
1

Transforming Speed Sequences into Road Rays

on the Map with Elastic Pathing

ar
X

iv
:1

71
0.

06
93

2v
1

[c
s.C

R]
 1

8
O

ct
 2

01
7

Xianyi Gao, Bernhard Firner, Shridatt Sugrim, Victor Kaiser-Pendergrast, Yulong Yang, Janne Lindqvist

Rutgers University

Abstract—Advances in technology have provided ways to monitor and measure driving behavior. Recently, this technology has been
applied to usage-based automotive insurance policies that offer reduced insurance premiums to policy holders who opt-in to
automotive monitoring. Several companies claim to measure only speed data, which they further claim preserves privacy. However, we
have developed an algorithm - elastic pathing - that successfully tracks drivers’ locations from speed data. The algorithm tracks drivers
by assuming a start position, such as the driver’s home address (which is typically known to insurance companies), and then estimates
the possible routes by fitting the speed data to map data. To demonstrate the algorithm’s real-world applicability, we evaluated its
performance with driving datasets from central New Jersey and Seattle, Washington, representing suburban and urban areas. We are
able to estimate destinations with error within 250 meters for 17% of the traces and within 500 meters for 24% of the traces in the New
Jersey dataset, and with error within 250 and 500 meters for 15.5% and 27.5% of the traces, respectively, in the Seattle dataset. Our
work shows that these insurance schemes enable a substantial breach of privacy.

Index Terms—location privacy, elastic pathing, usage-based automotive insurance, destination estimation, speed traces

F

1 INTRODUCTION

TECHNOLOGICAL advances have created ways to observe and over 10,000 paths from a residential area.
driving behaviors using odometer readings and in-vehicle Our elastic pathing algorithm shows that drivers can be tracked

telecommunication devices. Taking advantage of this technology, by merely collecting their speed data and knowing the starting
some US-based automotive insurance companies [1], [2], [3], [4] location which is usually their home address that insurance com-
offer consumers the ability to opt-in to the usage-based insurance panies have. We evaluate our algorithm with datasets from New
(UBI) for reduced premiums by allowing companies to monitor Jersey and Seattle, Washington, representing suburban and urban
their driving behavior. These policies are different from traditional areas. Our algorithm estimates destinations with error within 250
insurance policies, which use record of past driving violations to meters for 17% traces and within 500 meters for 24% traces
differentiate between safe and aggressive drivers. The UBI policy in the New Jersey dataset (254 traces). For the Seattle dataset
applies devices to monitor directly while people are driving and (691 traces), we similarly estimate destinations with errors that
provide insurance companies with real-time driving data. are within 250 and 500 meters for 15.5% and 27.5% of the

Although the UBI policy has advantages for both insurers and traces respectively. Our work is important given that speed data
consumers (e.g. insurers monitor consumers’ driving behaviors is not considered sensitive data. This is why insurance companies
as a way to encourage safe driving, and consumers get lower claimed that collecting speed data is privacy-preserving. Because
premiums), the privacy concern of collecting driving behavior data of this, it is not likely that this data will be treated as sensitive.
should not be neglected because this is an always on activity. The data may eventually be obtained by antagonists who do know
Some of these monitoring devices are even based upon GPS how to process and obtain location information. Our intention was
information and offer no privacy protection, such as OnStar [5]. to highlight this type of data collection and alarm both customers
Many insurance companies are aware of the privacy issue and only and insurance providers the amount of location information that
use devices that collect time-stamped speed data, making the claim may be estimated from the speed data.
that it is privacy-preserving. However, it is still possible to deduce Our paper makes following contributions:
location data from speed traces. This represents a huge breach of
privacy for drivers that have these types of insurance policies, as 1) We present the definite version of our elastic pathing
we have shown in our prior work [6]. algorithm which estimates location traces from speed data

Tracking drivers and estimating their trip destinations are very and starting locations.
challenging with only a starting location and the time-stamped 2) We built a tool to visualize how our algorithm tracks
speed data. It is not obvious that these data are sufficient to re- drivers. Our tool, utilizing Google Maps APIs, can be
produce an exact driving path. Without information about driving applied to any application having driving traces.
directions, there may be multiple alternative paths that match with 3) We tested our algorithm on real world traces to show
the speed data. Blindly exploring each path in a given map is not how the data collected by many insurance companies is
feasible, since the number of possible path is huge even with a not privacy-preserving despite their claims.
very short driving distance. Figure 1 shows the growth of possible 4) We explored the effect of adapting OpenStreetMap rout-
paths within a distance of just one mile from a starting location. ing into our algorithm and showed it does not benefit
Within that one mile, there are over 100,000 possible paths the our algorithm but can be potentially useful on estimating
driver could have taken when the trip starts from a grocery store, routes for a subset of drivers.

2

 1

 10

 100

 1000

 10000

 100000

 1e+06

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Nu
m

be
r o

f P
os

si
bl

e
Pa

th
s

Distance from Start (Miles)

Originating from Grocery Store
Originating from Residential Area

Fig. 1. Number of paths within a given distance of a starting location. The
pattern of growth on a log-linear scale shows exponential increments.
Locations central to major transportation routes, such as a grocery store,
will see a higher increase in paths compared to a residential location
which is more likely to lead to a dead end.

5) We analyzed how information about speed limits would
affect our estimation accuracy in two distinct driving
environments: urban and suburban areas.

6) We collected a new dataset of 30 drivers repeating the
same driving routes.

7) We used this new dataset to explore how our algorithm
performs for various drivers and driving behaviors.

8) We analyzed traces with low estimation accuracy and
summarized factors that may mislead our algorithm.

2 RELATED WORK

Location traces contain a great deal of behavioral information that
people consider private [7], [8], [9], [10], which has encouraged a
large body of work to concentrate on protecting, anonymizing,
or obfuscating [7], [11], [12], [13], [14], [15] location traces.
Krumm has written an overview of computational location privacy
techniques [16], and Zang and Bolot have recently questioned
the possibility of releasing privacy-preserving cell phone records
while still maintaining research utility in those records [17].

Based on analysis of location data, researchers have shown
that the nature of individual mobility patterns is bounded, and
that people visit only a few locations most of the time (e.g. just
two [18], [19], [20]). In most cases, there is high level of pre
dictability for future and current locations (e.g. [21], [22] – most
trivially, “70% of the time the most visited location coincides with
the user’s actual location” [21]). Mobility patterns can also be used
to predict social network ties (e.g. [23]). In a more applied domain,
GPS traces have been used to learn transportation modes [24], to
predict routes [25], to predict family routines (e.g. picking up or
dropping off children) [26], to distinguish when people are home
or away [27], and to recommend friends and places [28]. However,
none of the above work can be used to discover locations based
solely on speed data and a driver’s starting location.

The world’s first navigating system from Etak in 1985 showed
how well a car could be located without using GPS [29]. The
navigating system used a map database, a dead reckoning system
with motion sensors, and a magnetic compass to track the driving
direction, distance, and ultimately the real time location. This
system cannot be simply applied to our work as we do not have the
information about driving direction. Other related work in the field
of dead reckoning also suggests that speedometer traces should
have some level of information to extract. Dead reckoning works

by using speed or movement data starting from a known location
to deduce a movement path. Dead reckoning has been previously
used for map building with mobile robots [30] or as an addition
to Global Navigation Satellite Systems (GNSS) such as GPS [31],
[32]. These systems, however, require very accurate measurements
of speed and acceleration, and utilize very precise gyroscopes
to determine changes in direction. When supplementing GNSS
data, dead reckoning was only used when GNSS information is
unavailable, such as when a vehicle passes through a tunnel.

In the specific area of usage-based insurance, the privacy
concerns of these insurance programs have been studied before
by Troncoso et al. [33]. However, this work dates back to
schemes which would send raw location (GPS) coordinates to
either insurance providers or brokers. Troncoso et al. proposed
a cryptographic scheme PriPAYD to address the problem [33].
Our work shows that speedometer-based solutions, which were
not considered by Troncoso, are not privacy-preserving either.

Technically similar to our work are side-channel attacks using
accelerometer data from smartphones to infer user location [34].
Projects such as ACComplice [35] and AutoWitness [36] have
used accelerometers and gyroscopes for localization of drivers.
However, the information from the smartphone can be used to
detect when turns occur. In contrast, we have only a time series of
speed data available. It does not indicate if any turn is taken.

Finally, the most closely related work to our own is a project
to infer trip destinations from driving habits data by Dewri et
al. [37]. Their work used time, speed, and driving distance data
to estimate destinations. Their algorithm is based on depth-first
search (DFS) to explore all the paths within the range. After gen
erating candidate paths, post-processing is needed to calculate the
actual ranking of paths. The average time complexity is equivalent
to the DFS exploration plus the postprocessing, which increases
exponentially with the length of speed data. The algorithm also
needs to store all the exploring paths within the range. In contrast,
our algorithm has much less time and space overhead because of
the use of error metrics and prioritizing the search of best paths
(see Space and Time Complexity under Section 3.3).

Dewri et. al. tested the algorithm with only 30 trips in Denver,
Colorado area and mentioned the estimated destinations are close
to the actual one (within 0.5 mile) [37]. However, each of the
30 trips was pre-processed to “remove data points that may
correspond to driving in traffic condition” [37]. The algorithm
also assumes that “all left turns happen at a speed of 15 mph
and all right turns happen at 10 mph” [37]. It is unclear how this
assumption stands for different drivers. The algorithm has not been
tested in a large set of non-ideal driving routes with a collection of
different drivers and driving habits. In contrast, our elastic pathing
algorithm estimated about 37% of all traces within 0.5 miles
using datasets with nearly one thousand daily driving traces. Our
algorithm works in realistic driving conditions without manual
pre-processing or pre-selecting the collected driving traces.

