Introduction to legal and ethical frameworks for research data privacy 

Generally, research policies require researchers to protect privacy as a principle that is fundamental 
to safeguarding the dignity and welfare of their subjects. Researchers are accordingly responsible 
for implementing privacy-protective measures and effectively conveying the extent of protection 
afforded to their subjects. In addition, specific administrative, technical, and physical measures 
are mandated by privacy laws and the policies of research institutions, funding organizations, 
and regulatory agencies. Notably for researchers in the United States, research involving human 

1See Harvard University Privacy Tools Project, http://privacytools.seas.harvard.edu.
 
2See Section 9.2 below for a list of other implementations of differential privacy.
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subjects is governed by the Federal Policy for the Protection of Human Subjects, or the Common 
Rule. When conducting research involving personal information at an institution subject to the 
Common Rule, a researcher must secure approval from an institutional review board (IRB) and 
fulfill ethical obligations to the participants, such as disclosing the risks of participation, obtaining 
their informed consent, and implementing specific measures to protect privacy as required by the 
IRB. 

Additional legal standards for privacy that may apply to research data are found in federal 
information privacy laws which protect certain categories of information, such as health, education, 
financial, and government records, among others, as well as state data protection and breach 
notification laws which prescribe specific data security and breach reporting requirements when 
managing certain types of personal information. It is also common for universities and other 
research institutions to adopt policies that require their faculty, staff, and students to abide by 
certain ethical and professional responsibility standards and set forth enforcement procedures and 
penalties for mishandling data. Further restrictions apply when privacy-sensitive data are shared 
under a contract; in fact, the terms of the agreement will often strictly limit how the data can be 
used or redisclosed by the recipient. 

Privacy requirements are also found in technical standards such as those from the International 
Organization for Standardization, which provides technical guidance on implementing information 
security controls to protect personally identifiable information. In addition, international privacy 
guidelines have been adopted by governments across the world. The most widely-followed guidelines 
are the privacy principles developed by the Organisation for Economic Co-operation and Devel­
opment, which include collection limitation, data quality, purpose specification, use limitation, 
security safeguards, openness, individual participation, and accountability principles. The right to 
privacy is also protected by various international treaties and national constitutions. 

Taken together, the safeguards required by these legal and ethical frameworks are designed 
to protect the privacy of research subjects; ensure they fully understand the scope of personal 
information to be collected and the privacy risks associated with their participation in a study; 
avoid administrative, civil, and criminal penalties against themselves and their host institutions; 
and maintain the public’s trust and confidence in scientific research. 

1.2 Traditional statistical disclosure limitation techniques 

A number of technical measures for disclosing data while protecting the privacy of individuals have 
been produced within the context of these legal and ethical frameworks. A subset of techniques for 
the release of statistical data have been developed under the title of statistical disclosure limitation 
(SDL) and are widely used by statistical agencies, data analysts, and social science researchers. 
This term refers to a collection of techniques that are applied to sets of data containing privacy-
sensitive personal information with the aim of making it more difficult (or impossible) to learn 
personal information that is specific to an individual. This category of techniques encompasses a 
wide range of methods for suppressing, aggregating, and generalizing attributes of individuals in the 
data. 3 Such techniques are often applied with the explicit goal of de-identification, whereby data 
are transformed by means of redaction or coarsening so as to make it difficult to link an identified 
person to a record in a data release. 

3For an overview of traditional SDL techniques, see Federal Committee on Statistical Methodology, 
Report on Statistical Disclosure Limitation Methodology, Statistical Policy Working Paper 22 (2005), 
https://fcsm.sites.usa.gov/files/2014/04/spwp22.pdf. 
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However, changes in the way information is collected and analyzed, including advances in an­
alytical capabilities, increases in computational power, and the expanding availability of personal 
data from a wide range of sources, are eroding the effectiveness of traditional SDL techniques. 
Since the 1990s, and with increasing frequency, privacy and security researchers have demonstrated 
that data that have been de-identified can often be successfully re-identified via record linkage [19]. 
Re-identification via record linkage, or a linkage attack, refers to the re-identification of one or 
more records in a de-identified dataset by uniquely linking a record in a de-identified dataset with 
identified records in a publicly available dataset, such as a voter registration list. As an example 
Latanya Sweeney applies such an attack on Group Insurance Commission (GIC) data containing 
anonymized Massachusetts patient data. Sweeney observed that records in the GIC data contain 
patients birth date, sex, and zipcode information, and that many of the patients have a unique 
combination of these three attributes. Re-identification was, hence, possible by joining the GIC 
data with publicly available Cambridge Voter Registration records which include birth data, sex, 
and zipcode information alongside Cambridge residents explicit identity. Weaknesses have also been 
found with respect to other approaches to privacy via the application of a variety of sophisticated 
attacks. Understanding the limits of these techniques is the subject of ongoing research. 

1.3 The emergence of formal privacy models 

Re-identification attacks are becoming increasingly sophisticated over time, as are other types of 
attacks that seek to infer characteristics of individuals based on information about them in the data. 
Successful attacks on de-identified data have shown that traditional technical measures for privacy 
protection may, in particular, be vulnerable to attacks devised after a technique’s deployment and 
use. Some de-identification techniques, for example, require the specification of attributes in the 
data as identifying (e.g., names, dates of birth, or addresses) or non-identifying (e.g., movie ratings 
or hospital admission dates). They may also require a careful analysis of present and future data 
sources that could potentially be linked with the de-identified data and enable re-identification of 
the data. Researchers may later discover that attributes initially believed to be non-identifying 
can in fact be used to re-identify individuals, or that unanticipated sources of auxiliary information 
can be used for re-identification. Indeed, the scientific literature provides numerous real-world 
demonstrations of attacks with results of this nature. 

Issues such as these have underscored the need for privacy technologies that are immune not 
only to linkage attacks, but to any potential attack, including attacks that are currently unknown 
or unforeseen. They have also demonstrated that privacy technologies must provide meaningful 
privacy protection not only in a “standalone” setting but also in settings in which extensive external 
information may be available to potential attackers, including employers, insurance companies, 
relatives, and friends of a subject in the data. In addition, real-world attacks have illustrated 
that ex-post remedies, such as simply “taking the data back” when a vulnerability is discovered, 
are ineffective because many copies of a set of data typically exist. As an example, in 2006 AOL 
published anonymized search history of 650,000 users over a period of three months. Shortly after 
the release, the New York Times identified a person in the release and AOL removed the data. 
However, in spite of its removal, mirror copies of the data are accessible on the Internet. 

In response to the accumulated evidence of weaknesses with respect to traditional approaches, 
a new privacy paradigm has emerged from the computer science literature: differential privacy. 
Differential privacy is primarily studied in the context of the collection, analysis, and release of 
aggregate statistics. These range from simple statistical estimations, such as averages, to machine 
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learning. First presented in 2006 [3], differential privacy is the subject of ongoing research to de­
velop privacy technologies that provide robust protection against a wide range of potential attacks, 
including types of attacks currently unforeseen. Importantly, differential privacy is not a single tool 
but a definition or standard for quantifying and managing privacy risks for which many techno­
logical tools have been devised. Analyses performed with differential privacy differ from standard 
statistical analyses, such as the calculation of averages, medians, and linear regression equations, 
in that random noise is added in the computation. Tools for differentially private analysis are now 
in early stages of implementation and use across a variety of academic, industry, and government 
settings. 

In the following sections, we provide a simplified and informal, but mathematically accurate, 
description of differential privacy. Using intuitive illustrations and limited mathematical formalism, 
we discuss the definition of differential privacy, how it addresses privacy risks, how differentially 
private analyses are constructed, and how such analyses can be used in practice. We conclude with 
some advanced topics and pointers for further reading. 
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Part I 

Basics of differential privacy 
Consider an analysis on data containing personal information about individuals. The analysis may 
be as simple as determining the average age of the individuals in the data, or it may be more 
complex and utilize sophisticated modeling and inference techniques. In any case, the analysis 
involves performing a computation on input data and outputting the result. This broad notion of 
an analysis also includes, for example, the application of an Statistical Disclosure Limitation (SDL) 
technique to aggregate or de-identify a set of data, with the goal of producing a sanitized version 
of the data that is safe to release. In other words, we use the terms analysis and computation 
interchangeably to refer to any transformation, usually performed by a computer program, of input 
data into some output. This notion of an analysis is illustrated in Figure 1. 

input 
analysis/ 

computation 
output 

Figure 1: An analysis (or computation) transforms input data into some output. 

Using this terminology, the question of whether privacy is preserved or not is not a question 
of whether a particular output preserves privacy but rather the question whether a particular 
computation preserves privacy: The computation that is applied to the input data determines 
the informational relationship between the input information and the output and hence it is the 
computation that we need to inspect to determine whether privacy is preserved.4 

2 What is the differential privacy guarantee? 

Intuitively, an analysis protects the privacy of individuals in the data if its output does not reveal 
any information about any specific individual. Differential privacy formalizes this intuition as a 
mathematical definition. This definition can, in turn, be used to design a privacy-preserving analysis 
that provides this mathematical guarantee of privacy protection. In this framework, privacy is not 
just a property of the output, but rather a property of the computation that generated the output.5 

To see how differential privacy formalizes this privacy requirement, consider the following sce­
nario. 

4For a more in depth discussion, refer to Section 10.
 
5See Section 10 for further discussion of the importance of defining privacy as a property of the computation.
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Researchers selected a sample of individuals to participate in a survey exploring the 
relationship between socioeconomic status and medical outcomes across a number 
of U.S. cities. Individual respondents were asked to complete a questionnaire 
covering topics such as where they live, their finances, and their medical history. 
One of the participants, John, is aware that individuals have been re-identified in 
previous releases of de-identified data and is concerned that personal information 
he provides about himself, such as his HIV status or annual income, could one day 
be revealed in de-identified data released from this study. If leaked, the personal 
information John provides in response to the questionnaire used in this tudy could 
lead to an increase in his life insurance premium or an adverse decision on a 
mortgage application he submits in the future. 

Differential privacy can be used to address John’s concerns in this scenario. If an analysis on 
the data from this study is designed to be differentially private, then John is guaranteed that even 
though his information is used in the analysis, the outcome of the analysis will not disclose anything 
that is specific to him. 

To understand what this means, consider a thought experiment, which we illustrate in Figure 2 
and refer to as John’s opt-out scenario. John’s opt-out scenario is one in which an analysis is 
performed using data about the individuals in a sample as usual, with one exception: information 
about John is omitted. Because John’s information is omitted from the analysis, his privacy is 
protected in the sense that the outcome of the analysis does not depend on his specific information. 
To observe that it is indeed true that the outcome of the analysis in this scenario does not depend 
on John’s information, note that the outcome of the analysis would not change at all if John’s 
personal details were completely different. 

input 
without 
John’s 
data 

analysis/ 
computation 

output 

Figure 2: John’s opt-out scenario. 

John’s opt-out scenario is distinguished from the real-world scenario, which involves an analysis 
based on John’s information along with the personal information of others. The real-world scenario 
therefore involves some potential risk to John’s privacy. Because John’s information is used as input 
to the analysis, personal information about him could be revealed in the outcome of the analysis, 
though the amount of information revealed about John from such an analysis can often be quite 
small. 
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2.1 What does differential privacy protect and what does it not protect? 

Differential privacy aims to protect John’s privacy in the real-world scenario in a way that mimics 
the privacy protection he is afforded in his opt-out scenario.6 Accordingly, what can be learned 
about John from a differentially private computation is (essentially) limited to what could be 
learned about him from everyone else’s data without his own data being included in the computation. 
Crucially, this very same guarantee is made not only with respect to John, but also with respect 
to every other individual contributing his or her information to the analysis! 

A more precise description of the differential privacy guarantee requires the use of formal math­
ematical language, as well as technical concepts and reasoning that are beyond the scope of this 
document. Rather than providing a full, precise definition, this document offers a few illustrative 
examples to discuss various aspects of differential privacy in a way we hope is intuitive and accessi­
ble. The examples below illustrate what is protected in real-world scenarios with and without the 
use of differential privacy. They also explore John’s opt-out scenario in more detail. We will see 
that, even in John’s opt-out scenario, an analysis may reveal information about John that could 
embarrass him, harm his social status, or adversely affect his employability or insurability in the 
future. 

Examples illustrating what differential privacy protects 

The scenarios described in this section illustrate the types of information disclosures that are con­
trolled when using differential privacy. 

Alice and Bob are professors at State University. They both have access to a 
database that contains personal information about students at the university, in­
cluding information related to the financial aid each student receives. Because it 
contains personal information, access to the database is restricted. To gain ac­
cess, Alice and Bob were required to demonstrate that they planned to follow the 
university’s protocols for handling personal data, by undergoing confidentiality 
training and signing data use agreements proscribing their use and disclosure of 
personal information obtained from the database. 

In March, Alice publishes an article based on the information in this database 
and writes that “the current freshman class at State University is made up of 
3, 005 students, 202 of whom are from families earning over $1, 000, 000 per year.” 
Alice reasons that, because the figure in her article is an average taken over 3, 005 
people, no individual’s personal information will be exposed. The following month, 
Bob publishes a separate article containing these figures: “201 families in State 
University’s freshman class of 3, 004 have household incomes exceeding $1, 000, 000 
per year.” Neither Alice nor Bob is aware that they have both published similar 
information. 

6It is important to note that the use of differentially private analyzes is not equivalent to the traditional use of 
opting out. On the privacy side, differential privacy does not require an explicit opt-out. In comparison, traditional 
use of opt-out require an explicit choice that may call to attention, further inspection, and hence harm to privacy. On 
the utility side, there is no general expectation using differential privacy would yield the same outcomes as adopting 
the policy of opt-out. 
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A clever student Eve reads both of these articles and notices the discrepancy. 
From the published information, Eve concludes that between March and April 
one freshman withdrew from State University and that the student’s parents earn 
over $1, 000, 000 per year. Eve asks around and is able to determine that a stu­
dent named John dropped out around the end of March. Eve then informs her 
classmates that John’s parents earn over $1, 000, 000 per year. 

John hears about this and is upset that his former classmates learned that his 
parents earn over $1, 000, 000 per year. He complains to the university and Alice 
and Bob are asked to explain. In their defense, both Alice and Bob argue that 
they published only information that had been aggregated over a large population 
and does not identify any individuals. 

