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ABSTRACT 
Android and other mobile operating systems ask users for au­
thorization before allowing apps to access sensitive resources 
such as contacts and location. We hypothesize that such au­
thorization systems could be improved by becoming more 
integrated with the app’s user interface. In this paper, we 
conduct two studies to test our hypothesis. First, we use App-
Tracer, a dynamic analysis tool we developed, to measure to 
what extent user interactions and sensitive resource use are 
related in existing apps. Second, we conduct an online sur­
vey to examine how different interactions with the UI affect 
users’ expectations about whether an app accesses sensitive 
resources. Our results suggest that user interactions such as 
button clicks can be interpreted as authorization, reducing the 
need for separate requests; but that accesses not directly tied 
to user interactions should be separately authorized, possibly 
when apps are first launched. 
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INTRODUCTION 
Android has a permission system that asks users for authoriza­
tion before an app uses sensitive resources such as contacts or 
GPS location. A key challenge in such authorization systems 
is balancing user interruptions with making sensitive resource 
use transparent. We hypothesize that Android’s existing au­
thorization systems (install-time permission lists or run-time 
dialog boxes, depending on the version) could achieve a bet­
ter balance by integrating with the app’s user interface (UI), 
because the UI deeply informs the user’s mental model of the 
app’s behavior, including security-relevant behavior. 

In particular, in this paper we ask whether user interactions— 
button clicks, page changes, dialog boxes, etc.—can be taken 
as evidence of authorization to use certain sensitive resources. 
If so, this could reduce the need for separate authorization 
requests. Conversely, we ask whether sensitive resource use 
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without an associated interaction suggests a need for additional 
authorization requests. Note that while our studies are heavily 
influenced by Android, we believe our results will generalize 
to related mobile OS’s and similar settings like web apps. 

To answer these questions, we conducted two related studies. 
First, we reviewed 150 popular Android apps to determine 
whether sensitive resource uses are related to user interactions 
in existing apps. If so, an authorization mechanism integrated 
with the UI could work well with existing app designs. To 
carry out this study, we developed AppTracer, a dynamic 
analysis tool that instruments Android apps to log UI actions 
and resource uses, and then visualizes the logs as graphs that 
show temporal ordering of logged events. We used AppTracer 
to determine whether each observed resource use in each app 
was interactive, meaning either it was immediately preceded 
by a related UI event (e.g., accessing contacts after clicking 
a button marked “contacts”), or it was the main focus of the 
current screen (e.g., using location on a map screen). 

We found that, across our subject apps, several resources (mi­
crophone, camera, external storage, and calendar) are used 
almost exclusively interactively; several others (including 
bluetooth and phone state) are used mostly non-interactively 
(which we call in the background even if the app itself is on 
screen); and several resources (most notably contacts and loca­
tion) exhibit a mix of interactive and background uses. These 
results suggest interactive and background uses may call for 
different authorization mechanisms, and that these mecha­
nisms cannot necessarily be divided strictly by resource. 

These results informed the design of our second study, a 961­
participant online survey investigating participants’ expecta­
tions about interactive and background permission uses. Each 
participant viewed a slideshow of two usage scenarios for a 
mock mobile app, where each scenario shows a short interac­
tion (e.g., launching the app, clicking a button, etc.) and then 
asks if the participant expects microphone, location, and/or 
contacts to be used after the interaction. We chose these re­
sources to reflect a range of interactivity as measured in our 
app study. We aimed to gain insight into how different factors 
affect user expectations, and therefore which authorization 
mechanisms might be appropriate for different usage patterns. 

As we anticipated, we found that users are much more likely 
to expect resources to be accessed after a related interaction 
than in the background. However, we also found that seeing 
one interactive use does not prime the user to expect a fu­
ture background use, indicating a potential weakness in the 
Android M request-on-first-use authorization model. In con­
trast, our findings show that an authorization request at launch 
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does increase expectations for both interactive and background 
accesses, perhaps because it better conveys the idea that the 
resource could be accessed at any time. 