Another advantage of our elastic pathing algorithm over
Dewri’s algorithm is the applicability to real-time tracking, since
our search algorithm is only based on the current and past
speed samples. No post-processing or information of future speed
samples are needed to estimate the current location (see Section 3
for algorithm design).

3 ALGORITHM DESIGN

In this section, we describe the algorithm we use to recreate a
person’s driving path when the time-stamped speed data and the

3

starting location are given. We start with discussing the basic
requirements for a generic algorithm and continue by presenting
our elastic pathing algorithm. In the end, we demonstrate a tool to
visualize how our algorithm tracks driving routes.

3.1 Requirements for a Generic Algorithm

To solve this path recreation problem, any generic algorithm needs
to consider: resources, restrictions, and scoring metric for ranking.
Resources are all of the contextual data that will help us deduce
a path from speed data. For example, a map is a useful resource
to apply. Restrictions are physical or behavioral limitations to any
automotive driving behavior. Finally, a scoring metric is needed to
choose the best path out of several possible candidates.

Applying Available Resources: First, we would need the
information about how different paths are connected in the area.
OpenStreetMap (OSM) is a great option for this purpose. A path
(or a way [38]) in OSM is represented with an ordered list of
nodes [39]. From the paths of the OSM, we know which nodes
are adjacent, and once a node is reached, we know which nodes
we can move towards next. For example, a four-way intersection
will have a single node at the intersection and four adjacent nodes.
Since we reach the intersection from one direction, we have three
possible next nodes from which to choose. The distance between
road segments and the angles required to make a turn from the
latitude and longitude pairs of the nodes can also be calculated.

OSM also includes other information such as speed limits that
are useful for path prediction. Having speed limits for paths should
improve the algorithm accuracy and efficiency by eliminating
impossible candidate paths given speed trace. Other information
included in OSM such as turn restrictions and way types are also
helpful for the algorithm.

At the same time, time-stamped speed data also contain es
sential information. For example, we can easily obtain the driving
distance and acceleration for the speed data. Therefore, a generic
algorithm should use these quantities as part of the match criteria
when fitting a speed trace to paths in the map.

Adapting to Driving Restrictions: There are physical limita
tions to a vehicle’s turning radius at a high speed. When a vehicle
travels a particular path, it must travel at a speed at or below the
maximum speed possible to make the turn. Also, when driving in
a road, drivers need to obey speed limits. Although driving under
maximum speed limit may not be always true for each driver, it
still provides useful boundary cases for the algorithm.

During normal driving, people only stop when they have to.
There are only a few scenarios when people would commonly
stop: (1) they encounter red traffic lights or stop signs, (2) they
start off from a place, (3) they reach to a destination, and (4) other
cases such as road constructions, traffic, and pedestrians crossing
the street. Our algorithm does not consider the last case since it
happens randomly and it is not a common artifact in all traces.

Using an Error Metric for Paths: A comparison metric is
needed for the algorithm to determine the best path. There should
be a scoring system representing how well a path matches with
the speed trace. It is difficult to find a path that perfectly matches
the speed data, because drivers may swerve around objects in
the road, or take turns more widely or sharply than we expect.
Thus, the actual driving distance may not perfectly match with
the path length calculated using the map. The challenge is that
in some scenarios, these errors might cause even correct path to
seem impossible. For example, if the model progresses past the

vehicle’s actual position along a segment of road, then the model
may conclude that the vehicle is moving too quickly to make a
turn. If we corrected the distance traveled to account for some of
these distance estimation errors, then we may find that the speed
traces line up perfectly with the turn. Thus, any algorithm must
correct paths while it explores them in an attempt to take into
account these variations in the travel distance.

3.2 Elastic Pathing Algorithm

The elastic pathing algorithm is based on compressing or stretch
ing the estimated distance that was traveled as we attempt to
match the speed data to the path. We match zero speeds to
intersections in the map and slow speeds to turns. Based on the
daily driving scenario, these can only be one-way matching – if
the speed is zero, there needs to be an intersection; but if there
is an intersection, the speed does not have to be zero (e.g. when
the traffic light is green). Similarly, if there is a turn, the speed
needs to be slow enough to make the turn; but if the speed is slow
(greater than zero), the car may not be turning. The compressing or
stretching is done when there is a mismatch between the calculated
distance from speed data and the length of a path segment in the
map. Compressing means subtracting from the estimated distance
by a specific amount. Stretching means adding to the estimated
distance by a specific amount.

After reconciling differences between a section of road and
the speed trace, we must pin the path at that point (which we
call a landmark) because any movement would cause a mismatch
between the two. For instance, if the driving speed in a trace is
reduced to zero, indicating a stop, where there is no intersection
we might pull the path forward by some distance to reach an
intersection. All points that are pinned cannot be moved since
they align with features in the road. We call this approach elastic
pathing because the stretching and compressing of the speed traces
to fit the road is conceptually similar to stretching a piece of elastic
along a path while pinning it into place at different points. To
understand the algorithm, we first introduce a set of definitions:

•	 Calculated Distance: The distance a vehicle traveled
calculated from speed and time values in the speed trace.

•	 Predicted Distance: The distance along a possible route
on the road at a certain time in the speed trace.

•	 Error: The difference between calculated distance and
predicted distance of a possible route.

•	 Feature: A vehicle stop in the speed trace, an intersection
in the road, or speed slow enough to make a turn.

•	 Landmark: A place (e.g. intersection or turn) where the
speed trace and road data need to be checked to match.

The pseudocode for our elastic pathing algorithm is given
in Algorithm 1. We measure the fit of a path by the amount of
stretching or compressing that needs to be done for the speed data
to match the path. The more stretching or compressing along a
path, the worse this path scores. In Algorithm 1, the error attribute
for each candidate path measures this quantity. The algorithm
stops exploring when it finds a set of possible solution paths
(stored in “Complete” array) and the smallest error from other
left-over uncompleted paths (stored in “Partial” array) is much
worse than the best path that we have already found.

At each iteration of the algorithm we sort all of the partial paths
by their current error and then explore the path with the smallest
error (see while loop in Algorithm 1). This path is advanced until

4

Input: The starting point-StartNode, a set of speed samples-
Samples, and a threshold within the best possible score to
accept- J

Result: Complete = list of possible paths within J of the best possible
1 begin
2

3

4

5

6

7

8

9

10

11

12

13

14

Partial - {[StartNode]}

Complete - ;
!
while Complete = ; OR

Partial.first.error < J⇥ Complete.first.error do

// Pop out the partial path with smallest
error to advance

P’ - gotoBranch (Partial.pop)
// New paths are found after gotoBranch,

then check for completed paths
join (Complete, {x 2 P’ | x complete })
join (Partial, {x 2 P’ | x incomplete })
// Sort by error: the first partial path

(Partial.first) has the smallest error
sort (Partial)

end
//	 The first completed path found has the

smallest error
15 end

Algorithm 1: Pseudocode for the elastic pathing algorithm.

Starting with the StartNode, partial paths are added and

processed through gotoBranch function. In each iteration,

partial paths are sorted so that the one with smallest error

gets prioritized in search.

it reaches a feature that requires the pin operation. At this point
there may be multiple ways to advance the path so several new
paths may be created. Each new path’s error is adjusted to reflect
the stretching or compressing of the distance traveled from the last
pinned landmark. The algorithm proceeds to the next iteration and
follows the path with the smallest error, and thus, the first path to
finish cannot be worse than any other path. The value of parameter
5 (greater than one) determines the number of finished paths we
can obtain. This allows us to observe the top n paths. However, its
value does not affect the selection of the best path, since the first
solution path found is always the best. We set 5 to be 1.1 when
only interested in finding the best path.

Our algorithm uses maximum speed limits from OSM to
determine whether a candidate path is possible. We have attempted
several methods to apply speed limits to our algorithm such as
segmenting out steady speed intervals for speed limit checking,
separating highway and non-highway segments, and segmenting
transient speed intervals for way entrance speed checking. How
ever, they did not work out well experimentally. In the end, a
simple solution of comparing vehicular speed to the maximum
speed limit worked well. If the speed exceeds the maximum limit
by more than 20 mph, the path is no longer considered possible.
After trying different upper bounds, we found that speed limit plus
20 mph provides the best result overall in our testing stage. This
seemed to be the upper bound that drivers in our datasets were
willing to exceed the speed limit on the roads traveled.

The most complicated operation done in the ElasticPathing
algorithm is the gotoBranch function, for which pseudocode
appears in Algorithm 2. The gotoBranch function first verifies
that the current speed does not exceed the speed limit of the road
by more than 20 mph. It then advances the path until it comes to a
feature on the map, finds every possible path branching from that
feature, and returns those new possible paths. There are two types
of feature matching we consider: a zero speed for an intersection
and a slow enough speed for a turn.