This story illustrates how, in combination, the results of multiple analyses using information 
about the same people may enable one to draw conclusions about individuals in the data. Alice 
and Bob each published information that, in isolation, seems innocuous. However, when combined, 
the information compromised John’s privacy. This type of privacy breach is difficult for Alice or 
Bob to prevent individually, as neither knows what information has already been revealed or will 
be revealed by others in future. This problem is referred to as the problem of composition. 

Consider next what would happen if Alice and Bob had added random noise to their counts 
before publishing them. 

Suppose, in the example above, Alice and Bob decided to add random noise to 
the figures they published in their articles. For the number of freshmen who come 
from families with a household income exceeding $1, 000, 000, Alice publishes a 
count of 204 for the month of March, and Bob publishes a count of 199 for the 
month of April. The publication of these noisy figures would have prevented Eve 
from concluding that one student withdrew from the university in March and that 
this student came from a family with a household income exceeding $1, 000, 000, 
thereby reducing the risk that John’s personal information could be uncovered 
based on these publications. 

This example hints at how differential privacy is achieved and how it addresses the problem of 
composition. Through the careful addition of random noise, the definition of differential privacy 
can be satisfied, even when the results of multiple analyses are combined. If multiple analyses are 
performed on data from the same set of individuals, then, as long as each of the analyses satisfies 
differential privacy, it is guaranteed that all of the information released, when taken together, will 
still be differentially private.7 

The next example illustrates how if multiple parties both publish differentially private statistics 
about the same individuals, then the combination of these statistics would also be differentially 
private. 

7Note that this does not mean that privacy does not degrade after multiple differentially private computations. 
See Section 3.2 below for a more detailed discussion of composition. 
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Suppose Alice and Bob independently release statistics about the average house­
hold income of the freshman class at State University. Alice distorts the average 
income she intends to publish by applying a technique that satisfies differential 
privacy. Likewise, Bob distorts the average income he plans to publish, also using 
a technique that satisfies differential privacy. In doing so, without having to de­
cide on which particular techniques to use, Alice and Bob can be sure that even 
in combination the information they plan to publish still satisfies differential pri­
vacy (albeit with somewhat weaker parameters than would be the case in a single 
release). 

This example illustrates one of the greatest strengths of differential privacy: the ability to 
measure and bound the cumulative privacy risk from multiple analyses on information about the 
same individuals. 

It is important to note, however, that every analysis results in some leakage of information 
about the individuals whose information is being analyzed and that this leakage accumulates with 
each analysis. This is true for every release of data, including releases of aggregate statistics, as 
we describe in further detail in Sections 3.2 and 8.2 below. For this reason, there is a limit to how 
many analyses can be performed on a specific dataset while providing an acceptable guarantee of 
privacy. This is why it is critical to measure privacy loss and to understand quantitatively how risk 
can accumulate. 

Examples illustrating what differential privacy does not protect 

Next, we provide examples that illustrate the types of information disclosures differential privacy 
does not aim to address. 

Suppose Alice is a friend of John’s and possesses some knowledge about him, 
such as that he regularly consumes several glasses of red wine with dinner. Alice 
later learns of a medical research study that found a positive correlation between 
drinking red wine and the occurrence of a certain type of cancer. She might 
therefore conclude, based on the results of this study and her prior knowledge of 
John’s drinking habits, that he has a heightened risk of developing cancer. 

It may seem at first that the publication of the results from the medical research study en­
abled a privacy breach by Alice. After all, learning about the study’s findings helped her infer new 
information about John that he himself may be unaware of, i.e., his elevated cancer risk. How­
ever, notice how Alice would be able to infer this information about John even if John had not 
participated in the medical study—i.e., it is a risk that exists in both John’s opt-out scenario and 
the real-world scenario. In other words, this risk applies to everyone, regardless of whether they 
contribute personal data to the study or not. 

Consider a second example: 

Alice knows that her friend John is a public school teacher with five years of 
experience, and he is about to start a job in a new school district. She later comes 
across a local news article about a teachers union dispute, which includes salary 
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figures for the public school teachers in John’s new school district. Alice is able to 
determine John’s new salary, based on the district’s average salary for a teacher 
with five years of experience. 

Note that, as in the previous example, Alice can determine information about John (i.e., his 
new salary) from the published information, even though the published information was not based 
on John’s information. In both examples, John could be adversely affected by the discovery of the 
results of an analysis, even within his opt-out scenario. In both John’s opt-out scenario and in a 
differentially-private real-world scenario, it is therefore not guaranteed that no information about 
John can be revealed. The use of differential privacy only guarantees that no information specific 
to John is revealed. 

These examples suggest, more generally, that any useful analysis carries a risk of revealing some 
information about individuals. We argue, however, that such risks are largely unavoidable. In a 
world in which data about individuals are collected, analyzed, and published, John cannot expect 
better privacy protection than is offered by his opt-out scenario because he has no ability to prevent 
others from participating in a research study or a release of public records. Moreover, the types 
of information disclosures enabled in John’s opt-out scenario often result in individual and societal 
benefits. For example, the discovery of a causal relationship between red wine consumption and 
elevated cancer risk can inform John about possible changes he could make in his habits that would 
likely have positive effects on his health. In addition, the publication of public school teacher salaries 
may be seen as playing a critical role in transparency and public policy, as it can help communities 
make informed decisions regarding appropriate salaries for their public employees. 

2.2 How is differential privacy achieved? 

One of the examples above, in which Alice and Bob add random noise to the statistics they publish 
in order to make it more difficult for someone to learn about an individual in the data by comparing 
the two sets of statistics, alludes to how differential privacy can be achieved. In order to mask the 
differences between a real-world computation and an individual’s opt-out scenario, and thereby 
achieve differential privacy, an analysis must introduce some amount of randomness. That is, 
analyses performed with differential privacy differ from standard statistical analyses, such as the 
calculation of averages, medians, and linear regression equations, in that random noise is added 
in the computation. This means that the outcome of a differentially private analysis is not exact 
but an approximation, and a differentially private analysis may, if performed twice, return different 
results. We provide a more detailed discussion of the construction of differentially private analyses 
in Section 7 below. 

3 The privacy loss parameter 

An essential component of a differentially-private mechanism is the privacy loss parameter. For an 
introduction to this parameter, let us first revisit the opt-out scenario for a certain computation, 
such as estimating the number of HIV-positive people in a surveyed population. Ideally, this 
estimate should remain exactly the same whether or not a single individual, such as John, is 
included in the survey. However, ensuring this property exactly would require the total exclusion 
of John’s information from the analysis. It would also require the exclusion of Gertrude’s and 
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Peter’s information, in order to provide privacy protection for them as well. We could continue 
with this argument and remove the personal information of every single surveyed individual in 
order to satisfy their individual opt-out scenarios. However, in doing so, we would have to conclude 
that the analysis cannot rely on any person’s information, and hence it would be useless. 

To avoid this dilemma, differential privacy requires only that the output of the analysis remain 
approximately the same, whether John participates in the survey or not. That is, differential 
privacy permits a slight deviation between the output of the real-world analysis and that of each 
individual’s opt-out scenario. 

A parameter quantifies and limits the extent of the deviation between the opt-out and real-
world scenarios. As shown in Figure 3 below, this parameter is usually denoted by the Greek 
letter E (epsilon) and referred to as the privacy parameter, or, more accurately, the privacy loss 
parameter.8 The parameter E measures the effect of each individual’s information on the output of 
the analysis. It can also be viewed as a measure of the additional privacy risk an individual could 
incur beyond the risk incurred in the opt-out scenario. Note that in Figure 3 we have replaced 
John with a prototypical individual X to emphasize that the differential privacy guarantee is made 
simultaneously to all individuals in the sample, not just John. 

input 
analysis/ 

computation 
outputreal-world 

computation 

“difference” at most E
 

input 
without 
X’s 
data 

analysis/ 
computation 

output 
X’s opt-out 
scenario 

Figure 3: Differential privacy. The maximum deviation between the opt-out scenario and real-
world computation should hold simultaneously for each individual X whose information is included 
in the input. 

8In some implementations of differential privacy, a second parameter denoted by the Greek letter δ (delta) is also 
used. The parameter δ controls the probability that a privacy breach event would happen, and hence should be kept 
very small (e.g., one in a billion). To simplify the presentation here, we will assume that δ is set to zero. 
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Choosing a value for E can be thought of as tuning the level of privacy protection required. This 
choice also affects the utility or accuracy that can be obtained from the analysis. A smaller value 
of E results in a smaller deviation between the real-world analysis and the opt-out scenario, and is 
therefore associated with stronger privacy protection but less accuracy. For example, when E is set 
to zero, the real-world differentially private analysis mimics the opt-out scenario of all individuals 
perfectly. However, as we argued at the beginning of this section, a simultaneous mimicking of the 
opt-out scenarios of all individuals in the surveyed population would require ignoring all information 
from the input, and hence the analysis would not provide any meaningful output. Yet when E is 
set to a small number such as 0.1, the deviation between the real-world computation and each 
individual’s opt-out scenario will be small, providing strong privacy protection while also enabling 
an analyst to derive useful statistics based on the data. 

As a rule of thumb, E should be thought of as a small number, between approximately 1/1000 
and 1. In each implementation of differential privacy, a value of E that allows a reasonable com­
promise between privacy and accuracy should be carefully chosen. A detailed discussion on setting 
the parameter E, including illustrations of the nature of the tradeoff between privacy and utility 
associated with different values of E, is provided in the sections that follow. 

3.1 A technical discussion of the privacy loss parameter 

We now discuss the effect of the privacy loss parameter E in greater technical detail. A reader 
encountering this concept for the first time may choose instead to skip ahead to Section 3.2. 

Any analysis that is differentially private is probabilistic in nature. The reader may be familiar 
with analyses performed using standard statistical software in which the outcome is deterministic, 
meaning that executing the same analysis on the same data produces the same results every time. 
In contrast, executing a differentially private analysis several times on the same data can result in 
different answers. This is because such analyses introduce some uncertainty into the computation 
in the form of random noise.9 

The following example illustrates what we mean by the effect of the introduction of random 
noise into a differentially private analysis. 

Consider a differentially private analysis that approximates the fraction of HIV-
positive individuals in a surveyed population. The outcome of such an analysis is 
a number between 0 and 1. For example, if 1.3% of the population is HIV-positive, 
then the output of the differentially private analysis might be, say, 0.012 or 1.2%. 
The reason that the differentially private analysis does not simply output the exact 
fraction 0.013 is that it protects privacy via the introduction of random noise. 

To describe differentially privacy’s use of random noise, we will rely on the notion of an event 
defined over the outcome of an analysis, a concept from probability theory.10 An event in this 
case is simply a subset of the potential answers for the analysis. For example, we can define the 

9For an explanation of how differentially private analyses are constructed, see Section 7 below. 
10An event is a subset of the possible outcomes of a probabilistic experiment, i.e., a subset of the sample space. 

The probability of the event is the sum of probabilities assigned to each of the outcomes in the subset. For example, 
If the die is fair then 

each of the outcomes has a probability of
6
1 

when a die is tossed, the possible outcomes, making up the sample space, are {1, 2, 3, 4, 5, 6}. 
. The event that the outcome is odd corresponds to the outcome being in 

1 1 11the set {1, 3, 5}, and the probability of this event is + + = .
6 6 26 
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following event: 
E : the outcome of the analysis is between 0.1 and 0.2. 

Consider an analysis on some input data, for which event E would occur with some probability 
'p. For an analysis on the input data excluding John’s data, event E may occur with probability p . 

The guarantee of differential privacy is that these two probabilities, p and p', are almost the same, 
i.e., the probability of the event E is similar whether John’s data is included or excluded. More 

'precisely we have that p ≤ (1 + E) · p . For instance, if the value of the privacy loss parameter E is 
0.01 then 1 + E = 1.01 and we get 

'p ≤ 1.01 · p

and, similarly, 
p' ≤ 1.01 · p. 

In other words, if it happens to be that p' = 0.1, then we find that p is between 0.1/1.01 ≈ 0.099 
and 0.1 · 1.01 = 0.101. (Note: this analysis is simplified and is accurate only for small values of E.) 

Differential privacy guarantees this bound on the ratios p/p' and p'/p not only for event E but 
for every event defined over the outcome of the analysis. Moreover, the privacy guarantee is made 
not only for John’s opt-out scenario, but simultaneously for the opt-out scenario of every individual 
whose information is used in the analysis. 

This next example illustrates these concepts in the context of a real-world scenario. 

John is concerned that a potential health insurance provider will deny him coverage 
in the future, if it learns certain information about his health, such as his HIV-
positive status, from a medical research database that health insurance providers 
can access via a differentially private mechanism. If the insurer bases its coverage 
decision with respect to John in part on information it learns via this mechanism, 
then its decision corresponds to an event defined over the outcome of a differentially 
private analysis. 

For example, the insurer may believe (correctly or incorrectly) that John’s HIV 
status is correlated with the outcome of an analysis estimating the fraction of 
residents in John’s town who visited the hospital in the past month. The insurer 
may also believe (correctly or incorrectly) that John is most likely to be HIV-
positive if the outcome of this analysis is a number between 0.1 and 0.2. In this 
case, the insurer may decide (justifiably or unjustifiably) to deny John’s coverage 
when the following event occurs: 

E : the outcome of the statistical analysis is between 0.1 and 0.2. 

To understand the effect of the privacy loss parameter in this scenario, it is not 
necessary for us to know how the insurer reached its decision. In fact, the insurer’s 
decision may depend on multiple factors, including information it already knows 
about John. It is sufficient to consider that the insurer’s decision corresponds to 
some event over the output of the analysis. If that is the case, it is guaranteed 
that the probability of John being denied coverage, based on the inclusion of 
information about him in the analysis, will not increase by a factor of more than 
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1 + E compared to the scenario in which his information is not included in the 
analysis. 

For instance, if John believes his probability of being denied insurance coverage 
is at most 5% if his information is not included in the medical research database 
accessed by the insurer via a differentially private mechanism with privacy loss 
parameter E = 0.01, then adding his information to the database can increase this 
probability to, at most, 

5% · (1 + E) = 5% · 1.01 = 5.05%. 

Hence, with a privacy loss parameter taking a small value (E = 0.01, in this ex­
ample) the probability that John is denied insurance coverage is almost the same, 
whether or not information about him appears in this medical research database. 

3.2 The composition of differentially private analyses 

Privacy risk accumulates with multiple analyses on an individual’s data, and this is true whether 
or not any privacy-preserving technique is applied.11 With differentially private analyses, the pa­
rameter E quantifies how privacy risk accumulates through multiple analyses. For an illustration 
of the role this parameter plays in the composition of differentially private analyses, consider the 
following example. 