Drawing on the results of our studies, we make three design 
recommendations. First, resource uses should be made after 
associated interactions as much as possible. Given the current 
makeup of apps, this should be achievable for many commonly 
used resources without extensive effort. Second, separate 
authorization dialogs might be unnecessary for resources that 
are accessed mostly interactively (see, e.g., [27]). Finally, 
authorization for background resource uses should be distinct 
from authorization for interactive uses, and these background 
authorizations may be most effective when the app is launched. 

BACKGROUND AND RELATED WORK 
In earlier versions of Android, users were presented with a list 
of permissions requested by an app at install time. The user 
could then either grant the app full use of those permissions 
or not install the app at all. This model had a number of 
problems: few users comprehended or even read the list of 
permissions [12], and many apps requested more permissions 
than they used [10]. Because of these issues, Android M [14] 
switched to a model where apps ask for a permission the first 
time it is needed; the permission is then granted indefinitely. 

In our work, we ask whether authorization systems similar to 
Android’s can be improved by taking the user interface into 
account. Note that our work is orthogonal to the question of 
whether permissions are at the right level of granularity [6, 17] 
or protect the right resources [11]. 

Contextual Security on Mobile Devices 
The motivation for our work, that authorization can be better 
integrated with the UI, exemplifies contextual security [22], 
which suggests security decisions should take the context into 
account. Several researchers have studied contextual security 
on mobile devices. Almuhimedi et. al [3] showed users his­
torical data about how apps accessed their locations. They 
found 95% of users reassessed the apps’ need for location, 
with 58% of those users further restricting location access. 
King [19] found users are more likely to expect sensitive re­
source accesses when suggested by the context. Felt et. al [1] 
proposed a process for deciding the appropriate authorization 
mechanism for a permission based on the a permissions’ use 
in context. Several researchers [5, 13, 33] found users are sur­
prised by some sensitive resource accesses that occur when 
apps are in the background. Most closely related to this paper, 
in a field study Wijesekera et al. [33] found that context is an 
important factor in determining expectation of resource use. 
Our work builds on this finding by using a controlled experi­
ment to distinguish how different contextual factors, including 
consecutive interactions, contribute to user expectations. 

The works just mentioned mainly define context as whether 
the app is on or off the screen. In contrast, we use a much 
richer notion of context based on sequences of UI actions. 

Enforcing Contextual Security 
Many systems have been proposed to enforce contextual secu­
rity in apps. Chen et. al [8] present Pegasus, a static analysis 

Figure 1: App Measurement Survey Procedure. 

system for analyzing apps and enforcing policies based on 
permission event graphs (PEGs). For example, Pegasus can 
check that contacts are only accessed after clicking a certain 
button. PEGs inspired the design of AppTracer. However, 
AppTracer uses dynamic (rather than static) analysis to reduce 
issues of false positives—every behavior AppTracer logs oc­
curred in an actual run, whereas static analysis may report 
sensitive resource accesses that can never actually occur. 

Yang et al. [34] presented AppIntent, which uses symbolic 
execution to determine sequences of UI events that lead to 
information leakage. Micinski et. al [21] use symbolic ex­
ecution to enforce secure information-flow properties based 
on UI events. While both systems are promising, in practice 
symbolic execution is difficult to run at scale on Android apps 
due to the complexity of modeling the Android framework. 

Stiegler et al. developed CapDesk [30] and later Polaris [29], 
two capability-based desktop system that utilize user interac­
tion to drive access control. However, CapDesk and Polaris’s 
focus is limited to file access. Roesner et. al [27] expand user-
driven access control with Access Control Gadgets (ACGs), 
which tie resource accesses to certain UI elements, e.g., an 
ACG might allow location to be used only after a specific but­
ton is clicked. ACGs were later expanded to work on Android, 
with and later without modifying the operating system [25,26]. 
The original ACG paper includes a user study measuring ex­
pectations related to interactive permission uses; our work 
expands on this idea to study a broader variety of factors and 
use cases. While the current paper does not directly implement 
or measure ACGs, our findings do support the use of ACGs. 

APP MEASUREMENT SURVEY METHODOLOGY 
In our first study, we reviewed a set of popular Android apps 
to determine how UI actions and resource uses are related. 
Figure 1 gives a high-level overview of our review process, 
which ultimately produces a set of resource use codes that 
indicate, for each resource use, what event (if any) caused 
the use. For example, we might determine that in some app, 
contacts were accessed just after a button click, or location 
was used immediately when the app launched. 