Input: A path-P, speed samples-S, and the current index into the
speed samples-i

1 while i < S.length do
2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

//	 Match turns at intersections to slower
speeds.

if P at intersection then
P’ - ;
!
foreach Edge 2intersection (P) do

if S[i].speed maxSpeed (P, Edge) then
Pin (P)
join (P’, P [Edge)

end

else

Fore - compressA (P)
Back - stretchA (P)
join (P’, Fore)
join (P’, Back)

end
end
return P’

end
//	 Match 0 speeds to intersections.
if S[i].speed ⇡ 0 then

while S[i].speed ⇡ 0 AND
i < S.length do

++ i
end
if P at intersection then

Pin (P)
return P

end
else

Fore - compressB (P)
Back - stretchB (P)
return {Fore, Back }

end
end
//	 Process normally
if speed higher than way max speed + 20 then

drop the current path
end
else

update total traveled distance
end
++ i

43 end

Algorithm 2: Pseudocode for the gotoBranch function used

in the elastic pathing algorithm. This code advances a single

path until it reaches discrepancy between the speed trace

and road. When this happens the path is corrected with

compression or stretching and the path is pinned at what we

call a landmark and the path’s error is recomputed. Multiple

possible paths may be returned at intersections.

When a possible path calculated by the algorithm reaches an
intersection it explores every possible direction. If a vehicle on
the possible path is going at a speed that can move along the
curve in the road then a landmark is set at that location with the
Pin function. If the curve in the road is too great for the current
speed, we can rewind the speed cursor by a few samples to find
a past speed sample that is slow enough to make the turn. This
is equivalent to compressing the traveled distance. The amount of
compressed distance can be calculated and added to the path error.
This is done through our compressA function. We can also advance
the speed cursor to find a speed sample that is slow enough to make
the turn. Our stretchA function is used in this situation. Therefore,
when there is a mismatch between speed samples and road data,
there are two ways to resolve it, and thus, two new possible paths.

A similar situation occurs when the speed data indicates

5

that the vehicle has come to a stop. If the path is already at
an intersection then the landmark is set with the Pin function.
Otherwise the two solutions are found with the compressB and
stretchB functions. These two functions do not require rewinding
or advancing the speed cursor. They directly compare the calcu
lated distance from speed data to the road distance in the map
and compute the difference (or error). They are still based on
the concept of compressing and stretching the distance but have
different implementation compared with compressA and stretchA
functions mentioned above.

After any landmarks are set, the amount of stretching or
compressing from the last landmark increases the error of each
path. This means that an existing path may have less error than
the current paths and should be explored instead. Therefore, all
possible branches are returned to the elastic pathing function and
the paths are placed in sorted order by their error. The pathing
then continues with the new best path.

There are several details that we do not show in the pseudo-
code. For instance, when we check if we are at an intersection,
we allow space for the number of lanes in the road and offset for
another car in front of our vehicle. Determining the minimum safe
turn radius for a speed value is done by assuming the maximum
allowed incline in the road (8%) [40]. The equation that we use
comes from Roess et al. [40], and it is given as:

speed

2

r safe =
(15 ⇥ (0.01 ⇥ DEFAULT ELEVATION + friction))

(1)
In the safe turn radius equation, friction is the dry coefficient

of sliding side friction for tires. Maximum default elevation is
assumed to be 8% which is the maximum allowed for areas where
ice can form on the road. Setting maximum elevation allows the
minimum radius to make a safe turn, allowing more paths than
rejecting them. The minimum safe turn radius for a speed is then
compared with the actual turn radius of the road which can be
determined based upon the number of lanes in the road and typical
lane widths [41]. If the actual turn radius is smaller than the safe
turn radius, the vehicle cannot make the turn at the given speed.

3.3 Other Implementation Details

In this section, we discuss other key implementation details of our
elastic pathing algorithm and improvements that we made over
our initial work [6].

Applying a New Model for Turn Radius Determination:
The turn radius of the intersection determines the maximum
driving speed at which a vehicle could make the turn. This
provides an estimate of the feasibility that a driver can be in
the turning location given the speed in the corresponding time
instance. Thus a good model to determine the actual turn radius
is essential to the algorithm. Our previous attempt was to assume
a sharp turn by drawing a circle to inscribe a triangle. Then, the
radius of the circle was set to be the turn radius (see Figure 2a):
r = h/2 + c2/(8h) [6]. Although a simple sharp turn happens
frequently in most four-way intersections, we realized that a better
model is necessary to account for different types of intersections
(e.g. three-way intersections, intersections with turning angles not
equal to 90 degrees). In addition, the resulting radius from the old
model was not the maximum radius allowed given the geometric
structure. This would cause the calculated maximum speed to be
smaller than the actual possible speed, causing the algorithm to
falsely reject candidate paths that may have been correct.

We used a new approach to model this turning event. Instead
of having a sharp turn in the intersection, one can gradually turn

h

k=c/2

r

y

x

Driving direction Driving direction

rƟ

𝛂𝟐
𝛂𝟏

𝛂 = 𝛂𝟐 + 𝛂𝟏
𝟏𝟖𝟎𝒐 = 𝜶 + Ɵ

(a) (b)

Fig. 2. (a) The figure in the left presents our initial approach to estimate
the turn radius which is set to be the radius of the circle inscribing
the triangle (shaded gray in the figure). (b) The right figure shows our
enhanced turn radius calculation method. The turning angle does not
have to be 90 degrees and it has the maximum turn radius among all
possible turns made within the path boundary.

from the outer side of the path, passing the intersection corner,
and arriving to the outer edge of the other path (see Figure 2b).
This model gives the largest possible turning radius. In this model,
the turning angle ↵ does not have to be 90 degrees. The beginning
path width x and the ending path width y can also be different.
To solve for the turn radius r, we just need to apply some simple
trigonometric functions and obtain the following equation:

p
r

2 - (r - x)2
p

r

2 - (r - y)2

cos ↵ = · - · (2)
r - x r - y
r r r r

Thus the turn radius r can be solved (e.g. there are two solutions,
but we need the solution with larger value in this case), which is:

x + y +
p

2xy(1 + cos ↵)
r = (3)

1 - cos ↵

This turn radius is then compared with the minimum safe turn
radius to determine whether the speed is too fast to make the turn.

Routing Method as an Optional Customization: Open-
StreetMap [42] provides a routing (or navigating) feature to help
users moving from one place to another. The ruby version of
the OSM routing is implemented in Mormon [43] based on
pyroutelib2 [44]. OSM routing, based on A* search algorithm with
weights, finds the shortest path between the two locations [43].
We applied OSM routing as it is open source and provides free
unlimited amount of usage on a given amount of time period.

The idea is to run our main elastic pathing search function
first and use routing information to refine the score of our top
candidate paths. After the main search function, there is a list of
candidate paths ranked by their error. We only consider the top 10
candidate paths to guarantee the quality of the selected candidate
paths and avoid run-time overhead. Each candidate path has an
estimated route, estimated destination, and an error. By comparing
the length of a candidate path to the length of a navigated path, we
can further evaluate the candidate path: the smaller the difference
between lengths, the better the candidate path is.

This is under the assumption that people usually take an
efficient driving route which should have a good match with the
navigated route when comparing trip distance. However, this may
not be always true. For example, one may go with a much longer
route to avoid heavy traffic. The effect on estimation accuracy of
adding this method can only be tested with real-world datasets
(see Section 5.5 for analysis).

We constructed our routing method as an optional function that
could be easily switched on or off. To explain how we modified

6

the error metric to consider the routing distance, we introduce the
following parameters:

•	 CalcDist: This is the distance calculated from the speed
and time values in the speed trace as defined previously.

•	 RoutingDist: This is the routing distance, shortest dis
tance in this case, obtained using OSM routing method.

•	 Error: As defined previously, this is the difference be
tween calculated distance and predicted distance, accumu
lated while compressing and expanding the candidate path.

•	 MaxError: This is the maximum Error among top 10
candidate paths for a driving trace.

•	 CombScore: This is the final combined score used to
determine how good a candidate path is – larger score
(ranging from 0 to 1) indicates better path.

To obtain the final combined score, we need to properly weight
the error from the two factors: the difference between calculated
distance and predicted distance, and the difference between calcu
lated distance and routing distance.

There are three cases based on the value of the routing
distance. The first case happens when the routing distance is
smaller than the calculated distance. Since the routing distance
is based on finding a shortest path, this case is expected to happen
for some traces. We apply the following formula to calculate the
combined score:

MaxError - Error RoutingDist
CombScore = f ·	 + ! · (4)

MaxError CalcDist

where / and ! are weight coefficients for these two fractions such
that / 2 [0, 1], ! 2 [0, 1], and /+! = 1. The first fraction is sim
ply the same as 1 - (Error/MaxError). Error/MaxError
gives how bad the trace error is in range of [0, 1] (the larger the
value, the worse the trace). As we want the fraction to reflect how
good a trace is (the larger the value, the better the trace), we use
1-(Error/MaxError) to convert to what we need. The second
fraction we use for routing score is RoutingDist/CalDist. As
RoutingDist is smaller than CalDist, this gives value ranging
in [0,1] with larger score representing better routing match.

The second case is when routing distance is larger or equal to
the calculated distance. Theoretically, the routing distance should
not be larger than calculated distance as routing is the shortest one.
This case may still happen considering the calculation rounding
error and the possibility of map data not exactly matching the
actual road length. In this case, we use the following formula:

MaxError - Error
CombScore = f ·	 + ! · Ratio2 (5)

MaxError

where
RoutingDist - CalcDist

Ratio2 = 1-	 (6)
CalcDist

(RoutingDist - CalcDist)/CalcDist measures the propor
tion of the difference to the calculated trip distance: CalcDist.
We restricted this range to also be in [0,1] (the larger the
value, the worse the trace). Note that if the RoutingDist is more
than twice as long as CalcDist, we set it to equal to twice
of CalcDist as this is the worst case. Then, we similarly use
1 - (RoutingDist - CalcDist)/CalcDist to convert to what
we need: the larger the score, the better the trace.