Suppose information about John is contained in a medical research database that is 
used by a potential health insurance provider in two separate differentially private 
analyses. John is concerned that the results of these two analyses, when compared, 
could reveal private information about him such as his HIV status. For example, 
the potential health insurance provider could compare statistics on the number of 
HIV-positive residents in John’s town, before and after he became a resident of 
the town, to determine his HIV-positive status and decide to deny him insurance 
coverage. 

Fortunately for John, differential privacy limits the cumulative privacy loss from 
multiple analyses on his information. If the insurer’s first differentially private 
analysis is performed with a privacy loss parameter of E1 = 0.01, while the second 
utilizes a parameter of E2 = 0.03, the two analyses can be viewed as a single 
analysis with a privacy loss parameter that is potentially larger than E1 or E2 but, 
at most, 

E = E1 + E2 = 0.01 + 0.03 = 0.04. 

Hence, if the probability of the potential insurer denying John insurance coverage 
is 5% when it is not based on an analysis including his information, it can increase 

11We emphasize that this observation is true for any use of information, and, hence, for any approach to preserving 
privacy. It is not unique to differentially private analyses. However, the fact that the cumulative privacy risk from 
multiple analyses can be bounded is a distinguishing property of differential privacy. 
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to at most 
5% · (1 + E) = 5% · 1.04 = 5.2%, 

when his information is included in both analyses. In this way, the use of differ­
ential privacy ensures that the increase in privacy risk from multiple analyses is 
very small. 

For simplicity, this example uses a basic additive rule to compute the total degradation in the 
privacy loss parameter. A more advanced analysis of how privacy loss accumulates would show 
that the total degradation is actually smaller than suggested by this example. Research on this 
topic has led to the development of composition theorems for differential privacy that are beyond 
the scope of this document. What is significant to note for this introduction to the concept is that 
differential privacy provides a framework for measuring and bounding the cumulative privacy loss 
from multiple analyses of information about the same individuals. Although differential privacy is 
not the only available technique for quantifying privacy risk, one of its distinguishing features is 
that it is currently the only framework with quantifiable guarantees on how risk accumulates from 
a composition of multiple analyses. 

How does differential privacy address privacy risks? 

As explained above in Section 2.1, any useful analysis carries the risk that it will reveal information 
about individuals. While differential privacy cannot eliminate this risk, it can guarantee that the 
risk will be limited by quantitative bounds (expressed as a function of the privacy parameter E). To 
understand the type of quantitative bound that can be guaranteed by differential privacy, consider 
the following example. 

Gertrude, a 65-year-old woman, is considering whether to participate in a medi­
cal research study. While she can envision many potential personal and societal 
benefits that could result in part from her participation, she is concerned that 
the personal information she discloses in the course of the study could lead to an 
increase in her life insurance premium in the future. 

For example, Gertrude is concerned that the tests she would undergo as part of 
the research study would reveal that she is predisposed to suffer a stroke and 
is significantly more likely to die in the coming year than the average person of 
her age and gender. If such information related to Gertrude’s increased risk of 
morbidity and mortality is discovered by her life insurance company, it will likely 
increase her premium substantially. 

Before she opts to participate in the study, Gertrude wishes to be assured that 
privacy measures are in place to ensure that her participation will have, at most, 
a limited effect on her life insurance premium. 
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4.1 A baseline: Gertrude’s opt-out scenario 

It is important to note that Gertrude’s life insurance company may raise her premium based on 
something it learns from the medical research study, even if Gertrude does not herself participate 
in the study. The following example is provided to illustrate such a scenario.12 

Gertrude holds a $100, 000 life insurance policy. Her life insurance company has 
set her annual premium at $1, 000, i.e., 1% of $100, 000, based on actuarial tables 
that show that someone of Gertrude’s age and gender has a 1% chance of dying 
in the next year. 

Suppose Gertrude opts out of participating in the medical research study. Regard­
less, the study reveals that coffee drinkers are more likely to suffer a stroke than 
non-coffee drinkers. Gertrude’s life insurance company may update its assessment 
and conclude that, as a 65-year-old woman who drinks coffee, Gertrude has a 2% 
chance of dying in the next year. The company decides to increase Gertrude’s 
annual premium from $1, 000 to $2, 000 based on the findings of the study. 

In this example, the results of the study led to an increase in Gertrude’s life insurance premium, 
even though she did not participate in the study. A potential increase of this nature is unavoidable 
to Gertrude because she cannot prevent other people from participating in the study. Using the 
terminology of Section 2 above, this type of effect is taken into account by Gertrude’s insurance 
premium in her opt-out scenario. 

4.2 Reasoning about Gertrude’s risk 

Next, we consider the increase in risk that is due to Gertrude’s participation in the study. 

Suppose Gertrude decides to participate in the medical research study. Based on 
the results of medical tests performed on Gertrude over the course of the study, 
the researchers conclude that Gertrude has a 50% chance of dying from a stroke in 
the next year. If the data from the study were to be made available to Gertrude’s 
insurance company, it might decide to increase her insurance premium from $2, 000 
to more than $50, 000 in light of this discovery. 

Fortunately for Gertrude, this does not happen. Rather than releasing the full 
dataset from the study, the researchers release only a differentially private sum­
mary of the data they collected. If the researchers use a value of E = 0.01, then 
the insurance company’s estimate of the probability that Gertrude will die in the 
next year can increase from 2% to at most 

2% · (1 + 0.01) = 2.02%. 

Thus Gertrude’s insurance premium can increase from $2, 000 to, at most, $2, 020. 
Gertrude’s first-year cost of participating in the research study, in terms of a 

12Figures in this example are based on data from Social Security Administration, Actuarial Life Table: Period Life 
Table, 2011, http://www.ssa.gov/oact/STATS/table4c6.html. 

16
 

http://www.ssa.gov/oact/STATS/table4c6.html


potential increase in her insurance premium, is at most $20. 

Note that this analysis above does not imply that the insurance company’s estimate 
of the probability that Gertrude will die in the next year must increase as a result 
of her participation in the study, nor that if the estimate increases it must increase 
to 2.02%. What the analysis shows is that if the estimate increases it would not 
exceed 2.02%. 

Consequently, this analysis does not imply that Gertrude would incur an increase 
in her insurance premium, or that if she would incur such an increase it would 
be of $20. What is guaranteed is that, if Gertrude would incur an increase, this 
increase would not exceed $20. 

Gertrude may decide that the potential cost from participating in the research study, $20, is too 
high and she cannot afford to participate with this value of E and this level of risk. Alternatively, 
she may decide that it is worthwhile. Perhaps she is paid more than $20 to participate in the study 
or the information she learns from the study is worth more than $20 to her. The significance is 
that differential privacy allows Gertrude to make a more informed decision based on the worst-case 
cost of her participation in the study. 

4.3 A general framework for reasoning about privacy risk 

Differential privacy provides a general framework for reasoning about the increased risk that is 
incurred when an individual’s information is included in a data analysis. Calculations like those 
used in the analysis of Gertrude’s privacy risk can be performed by referring to Table 1. For 
example, the value of epsilon used in the medical research study Gertrude considered participating 
in was 0.01, and the baseline privacy risk in her opt-out scenario was 2%. As shown in Table 1, 
these values correspond to a worst-case privacy risk of 2.02% in her real-world scenario. Notice also 
how the calculation of risk would change with different values. For example, if the privacy risk in 
Gertrude’s opt-out scenario were 5% rather than 2% and the value of epsilon remained the same, 
then the worst-case privacy risk in her real-world scenario would be 5.05%. 

Note that the above calculation requires certain information that may be difficult to deter­
mine. In particular, the 2% baseline in Gertrude’s opt-out scenario (i.e., Gertrude’s insurer’s belief 
about her chance of dying in the next year) is dependent on the results from the medical research 
study, which Gertrude does not know at the time she makes her decision whether to participate. 
Fortunately, differential privacy provides guarantees for every event and every baseline value.13 

If, for example, Gertrude were to decline to participate in the study but the 
study results would cause Gertrude’s insurer to believe that her chance of dy­
ing in the next year is 3%, then this would be the baseline for calculating that, 
with Gertrude’s participation, the insurer’s estimate for Gertrude’s mortality could 
increase to at most 3% · (1 + 0.01) = 3.03%. 

More generally, we can use Table 1 above to reason about how the participation of an individual 
in a differentially private analysis can affect the belief an insurer or any other entity may have about 

For the definition of event see Footnote 10 in Section 3.1. 
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posterior belief 
given A(x ' ) 

in % 
value of E 

0.01 0.05 0.1 0.2 0.5 1 
0 0 0 0 0 0 0 
1 1.01 1.05 1.1 1.22 1.64 2.67 
2 2.02 2.1 2.21 2.43 3.26 5.26 
5 5.05 5.24 5.5 6.04 7.98 12.52 
10 10.09 10.46 10.94 11.95 15.48 23.2 
25 25.19 25.95 26.92 28.93 35.47 47.54 
50 50.25 51.25 52.5 54.98 62.25 73.11 
75 75.19 75.93 76.83 78.56 83.18 89.08 
90 90.09 90.44 90.86 91.66 93.69 96.07 
95 95.05 95.23 95.45 95.87 96.91 98.1 
98 98.02 98.1 98.19 98.36 98.78 99.25 
99 99.01 99.05 99.09 99.18 99.39 99.63 
100 100 100 100 100 100 100 

maximum posterior belief given A(x) in % 

Table 1: Maximal change between posterior beliefs in Gertrude’s opt-out and real-world scenarios. 
' The notation A(x ' ) refers to the application of the analysis A on the dataset x which does not 

include Gertrude’s information. As this table shows, the use of differential privacy provides a 
quantitative bound on how much one can learn about an individual from a computation. 

her, as follows. 
Recall that our analysis of Gertrude’s privacy risk refers to the baseline belief that an insurer 

may have about an event concerning Gertrude. This baseline belief refers to a hypothetical scenario 
in which the differentially private analysis A is performed but without the individual’s information 
taken into consideration. Denoting the data collected for the analysis by x and the same dataset 
without Gertrude’s information by x ' , we refer to this hypothetical baseline belief of the insurer as 
the posterior belief given A(x ' ). The real belief of the insurer is formulated given the outcome of 
the analysis applied to the entire dataset (i.e., including Gertrude’s data) A(x). We call this belief 
the insurer’s posterior belief given A(x). 

Given this terminology, we can use Table 1 to reason about the maximal difference between the 
' belief the insurer would have had should the analysis have been performed on x (i.e., in Gertrude’s 

opt-out scenario) and the belief the insurer would have should the analysis be performed on x (i.e., 
in Gertrude’s opt-in scenario). The table provides a range of posterior beliefs given A(x ' ) between 
zero and a hundred percent, and can be used for any potential cost Gertrude may be concerned 
about arising from her participation in the study. For instance, her health insurance premium (in 
addition to her life insurance premium) may be affected by the outcome of the study. Reasoning 
about each of these potential effects requires multiple, but similar, calculations. 
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Part II 

Differential privacy and legal requirements 
Social scientists and others who collect, process, analyze, store, or share data about individuals 
must take steps to protect the privacy of the subjects of the data in accordance with various laws, 
institutional policies, contracts, ethical codes, and best practices. In some settings, differential 
privacy can be used by researchers to analyze and share data, while both complying with such 
legal obligations and providing strong mathematical guarantees of privacy protection for research 
subjects. 

To understand how differential privacy can be used to satisfy legal requirements, we must first 
take a closer look at legal approaches to privacy. The following scenario illustrates the types of 
questions that arise when using differential privacy tools to satisfy legal requirements. 

Alice and Bob, professors at State University, are co-authors of an article present­
ing results from a study utilizing data they obtained from a university database 
containing personal information about students. A journal has agreed to publish 
Alice and Bob’s article, but it requires that they also make the data underlying 
the conclusions in their article available through its repository. 

To protect the privacy of the students in their dataset, Alice and Bob use a tool 
that satisfies differential privacy to produce a synthetic version of the dataset and 
intend to upload this synthetic dataset to the journal’s repository. However, they 
originally obtained the data from the university database under the terms of a 
data use agreement prohibiting publication of the data unless the data have been 
de-identified in accordance with the Family Educational Rights and Privacy Act 
(FERPA). 

Alice and Bob are uncertain whether publishing the synthetic data derived from 
their research dataset using differential privacy would constitute a disclosure of de­
identified information as defined by FERPA and would, therefore, be permissible 
under FERPA and their agreement with the university. 

In the section below, we present some of the concepts and legal requirements for privacy pro­
tection researchers like Alice and Bob need to consider while they disseminate information from 
the data they collected for their study, and how, in many cases, use of differential privacy can be 
shown to be sufficient to satisfy these requirements. 

5 Introduction to concepts used in information privacy law 

Relevant legal requirements vary widely depending on the actors and institutions, the types of 
information, and the jurisdictions of the actors and research subjects involved. For example, the 
Federal Policy for the Protection of Human Subjects14 requires researchers who receive US federal 

1445 C.F.R. Part 46. 
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funding to submit to oversight by an institutional review board (IRB) and implement informed 
consent and disclosure limitation procedures as directed by the IRB. Sector-specific privacy laws 
in the United States such as the Family Educational Rights and Privacy Act15 and the Health 
Insurance Portability and Accountability Act Privacy Rule16 prohibit the disclosure of certain 
types of personal information by educational institutions and health care providers, respectively, but 
permit the disclosure of information that has been de-identified in accordance with the standards 
they set forth. Laws at the state level may impose a range of additional requirements such as 
mandatory procedures for data security, breach notification, and data destruction.17 Other privacy 
and data protection laws are in place across the globe, and have additional implications for data 
that cross national borders. For instance, the Data Protection Directive18 broadly protects personal 
data about EU citzens and establishes rules for handling personal data within the EU. In 2018, 
the Directive will be superseded by the General Data Protection Regulation,19 which will extend 
EU data protection law to any actor holding personal data about EU citizens. Neither the Data 
Protection Directive nor the General Data Protection Regulation protects information characterized 
as anonymous data. 