The next subsections walk through the review process in detail. 

Binary Rewriting and Execution Logging 
The first step of our process uses AppTracer, a dynamic analy­
sis tool we developed. AppTracer instruments the subject app 
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(a) Click (b) Uncertain 

(c) Startup (d) Background-External 

Figure 2: AppTracer graphs and corresponding resource ac­
cess patterns in our codebook. 

so that, when run, it writes a log of UI events and permission 
uses. AppTracer adds instrumentation using Redexer [17], 
a rewriting tool for Dalvik bytecode (the language to which 
Android apps are compiled). Generally speaking, AppTracer 
instruments code by appending a log method to the bytecode 
and inserting calls to log at the beginning of UI-related call­
backs (e.g., onClick handlers for button events) and just before 
calls to permission-protected methods (e.g., getLastLocation). 

We identified methods associated with the UI using the An­
droid documentation. We identified permission-protected 
methods using the PScout dataset [4], which attempts to list 
every security-sensitive method and its associated permis­
sion. PScout also includes information about sensitive content 
providers, intents, etc. Note that while PScout is reasonably 
thorough, we found several cases it missed. For example, we 
observed several visual indicators of SD card use that had no 
corresponding log entry AppTracer. After investigating the 
apps’ decompiled code, we found the SD card was used via 
Java IO methods omitted by PSCout. Whenever we found 
such cases, we added the missing methods to our copy of the 
PScout database and reran our evaluated apps. 

Once an app has been instrumented, a tester runs it to generate 
a log. (Note that one log is usually sufficient because in most 
apps, any app state is reachable from any other app state.) We 
elide the details of the log, but at a high level, for each UI event, 
AppTracer records the type of event and the corresponding 
parameters (e.g., what button was clicked, which menu option 
was selected, etc.). For each permission use, AppTracer logs 
the name of the called method and its arguments. 

Log Visualization 
After the tester produces a log, the next step is log visualization. 
Figures 2a–2b show example portions of AppTracer’s graph-

based visualization, redrawn for compactness and to omit most 
package names. Here, light blue boxes represent activities, 
which are the “screens” of the app. Within each activity, gray 
ovals represent the beginning of that activity (“entry,” which 
usually corresponds to the onStart handler), UI events (e.g., 
“click”), or system events (e.g., BATTERY_CHANGED). Red 
rectangles indicate calls to methods protected by the named 
permission. There is an edge from node A to node B if A 
occurs immediately before B in the log. For example, in 
Figure 2a, contacts were read immediately after the Import-
ContactActivity activity was started. 

Since logs can be quite lengthy, AppTracer heuristically 
merges nodes that arise from the same position in the byte-
code. This sometimes results in ambiguity. For example, in 
Figure 2b, the single onReceive node actually represents calls 
to an Android broadcast receiver that AppTracer coalesced. 
We discuss this more below. 

Finally, AppTracer also allows the user to directly view the 
log file entries corresponding to a node in the graph. This is 
useful to retrieve more detailed information about the node. 
For example, when reviewing Figure 2a, we looked in the log 
to determine that the clicked button had text associated with 
contacts. As another example, we used the logs to distinguish 
SD card accesses to user files from accesses to the app’s own 
storage. We do not count the latter as a sensitive resource 
access because it accesses data owned by the app. 

Resource Uses 
The next step is to examine the AppTracer graph and record 
a set of codes that accurately categorize various resource ac­
cesses. More precisely, for each red node in the graph, the 
coder assigns a pair of the form (resource,pattern), where 
resource indicates what is protected by the permission and 
pattern is one of six different UI patterns, discussed next. 

To keep our results understandable, we grouped together re­
sources according to Google’s permission groups [24]. For 
example, the single SMS resource includes more fine-grained 
permissions such as READ_SMS and SEND_SMS. 

We developed an initial codebook for UI patterns based on our 
knowledge of Android app development. We then iteratively 
applied our codebook to sets of five apps (not in our evaluation 
set) at a time and adjusted the codes as necessary. After 
evaluating a total of twenty apps, we felt we had reached a 
codebook with a minimal set of orthogonal patterns. 