The reason we use this formula (Ratio2 formula) is to ensure
we rate both conditions (routing distance being larger and shorter)
in the same way. For example, if the CalcDist is equal to
1 mile, we need to make sure the rating is the same when
RoutingDist is equal to 0.8 miles and when RoutingDist is
equal to 1.2 miles, as they are both 0.2 miles difference to the

CalcDist. Inevitably, this requires cutting off the RoutingDist
at 2 ⇤ CalcDist. An alternative approach would be simply using
CalcDist/RoutingDist instead of our Ratio2 formula, but
such metric will have distorted rating and lose the consistency
between these two conditions.

The third case is when routing distance cannot be found. This
case happens when the OSM fails to find any route between two
given points. However, this may not mean that there is no route
connecting two points based on our testing. Sometimes, OSM API
just failed to find the routes even for regular nodes. Thus we leave
out the routing factor from our formula in this case:

MaxError - Error
CombScore =	 (7)

MaxError

In general, this combined score metric works for different
types of routing methods (e.g. shortest path, fastest path, path
with light traffic), as it considers the matching with two distances
in general. In this paper, we only use it for the OSM routing of
shortest path due to the limitation of the OSM routing API.

Other Enhancements: We re-implemented the landmark set
ting function to match with the new model for turn radius. We
also adjusted the way we duplicate landmarks for newly generated
candidate paths. We did minor modifications on the error accu
mulation functions to rematch beginning and ending points while
calculating error based on speed traces. Finally, we corrected some
minor issues while moving the time index in the speed trace to
eliminate any offset it may produce during the path expanding and
compressing.

Space and Time Complexity: Our elastic pathing algorithm
is essentially a search algorithm optimized with a priority search
queue. Different from depth-first search and breadth-first search,
our algorithm prioritize the search on paths that are most likely
to be the solution path. Therefore, our algorithm does not require
searching through the whole path space. The first path found is the
best path, and the first n path found are the top n ranked paths.

To estimate the space and time complexity, we can assume
that there are N paths within the range that can be reached by the
given driving distance. There are K nodes for each path (recall
that nodes are locations representing a path). There are M samples
in the given speed trace. M is much larger than K. The worst case
happens when all paths are equally bad matches. The algorithm
has to advance and shift among all the paths, resulting exploring
all the paths within the range. The time complexity is M⇥N, which
can be noted as O(MN). The algorithm needs to at least store all
the paths and the speed trace, so the space complexity in this case
needs to be M+K⇥N. The best case happens when there is only
one distinct path matching well with the given speed trace. Then,
the time complexity is about M, or O(M). The space complexity
is about M+K. The average case time and space complexity of our
algorithm depends on the actual driving environment or the path
structure. With our datasets, fewer than 100 paths are explored in
average based on the examination of our candidate path array list.

3.4 Visualization Tool
We built a visualization tool to show how our algorithm matches
a speed trace to different paths along the map. The visualization
interface was implemented using HTML5 and JavaScript for its
convenience to host either locally or on the web. It takes an input
file generated from our elastic pathing algorithm recording how
each decision was made on each step. Then, using Google Maps
APIs, we transferred the input data into the map with animation

7

showing how our algorithm explores and selects paths. The ground
truth GPS data were plotted in the map with markers showing the
starting location and the current position where the algorithm was
exploring. Several top candidate paths that were explored upto the
current time were also shown in the map.

The visualization of our algorithm is essential for the algorithm
testing and debugging. Since our visualization tool takes separate
input files instead of tying the implementation to our algorithm,
it can be easily customized to similar applications that require the
display of driving routes in the map.

4 DRIVING DATA

To test how well our algorithm can reconstruct a driving route
from a known starting point and a speed trace, we applied driving
traces with different drivers and various driving environments. We
required both a ground truth of GPS data and a sample set of
speed data. This data was collected with the approach that the
insurance companies use, by connecting a device to the On-Board
Diagnostics standard (OBD-II) connector. To log the required data
we used two devices: a GPS-enabled smartphone, and a Bluetooth
enabled ODB-II device. We recorded the timestamped speed data
and the corresponding GPS positions simultaneously. We also
obtained a much higher volume of GPS-only data, from which
we reconstructed the speed traces.

To determine the appropriate sampling rate for data collection,
we referred to how insurance companies collect speed data.
Although companies do not directly disclose their data sampling
rate on their websites, Allstate [1] stated that “hard braking events
are recorded when your vehicle decelerates more than 8 mph in
one second (11.7 ft/s2); extreme braking events are recorded
when your vehicle decelerates more than 10 mph in one second
(14.6 ft/s2).” We know that the sampling rate must be faster
than the duration of the feature the insurance company wishes to
observe. In the United States, federal vehicular safety regulations
mandate that vehicles traveling at 20 mph must be able to brake to
a full stop in 20 feet at a deceleration rate of 21 feet/second2 [45].
These events that should be detected occur over a time interval
of one second (⌧ = 1). Using the Nyquist sampling theorem, we
know that they must sample at twice this rate (two samples per
second) to detect these features. To ensure the lower bound of
sampling rates any company may use, we used sampling rate of
one sample per second. This is much slower than what insurance
companies use. Slower sampling rate means less information due
to fewer samples, thus it is harder to estimate routes.

Using the speedometer data from the OBD-II device was
straightforward because raw speed data was immediately avail
able. However, some driving traces were only available as GPS
traces. This data required additional processing to obtain speed
values from latitude and longitude pairs. This was a two step
process: (1) we applied the haversine formula [46] to approximate
distances from the raw GPS coordinates; (2) we divided this value
by the time interval to get an instantaneous speed value for each
time interval. Each speed value was then given a timestamp and
was converted into the same format as the speedometer traces.
We note that we did not see differences in the accuracy of our
algorithm between the two approaches of data collection. We also
verified that the GPS data approximates actual speedometer data
very well, and thus, does not affect our results.

After obtaining driving data, we slip them into driving traces
as units of inputs to our algorithm. Our algorithm assumes that

0

10

20

30

40

50

60

70

80

90

N
u

m
b

e
r

o
f

D
ri
vi

n
g

 T
ra

ck
s Seattle Dataset

1 2 3 4 5 6
0

20

40

60

80

100

N
u

m
b

e
r

o
f

D
ri
vi

n
g

 T
ra

ck
s

Volunteer Number

New Jersey Dataset

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

Volunteer Number

Fig. 3. The number of driving traces for each volunteer in the New
Jersey dataset (top figure) and the Seattle dataset (bottom figure).

each driving trace does not have intermediate stops, meaning that
all stops between a start location and a destination can only be
caused by road conditions (e.g. traffic light, stop sign, or turns).
We split the trip when the driver location does not change for more
than 5 minutes, since stops due to traffic conditions are usually
much less than 5 minutes.

We used three datasets to evaluate how our algorithm works
with the real-world driving traces: two datasets, the central New
Jersey dataset representing suburban areas and the Seattle city
dataset representing urban areas with nearly one thousand testing
traces in total, to estimate the overall estimation accuracy of our
algorithm, and one identical-route dataset to further explore how
different driving behaviors may affect our algorithm performance.
The central New Jersey dataset and the Seattle dataset were used
to test our algorithm in our initial work [6]. The third data set,
named the identical-route dataset, was newly added in this paper.

4.1 Central New Jersey Dataset

We had six volunteers collecting data. Four volunteers collected
GPS-only data over a period of three months, and two volunteers
gathered both GPS and speedometer data with an OBD-II device
over a period of one month. Examples of vehicles that were used
in New Jersey dataset collection were small sedans, sports utility
vehicles, and a pickup truck. The sampling rate for both the GPS
and the speedometer was one second. Figure 3 shows counts of
individual driver traces collected. There were 254 data traces
that we used for pathing with nearly 1250 miles (nearly 2012
km) in total, with a median trip length of 4.65 miles (7.5 km),
minimum trip distance of 0.38 miles (0.62 km), and maximum
trip length of 9.96 miles (16.0 km). These traces comprise 46
unique destinations, with more than half of these destinations
visited multiple times by individual drivers. 28 locations were
visited more than once during data collection and ten locations
were visited more than five times. The total driving time for 254
data traces was about 77 hours with an average driving time of
18 minutes for average driving distance of 4.9 miles. The driving
areas were mostly not dense urban areas, but residential, suburban
and commercial areas connected by highways.

8

4.2 Seattle Dataset
To test our algorithm performance on denser urban areas, we used
an external GPS dataset from Microsoft Research (MSR) [47].
The MSR GPS data was collected by 21 volunteers carrying a
GPS logger for about eight weeks in the fall of 2009 in the region
of Seattle, Washington. We had looked through several datasets
available for access from various research centers and selected this
particular dataset for its large size and great potential of extracting
valuable driving traces for our testing. However, not all the traces
were driving traces, since volunteers also carried around the GPS
logger while they were walking or traveling by train or plane.
This required the design of a trace filter to pick out all the driving
traces. We extracted all the GPS traces that matched the following
criteria: the trace consisted of driving in Seattle, and lasted for at
least three minutes. This was done in order to have a reasonable
distance with all traces and exclude trivial examples.

Another issue we needed to consider with this dataset was how
to handle the loss of GPS signal while driving. For example, a car
driving in a tunnel may lose GPS signal temporally. To ensure
the accuracy of the speed calculation using GPS trajectories,
two sequential GPS readings should not be separated by more
than five seconds. If this happens, they should be considered as
two different driving traces. The possibility of losing signal is
the only disadvantage of using a GPS device instead of using a
speedometer. The dataset from New Jersey did not have this issue.