In this section, we explore a number of concepts that commonly appear in information privacy 
law. Throughout this discussion, we refer to examples from a selection of laws such as the Family 
Educational Rights and Privacy Act (FERPA), the Health Insurance Portability and Accountability 
Act (HIPAA) Privacy Rule, Title 13 of the U.S. Code,20 and the Confidential Information Protection 
and Statistical Efficiency Act (CIPSEA).21 While specific provisions of these laws, and how they 
have been interpreted, are provided to illustrate how these concepts are used in the regulation of 
privacy, the concepts discussed underlie provisions of other laws throughout the world, making this 
discussion applicable beyond the scope of the subset of laws discussed. 

Legal requirements relevant to issues of privacy in computation rely on an understanding of a 
range of different concepts, such as personally identifiable information, de-identification, linkage, 
inference, identification risk, expert determination, consent and opt out, and purpose and access 
restrictions. Each of these concepts is discussed, in turn, in relation to specific provisions of the 
selection of information privacy laws covered in this section, and a summary is provided at the end 
of this section in Table 2. While none of these concepts that appear in the law refer directly to 
differential privacy, we show how the concept of differential privacy can be interpreted to address 
these concepts while accommodating differences in how these concepts are defined. 

5.1 Personally identifiable information 

Personally identifiable information (PII) is a central concept used in information privacy law. Legal 
requirements for privacy protection often define their scope of applicability in terms of PII. For 
instance, legal protections typically extend only to personally identifiable information, and infor­

1520 U.S.C. § 1232g; 34 C.F.R. Part 99 (2013). 
1645 C.F.R. Part 160 and Subparts A and E of Part 164. 
17See, e.g., 201 Code Mass. Regs. §§ 17.01 et seq. 
18European Parliament and Council Directive 95/46/EC of 24 October 1995 on the protection of individuals with 

regard to the processing of personal data and on the free movement of such data. 
19Regulation (EU) 2016/679 of the European Parliament and the Council of 27 April 2016 on the protection of 

natural persons with regard to the processing of personal data and on the free movement of such data. 
20Title 13, U.S. Code. 
21Confidential Information Protection and Statistical Efficiency Act of 2002, Title V, Pub. L. No. 107-347, 116 

Stat. 2962. 

20
 



mation not considered personally identifiable is not protected. Although definitions of personally 
identifiable information vary significantly between laws, they are generally understood to refer to 
the presence of pieces of information that are linkable to the identity of an individual or to an 
individual’s personal attributes.22 

Consider the following example, which illustrates that a collection of records, each containing 
information obtained from an individual, would be considered to contain PII if it is possible to link 
some or all of the information in a record to the individual who contributed it. 

A researcher obtains two datasets containing records obtained from individuals. In 
Database A each record includes, among other information, an individual’s name, 
Social Security number, and, in some cases, home address. The researcher notes 
that each of these fields can be used to directly identify or otherwise be linked to 
an individual. For this reason, the researcher concludes that Database A contains 
PII. 

The researcher also has another database, Database B, from which all informa­
tion believed to be directly identifying, such as names, Social Security numbers, 
and addresses, has been suppressed. For this database, the researcher considers 
whether the remaining information identifies individuals indirectly. The researcher 
observes that records in Database B contain information such as ZIP code, date 
of birth, and sex. 

As seen in this example, information stored about individuals may contain direct and indirect 
identifiers. Direct identifiers include attributes such as an individual’s name, address, or Social 
Security number, which are used as measures of identification in many everyday situations. Indirect 
identifiers include attributes that (often in combination) can make an individual unique in the 
population. Linkage is often achieved, among other ways, by taking several attributes from a record, 
which, in combination, serve as indirect identifiers in that they uniquely identify a person in the 
population. For example, the combination of ZIP code, date of birth, and sex is unique for a large 
percentage of the U.S. population. Using publicly available data, such as voter registration records, 
it is possible to link combinations of attributes from a database to specific, named individuals.23 

Therefore, linkage of a record to an individual may be possible for both Database A and Database 
B, despite attempts to redact directly identifying information from Database B. 

Attributes other than ZIP code, date of birth, and sex may also result in identification of 
individuals. For example, persistent static IP addresses and MAC addresses, which are used in 
Internet protocols, may be considered personally identifying information. More generally, research 

22For a general definition of personally identifiable information, see, e.g., Government Accountability Office, Alter­
natives Exist for Enhancing Protection of Personally Identifiable Information (2008). (“For purposes of this report, 
the terms personal information and personally identifiable information are used interchangeably to refer to any infor­
mation about an individual maintained by an agency, including (1) any information that can be used to distinguish 
or trace an individuals identity, such as name, Social Security number, date and place of birth, mothers maiden 
name, or biometric records; and (2) any other information that is linked or linkable to an individual, such as medical, 
educational, financial, and employment information.”). For a survey of various definitions of personally identifiable 
information, see Paul M. Schwartz & Daniel J. Solove, The PII Problem: Privacy and a New Concept of Personally 
Identifiable Information, 86 N.Y.U. L. Rev. 1814 (2011). 

23See Latanya Sweeney, Simple Demographics Often Identify People Uniquely, Data Privacy Lab Technical Report 
(2000). 
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has shown that combinations of attributes that are not usually thought of identifying can often 
lead to identification of individuals.24 

Due in large part to concerns such as these, laws have been enacted with the aim of protecting 
types of information that could be used to identify individuals in a database. For instance, FERPA 
protects non-directory personally identifiable information maintained by educational agencies and 
institutions. FERPA defines PII by way of a non-exhaustive list of examples of information consid­
ered directly or indirectly identifying, as well as “[o]ther information that, alone or in combination, 
is linked or linkable to a specific student that would allow a reasonable person in the school commu­
nity, who does not have personal knowledge of the relevant circumstances, to identify the student 
with reasonable certainty.”25 FERPA distinguishes between non-directory PII and directory in­
formation which may include names, phone numbers, and other information that the institution 
chooses to include and “would not generally be considered harmful or an invasion of privacy if 
disclosed.”26 The HIPAA Privacy Rule regulates the use and disclosure of protected health infor­
mation by covered health care entities and their business associates. Protected health information 
is defined as individually identifiable health information, which “identifies the individual” or “with 
respect to which there is a reasonable basis to believe the information can be used to identify the 
individual.”27 Title 13 of the U.S. Code governs the U.S. Census Bureau’s activities, including 
its confidentiality requirements when handling information supplied by respondents participating 
in its censuses and surveys. The statute does not explicitly refer to PII but to “any publication 
whereby the data furnished by any particular establishment or individual . . . can be identified.”28 

CIPSEA establishes confidentiality protection for information collected by federal agencies directly 
from respondents under a pledge of confidentiality for exclusively statistical purposes. Its protec­
tions apply to information in identifiable form, defined as “any representation of information that 
permits the identity of the respondent to whom the information applies to be reasonably inferred 
by either direct or indirect means.”29 

The term personally identifiable information does not have a precise technical meaning, and in 
practice it can be difficult to determine whether information is personal, identifying, or likely to 
be considered identifying in the future. Indeed, definitions between laws and the interpretations of 
these definitions vary widely. There is no clear rule for determining whether particular pieces of 
information are personally identifying, or for determining whether an information release should 
be considered to contain personally identifiable information. Experts often disagree whether a 
particular piece of information constitutes personally identifiable information, and it is a notion 
that is evolving as practices adapt in response to new privacy attacks. Over time, successful 
demonstrations of privacy attacks reveal new privacy vulnerabilities that are arguably not addressed 
by existing interpretations of personally identifiable information. Furthermore, determining what 
is personally identifiable information in releases that are not in a microdata or tabular format, such 
as statistical models or outputs of a machine learning system, is unclear. 

Regardless of the definition or notion of personally identifiable information that is used, differen­

24Narayanan and Shmatikov generalize these findings and assert that “[a]ny information that distinguishes one 
person from another can be used for re-identifying anonymous data.” See Arvind Narayanan & Vitaly Shmatikov, 
Myths and Fallacies of “Personally Identifiable Information,” 53 Communications of the ACM 24, 26 (2010). 

2534 C.F.R. § 99.3. 
2634 C.F.R. § 99.3. 
27See 45 C.F.R. § 160.103. 
2813 U.S.C. § 9. 
29Pub. L. 107-347 § 502(4). 
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tial privacy can be interpreted as ensuring that using an individuals data will not reveal personally 
identifiable information specific to her.30 Here, specific refers to information that is unique to the 
individual and cannot be inferred unless the individual’s information is used in the analysis. This 
interpretation of the differential privacy guarantee can be used to argue that the use of differential 
privacy is sufficient to satisfy the requirements of information privacy laws that protect personally 
identifiable information from disclosure. 

5.2 De-identification 

The term de-identification refers to a collection of techniques that aim to transform identifiable 
information into non-identifiable information, while also preserving some utility of the data. In 
principle, it is intended that de-identification, if performed successfully, can be used as a tool for 
removing PII, or transforming PII into non-PII. 

A host of techniques and best practices for de-identification have been developed over the 
years and are currently used to transform PII into non-PII with varying degrees of success. The 
statistical disclosure limitation literature includes a wide range of techniques for suppression, noise 
addition, swapping of information among records, and synthetic data generation that are used 
for de-identification. For example, tools to suppress direct or indirect identifiers are applied with 
the goal of preventing linkage of a record with other available datasets. When using suppression 
techniques to de-identify information, it is generally recommended to take into consideration what 
data may be available to a privacy attacker presently or in the future. These techniques can provide 
protection against certain types of attacks. However, use of suppression techniques alone is widely 
considered to be insufficient to protect privacy, and, as a result, such techniques are commonly 
used in combination with other methods. Another technique commonly used in the publication 
of statistical tables is the suppression of cells representing small groups. The rationale underlying 
the suppression of small cell counts is that cells with low counts (such as counts between 1 and 
4) indicate the existence of uniques in the population or sample, and can lead to identification, or 
learning of sensitive attributes of individuals. 

A number of information privacy laws explicitly or implicitly authorize the release of information 
about individuals after it has been de-identified. For instance, by definition, data that have been de­
identified according to the FERPA standard are considered not to contain any personally identifiable 
information and can be used for any purpose without restriction.31 The Department of Education 
declines, however, to prescribe specific methods that are sufficient for redacting records or producing 
statistical information in accordance with these requirements, explaining that “determining whether 
a particular set of methods for de-identifying data and limiting disclosure risk is adequate cannot 
be made without examining the underlying data sets, other data that have been released, publicly 
available directories, and other data that are linked or linkable to the information in question.”32 

Instead, the agency provides a list of examples of statistical disclosure limitation methods that 
may be used, such as adhering to a minimum cell size, controlled rounding, top coding, replacing 
individual values with categorical groupings, and data swapping, and refers practitioners to a 
summary of statistical disclosure limitation techniques prepared by the Federal Committee on 
Statistical Methodology for additional guidance.33 

30Note that the term use in this statement refers to the inclusion of an individual’s data in an analysis.
 
31See 73 Fed. Reg. 74,806, 74,836.
 
32Id.
 
33Id.; 73 Fed. Reg. 15,574, 15,584 (Mar. 24, 2008).
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The HIPAA Privacy Rule establishes a de-identification standard that is satisfied when pro­
tected health information is transformed such that (1) the health information does not identify an 
individual and (2) with respect to which there is no reasonable basis to believe that the information 
can be used to identify an individual.34 There are two methods for de-identifying information in 
accordance with the Privacy Rule: the expert determination method and the safe harbor method.35 

The safe harbor method involves the removal of eighteen pieces of information considered to be 
identifying, including names, telephone numbers, Social Security numbers, and medical record num­
bers, among others.36 In addition, the covered entity must not have “actual knowledge that the 
information could be used alone or in combination with other information to identify an individual 
who is a subject of the information.”37 De-identification in accordance with the second method, ex­
pert determination, is satisfied by an expert applying “generally accepted statistical and scientific 
principles and methods for rendering information not individually identifiable” and determining 
that “the risk is very small that the information could be used, alone or in combination with other 
reasonably available information, by an anticipated recipient to identify an individual who is a 
subject of the information.”38 

Title 13 and CIPSEA are typically interpreted to require the application of statistical disclosure 
limitation techniques, such as cell suppression, data swapping, rounding, top and bottom coding, 
random noise addition, and synthetic data generation.39 Such techniques are used to transform 
information prior to release, with the goal of preventing the identification of respondents who 
supplied data for statistical purposes. 

Generally, de-identification is intended as a means to transform PII into non-PII. In other 
words, de-identification techniques are used by organizations that aim to disclose information that 
does not contain personal information that can be linked to specific individuals whose information 
has been used. As discussed in the previous section, any algorithm that satisfies the requirements 
of differential privacy has the property that using an individuals data will not reveal personally 
identifiable information specific to her. Because the output of a differentially private computation 
does not reveal personally identifiable information, any differentially private algorithm should be 
considered sufficient for de-identification. An alternative interpretation is that differential privacy 
provides very strong privacy protection for individuals, substantially reducing the risk that including 
information about an individual in an analysis will reveal information that is specific to them, 
including their identity or sensitive attributes. 

Moreover, differential privacy can provide some utility where traditional approaches to privacy 
do not. In particular, differential privacy can be used to safely compute some statistics using 
information considered to be PII. For example, differential privacy can be used to safely generate 
statistics on the relationship between an individual’s first name and lifetime earnings, whereas 
a de-identified dataset that has been stripped of individuals’ names could not support such an 
analysis. 

34See 45 C.F.R. § 164.514(a). 
35See 45 C.F.R. § 164.514(b). 
3645 C.F.R. § 164.514(b)(2). 
37§ 164.514(b)(2)(ii). 
3845 C.F.R. § 164.514(b)(1). 
39See, e.g., Amy Lauger, Billy Wisniewski, & Laura McKenna, Disclosure Avoidance Techniques at the U.S. Census 

Bureau: Current Practices and Research, U.S. Census Bureau Research Report (2014). 
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5.3 Linkage 

Guidance on complying with legal requirements for privacy protection often refers to specific modes 
of privacy loss. References to these modes of privacy loss are intended to highlight certain types 
of privacy attacks that should be addressed by the measures implemented by privacy practitioners. 
Among the various modes of privacy loss frequently referenced by privacy regulations are linkage 
(often using auxiliary information), singling out, and inference. With the discussion in this and 
the following section, we explain how differential privacy provides privacy protection against a very 
large class of modes of privacy loss, including those commonly referenced within legal guidance. 