The six access patterns in our codebook are grouped into 
three categories. First are the interactive patterns Click and 
Page. The code Click indicates resource use preceded by a UI 
event (including non-clicks such as swipes). For example, in 
Figure 2a, we coded READ_CONTACTS as Click because the 
contacts were accessed on a straight-line path from the click 
of a button labeled as importing contacts. Page codes uses that 
are clearly associated with an activity but are not associated 
with exactly one click. For example, Page would code the use 
of location during an activity that shows a list of nearby stores. 

Second, in the background patterns Startup, Bg-App, and Bg-
Ext, the resource use has no obviously connected user action. 
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Startup codes a resource accessed right after app launch but 
before any screen appears (and is thus disjoint from Page), 
e.g., the use of accounts in Figure 2c, which occurs in a thread 
created at app launch. Bg-App codes a resource used while 
the app is in the foreground, but with no clearly related user 
action. For example, a graph similar to Figure 2a would be 
coded as Bg-App if a button labeled for importing contacts 
was followed by the GET_ACCOUNTS permission rather 
than READ_CONTACTS. Bg-Ext denotes a resource used due 
to a system event, meaning it would be used whether or not 
the app is on screen. For example, in Figure 2d, accounts are 
read after the BATTERY_CHANGED system event. 

Finally, Uncertain denotes a resource access that did not fit 
any of the previous patterns. In Figure 2b, we see a path from 
a system event to onReceive to READ_CONTACTS, which 
should be coded as Bg-Ext. But, the onReceive node also 
has an incoming edge from the click handler and the back 
button. These uses would be coded as Bg-App. (The Click and 
Page codes do not apply because the associated buttons do not 
indicate contacts will be used.) Because there are multiple 
possibilities, we code this case as Uncertain. 

If desired, an AppTracer user can subsequently review the 
logs to try to resolve the uncertainty. For example, here the 
log entry associated with BATTERY_CHANGED is followed 
by a call to onReceive and then READ_CONTACTS. Thus, 
the permission use is coded as Bg-Ext. We then separately 
looked at the log entries for click and back_button, and found 
they were followed by an onReceive that was not followed by 
READ_CONTACTS. Thus, examining the logs allowed us to 
distinguish paths that we merged in AppTracer. 

Note that for each app we only count each (resource,pattern) 
pair once, no matter how often it occurs in the log. A stronger 
notion of frequency would be hard to interpret, since it would 
depend on how AppTracer heuristically coalesces graph nodes 
as well as to how the tester explored the app. 

Coding Apps and Resolving Differences 
Coding the resource uses of an app is inherently complex. 
Thus, two coders reviewed apps independently in sets of 15 
and met after each set to resolve differences. Coders took 
approximately 10–20 minutes to code each app, and resolving 
differences for a set of 15 apps took approximately 30 minutes. 

Most differences between coders were due to one coder over­
looking a path or a resource in the AppTracer graph. In almost 
all such cases, when the other coder pointed out the omission, 
the first coder would quickly reach the same conclusion as 
the other coder. The remaining differences were caused by 
disagreements about whether the resource use was interac­
tive. For example, one app read a user’s accounts within an 
activity for filling a form. One coder recorded this as Click, 
since the accounts were read after a click. The other coder 
recorded this as Bg-App, because there was no observable use 
of the account data, such as pre-filling the form with data from 
the user’s existing accounts. After encountering several such 
cases, the coders decided on a general principle of coding uses 
as Bg-App unless the UI explicitly mentioned that the resource 
could be used—hence, this example was resolved as Bg-App. 

Inter-rater reliability between our coders for the non­
visualization-error disagreements was Krippendorff’s α = 
0.897, indicating close agreement [15]. 

App Selection 
We drew our subject apps from a larger set comprising the 20 
top downloaded free apps1 from the 27 non-gaming categories 
on Google Play. We excluded gaming apps because they 
typically use native code that AppTracer cannot analyze. This 
yielded 503 apps (note there is overlap between categories). 