After trace filtering, 691 traces were extracted with total
driving distance of 1778 miles. Figure 3 shows the counts of
traces per participant. The mean driving distance per trace was 2.6
miles with minimum 0.59 miles and maximum 19.9 miles. The
average driving time per trace was 11 minutes. Comparing with
our own dataset collected by six volunteers, the Seattle dataset
has relatively shorter average driving distance. Since it is an urban
area, the participants’ average driving distance per trip may be
shorter than in suburban areas. We had no control of or information
on the vehicles used since the dataset was from MSR and was
collected independently to our research efforts.

4.3 New Identical-Route Dataset
To investigate how individual difference may affect our algorithm
accuracy, we recruited 30 participants (18 males and 12 females)
to collect driving data. 20 of them were recruited in December
2014 and 10 were recruited in January and February of 2015. All
of them were at least 18 years old and had a valid driving license.
They were required to be an active driver during the past three
months. Our participants are were all undergraduate and graduate
students. Each of them was compensated with a $50 visa gift card
for completing the driving study. We labeled these participants as
P1, P2, ..., P30.

We required all participants to drive in the same route twice.
The route was for a round trip where participants needed to drive
from point a to point b, and then return to point a from a different
path. We split this round-trip route into the leaving route (denoted
as route A) and the returning route (denoted as route B). Thus
both route A and route B were traveled twice for each participant.
These two routes (see Figure 4) were across different areas and
have different driving environments: Route A consists of more
traffic lights and intersections than route B.

A 2002 Hyundai Accent car was used for all the driving
traces in this dataset. Both the speed data and GPS trace were
collected using a smartphone and an OBD-II connector. Before

Fig. 4. Route A shows the driving route from point a to point b, which
comprises residential and commercial areas with some traffic lights.
Route B is from point b back to point a, and it consists of a long highway
segment which connects local paths with a few traffic lights.

data collection, participants were allowed to drive with the test car
in the corresponding area to get familiar with the vehicle and the
driving environment. This was done to eliminate any adjustment
or learning effects from consideration. To avoid heavy traffic
and ensure similar driving condition, all the driving traces were
collected during late morning and early afternoon with similar
weather condition (e.g. either slightly cloudy or sunny).

In this dataset we used a sampling rate of one sample per
second. There are 60 driving traces in route A (4.8 miles) and
60 driving traces in route B (5.1 miles) by 30 different drivers.
However, one participant (e.g. P19) once drove to a wrong route
during the study, resulting only 59 valid driving traces for route A.

5 RESULTS

We present results of our algorithm in this section. We start by
presenting the overall accuracy of our algorithm when testing with
two comprehensive datasets: New Jersey dataset (representing
sub-urban areas) and Seattle dataset (representing urban areas).
We discuss the effect of applying OSM routing and road speed
limits by comparing estimation accuracy. We then investigate how
different drivers and driving behaviors may affect our algorithm by
analyzing the result from our new dataset: identical-route dataset.
Finally, we analyze the traces with poor estimation accuracy and
point out major factors that may mislead our algorithm.

5.1 Overall Accuracy

The Ruby implementation of our algorithm processed all of the
New Jersey traces (254 traces) in about one hour on a two-core
2.2 GHz machine. For the Seattle dataset (691 traces), it took
about two hours. With nearly one thousand traces in total, about
80% of them had running time within just a couple of seconds
per trace while remaining ones took much longer and usually had
much worse accuracy. The processing speed for traces can be done
much faster than the rate at which those same traces are generated.
This may enable real-time tracking of drivers with just speed data,
however it will not be 100% accurate.

Roughly half of the traces can be estimated with destination
error less than one mile for both the New Jersey dataset and the
Seattle dataset (see Table 1). A significant percent of traces can be
estimated with very high accuracy: 17% of traces with destination

9

Destination Error New Jersey Seattle
Meters Miles Trace

Count
Percent Trace

Count
Percent

0-250 0-0.16 44 17.32% 107 15.48%
250-500 0.16-0.31 18 7.09% 83 12.01%
500-750 0.31-0.47 15 5.91% 82 11.87%
750-1000 0.47-0.62 12 4.72% 65 9.41%
1000-1250 0.62-0.78 7 2.76% 43 6.22%
1250-1500 0.78-0.93 14 5.51% 26 3.76%
1500-1750 0.93-1.09 7 2.76% 31 4.49%
1750-2000 1.09-1.24 14 5.51% 34 4.92%
2000-2250 1.24-1.40 8 3.15% 17 2.46%
2250-2500 1.40-1.55 10 3.94% 16 2.32%
2500-2750 1.55-1.71 3 1.18% 26 3.76%
2750-3000 1.71-1.86 4 1.57% 9 1.30%
3000-3250 1.86-2.02 3 1.18% 10 1.45%
>3250 >2.02 95 37.40% 142 20.55%
Total traces 254 100% 691 100%

TABLE 1

Results from the definite version of our elastic pathing algorithm for

both the New Jersey and the Seattle dataset. Table shows the number

of traces having destination error ranging from 0 to greater than 3.25

km, separated into 14 intervals as shown in rows. First two columns

give destination error representations in meters and miles.

Destination
Error
(meters)

New Jersey Seattle
Initial
Version

Definite
Version

Initial
Version

Definite
Version

<250 14.17% 17.32% 13.02% 15.48%
<500 23.62% 24.41% 26.34% 27.50%
<750 29.13% 30.31% 34.88% 39.36%
<1000 33.46% 35.04% 43.42% 48.77%
<1250 37.80% 37.80% 50.51% 54.99%

TABLE 2

Comparison of estimation accuracy between two versions of our

algorithm. Table shows percentages of traces that has destination error

within certain range for both New Jersey and Seattle dataset.

error less than 250 meters and 24% of traces with destination
error less than 500 meters for the New Jersey dataset, and 15.5%
and 27.5% of traces with destination error less than 250 meters
and 500 meters respectively for the Seattle dataset. There is a
noticeable improvement (especially for error less than 250 meters)
in the estimation accuracy compared to our initial version [6] (see
Table 2 for comparison). Overall, 150 traces having destination
error within 250 meters, comparing to 125 traces in our initial
work: there are 25 more traces (or 20 percent improvement of 125
traces) in this highly accurate estimation range.

To provide additional context of our results from definite
version of our elastic pathing algorithm, we analyze how es
timation accuracy depends on the trip length. Figure 5 shows
the distribution of trip lengths within each interval of estimation
accuracy – from highly accurate interval (destination error less
than 0.16 miles or 250 meters) to very rough estimation interval
(error greater than 2 miles). In New Jersey dataset, for traces
estimated with high accuracy (error less than 0.16 mile or 250
meters), trip length varies from 0.38 miles to 9.64 miles. This
means that not only can our algorithm predict short traces with
good accuracy, it can also predict very long traces with good
accuracy. The average trip length for those with error less than
0.16 mile is about 4 miles. While the average trip length varies
for traces in different error intervals, we did not see any clear
dependence of our algorithm’s performance to the trip length

Fig. 5. Box plots of estimation accuracy (or destination error) vs. driving
trip length for the definite version of elastic pathing algorithm. The
destination error is split into 14 intervals (e.g. interval 0-0.16 miles,
interval 0.16-0.31 miles) with each interval equal 0.155 miles or (250
meters). Trip length distribution for each error interval is presented with a
box-plot bar, showing: minimum, maximum, first quartile to third quartile
range (blue box), median (red line), and mean (blue circle).

based on the figure. For Seattle dataset, the general variance of
trip length is smaller than the one in New Jersey dataset, since
Seattle traces have much shorter average trip length. Similarly, our
algorithm can predict traces with both short and long trip lengths
with good accuracy. While the average trip length for error larger
than 2 miles is slightly longer than others, we did not find any
consistent trend of trip length being larger in larger error interval.
For example, traces in 0-0.16 mile interval has longer average trip
length than those in 1.71-1.86 mile interval; the longest trace with
20 mile length has error between 0.31 and 0.47 mile.

5.2 Comparison with Naive Guessing

We implemented a naive guessing algorithm to provide a baseline
accuracy to compare with elastic pathing algorithm. The naive
guessing algorithm takes the map data, a starting location, and
the speed data as inputs, but it does not utilize any logic about
matching zero speeds to intersections or any scoring metric. From
the starting location, the algorithm calculates the traveled distance
from the speed data and selects a path randomly to advance. When
encountering an intersection, the algorithm randomly selects a
path to continue – each direction has an equal chance of selection.

We found that our elastic pathing algorithm achieves much
higher estimation accuracy than naive guessing algorithm. Since
naive guessing algorithm is based upon random selection, the
solution path can be different each time the algorithm runs. We
ran the guessing algorithm for ten times to obtain a rough range of
its estimation accuracy. For destination error within 250 meters,
naive guessing algorithm only estimates 0.87% (average value
with min 0% and max 2.36%) of traces in New Jersey dataset and
4.55% (average value with min 4.05% and max 5.09%) of traces
in Seattle dataset. This is much lower than our elastic pathing
algorithm’s accuracy: 17.32% for New Jersey dataset and 15.48%
for Seattle dataset. We can see that naive guessing algorithm has
higher accuracy in Seattle dataset than New Jersey dataset. This
is due to Seattle dataset has much shorter average trip length than
New Jersey dataset (2.6 miles vs. 4.65 miles).

http:1.71-1.86
http:0.16-0.31

10

f=0.5, !=0.5 New Jersey Seattle
Destination
Error (meters)

Definite
Version

Add
Routing

Definite
Version

Add
Routing

<250 17.32% 14.57% 15.48% 15.34%
<500 24.41% 20.08% 27.50% 27.35%
<750 30.31% 28.74% 39.36% 39.22%
<1000 35.04% 33.07% 48.77% 48.63%
<1250 37.80% 36.22% 54.99% 54.85%

TABLE 3

Comparison of estimation accuracy when OSM routing is applied to our

algorithm. Table shows percentages of traces that has destination error

within certain range for both New Jersey and Seattle dataset.