One of the most prominent modes of privacy loss recognized by privacy regulations, implicitly 
or explicitly, is a successful record linkage. Linkage typically refers to the matching of information 
in a database to a specific individual, often by leveraging auxiliary data sources. For example, by 
defining personally identifiable information in terms of information “linked or linkable to a specific 
student,”40 FERPA appears to emphasize the risk of a successful record linkage attack. The 
Department of Health & Human Services in guidance on de-identifying data in accordance with 
the HIPAA Privacy Rule includes an extended discussion of examples of record linkage attacks and 
de-identification strategies for mitigating them.41 

Linkage is also closely related to the concept of identifying an individual in a data release, 
as identifying an individual is often accomplished via a successful linkage. Another variant of the 
concept of linkage referenced in EU data protection law, including the new General Data Protection 
Regulation, refers to singling out, which “corresponds to the possibility to isolate some or all records 
which identify an individual in the dataset,”42 and appears to focus on data releases in microdata 
formats, in which each record corresponds to an individual. 

Attacks on de-identified data often leverage external, or auxiliary, information, which can be 
used to link de-identified information to personally identifiable information. Examples of auxiliary 
information include publicly available information, such as information from a voter registration 
record or a social media profile, or personal knowledge that a friend, relative, or colleague might 
have about an individual in a database. For instance, as mentioned above, it has been shown that 
an individual’s birth date, ZIP code, and sex can be retrieved from a voter registration record, and 
used to link an individual’s identity to a record in a de-identified database containing the same 
three attributes. Similarly, it was demonstrated that individuals could be identified in Netflix’s 
database of users’ movie ratings using another source of individuals’ movie ratings, such as the 
Internet Movie Database, or even limited knowledge about a friend’s movie viewing history.43 

Concerns about attacks such as these are reflected in regulatory guidance on complying with legal 
requirements, which often advise that, when applying de-identification techniques, practitioners 
should consider the data sources that are available and could be leveraged in a linkage attack. 

Linkage attacks have a concrete meaning when data is published as a collection of individual-
level records, often referred to as microdata. However, what is considered a successful linkage when 
a publication is made in other formats (including, e.g., statistical models and synthetic data) is 
open to interpretation. Despite this ambiguity, it can be argued that differential privacy addresses 

4034 C.F.R. § 99.3. 
41See Office for Civil Rights, Department of Health and Human Services, Guidance Regarding Methods for De-

identification of Protected Health Information in Accordance with the Health Insurance Portability and Accountability 
Act (HIPAA) Privacy Rule (2012). 

42See Article 29 Data Protection Working Party, Opinion 05/2014 on Anonymisation Techniques (2014). 
43See Arvind Narayanan & Vitaly Shmatikov, Robust De-anonymization of Large Sparse Datasets, IEEE Security 

and Privacy (2008). 
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any reasonable interpretation of record linkage. For example, microdata or contingency tables that 
allow the identification of population uniques cannot be created using statistics produced by a 
differentially private tool, making it structurally impossible to isolate or link an individual’s record 
given a statistical output generated using differential privacy. Similarly, differential privacy masks 
the contribution of a single individual, making it impossible to infer any information specific to 
an individual, including whether an individual’s information was used at all. Differentially private 
statistics also provably hide the influence of every individual, and even groups of individuals, pro­
viding protection not only against releasing exact records but also approximate statistics that could 
leak individual-level information. Furthermore, differential privacy provides a robust guarantee of 
privacy protection that is independent of the auxiliary information available to an attacker. When 
differential privacy is used, an attacker utilizing auxiliary information cannot learn much more 
about an individual in a database than she could if that individual’s information were not in the 
database at all. It follows from these interpretations that an individual’s record cannot be singled 
out or linked using the statistics produced by a differentially private tool. 

5.4 Inference 

Some information privacy laws, or interpretations of these laws, refer to modes of privacy loss 
involving inference. Some laws refer to inference explicitly. For example, CIPSEA protects “any 
representation of information that permits the identity of the respondent to whom the information 
applies to be reasonably inferred by either direct or indirect means.”44 EU data protection law also 
refers to inference, defined as “the possibility to deduce, with significant probability, the value of 
an attribute from the values of a set of other attributes.”45 Other laws are interpreted to prohibit 
disclosures of information that enable one to determine an attribute about an individual with 
(high) certainty. For example, FERPA defines personally identifiable information, in part, in terms 
of information that would allow one to identify a student “with reasonable certainty.”46 In practice, 
FERPA has been interpreted to require the use of statistical disclosure limitation techniques for 
preserving uncertainty, such as using minimum group sizes, withholding exact counts in favor of 
rounded percentages, and applying top and bottom coding procedures to percentages prior to 
release.47 

When discussing inference, it is important to distinguish between two types: inferences about 
individuals and inferences about large groups of individuals. The law generally does not draw 
a clear distinction between these two types of inference. However, differentiating between these 
two categories of inference is key to enabling socially beneficial uses of data, such as research 
investigating the relationship between smoking and lung cancer, while protecting individuals from 
disclosures of information specific to them. In explicit recognition of this distinction, differential 
privacy rules out inferences about individuals, thereby protecting individuals from inferences about 
values or attributes that are specific to them. As described above in Section 4, by protecting against 
such inferences, differential privacy formally bounds the increase in risk that is incurred when an 
individual’s information is included in a data analysis. If a successful record linkage is interpreted 
as a reduction in the uncertainty an attacker has about an individuals data, then differential privacy 

44Pub. L. 107-347 § 502(4) (emphasis added). 
45See Article 29 Data Protection Working Party, Opinion 05/2014 on Anonymisation Techniques (2014). 
4634 C.F.R. § 99.3. 
47See National Center for Education Statistics, Statistical Methods for Protecting Personally Identifiable Informa­

tion in Aggregate Reporting (2011). 
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provides guarantees regarding protection against record linkage. 
In summary, differential privacy provides privacy protection against a very large class of modes 

of privacy loss, including those commonly referenced within legal guidance, such as linkage, singling 
out, and inference. 

5.5 Identification risk 

Some information privacy laws refer to an acceptable level of risk of identification of a record in a 
data release. Similarly, other laws often acknowledge, implicitly or explicitly, that any disclosure 
of information carries privacy risks, and therefore the goal is to minimize rather than eliminate 
such risks. For example, in clarifying guidance on FERPA, the Department of Education refers to 
the law’s de-identification requirements in terms of the goal of “minimiz[ing] the risk of disclosing 
personally identifiable information in redacted records or statistical information.”48 The HIPAA 
Privacy Rule requires covered entities to use de-identification techniques prior to releasing data in 
order to create a dataset with only a “very small” risk of identification.49 Guidance on protecting 
confidentiality in accordance with CIPSEA requires agencies to “collect and handle confidential 
information to minimize risk of disclosure,” among other requirements.50 The Census Bureau’s 
interpretation of Title 13’s risk tolerance is reflected in its disclosure review policies which recognize 
the risks inherently associated with any publication of data and, accordingly, require a careful 
balancing of utility and privacy as part of each data release decision.51 

In practice, it is not clear how to measure identification risk, as approaches vary and are largely 
ad hoc. Some de-identification experts aim to measure the number or percentage of records in a 
dataset that are likely to be identified. Another approach is to measure how one’s uncertainty with 
respect to an individual’s personal information can decrease in light of what is learned from a data 
publication. 

Differential privacy enables a formal quantification of risk, and the privacy loss parameter epsilon 
can be tuned to different legal requirements for minimizing risk. Regardless of how identification 
risk—or privacy risk, more generally—is defined, differential privacy guarantees that the risk to 

4873 Fed. Reg. 74,806, 74,835 (Dec. 9, 2008). 
49The expert determination method for de-identifying information in accordance with the HIPAA Privacy Rule 

requires an expert to make a determination that “the risk is very small that the information could be used, alone or 
in combination with other reasonably available information, by an anticipated recipient to identify an individual who 
is a subject of the information.” 45 C.F.R. § 164.514(b)(1). The goal of the HIPAA safe harbor method has also been 
interpreted to be achieving a “very small risk of a privacy violation. See 65 Fed. Reg. 82,462, 82,543 (“The intent of 
the safe harbor is to provide a means to produce some de-identified information that could be used for many purposes 
with a very small risk of privacy violation.”). In guidance, the Department of Health & Human Services recognizes 
that “[b]oth methods, even when properly applied, yield de-identified data that retains some risk of identification. 
Although the risk is very small, it is not zero, and there is a possibility that de-identified data could be linked back 
to the identity of the patient to which it corresponds.” Office for Civil Rights, Department of Health and Human 
Services, Guidance Regarding Methods for De-identification of Protected Health Information in Accordance with the 
Health Insurance Portability and Accountability Act (HIPAA) Privacy Rule (2012). 

50See Office of Management and Budget, Implementation Guidance for Title V of the E-Government Act, Confi­
dential Information Protection and Statistical Efficiency Act of 2002 (CIPSEA), 72 Fed. Reg. 33,361 (2006). 

51See George Gatewood, Census Confidentiality and Privacy: 1790 - 2002 (2001) (“[T]he Census Bureau uses 
[disclosure limitation] to hinder anyone from identifying an individual respondent or establishment by analyzing 
published census or survey data, especially, by manipulating the arithmetical relationships among the data. At the 
same time, the agency has the responsibility of releasing data for the purpose of statistical analysis. The desire then 
is to release as much statistically valid and useful data as possible without violating the confidentiality of the data 
as required by title 13.”). 
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an individual is almost the same with or without her participation in the dataset. In this way, 
differential privacy can be interpreted to guarantee that the risk to an individual is minimal or very 
small. 

5.6 Expert determination 

Some regulations allow for an expert to make a determination regarding the appropriate disclosure 
limitation techniques to apply to a dataset prior to release. Notably, the HIPAA Privacy Rule 
provides an expert determination method by which information can be de-identified in accordance 
with the regulation’s requirements. De-identification under the expert determination method is 
satisfied by an expert applying “generally accepted statistical and scientific principles and meth­
ods for rendering information not individually identifiable” and determining that “the risk is very 
small that the information could be used, alone or in combination with other reasonably available 
information, by an anticipated recipient to identify an individual who is a subject of the infor­
mation.”52 In interpreting the expert determination requirements, the Department of Health & 
Human Services has declined to establish required qualifications for experts or clarification of how 
to determine whether a de-identified information release carries “very small” risk.53 

Statistical agencies governed by Title 13 or CIPSEA defer to the expertise of a disclosure review 
board on applying disclosure limitation techniques when publishing statistics based on information 
from respondents. Although expert determination is not required by FERPA, the Department 
of Education has encouraged educational agencies and institutions to consult with an expert in 
de-identification where feasible.54 

In contexts in which expert determination is required (or recommended), it is possible to demon­
strate that the use of differential privacy achieves what is intended by many legal requirements. 
As explained above, differential privacy ensures that using an individuals data will not reveal per­
sonally identifiable information specific to her. Differential privacy guarantees that the risk to an 
individual—including her identification risk or privacy risk, more generally—is almost the same 
with or without her participation in the dataset. Differential privacy is a formal privacy definition 
that provides general protection against a wide range of attacks, and it can be formally analyzed 
and tuned in accordance with the context in which it is applied. 

Moreover, even where expert determination is not required by law, we believe that the use of 
privacy-preserving technologies should be carefully analyzed and supported by an argument that 
is rigorous from both a technical and a legal standpoint, and the formal mathematical definition of 
differential privacy is amenable to such an analysis.55 

5245 C.F.R. § 164.514(b)(1). 
53“There is no specific professional degree or certification program for designating who is an expert at rendering 

health information de-identified. Relevant expertise may be gained through various routes of education and expe­
rience.” See Office for Civil Rights, Department of Health and Human Services, Guidance Regarding Methods for 
De-identification of Protected Health Information in Accordance with the Health Insurance Portability and Account­
ability Act (HIPAA) Privacy Rule (2012). “There is no explicit numerical level of identification risk that is deemed 
to universally meet the very small level indicated by the method. The ability of a recipient of information to identify 
an individual (i.e., subject of the information) is dependent on many factors, which an expert will need to take into 
account while assessing the risk from a data set.” See id. 

54In guidance, the Department of Education notes that it “recognizes that there are some practices from the existing 
professional literature on disclosure limitation that can assist covered entities in developing a sound approach to de­
identifying data for release, particularly when consultation with professional statisticians with experience in disclosure 
limitation methods is not feasible.” 73 Fed. Reg. 15,574, 15,584 (Mar. 24, 2008). 

55For an example of a combined legal-technical argument that a technology satisfies a legal requirement for privacy 
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5.7 Consent and opt out provisions 

Some information privacy laws include consent provisions, or opt out provisions, by which indi­
viduals can choose to allow, or not to allow, their information to be used by or redisclosed to a 
third party, respectively. For example, FERPA includes a provision requiring educational agencies 
and institutions to offer students an opportunity to opt out of the disclosure of their personal 
information in school directories.56 Underlying consent or opt out provisions such as these are 
assumptions that providing individuals with an opportunity to opt in or out gives them control 
over the use of their personal information and effectively protects their privacy. However, these 
assumptions warrant a closer look. For instance, providing consent or opt out mechanisms as a 
means of providing individuals with greater control over their information is an incomplete solu­
tion if individuals are not also fully informed about the consequences of uses or disclosures of their 
information. In addition, allowing individuals the choice to opt in or out can create new privacy 
concerns. An individual’s decision to opt out may (often unintentionally) be reflected in a data 
release or analysis and invite scrutiny into whether the choice to opt out was motivated by the need 
to hide compromising information.57 

Differential privacy can be viewed as automatically providing all individuals in the data with 
the protection that opting out is intended to provide. When differential privacy is used, the conse­
quences for an individual’s privacy are almost the same whether or not an individual’s information 
is included in an analysis. Moreover, differential privacy provides all individuals with this privacy 
guarantee, thereby avoiding the possibility that individuals who choose to opt out would, by doing 
so, inadvertently reveal a sensitive attribute about themselves or attract attention as individuals 
who are potentially hiding sensitive facts about themselves. 

5.8 Purpose and access restrictions 

Information privacy laws often include provisions restricting the use or disclosure of personally 
identifiable information to specific parties or for specific purposes, with wide variations in such 
requirements across different laws. For instance, laws governing confidentiality requirements for 
statistical agencies generally restrict uses of identifiable information from respondents to uses 
for statistical purposes. Title 13 restricts the use of confidential information from respondents, 
prohibiting uses “for any purpose other than the statistical purposes for which it is supplied,”58 

and restricting access to agency employees and approved researchers with Special Sworn Status. 
CIPSEA prohibits the use of protected information “for any use other than an exclusively statis­
tical purpose,”59 where statistical purpose “means the description, estimation, or analysis of the 
characteristics of groups, without identifying the individuals or organizations that comprise such 
groups.”60 FERPA’s standard for de-identifying education records applies only to releases “to any 

protection, see Kobbi Nissim, Aaron Bembenek, Alexandra Wood, Mark Bun, Marco Gaboardi, Urs Gasser, David 
R. O’Brien, Thomas Steinke, & Salil Vadhan, Bridging the Gap between Computer Science and Legal Approaches to 
Privacy, Working Paper (2017). 

5634 C.F.R. § 99.37. 
57For a real-world example, consider recent reports that the National Security Agency’s surveillance efforts specially 

target users of privacy services. See Kim Zetter, The NSA Is Targeting Users of Privacy Services, Leaked Code Shows, 
Wired, July 3, 2014. 

5813 U.S.C. § 9(a)(1). 
59Pub. L. 107-347 § 512(b)(1). 
60Pub. L. 107-347 § 502(9). 
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party for any purpose.”61 In accordance with FERPA, personally identifiable information can be 
shared with school officials with a legitimate educational interest in the information,62 authorized 
representatives of the Comptroller General of the U.S., the Attorney General, the Secretary of 
Education, and State or local educational authorities,63 and organizations conducting studies for, 
or on behalf of, schools, school districts, or postsecondary institutions.64 

Legal requirements reflecting purpose and access restrictions such as these can be divided into 
two categories. Restrictions limiting use to statistical purposes, including statistical purposes in­
volving population-level rather than individual-level analyses or statistical computations, are con­
sistent with the use of differential privacy. Tools that satisfy differential privacy can be understood 
to restrict uses to only those that are for statistical purposes. However, other use and access re­
strictions such as restrictions limiting use to “legitimate educational purposes” are orthogonal to 
differential privacy. 

Legal standards for privacy protection, and interpretations of these standards set forth in guid­
ance, do not directly address the question of whether use of technologies relying on differential 
privacy is sufficient to satisfy their requirements. Determining whether differentially private anal­
yses can satisfy legal requirements for protecting privacy is challenging for a number of reasons. 
Because privacy laws are often sector-, jurisdiction-, and context-specific, different legal require­
ments apply depending on the setting, leading to different requirements for various datasets held 
by a single institution, or different requirements for the same or similar datasets held by different 
institutions. In addition, many legal standards for privacy protection are, to a large extent, open to 
interpretation and therefore require a case-specific legal analysis by an attorney. Other challenges 
arise from the fact that the privacy concepts found in legal standards differ significantly from those 
underlying differential privacy. For instance, many laws focus on the presence of “personally iden­
tifiable information” or the ability to “identify” an individual’s personal information in a release of 
records. Such concepts are not precisely defined, and they do not perfectly match the definition of 
differential privacy. Many laws also emphasize requirements for protecting privacy when disclosing 
individual-level data, but lack clear guidance for disclosing privacy-preserving aggregate statistics. 
While in some cases it may be clear whether a legal standard has been met by the use of differential 
privacy, in other cases—particularly along the boundaries of a standard—there may be considerable 
uncertainty. 

Despite the conceptual gaps between differential privacy and legal requirements for privacy 
protection, there are strong reasons to believe that differential privacy provides privacy protection 
that is consistent with many legal requirements. Tools relying on differential privacy provide robust 
privacy protection for individuals. The strength of this approach arises from the fundamental 
features of differential privacy. Differential privacy is formally defined and enables a formal analysis 
of risk to an individual. Differential privacy provides a mathematical quantification of the excess 
risk to an individual from participating in an analysis, and preserves privacy taking into account the 
accumulation of risk over multiple analyses. The use of differential privacy prevents an adversary 
from determining whether a given individual’s personal information was included in an analysis. In 
fact, it provides strong protection against a wide range of both known and unforeseeable attacks, 
including the types of record linkage attacks referenced, explicitly or implicitly, in the design of 

6173 Fed. Reg. 74,806, 74,836.
 
62See 34 C.F.R. §§ 99.31(a)(1), 99.7(a)(3)(iii).
 
63See 34 C.F.R. §§ 99.31(a)(3), 99.35.
 
64See 34 C.F.R. § 99.31(a)(6).
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FERPA 
Minimize 

risk 

Record 
linkage, 
Other 

Application 
of SDL 

techniques 
(esp. 

suppression, 
minimum cell 

sizes) 

Recom­
mended, 
but not 
required 

Studies, 
audit, and 
legitimate 
educational 
purposes 

Re­
searchers, 
Autho­
rized 

represen­
tatives, 
School 
officials 

HIPAA 
Safe 

Harbor 

Very small 
risk 

Record 
linkage 

Removal of 
18 identifiers 

Not 
required 

Research 
uses with no 
more than 
minimal risk 

Re­
searchers 

HIPAA 
Expert 
Deter­
mina­
tion 

Very small 
risk 

Record 
linkage 

Application 
of SDL 

techniques 
(esp. 

k-anonymity) 

Expert 
Analysis, 
Documen­
tation 

Research 
uses with no 
more than 
minimal risk 

Re­
searchers 

Title 13 

Ostensibly 
none (but 
implicitly 
balanced 

with utility) 

Application 
of SDL 

techniques 

Disclosure 
Review 
Board 

Statistical 
purposes for 
which it is 
supplied 

Special 
Sworn 
Status 

Statistical 

CIPSEA 
Minimize 

risk 

Application 
of SDL 

techniques 

Disclosure 
Review 

purposes 
(defined in 
part in 
terms of 

population-
level 

Officers, 
employees, 
or agents 
of the 
agency 

analysis) 

Table 2: Aspects of select requirements from information privacy law.
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numerous privacy laws. 
Under any one of these interpretations, it is therefore likely that in many cases a differentially 

private mechanism would prevent the types of disclosures of personal information that legal pro­
tections have been designed to address. In many cases, differentially private tools provides privacy 
protection that is more robust than techniques commonly used to satisfy legal requirements for 
privacy protection. However, research exploring methods for proving that differential privacy sat­
isfies legal requirements and for tuning the privacy loss parameter E based on legal requirements 
is needed.65 In practice, data managers should consult with legal counsel in considering whether 
differential privacy tools, potentially in combination with other tools for protecting privacy and 
security, are appropriate within their institutional settings. 

6	 Implications of differential privacy for the future regulation of 
privacy 

Differential privacy is a newly emerging concept and is currently in early stages of deployment 
and use. Legal scholars, policymakers, and regulators are beginning to study the definition and 
examine how a formal privacy model like differential privacy can be integrated with legal, policy, 
and regulatory approaches.66 In this section, we review some potential implications that differential 
privacy—and more generally, formal privacy models—may have on privacy regulations. 

Current privacy law largely reflects the traditional role of law as constraining behavior through 
threat of sanction. Traditional approaches to protecting privacy under the law have similarly fo­
cused on placing specific constraints on information release. However, traditional approaches are 
generally ad hoc, lacking a broad theoretical foundation and mathematical rigor, and having limited 
applicability. These factors have contributed to best practices and standards that are increasingly 
shown not to provide sufficient privacy protection over the long term. The line of research that 
yielded differential privacy has demonstrated that privacy can be reasoned about with the benefits 
that come from mathematical rigor, such as well-defined privacy desiderata, provable quantifiable 
limits on privacy risks, composition properties, a programmable framework for developing algo­
rithms for increasingly complex task, and relationships with other research areas such as statistics, 
machine learning, and economics. These lessons can inform policymakers considering revisions to 
the legal framework in the big data era. In the discussion below, we outline how these design goals 
can be incorporated in the development of future privacy regulations. 

Well-defined privacy goals. Many existing privacy regulations do not specify an explicit pri­
vacy goal, i.e., the desired consequences of privacy protection, known more formally as privacy 
desiderata. Rather, they describe privacy protection implicitly as a byproduct of applying a spe­
cific technique, such as de-identification via the suppression of personally identifiable information. 

65For an extended discussion of the gaps between legal and computer science definitions of privacy and a demon­
stration that differential privacy can be used to satisfy an institution’s obligations under the Family Educational 
Rights and Privacy Act, see Kobbi Nissim, Aaron Bembenek, Alexandra Wood, Mark Bun, Marco Gaboardi, Urs 
Gasser, David R. O’Brien, Thomas Steinke, & Salil Vadhan, Bridging the Gap between Computer Science and Legal 
Approaches to Privacy, Working Paper (2017). 

66See, e.g., Anne Klinefelter & Andrew Chin, Differential Privacy as a Response to the Reidentification Threat: 
The Facebook Advertiser Case Study, 90 N.C. L. Rev. 1417 (2012); Urs Gasser, Recoding Privacy Law: Reflections 
on the Future Relationship Among Law, Technology, and Privacy, 130 Harv. L. Rev. F. 61 (2016). 
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This approach reflects the traditional role of law as constraint and results in uncertainty with re­
spect to the regulators’ intended goal, particularly with respect to the use of privacy protection 
technologies that differ from those presented in regulations. This problem is exacerbated as the data 
landscape changes, computing power increases, and new privacy attacks emerge, as these factors 
increase uncertainty surrounding implicit privacy standards. It is unlikely that regulators intended 
the privacy standards they created to become weaker over time in light of technological develop­
ments, but without clearly defined privacy goals, current standards leave room for a significant 
degree of ambiguity and potentially create moving targets for privacy practitioners. 

In contrast, differential privacy is not a specific technique but rather a definition, a privacy 
standard that accurately expresses a specific desideratum and can be shown to entail specific con­
sequences to privacy risk (as discussed in detail above in Section 4). Expressing privacy in terms of 
these desiderata enables the use of privacy technologies as part of an adaptive solution to managing 
privacy risks. In the future, policymakers could choose to follow suit and standardize a goal, or 
several goals, for the regulation of privacy. Defining these goals could involve specification of basic 
terms used in legal standards, including precise definitions for terminology such as personally iden­
tifiable information, identification, and linkage, clear delineations of what constitutes an inference 
attack, and an explanation of the factors should be taken into account when evaluating the level 
of acceptable risk, among other concepts. As with differential privacy, clear privacy goals would 
guide the development of new technologies and ensure that future regulations are compatible with 
a wide range of technological solutions that can be shown to agree with them. 

Quantitative measures of privacy. Quantitative measures are essential for robust privacy 
protection as well as informed public discussion of privacy risks. Quantitative measures of privacy 
could help regulators and practitioners set concrete, meaningful privacy goals and make adjust­
ments according to the level of privacy protection required in different contexts. Incorporating a 
quantitative basis would also make future data releases robust to new, currently unforeseen, uses 
of data. Concrete quantitative measures could also help make the regulation technology-neutral by 
setting clear criteria for the adoption of new technologies. 

Composition awareness. Regulations could be designed to require addressing the accumulated 
risk to privacy due to multiple uses of individual data. In addition, new legal-technological tools 
could be developed to limit the cumulative effect on individual privacy from multiple computations 
over data. 

Generality of privacy protection. Many current regulations explicitly or implicitly endorse 
de-identification techniques like suppression of personally identifiable information as a measure that 
is sufficient to protect privacy. However, the failure of traditional techniques to provide adequate 
privacy protection has demonstrated that regulation should be designed not to endorse one specific 
technique but should establish a privacy goal that many techniques could be designed to satisfy. 
Moreover, the attack modes contemplated by the regulations seemingly address a limited family 
of attacks. Technological advances are leading to the emergence of new and sophisticated attacks, 
such as statistical inference attacks, that were unforeseen by regulators at the time that the rules 
were drafted. In contrast to some privacy regulations that seemingly have a narrow range of attacks 
in mind, the computer science literature aims to define a very broad family of attackers and prove 
security with respect to the entire family. Computer scientists recognize the need to protect not 
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only against known modes of attack, but also against unknown future attacks. Likewise, privacy 
regulations could be drafted to conceptualize a wider range of privacy threats, both known and 
unknown. 

Universal coverage. The vast array of privacy regulations governing data releases make it dif­
ficult for a practitioner to assess whether application of a given privacy technique is adequate to 
satisfy applicable legal requirements. Privacy regulations could be designed to provide universal 
coverage, much like formal privacy models which are broadly applicable regardless of the type of 
information involved, leading to greater consistency in regulation across jurisdictions and sectors. 
This design goal of universal coverage is similar to the approach adopted by the General Data 
Protection Regulation. 

Transparency in using data. Differential privacy provides a quantifiable measure of privacy 
loss, embodied as the privacy parameter E, that can be disclosed to and understood by various 
stakeholders, such as data subjects and disclosure review boards. Regulators could require engineers 
to clearly disclose the level of privacy protection afforded by the privacy-preserving tools they 
implement or use. Such disclosures would enable data subjects and disclosure review boards to 
assess the privacy risk from a single analysis, as well as the overall risk to privacy from multiple 
analyses by many organizations. Unlike current privacy policies or terms of use which often fail to 
provide individuals with usable information about the risks they may incur by sharing their data, a 
disclosure of the value of E an organization uses would be standardized, informative, and operable 
from the viewpoint of a data subject or disclosure review board. 

Corporations like Google and Apple are demonstrating the feasibility of using differentially 
private computations for analyzing usage patterns of their users, increasing the privacy community’s 
understanding of use cases for which differential privacy provides sufficient utility. In use cases such 
as these, where the goal is to learn behavior patterns about an entire user community but not about 
individual users, the use of differentially private analyses may evolve to become a best practice, 
particularly in light of known weaknesses of traditional techniques, and the reasonable anticipation 
that more weaknesses will be found as research progresses. This understanding could, in turn, 
be reflected in future regulations. Moving forward, regulators may choose to incorporate modern 
privacy concepts, including some of the design criteria outlined above, into revisions of existing 
regulations, or new regulations that specify precise privacy goals or simply establish a safe harbor 
for formal privacy models like differential privacy and similar approaches. Further research and 
discussion is needed to examine the suitability of future revisions to the regulatory framework 
among these possibilities. 
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7 

Part III 

Using differential privacy 

How are differentially private analyses constructed? 

The construction of differentially private analyses relies on the careful introduction of uncertainty 
in the form of random noise. This section provides a simple example illustrating how a carefully-
calibrated amount of random noise can be added to the outcome of an analysis in order to provide 
privacy protection. This explanation is somewhat technically involved, and a first-time reader may 
choose instead to skip ahead to Section 7.2. 