5.3 Effect of Applying OSM Routing

We applied the routing (or navigating) method into our algorithm
and compared its estimation accuracy with the version without it.
The routing feature is provided by the OSM API. In order to obtain
the combined score for each driving trace, we need to determine
the constants: / which is the weight of the error accumulated by
compressing and extending paths, and ! (equivalent to 1 - /)
which is the weight of the routing error (see Equations 4 to 7 in
Section 3.3). We enumerated / from 0 to 1 with 0.1 incremental
steps. One extreme case is when / equals 0. This means that only
the routing error is considered to re-rank the top several candidate
paths selected by our algorithm. Another extreme case is when /
equals 1. This is when OSM routing error is not used at all.

We found that applying OSM routing drops the overall accu
racy for both New Jersey and Seattle datasets. Varying the value
of / from 0.1 to 0.9 does not have noticeable difference for the
overall accuracy. Table 3 (“Add Routing”) shows the estimation
accuracy when both / and ! are set to 0.5. As shown in the
table, our definite version without routing (happens when /=1)
has better overall accuracy.

We found that OSM routing affects different drivers differ
ently, especially for the New Jersey suburban dataset. There are
six drivers in the New Jersey dataset. When / changes from 0.5
to 1 for P1 and P3, the portion of driving traces having error
within 500 meters increases (P1: 10% to 20%, P3: 18% to 32%),
meaning that our algorithm has higher estimation accuracy without
using OSM routing. However, for P4 and P6, OSM routing helps
increase the estimation accuracy for error less than 500 meters (P4:
22% to 28%, P6: 21% to 45%). For Seattle dataset, the accuracy of
driving traces from 19 out of 21 drivers do not vary with / value.
In other words, routing calculation mostly agrees with the best
path selected by elastic pathing algorithm. From the reminding
two drivers, OSM routing increases the estimation accuracy for
P13 but decreases the accuracy for P15.

Applying OSM routing method also increases the algorithm
execution time given that a corresponding navigated path needs to
be found for each of the top ranked candidate paths. Our algorithm
takes about 11 hours to process all the traces in the New Jersey
dataset and 25 hours for Seattle dataset.

5.4 Effect of Applying Road Speed Limits

Our algorithm applied road speed limits obtained from OSM to
determine how well a candidate path matches with a give speed
trace. In this section, we explore how the algorithm performs when
we relax this condition. This provides additional insights on how
much the speed limit affects the estimation accuracy for different
driving environments: urban and sub-urban.

Fig. 6. Effect of applying speed limits on the New Jersey and the
Seattle dataset. Figure shows the percent of driving traces from the
corresponding dataset with destination error within different intervals:
from 0-250 meters (0.16 mile) to greater than 3250 meters (2 miles).

We found that without using speed limits, the estimation
accuracy for Seattle dataset does not drop a lot (e.g. only a few
traces difference) while the accuracy drops noticeably by several
percentage points for New Jersey dataset (see Figure 6). In New
Jersey dataset, there are 14.57% of traces (37 out of 254) having
destination error within 250 meters when speed limits are not
applied. This is 7 traces fewer than the one using speed limits. For
error within 500 meters, there are 19.29% of driving traces when
speed limits are not applied (e.g. 13 traces fewer than the one with
speed limits). Interestingly, for Seattle dataset, when we do not
apply speed limits, the number of driving traces with destination
error within 250 meters is only one trace fewer. The numbers of
driving traces distributed in different error intervals are similar.

5.5 Results for Identical-Route Dataset
As different drivers can have very different speed patterns even for
the same route, we present results for the identical-route dataset
with 30 drivers to investigate how driving behaviors may affect
our algorithm.

Overall Accuracy: We processed all the driving traces (59
traces for route A and 60 traces for route B) in this dataset to see
the distribution of destination errors. It took about 2 hours in total.
We used the New Jersey map during the processing.

During the result analysis, we discovered and fixed some
issues of the New Jersey map provided by OSM. (1) The nodes
in route A and route B were not connected in a region (about
0.5 miles starting from point a in Figure 4). Thus, the routes
were disconnected from the map, resulting the ground truth path
never reached by our algorithm. (2) There were other minor node
connection issues: a short two-way road connecting to a local
path in route A was mistakenly structured as one-way road in the
map, a one-way road in route B was mistakenly structured as two-
way road, and a node in one path was wrongly connected to a
node in another path in route B. (3) There were many rail ways
connecting together with driving ways in the OSM, misleading
the algorithm to explore rail ways as well. The name of rail ways
were sometimes not specified and sometimes not distinguishable
from actual driving ways, making it difficult to separate with
programming approaches. We fixed the nodes that were connected
in route A and route B, making sure the ground truth path is
reachable through the map. However, these issues may still happen
in many regions of the map.

11

Fig. 7. Comparison of estimation accuracy when using the original map
and the fixed map. Figure shows the percent of traces with destination
error within different intervals: from 0-1 mile to 6.5 miles. There is no
driving trace with destination error greater than 6.5 miles.

We compared the estimation accuracy of our algorithm using
the original map and the fixed map (see Figure 7 for comparison).
We found that fixing the map had a huge impact on the estimation
accuracy for both route A and route B. We did not see any
difference on the overall accuracy when we applied this fixed map
for the New Jersey dataset with 254 traces. This is not surprising,
since we only fixed a small region related to the two routes.

The overall estimation accuracy for the identical-route dataset
is much lower than the New Jersey and Seattle datasets: 15%-33%
traces with error less than 1 mile comparing to about 50% traces
with error less than 1 mile for New Jersey and Seattle datasets.
This is because the identical-route dataset only consists of two
driving routes with fixed region for all drivers. We selected these
two driving routes to pass areas with driving environments that
were shown to be difficult for our algorithm based on our prior
work [6]. These routes consists of highways, local and dense
streets where there are many turns and intersections. We selected
two relatively complex routes so that they can cover a large variety
of driving environments and the results would have reasonable
variation for different drivers to analyze how different drivers and
different driving behaviors may affect our algorithm.

Driving Behaviors vs. Estimation Accuracy: Different driv
ing behaviors should result in different patterns of speed traces.
For example, drivers who drive faster would usually have higher
average speed than others given the same route and similar traffic
condition. Drivers who brake harder than others would have higher
average braking deceleration. For both route A and route B, we
extracted some common features from speed traces:

•	 Average Speed: This is the mean of speed values within
one driving trace.

•	 Average Braking Deceleration: We extracted all the
monotonically decreasing speed intervals from a speed
trace. For each speed interval with at least 10 mph decre
ment, we calculated the average deceleration. We further
average these values from different intervals to obtain the
overall average braking deceleration. Given only speed
trace, it is not easy to extract only braking intervals without
complicated analysis since the driving speed can also
decrease when releasing the gas petal. Setting threshold
for instant braking deceleration may bias some drivers.
For our dataset, we found that 10 mph is a great threshold
to filter out most non-breaking events for different drivers.

•	 Number of Braking Events: This is the number of
monotonically decreasing speed intervals that have speed
drop with at least 10 mph.

•	 Number of Stops: This is the number of stops in one
driving trace. We are including the starting and ending
stops, so there are at least two stops for each trace.

Figure 8 shows the percentage of driving traces that have
destination error less than one mile for each interval of average
speed and average braking deceleration. For driving traces cor
responding to route A (e.g. 59 traces in total), there are 22 traces
with average speed between 18 and 20 mph, and 31.8% of them (7
out of 22) have destination error within one mile. This percentage
is relatively high comparing to other speed intervals. Thus, our
algorithm has slightly better estimation accuracy when the average
speed is around 18 to 20 for route A. When the average speed is
too slow or too fast, the probability of our algorithm providing
good estimates drops rapidly. For instance, there is no trace with
error within one mile among the 10 traces with average speed
between 14 to 16 mph. For route B, the distribution of relatively
accurate traces (e.g. error less than one mile) over the average
speed is different from route A’s. The average speed is generally
higher than route A. This is due to route B having a long segment
of highway path while route A does not pass highways. Relatively
low or high average speeds help on our algorithm’s estimation
in this case (e.g. see figure 8). This result is also intuitive
for route B: based on our trace analysis, slow average speed
usually indicates more stops before or after the highway segment
which then provides more information for our algorithm about
intersections, and very fast average speed indicates high driving
speed in highway segment which helps eliminate some unrelated
local candidate paths during the algorithm’s speed limit testing.
When looking at average braking deceleration, our algorithm has
higher probability of giving accurate estimation when the average
deceleration is relatively low for both route A and route B.

Figure 9 shows how brakes and stops may affect algorithm’s
estimation accuracy. In general, drivers brake more often in route
A than route B. For route A, majority of traces have a number of
braking events between 17 to 19. These traces have the highest
estimation accuracy. Similarly, for route B, the majority of traces
have number of braking events between 8 to 11, and these
traces also have the highest estimation accuracy. However, the
distribution of accurate traces over the number of stops is different
between route A and route B. 8 to 12 stops appear to be the best
for our algorithm to estimate route A. While, more stops favors our
algorithm’s estimation in route B. We found that all 5 traces with 7
to 8 stops in route B have relatively low average speed (e.g. 23-27
mph in Figure 8). This aligns with the previous statement about
why low average speed in route B may increase the estimation
accuracy. We should, however, note that the data sets contained
relatively few low and high average driving speeds, as these are
extreme cases correspond to distinct driving styles.