Consider computing an estimate of the number of HIV-positive individuals in a 
sample, where the sample contains n = 10, 000 individuals of whom m = 38 are 
HIV-positive. In a differentially private version of the computation, random noise 
Y is introduced into the count so as to hide the contribution of a single individual. 
That is, the result of the computation would be m ' = m + Y = 38 + Y instead of 
m = 38. 

The magnitude of the random noise Y affects both the level of privacy protection provided and 
the accuracy of the count. For instance, a larger amount of noise would result in better privacy 
protection and worse accuracy—and vice versa. The magnitude of Y depends on the privacy loss 
parameter E, where a smaller value of E is associated with a larger noise magnitude. 

When choosing the noise distribution, one possibility is to sample the random noise Y from a 
normal distribution with zero mean and standard deviation 1/E. 67 Because the choice of the value 
of E is inversely related to the magnitude of the noise introduced by the analysis, the mechanism 
is designed to provide a quantifiable tradeoff between privacy and utility. Consider the following 
example. 

A researcher uses the estimate m ' , as defined in the previous example, to approx­
imate the fraction p of HIV-positive people in the population. The computation 
would result in the estimate 

p ' = 
m ' 

n 
= 

38 + Y 
10, 000 

. 

For instance, suppose the sampled noise is Y = 4.2. Then, the estimate would be 

p ' = 
38 + Y 
10, 000 

= 
38 + 4.2 
10, 000 

= 
42.2 

10, 000 
= 0.42%, 

whereas without added noise, the estimate would have been p = 0.38%. 

√ 
67More accurately, the noise Y is sampled from the Laplace distribution with zero mean and standard deviation 
2/E. The exact shape of the noise distribution is important for proving that outputting m+ Y preserves differential 

privacy, but can be ignored for the current discussion. 
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7.1 Two sources of error: sampling error and added noise 

Note that there are two sources of error in estimating p: sampling error and added noise. The first 
source, sampling error, would cause m to differ from the expected p · n by an amount of roughly 

√ |m − p · n| ≈ p · n. 

For instance, consider how the researcher from the example above would calculate the sampling 
error associated with her estimate. 

The researcher reasons that m ' is expected to differ from p · 10, 000 by roughly 
p · 10, 000 ≈ 

√ 
38 ≈ 6. 

Hence, the estimate 0.38% is expected to differ from the true p by approximately 

6 
10, 000 

= 0.06%, 

even prior to the addition of the noise Y by the differentially private mechanism. 

The second source of error is the addition of random noise Y in order to achieve differential 
' privacy. This noise would cause m and m to differ by an amount of roughly 

' |m − m| ≈ 1/E.
 

The researcher in the example would calculate this error as follows.
 

The researcher reasons that, with a choice of E = 0.1, she should expect |m ' −m| ≈ 
1/0.1 = 10, which can shift p ' from the true p by an additional 10 

10,000 = 0.1%. 

Taking both sources of noise intro account, the researcher calculates that the dif­
ference between noisy estimate p ' and the true p is roughly 

0.06% + 0.1% = 0.16%. 

Because the two sources of noise are statistically independent, the researcher can 
use the fact that their variances add to produce a slightly better bound: 

|p ' = p| ≈
 
0.062 + 0.12 = 0.12%. 

' Generalizing from this example, we find that the standard deviation of the estimate p (hence 
' the expected difference between p and p) is of magnitude roughly  ' |p − p| ≈ p/n + 1/nE, 

which means that for a large enough sample size n the sampling error would far exceed the noise 
added for the purposes of privacy protection. 
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Note also that the literature on differentially private algorithms has identified many other noise 
introduction techniques that result in better accuracy guarantees than the simple technique used 
in the examples above. Such techniques are especially important for more complex analyses, for 
which the simple noise addition technique discussed in this section is often sub-optimal in terms of 
accuracy. 

7.2 What types of analyses can be performed with differential privacy? 

A large number of analyses can be performed with differential privacy guarantees. The following 
is a non-exhaustive list of analyses for which differentially private algorithms are known to exist: 

•	 Count queries: The most basic statistical tool, a count query returns an estimate of the 
number of individual records in the data satisfying a specific predicate. For example, a 
count query could be used to return the number of records corresponding to HIV-positive 
individuals in a sample. Differentially private answers to count queries can be obtained 
through the addition of random noise, as demonstrated in the detailed example found above 
in Section 7. 

•	 Histograms: A histogram contains the counts of data points as they are classified into 
disjoint categories. For example, in the case of numerical data, a histogram shows how data 
are classified within a series of consecutive non-overlapping intervals. A contingency table 
(or cross tabulation) is a special form of a histogram representing the interrelation between 
two or more variables. The categories of a contingency table are defined as conjunctions of 
attribute variables. Differentially private histograms and contingency tables provide noisy 
counts for the data classified in each category. 

•	 Cumulative distribution function (CDF): For data over an ordered domain, such as age 
(where the domain is integers, say, in the range 0− 100), or annual income (where the domain 
is real numbers, say, in the range $0.00 − $1, 000, 000.00), a cumulative distribution function 
depicts for every domain value x an estimate of the number of data points with a value up to 
x. A CDF can be used for computing the median of the data points (the value x for which 
half the data points have value up to x) and the interquartile range, among other statistics. 
A differentially private estimate of the CDF introduces noise that needs to be taken into 
account when the median or interquartile range is computed from the estimated CDF.68 

•	 Linear regression: Social scientists are often interested in modeling how some dependent 
variable varies as a function of one or more explanatory variables. For instance, a researcher 
may seek to understand how a person’s health depends on her education and income. In linear 
regression, an underlying linear model is assumed, and the goal of the computation is to fit 
a linear model to the data that minimizes a measure of “risk” (or “cost”), usually the sum 
of squared errors. Using linear regression, social scientists can learn to what extent a linear 
model explains their data, and which of the explanatory variables correlates best with the 
dependent variable. Differentially private implementations of linear regression introduce noise 
in its computation. Note that, while this noise may in some cases hide existing correlations 

68For a more in depth discussion of differential privacy and CDFs, see Daniel Muise and Kobbi Nissim, “Differential 
Privacy in CDFs,” Slide Deck (2016), http://privacytools.seas.harvard.edu/files/dpcdf_user_manual_aug_ 
2016.pdf. 
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in the data, researchers are engaged in ongoing work towards the development of algorithms 
where this undesirable effect of noise addition can be controlled and minimized. 

•	 Clustering: Clustering is a data analysis technique which involves grouping data points into 
clusters, such that points in the same cluster are more similar to each other than to points 
in other clusters. Data scientists often use clustering as an exploratory tool to gain insight 
into their data and identify the data’s important sub-classes. Researchers are developing a 
variety of differentially private clustering algorithms, and such tools are likely to be included 
in future privacy-preserving tool kits for social scientists. 

•	 Classification: Classification is the problem of identifying which of a set of categories a 
data point belongs in, based on a training set of examples for which category membership is 
known. Data scientists often utilize data samples that are pre-classified (e.g., by experts) to 
train a classifier which can later be used for labeling newly-acquired data samples. Theoretical 
work has shown that it is possible to construct differentially private classification algorithms 
for a large collection of classification tasks, and, furthermore, that, at least in principle, the 
performance of these classification algorithms is comparable with the performance of similar 
non privacy preserving algorithms. 

8 Practical challenges to using differential privacy 

In this section, we discuss some of the practical challenges to using differential privacy, including 
challenges related to the accuracy of differentially private statistics, and challenges due to the degra­
dation of privacy that results from multiple analyses. It is important to note that the challenges of 
producing accurate statistics while protecting privacy and addressing composition are not unique 
to differential privacy. It is a fundamental law of information that privacy risk grows with the 
use of data, and hence this risk applies to any disclosure control technique. Traditional statistical 
disclosure limitation techniques, such as suppression, aggregation, and generalization, often reduce 
accuracy and are vulnerable to loss in privacy due to composition, and the impression that these 
techniques do not suffer accumulated degredation in privacy is merely due to the fact that these 
techniques have not been analyzed with the higher level of rigor that differential privacy is.69 A 
rigorous analysis of the effect of composition is important for establishing a robust and realistic 
understanding of how multiple statistical computations affect privacy. 

8.1 Accuracy 

Differentially private computations rely on the introduction of random noise that is sufficiently 
large to hide the contribution of roughly any subset of (roughly) 1/E individuals. As a consequence, 
differentially private computations are less accurate than the statistics one could directly compute 
on the data. Put differently, differential privacy increases the minimal sample size required to 
produce accurate statistics. 

Much of the ongoing research on differential privacy is focused on understanding and improving 
this tradeoff, i.e., how to obtain the maximum possible utility from data while preserving differential 

69For a discussion of privacy and utility with respect to traditional statistical disclosure limitation techniques, see 
Bee-Chung Chen, Daniel Kifer, Kristen LeFevre, and Ashwin Machanavajjhala, Privacy-Preserving Data Publishing, 
Foundations and Trends in Databases 2.1-2 (2009): 1-167. 
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privacy.70 In practice, the amount of noise that is added to differentially private analyses makes 
it difficult to obtain much utility from small- to moderately-sized datasets. As a rule of thumb, 
almost no utility is expected from datasets containing 1/E or fewer records.71 

For certain types of analyses, procedures have been developed for estimating the accuracy of an 
analysis based on properties of the collected data. These procedures take as input the number of 
records, a value for E, and the ranges of numerical and categorical fields, among other parameters, 
and produce bounds on the accuracy for a variety of statistical computations. Alternatively, a de­
sired accuracy may be given as input instead of E, and the computation results in a value for E that 
would provide this level of accuracy. Figure 4 illustrates an example of a cumulative distribution 
function and the results of its (noisy) approximation with different settings of the privacy param­
eter E. 72 Procedures for estimating the accuracy of an analysis are being developed for practical 
implementations of differential privacy, including the tools that are being developed for Harvard’s 
Dataverse project, as discussed below. 

8.2 The “privacy budget” 

One can think of the parameter E as determining the overall privacy protection provided by a 
differentially private analysis. Intuitively, E determines ”how much” of an individual’s privacy an 
analysis may utilize, or, alternatively, by how much the risk to an individual’s privacy can increase. 
A smaller value for E implies better protection, i.e., less risk to privacy. Conversely, a larger value for 
E implies worse protection, i.e., higher potential risk to privacy. In particular, E = 0 implies perfect 
privacy, i.e., the analysis does not increase any individual’s privacy risk at all. Unfortunately, 
analyses that satisfy differential privacy with E = 0 must completely ignore their input data and 
therefore are useless. 

We can also think of E as a “privacy budget” to be spent by analyses of individuals’ data. If 
a single analysis is expected to be performed on a given set of data, then one might allow this 
analysis to exhaust the entire privacy budget E. However, a more typical scenario is that several 
analyses are expected to be run on a dataset, and hence one needs to calculate the total utilization 
of the privacy budget by these analyses. 

Fortunately, a number of composition theorems have been developed for differential privacy, as 
mentioned above in Section 3.2. In particular, these theorems state that the composition of two 
differentially private analyses results in a privacy loss that is bounded by the sum of the privacy 
losses of each of the analyses. 

To understand how overall privacy loss is accounted for in this framework, consider the following 
example. 

70We use the term accuracy somewhat informally to refer to the quality of information that is produced by an 
analysis. Introduction of random noise often results in a reduction in accuracy and hence in the quality of the 
information produced. Note that what accuracy means, and how accuracy is measured, differs across various analyses 
and applications. For example, a researcher interested in estimating the average income of a given population may 
care about the absolute error of this estimate, i.e., the difference between the real average and the estimate, whereas 
a researcher interested in the median income may care about the difference between the number of respondents whose 
income is below the estimate and the number of respondents whose income is above the estimate. 

71An exception is when the amplification technique known as “secrecy of the sample” is used. See Section 12 for a 
discussion on this topic. 

72This figure first appeared in Daniel Muise and Kobbi Nissim, “Differential Privacy in CDFs,” Slide Deck (2016), 
http://privacytools.seas.harvard.edu/files/dpcdf_user_manual_aug_2016.pdf. 
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Figure 4: An example of the outcome of a differentially private computation of the cumulative 
distribution function (CDF) of income in District Q. The top left graph presents the original 
CDF (without noise) and the subsequent graphs show the result of applying differentially private 
computations of the CDF with E values of 0.005 (top right), 0.01 (bottom left), and 0.1 (bottom 
right). Notice that, as smaller values of E imply better privacy protection, they also imply less 
accuracy due to noise addition compared to larger values of E. 

Suppose a data analyst using a differentially private analysis tool is required to 
do so while maintaining differential privacy with an overall privacy loss parameter 
E = 0.1. This requirement for the overall privacy loss parameter may be guided 
by an interpretation of a regulatory standard, institutional policy, or best prac­
tice, among other possibilities. It means that all of the analyst’s analyses, taken 
together, must have an epsilon value of at most 0.1. 
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Consider how this requirement would play out within the following scenarios: 

One-query scenario: The data analyst performs a differentially private analysis 
with a privacy loss parameter E1 = 0.1. In this case, the analyst would not be able 
to perform a second analysis over the data without risking a breach of the policy 
limiting the overall privacy loss to E = 0.1. 

Multiple-query scenario: The data analyst first performs a differentially private 
analysis with E1 = 0.01, which falls below the limit of E = 0.1. This means that the 
analyst can also apply a second differentially private analysis, say with E2 = 0.02. 
After the second analysis, the overall privacy loss amounts to 

E1 + E2 = 0.01 + 0.02 = 0.03, 

which is still less than E = 0.1, and hence allows the analyst to perform additional 
analyses before exhausting the budget. 

The multiple-query scenario can be thought of as if the data analyst has a privacy budget of 
E = 0.1 that is consumed incrementally as she performs differentially private analyses, until the 
budget has been exhausted. Performing additional analyses after the overall budget has been 
exhausted may result in a privacy parameter that is larger (i.e., worse) than E. Any further use 
would result in a privacy risk that is too significant. 

Note that, in the sample calculation for the multiple-query example, we bounded the accumu­
lated privacy risk simply by adding the privacy parameters of each analysis. It is in fact possible 
to obtain better bounds on the accumulation of the privacy loss parameter than suggested by this 
example. Various tools for calculating the bounds on the accumulated privacy risks in real-world 
settings using more sophisticated approaches are currently under development. 

9 Tools for differentially private analysis 

At the time of this writing, differential privacy is transitioning from a purely theoretical mathemat­
ical concept to one that underlies software tools for practical use by analysts of privacy-sensitive 
data. This section briefly reviews some of these newly-emerging tools, with a particular focus on 
the tools that inspired the drafting of this document. 