We analyzed how brakes and stops correlate with the average
speed. We found that stops and the average speed in route A
have a high linear correlation (R2 = 0.7553). It is also intuitive
that the number of stops in route A, which does not consist of
highways but passes through streets in grid path structure, has
a large effect on the average speed. Others have relatively low
correlation coefficient. For example, the second largest correlation
(with R2 = 0.2984) is from stops and the average speed for route
B. Brakes and the average speed have very small linear correlation.

12

Fig. 8. The effect of average speed and average braking deceleration
to the estimation accuracy. The range of average speed or average
braking deceleration is split into four intervals. Values in horizontal axis
show both the interval and the number of traces within the interval. The
percentage value in vertical axis shows the percent of driving traces
within each interval having destination error within one mile.

Fig. 9. The effect of brakes and stops to the estimation accuracy. We use
“brakes” in the figure to denote “braking events”. Each range is split into
four intervals with integer values. Values in horizontal axis show both
the interval and the number of traces within the interval. The percentage
value in vertical axis shows the percent of traces within each interval
having destination error within one mile.

5.6 Analysis on Traces with Low Estimation Accuracy

We analyzed the traces with low estimation accuracy (destination
error more than 2 miles). For each of these traces, we analyzed
the main cause of estimation mistakes. The factors misleading the
algorithm can be grouped into following categories:

•	 Homogeneity of roads: If an area consists of many similar
roads (e.g. same speeds, similar intersection intervals,
areas built in a grid), they cannot be distinguished.

•	 Unpredictable stops: If there are several stops (due to
traffic or constructions) not near any intersection, the speed
trace will mislead our algorithm to find a wrong path.

•	 Very few stops: A speed trace with very few stops lacks
information about intersections for the ground truth, re
sulting many candidate paths cannot be effectively ranked.

New Jersey
Dataset

Seattle
Dataset

Identical-route Dataset
Route A Route B

Homogeneity of roads 17 39 2 18
Unpredictable stops 17 28 5 6

Very few stops 13 21 1 10
Mostly slow speeds 22 25 1 3

OSM limitations 23 26 2 3
Direction turnarounds 3 3 0 0

Total 95 142 11 40

TABLE 4

Table shows number of traces with wrong estimation caused by each

one of the six factors.

•	 Traces with mostly slow speeds: Without high speeds to
rule out turns and constrain paths to a few major roads,
the correct path is indistinguishable from any other. Road
speed limit testing also does not help in this case.

•	 Limitations of OSM: Nodes connected by the OSM are
sometimes impossible to reach in real driving: connecting
a road to a bridge over it, and entering non-driving paths
(e.g. railways, non-existing paths, private regions).

•	 Unpredictable direction turnarounds: Some drivers
turned around their car in the midway of a path segment
(e.g. illegal u-turn, or drive through a place and then
reverse direction).

Based on our analysis of low-accuracy traces from all three
datasets, Table 4 represents the number of traces that have es
timation mistakes caused by each of the six factors. Although
poor estimation of a trace may be due to several factors, we
only labeled each trace based on the suspected root cause. For
New Jersey dataset, limitations of OSM and traces with mostly
slow speeds appear to be the top factors. For Seattle dataset,
homogeneity of roads causes the most number of traces to have
poor accuracy. Identical-route dataset consists of two routes with
(route B) and without (route A) highway segment. For route A,
unpredictable stops appears to be the main factor. However, for
route B, homogeneity of roads is the main factor due to several
highways near the same region: most of these traces end up in a
different direction or on a different highway.

6 DISCUSSION

In this section, we discuss the definite version of our elastic
pathing algorithm (accuracy and results), limitations, and impor
tance of privacy-preserving data collection.

Algorithm Accuracy and Results: Our definite version of
elastic pathing algorithm estimates 17% of traces from New Jersey
dataset and 15.5% traces from Seattle dataset with error within
250 meters. Our algorithm provides reliable estimation results for
traces having good speed patterns. Such traces have no heavy traf
fic, have very few random stops or maneuvers, and carry enough
information (e.g. reasonable stops and speed values) to distinguish
with other roads. Our algorithm can automatically prioritize those
directions that seem to match well with the speed traces. Thus,
it usually generates results instantly or within seconds for good
speed traces. For ambiguous driving trips (e.g. either because of
homogeneous driving environments or poor speed patterns), it may
take much longer and the estimation is usually not good.

Based on our results, OSM routing with shortest path does not
improve the overall accuracy of our existing datasets. However,
it can be useful in estimating routes for a subset of drivers who

13

mostly drive shortest routes in their daily commuting. Based on
our results, routing method had different effects on suburban (New
Jersey) and urban (Seattle) datasets. It also showed improvements
on the accuracy for P4 and P6 in our New Jersey dataset and
P13 in the Seattle dataset. In our case, the datasets are very
comprehensive with various driving environments. The routing
approach brings more penalty than benefits for our datasets.

On the other hand, using speed limits is important for our
algorithm – there is a large accuracy drop when removing this
constraint for New Jersey dataset. However, removing speed limit
constraint has very small impact for the Seattle dataset. This may
be because the traces in Seattle dataset have similar speed limits.
The types of roads (mainly consists of streets built in a grid) in
urban areas are not as diverse as those in suburban areas. In this
case, speed limits does not help in eliminating candidate paths.

Our algorithm accuracy highly depends on different driving
habits as shown in our analysis for identical-route dataset. For
route A and route B, our algorithm favors different behaviors
(e.g. different distribution patterns for stops and average speeds
in Figure 9 and Figure 8) due to different driving environments.
However, they also favor some common driving features: both
routes have high estimation accuracy when average braking decel
eration is low, and the effect of braking has similar patterns.

Limitations: One limitation is from the OSM routing. We
applied OSM routing API currently available: finding the route
with shortest distance. It does not have options to customize
and find the fastest route to reach the destination for example.
Intuitively, finding the fastest route is more challenging than
finding the shortest route, as selection of fastest route depends
on the traffic condition at the moment of driving. Drivers may not
necessarily take the shortest route, so a better routing API allowing
different customization and settings (e.g. finding the fastest route)
may help improve our algorithm’s estimation accuracy.

Notes on Privacy-Preserving Data Collection: Our work
is not directed against any company or organization. However,
prior experience has shown that even well-intentioned uses of data
can result in losses of privacy, and thus, we wish to highlight
potential dangers of this type of data collection. We do not claim
that insurance companies are violating policy holder privacy in
this way. However, the general principle of any privacy-preserving
data collection is to collect only the data that is necessary for a
particular application, and no more.

7 CONCLUSIONS

We presented our definite version of the elastic pathing algo
rithm which demonstrates an effective attack against user location
privacy that uses only speed data from driving traces and an
initial starting location. We have shown improvements over our
initial work: 150 traces in total having destination error within
250 meters, comparing to 125 traces in our initial work, which
is 20 percent improvement of 125 traces in this highly accurate
estimation range. Overall, about half of driving traces (46% for
New Jersey dataset and 63% for Seattle dataset) can be estimated
with destination error within one mile of the ground truth. 37% of
all traces have destination error smaller than 0.5 mile.

We performed a comprehensive analysis on our algorithm,
evaluated effect of applying speed limits, and compared how
different driving behaviors can affect our algorithm with a new
identical-route dataset. In addition, we built a tool that can vi
sualize any driving trace with animation in the Google map. We

showed how the OSM routing can be merged into our algorithm
as an optional customization and explained when it can be useful
and why it cannot be generalized for all drivers. We also analyzed
traces with low estimation accuracy and summarized the cases that
can mislead our algorithm. To the end, we have effectively shown
that our algorithm can solve the major challenge of estimating the
driving route using very limited data.

ACKNOWLEDGMENTS

This material is based upon work supported by the National
Science Foundation under Grant Numbers 1228777 and 1211079.
Xianyi Gao was supported by the National Science Foundation
Graduate Research Fellowship Program under Grant Number
1433187. Any opinions, findings, and conclusions or recommen
dations expressed in this material are those of the authors and
do not necessarily reflect the views of the National Science
Foundation.

REFERENCES

[1]	 Allstate, “drivewise,” 2013, retrieved September 27, 2013 from
http://www.allstate.com/drive-wise.aspx.

[2]	 GMAC, “National general insurance low-mileage discount,” 2015, re
trieved November 7, 2015 from http://www.gmacinsurance.com/auto
insurance/smart-discounts/low-mileage-discount.asp.

[3]	 Progressive, “Snapshot,” 2013, retrieved October 8, 2013 from
http://www.progressive.com/auto/snapshot.aspx.

[4]	 StateFarm, “Drive safe & save,” 2016, retrieved June 2, 2016 from
https://www.statefarm.com/insurance/auto/discounts/drive-safe-save.

[5]	 General Motors, “Onstar,” 2016, retrieved April 20, 2016 from
https://www.onstar.com/.

[6]	 X. Gao, B. Firner, S. Sugrim, V. Kaiser-Pendergrast, Y. Yang, and
J. Lindqvist, “Elastic pathing: Your speed is enough to track you,”
in Proceedings of the 2014 ACM International Joint Conference on
Pervasive and Ubiquitous Computing, ser. UbiComp ’14. New York,
NY, USA: ACM, 2014, pp. 975–986.