9.1 Differential privacy in Harvard’s Dataverse project 

The Privacy Tools for Sharing Research Data project73 at Harvard University develops tools to 
help social scientists and other researchers collect, analyze, and share data while providing privacy 
protection for individual research subjects. To this end, the project seeks to incorporate definitions 
and algorithmic tools from differential privacy into Dataverse, an open-source software application 
developed at Harvard. Dataverse provides a preservation and archival infrastructure that enables 
institutions to host data repositories through which researchers can upload their data or access 
data made available by other researchers for the purposes of replication or secondary research. 

73Harvard Privacy Tools Project, http://privacytools.seas.harvard.edu. 
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New privacy tools being developed for integration with the Dataverse infrastructure include 
a private data sharing interface, PSI [7], which facilitates data exploration and analysis using 
differential privacy. The PSI interface provides guidance for users, who are not necessarily privacy 
experts, on how to partition a limited privacy budget among the many statistics to be produced or 
analyses to be run, as well as on how to interpret the noisy results produced by a differentially private 
algorithm. PSI also offers a basic collection of tools for producing differentially private statistics 
whose results can be visualized using TwoRavens, 74 a browser-based interface for exploring and 
analyzing data. Through the differentially private access enabled by PSI, researchers will be able 
to perform rough preliminary analyses of privacy-sensitive datasets that currently cannot be safely 
shared. Such access will help researchers determine whether it is worth the effort to apply for full 
access to the raw data. 

PSI is also being designed to integrate with other tools available through Dataverse, such 
as DataTags, 75 which are simple, iconic labels that categorically describe certain requirements 
for handling privacy-sensitive data. Each DataTag maps to a different set of transfer, storage, 
and access requirements, from completely open data (a “blue” tag) to maximally-protected data 
(a “crimson” tag) [21]. When a researcher initiates a deposit of a dataset containing personal 
information into Dataverse, she may proceed through a manual or automated process for assigning 
a DataTag to the dataset based on legal and institutional requirements. A DataTag can also be 
assigned outside of Dataverse, e.g., by the data owner with the aid of an automated decision support 
tool or by an expert based on direct examination of the dataset. From the time of assignment, 
the Dataverse repository will ensure that the storage and access requirements specified by the 
DataTag are met. A dataset’s DataTag will also be made available via the Dataverse API, so 
that it can be accessed by various data management and analysis tools including PSI. The Privacy 
Tools project seeks to develop tools using the DataTags framework to denote handling policies for 
different versions of a dataset or for statistics derived from a dataset. For example, while a raw 
version of a privacy-sensitive dataset might be assigned a more restrictive DataTag (e.g., “red” 
or “crimson”) that enables access only by approved researchers, differentially private statistics 
derived from the data might be assigned a less restrictive DataTag (e.g., “green”) that enables 
access by any user registered with the Dataverse repository. In addition, members of the Privacy 
Tools project are assessing the privacy protection guaranteed by different settings of the differential 
privacy parameters (E and δ), so that they can make recommendations regarding the values of these 
parameters that are appropriate for producing statistics from a dataset that has been assigned a 
given DataTag. 

9.2 Other experimental implementations of differential privacy 

Several other experimental systems enable data analysts to construct privacy-preserving analyses 
without requiring an understanding of the subtle technicalities of differential privacy. Systems such 
as Privacy Integrated Queries (PINQ) [15], Airavat [20], and GUPT [17] aim to make it easier 
for users to write programs that are guaranteed to be differentially private, either by composition 
of differentially private building blocks [15, 8], or through the use of general frameworks such as 
“partition-and-aggregate” or “subsample-and-aggregate” [18] to convert non-private programs into 
differentially private ones [20, 17]. These systems rely on a common approach: they keep the data 

74TwoRavens, http://datascience.iq.harvard.edu/about-tworavens.
 
75DataTags, http://datatags.org.
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safely stored and allow users to access them only via a programming interface which guarantees 
differential privacy. They also afford generality, enabling one to design many types of differentially 
private programs that are suitable for a wide range of purposes. However, note that most of these 
systems do not provide much guidance for a lay user who has limited expertise in programming. 
Moreover, they do not provide much guidance on deciding how to partition a limited privacy budget 
among many statistics or analyses, or how to interpret the noisy results given by a differentially 
private algorithm. 

9.3 Tools for specific data releases or specific algorithms 

There have been a number of successful applications of differential privacy with respect to specific, 
structured sources of data, including commuter patterns [14], mobility data [16], client-side software 
data [6], genome-wide association studies [12], location histhory data [5], and usage patterns for 
phone technology [11]. In these settings, differential privacy experts carefully optimize the choice of 
differentially private algorithms and the partitioning of the privacy budget to maximize utility for 
the particular data source. These tools are specific to the type of data they are designed to handle, 
and they cannot be applied in contexts in which the collection of data sources and the structure of 
the datasets are too heterogenous to allow for such optimizations. 

Beyond these examples, there is a vast literature on the design of differentially private algo­
rithms for specific data analysis tasks, including substantial experimental work on comparing and 
optimizing such algorithms across a wide range of datasets. For example, the recent work on DP-
Bench [9], a framework for standardized evaluation of the accuracy of privacy algorithms, provides 
a thorough comparison of different algorithms and different ways of optimizing them.76 

76See also DPComp, https://www.dpcomp.org. 
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Part IV
 

Advanced topics
 
We conclude with some advanced topics for readers interested in exploring differential privacy fur­
ther. This section explains the significance of differential privacy being a property of a computation 
rather than a property of the result of a computation, discusses the protection differential privacy 
can provide for small groups of individuals, and introduces the concept of the secrecy of the sample. 

10	 Differential privacy: A property of the analysis (not its specific 
outcome) 

Many disclosure limitation techniques restrict the outcome of a computation rather than restrict 
the computation itself. For example, the data anonymization technique k-anonymity requires that 
tabular data be transformed such that the identifying attributes that appear for each person in 
the k-anonymized data release are identical to that of at least k − 1 other individuals in the 
data. Therefore, k-anonymity is defined as a property of the anonymized data output, and it 
imposes no further restrictions on the process used to create a k-anonymized data output. Note, 
however, that many possible k-anonymized outputs exist for a given dataset. A hypothetical data 
processor applying k-anonymity could, either maliciously or unwittingly, choose among the possible 
k-anonymous outputs in a way that is dependent on a sensitive attribute about an individual in 
the data. For example, if for a given dataset there exist two possible k-anonymized outputs T1 

and T2, the processor may decide to output T1 if John is HIV-positive and T2 otherwise, thus 
compromising John’s privacy. While we do not claim real implementations of k-anonymity suffer 
from this problem, the notion of k-anonymity does not preclude it. 

The requirement of differential privacy is of a different nature. Rather than restricting the 
outcome of a differentially private computation, the definition restricts the process used to produce 
the computation. To understand what we mean by this, consider what happens when a statistical 
analysis is performed over privacy-sensitive data. Recall that, in order to yield any information 
of interest, the outcome of an analysis must depend on the input data. As a result, the outcome 
necessarily exhibits some non-zero leakage of information about the input data. The privacy con­
cern is that an individual or organization observing the outcome of this computation would use it 
to infer personal information that is specific to an individual. We will consider a few illustrative 
examples to understand how such a privacy breach can occur. 

A collection of medical records from State Hospital includes John’s medical records, 
which describe treatment related to an HIV diagnosis. A computation is performed 
on these records and outputs the following line: 

John, HIV + 

Is John’s privacy breached as a result of this computation, in the sense that it has revealed 
some personal information about John? The answer is not necessarily. For example, suppose this 
computation ignores its input data altogether and always outputs “John, HIV+.” In this case, there 
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is no functional dependence between the HIV status in John’s medical records and the outcome of 
the computation. Therefore, the mechanism does not leak any information about John. 

In another extreme example, we can also see that omitting John from the outcome is not suffi­
cient to guarantee privacy protection for John. 

A privacy-preserving mechanism transforms this collection of medical records from 
State Hospital by redacting all medical records pertaining to HIV-positive patients. 
As a result, John’s records are redacted from the medical records included in the 
output. 

It may be tempting to assume that, because John’s medical records were omitted from the out­
put, his privacy has been protected. However, the mere fact that John’s information was redacted 
can result in a breach of his privacy. Consider the following example. 

Eve knows that John was a patient at State Hospital. Eve reviews the records 
that State Hospital has made available to researchers, knowing that they have 
been redacted of records from HIV-positive patients. Eve, noticing that John’s 
record is absent from the redacted records, concludes that John is HIV-positive. 

These examples illustrate that it is the functional relationship between a computation’s input 
and output that determines to what extent personal information about an individual can be learned 
from the output of the computation. This intuition holds even in more complex settings, such as 
mechanisms in which the relationship between the input data and outcome is randomized. 

The definition of differential privacy follows this intuition closely. Differential privacy is not a 
property of a specific outcome; rather, it is a property that a computation does or does not have. 
To satisfy differential privacy, the behavior of an analysis should not change noticeably when John’s 
(or any other single individual’s) information is added to or removed from the input. 

11 Group privacy 

By holding individuals’ opt-out scenarios as the relevant baseline, the definition of differential 
privacy directly addresses disclosures of information localized to a single individual. However, in 
many cases, information may be shared between multiple individuals. For example, relatives may 
share an address or certain genetic attributes. 

How does differential privacy protect information of this nature? Consider the opt-out scenario 
for a group of k individuals. This is the scenario in which the personal information of all k 
individuals is omitted from the input to the analysis. For instance, John and Gertrude’s opt-out 
scenario is the scenario in which both John’s and Gertrude’s information is omitted from the input 
to the analysis. 

Recall that the parameter E controls by how much the real-world scenario can differ from any 
individual’s opt-out scenario. It can be shown that the difference between the real-world and 
opt-out scenarios of a group of k individuals grows to at most 

k · E. 
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This means that the privacy guarantee degrades moderately as the size of the group increases. 
Effectively, a meaningful privacy guarantee can be provided to groups of individuals of a size of up 
to about 

k ≈ 1/E 

individuals. However, almost no protection is guaranteed to groups of 

k ≈ 10/E 

individuals or greater. This is the result of a design choice to not a priori prevent analysts using 
differentially private mechanisms from discovering trends across moderately-sized groups. 

12 Amplifying privacy: Secrecy of the sample 

As discussed in Section 8, differential privacy limits accuracy, and the extent of the inaccuracy 
depends inversely on the privacy parameter E. Sometimes, the dataset used as input to a differ­
entially private mechanism is a random sample from a large population, as in the following example. 

Alice, a researcher at State University, collected personal information from individ­
uals in a study exploring the relationship between coffee consumption, economic 
status, and health status. The personal information she collected in this study is 
based on a uniformly random and secret sample of 3, 000 individuals living in the 
city of Boston. 

Because Alice’s study uses a uniformly random sample,77 and, furthermore, the identities of 
the participating individuals are kept confidential, Alice can apply a theorem in differential privacy 
known as “secrecy of the sample.” This theorem effectively allows for a savings in the privacy 
parameter E that corresponds to the ratio of sizes between the dataset and the larger population. 
For instance, for a population the size of the city of Boston, approximately 600, 000, the savings in 
E can be 3, 000/600, 000 = 0.05. This means that greater accuracy, corresponding to a 0.05 decrease 
in epsilon, can be provided for the differentially private analyses performed on the data from Alice’s 
study. 

This topic comes with two notes of caution. First, sampling from the sampling frame is usually 
not uniform in practice. Alice should therefore be conservative in her estimate of the underlying 
population. For example, if Alice draws her survey sample from a Boston phonebook, then she 
should take the underlying population size to be no larger than the number of Boston residents who 
are listed in the phonebook. Second, the effective decrease in E is conditioned on the identities of the 
sampled individuals being kept secret. This may be a hard condition to maintain in practice. For 
example, if Alice sends surveyors to respondents’ homes, then their neighbors may learn that they 
participated in Alice’s research study. A more subtle consideration is that secrecy of the sample 
also requires the identities of individuals who have not been sampled to be kept secret. 

77By uniformly random we mean that each individual in the sampling frame is selected to be in the sample with 
equal probability and independently of the other individuals in the sampling frame. 
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Part V
 

Summary
 
Differential privacy provides a formal, quantifiable measure of privacy. It has been established 
by a rich and rapidly evolving theory that enables one to reason with mathematical rigor about 
privacy risk. Quantification of privacy is achieved by the privacy loss parameter E, which controls, 
simultaneously for every individual contributing to the analysis, the deviation between one’s opt-
out scenario and the actual execution of the differentially private analysis. This deviation can grow 
as an individual participates in additional analyses, but the overall deviation can be bounded as a 
function of E and the number of analyses performed. This amenability to composition is a unique 
feature of differential privacy. While it is not the only framework that quantifies a notion of risk 
for a single analysis, it is currently the only framework with quantifiable guarantees on the risk 
resulting from a composition of several analyses. 

In other words, the parameter E can be interpreted as bounding the excess risk to an individual 
resulting from her data being used in analysis (compared to her risk when her data are not being 
used). Indirectly, the parameter E also controls the accuracy to which a differentially private 
computation can be performed. For researchers making privacy-sensitive data available through a 
differentially private tool, the interface of the tool may allow them to choose to produce a variety of 
differentially private summary statistics while maintaining a desired level of privacy (quantified by 
an accumulated privacy loss parameter), and then compute summary statistics with formal privacy 
guarantees. 

Differential privacy can be used to make more data available in a privacy-preserving way, which 
can help researchers showcase their data to other researchers who may be interested in using the 
data in their own studies. This, in turn, can further the progress of scientific discovery and build 
the reputations of the researchers collecting and sharing data. For researchers seeking data for their 
own studies, differentially private summary statistics could provide a basis for determining whether 
a particular dataset is likely to be useful to them—and hence whether they should proceed with a 
negotiation for obtaining the data. In this way, differentially private tools hold promise for opening 
up access to data that cannot currently be shared, thereby enabling new analyses to be performed 
and ultimately advancing the state of scientific knowledge. 

Further reading 

Differential privacy was introduced in 2006 by Dwork, McSherry, Nissim and Smith [3]. This 
document’s presentation of the opt-out scenario vs. real-world computation is influenced by [1], 
and its risk analysis is influenced by [13]. For other presentations of differential privacy, see [2] 
and [10]. For a thorough technical introduction to differential privacy, see [4]. 
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