[7]	 A. B. Brush, J. Krumm, and J. Scott, “Exploring end user preferences for
location obfuscation, location-based services, and the value of location,”
in Proc. of Ubicomp ’10, 2010.

[8]	 P. J. Ludford, R. Priedhorsky, K. Reily, and L. Terveen, “Capturing,
sharing, and using local place information,” in Proc. of CHI ’07, 2007.

[9]	 S. Patil and J. Lai, “Who gets to know what when: configuring privacy
permissions in an awareness application,” in Proc. of CHI’05, 2005.

[10] J. Y. Tsai, P. Kelley, P. Drielsma, L. F. Cranor, J. Hong, and N. Sadeh,
“Who’s viewed you?: the impact of feedback in a mobile location-sharing
application,” in Proc. of CHI’09, 2009.

[11] R. A. Popa, A. J. Blumberg, H. Balakrishnan, and F. H. Li, “Privacy and
accountability for location-based aggregate statistics,” in Proc. of CCS
’11, 2011.

[12] M. Gruteser and D. Grunwald,	 “Anonymous usage of location-based
services through spatial and temporal cloaking,” in Proc. of MobiSys
’03, 2003.

[13] J. Krumm, “Realistic driving trips for location privacy,”	 in Proc. of
Pervasive ’09, 2009.

[14] ——, “Inference attacks on location tracks,” in Proc. of Pervasive’07,
2007.

[15] X. Zhou, S. Demetriou, D. He, M. Naveed, X. Pan, X. Wang, C. A.
Gunter, and K. Nahrstedt, “Identity, location, disease and more: Inferring
your secrets from android public resources,” in Proc. of CCS ’13. New
York, NY, USA: ACM, 2013, pp. 1017–1028.

[16] J. Krumm,	 “A survey of computational location privacy,” Personal
Ubiquitous Comput., vol. 13, no. 6, pp. 391–399, Aug. 2009.

[17] H. Zang and J. Bolot, “Anonymization of location data does not work: a
large-scale measurement study,” in Proc. of MobiCom ’11, 2011.

[18] M. C. Gonzle, C. A. Hidalgo, and A.-L. Barabasi, “Understanding
individual human mobility patterns,” Nature, vol. 453, pp. 779–782, Jun.
2008.

[19] N. Eagle and A. S. Pentland, “Eigenbehaviors: identifying structure in
routine,” Behavioral Ecology and Sociobiology, vol. 63, no. 7, pp. 1057–
1066, 2009.

[20] P. Golle and K. Partridge, “On the anonymity of home/work location
pairs,” in Proc. of Pervasive ’09, 2009.

http:https://www.onstar.com
https://www.statefarm.com/insurance/auto/discounts/drive-safe-save
http://www.progressive.com/auto/snapshot.aspx
http://www.gmacinsurance.com/auto
http://www.allstate.com/drive-wise.aspx

14

[21] C. Song, Z. Qu, N. Blumm, and A.-L. Barabsi, “Limits of predictability
in human mobility,” Science, vol. 327, no. 5968, pp. 1018–1021, Feb.
2010.

[22] K. Farrahi and D. Gatica-Perez, “Discovering routines from large-scale
human locations using probabilistic topic models,” ACM Trans. Intell.
Syst. Technol., vol. 2, pp. 3:1–3:27, January 2011.

[23] D. Wang, D. Pedreschi, C. Song, F.	 Giannotti, and A.-L. Barabasi,
“Human mobility, social ties, and link prediction,” in Proc. of KDD ’11,
2011.

[24] Y.	 Zheng, Y. Chen, Q. Li, X. Xie, and W.-Y. Ma, “Understanding
transportation modes based on GPS data for web applications,” ACM
Trans. Web, vol. 4, pp. 1:1–1:36, January 2010.

[25] B. D. Ziebart, A. L. Maas, A. K. Dey, and J. A. Bagnell, “Navigate like
a cabbie: probabilistic reasoning from observed context-aware behavior,”
in Proc. of UbiComp ’08, 2008.

[26] S. Davidoff, B. D. Ziebart, J. Zimmerman, and A. K. Dey, “Learning
patterns of pick-ups and drop-offs to support busy family coordination,”
in Proc. of CHI ’11, 2011.

[27] J. Krumm and A. J. B. Brush, “Learning time-based presence probabili
ties.” in Proc. of Pervasive’11, 2011.

[28] Y.	 Zheng, L. Zhang, Z. Ma, X. Xie, and W.-Y. Ma, “Recommending
friends and locations based on individual location history,” ACM Trans.
Web, vol. 5, pp. 5:1–5:44, February 2011.

[29] W. B. Zavoli and S. K. Honey, “Map matching augmented dead reck
oning,” in Vehicular Technology Conference, 1986. 36th IEEE, vol. 36,
May 1986, pp. 359–362.

[30] M. Golfarelli, D. Maio, and S. Rizzi, “Elastic correction of dead-
reckoning errors in map building,” in Intelligent Robots and Systems,
1998. Proceedings., 1998 IEEE/RSJ International Conference on, vol. 2,
1998, pp. 905–911 vol.2.

[31] E. J. Krakiwsky, C. B. Harris, and R. V. Wong, “A kalman filter
for integrating dead reckoning, map matching and gps positioning,” in
Position Location and Navigation Symposium, 1988. Record. Navigation
into the 21st Century. IEEE PLANS ’88., IEEE, 1988, pp. 39–46.

[32] L. Zhao, W. Y. Ochieng, M. A. Quddus, and R. B. Noland, “An extended
kalman filter algorithm for integrating gps and low cost dead reckoning
system data for vehicle performance and emissions monitoring,” The
journal of Navigation, vol. 56, no. 02, pp. 257–275, 2003.

[33] C. Troncoso, G. Danezis, E. Kosta, J. Balasch, and B. Preneel, “Pripayd:
Privacy-friendly pay-as-you-drive insurance,” IEEE Trans. Dependable
Secur. Comput., vol. 8, no. 5, pp. 742–755, Sep. 2011.

[34] A. J. Aviv,	 B. Sapp, M. Blaze, and J. M. Smith, “Practicality of
accelerometer side channels on smartphones,” in Proc. of ACSAC’12,
2012.

[35] J. Han, E. Owusu, L. T. Nguyen, A. Perrig, and J. Zhang, “Accomplice:
Location inference using accelerometers on smartphones,” in Proc. of
COMSNETS’12, 2012.

[36] S. Guha, K. Plarre, D. Lissner, S. Mitra, B. Krishna, P. Dutta, and
S. Kumar, “Autowitness: locating and tracking stolen property while
tolerating gps and radio outages,” in Proc. of SenSys ’10, 2010.

[37] R. Dewri, P. Annadata, W. Eltarjaman, and R. Thurimella, “Inferring trip
destinations from driving habits data,” in Proc. of 11th ACM workshop,
2013, pp. 267–272.

[38] OpenStreetMap,	 “Way,” 2016, retrieved June 2, 2016 from
http://wiki.openstreetmap.org/wiki/Way.

[39] ——,	 “Node,” 2016, retrieved June 2, 2016 from
http://wiki.openstreetmap.org/wiki/Node.

[40] R. P.	 Roess, E. S. Prassas, and W. R. McShane, Traffic Engineering.
Pearson, 2011.

[41] AASHTO,	 A Policy on Geometric Design of Highways and Streets,
6th ed. AASHTO, 2011.

[42] OpenStreetMap, “Routing,”	 2016, retrieved May 10, 2016 from http:
//wiki.openstreetmap.org/wiki/Routing.

[43] Mormon, “Osm routing in ruby based	 on pyroutelib2,” Dec. 2016,
https://github.com/geronimod/mormon.

[44] OpenstreetmapWiki,	 “Pyroutelib2,” Jan. 2015,
http://wiki.openstreetmap.org/wiki/Pyroutelib2.

[45] U.S.	 Department of Transportation, “Federal mo
tor carrier safety administration,” 2013, retrieved Oc
tober 2, 2013 from http://www.fmcsa.dot.gov/rules
regulations/administration/fmcsr/fmcsrruletext.aspx?reg=393.52.

[46] R. W. Sinnott, “Virtues of the haversine,” Sky and telescope, vol. 68,
no. 2, p. 159, 1984.

[47] J. Krumm and A. Brush, “Msr gps privacy dataset 2009,” 2009, retrieved
from http://research.microsoft.com/ jckrumm/GPSData2009.

http://wiki.openstreetmap.org/wiki/Routing
http://wiki.openstreetmap.org/wiki/Routing
http:http://research.microsoft.com
http:regulations/administration/fmcsr/fmcsrruletext.aspx?reg=393.52
http://www.fmcsa.dot.gov/rules
http://wiki.openstreetmap.org/wiki/Pyroutelib2
https://github.com/geronimod/mormon
http://wiki.openstreetmap.org/wiki/Node
http://wiki.openstreetmap.org/wiki/Way

	1 Introduction
	2 Related Work
	3 Algorithm Design
	3.1 Requirements for a Generic Algorithm
	3.2 Elastic Pathing Algorithm
	3.3 Other Implementation Details
	3.4 Visualization Tool

	4 Driving Data
	4.1 Central New Jersey Dataset
	4.2 Seattle Dataset
	4.3 New Identical-Route Dataset

	5 Results
	5.1 Overall Accuracy
	5.2 Comparison with Naive Guessing
	5.3 Effect of Applying OSM Routing
	5.4 Effect of Applying Road Speed Limits
	5.5 Results for Identical-Route Dataset
	5.6 Analysis on Traces with Low Estimation Accuracy

	6 Discussion
	7 Conclusions
	References