We then randomly selected 150 apps to evaluate, subject to 
the constraint that no more than two apps were from the same 
developer. (We wanted to avoid bias due to overrepresentation 
of apps coded in the same style.). We excluded any apps that 
could not be run with AppTracer, replacing them with new 
randomly drawn apps to maintain an evaluation set of 150. 

We excluded 48 apps because Redexer fails when rewriting 
them and 23 apps because either they refuse to run if modified 
(due to internal or system signature checks) or they are pri­
marily implemented in native code. In most cases, we created 
accounts when signup was required to fully exercise an app, 
but we excluded 16 apps because they require accounts that 
are hard to set up online or require a fee (e.g., bank accounts). 

Limitations 
There are several potential limitations to this study. First, the 
tester may miss some app behavior, leading to a log that omits 
some possible resource uses and contexts. We tried to alleviate 
this concern by exercising as much of the app as possible. 
However, we did not use app features that required payment. 

Second, AppTracer has limitations mentioned above: it may 
miss UI events or permission-protected methods, and it merges 
nodes that correspond to the same position in the bytecode. 
We tried to address the former issue by looking for cases where 
we expected an event to be in a log but it was not, and then 
adding the missing events or methods. We addressed the latter 
issue by manually disambiguating some of the uncertain cases. 

Third, our study reviewed only popular Android apps. Observ­
ing that a resource is already accessed interactively in popular 
apps would indicate that changing the Android framework or 
system to implement interactivity-related protections for those 
accesses may be reasonable. These apps also represent the 
common case and likely help to set user expectations about 
apps and permissions. However, we note that the apps we ex­
amine likely differ from the long tail of other apps in important 
ways; popular apps are likely implemented to high standards 
and unlikely to be malicious. We leave similar measurements 
on a broader set of apps as future work. 

APP MEASUREMENT SURVEY RESULTS 
Figure 3 summarizes the resource use patterns we found. For 
example, across all apps, the camera was used in the Click pat­
tern 57 times. Orange-shaded bars indicate interactive use pat­
terns, and blue shades represent background uses. Resources 
are sorted by percent of interactive patterns. 

1as of June 11, 2016 
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Figure 3: Percent of observed patterns of each type, per re­
source. Bar labels indicate how many apps we observed using 
each pattern, non-normalized. 

We see that, to a rough approximation, the more sensitive the 
resource the more likely it is used interactively. Indeed, mi­
crophone, media, camera, and calendar were accessed almost 
exclusively interactively. We investigated the background and 
Uncertain uses for these resources. One calendar use and the 
two SD card uses were due to periodic background tasks (cal­
endar syncing or scanning for files). One camera use took a 
picture after the passcode was entered incorrectly three times. 
One camera use and one calendar use did not seem to access 
sensitive resources—the camera use accessed configuration 
information, and the calendar use got the current date (which 
could be done without accessing the calendar). Finally, after 
disassembling and reading the bytecode, we found one Uncer­
tain camera use could actually only happen interactively. 

We next see that contacts, SMS, tasks, location, and calls are 
used in a mix of interactive and non-interactive ways. We 
investigated the background and Uncertain uses of these re­
sources as well. Contacts were used in the background mainly 
to pre-fetch or sync the contact list. Two apps used SMS in 
the background to listen for a registration code after the user 
signed up for an account. Currently running tasks were polled 
in the background to monitor battery usage, scan for malicious 
apps, look for apps by the same developer (to communicate 
with them), or for analytics and tracking purposes. Call-related 
permissions were used in the background to block calls from 
a user-supplied blacklist. While there were too many back-

Resource # Apps Resource # Apps 

Location 75 Microphone 14 
Media/SD Card 69 Tasks 13 
Camera 69 Power/Diag. 12 
Phone State 43 Calendar 5 
Accounts 39 SMS 4 
Bluetooth 31 Calls 2 
Contacts 30 

Table 1: Number of apps that used each resource. 

ground location uses to examine them all, those we did ex­
amine frequently had no obvious reason (as expected [3, 13]), 
even in apps that elsewhere used location for a clear purpose. 

Finally, four resources—accounts, power, bluetooth, and 
phone state information—were mostly accessed in the back­
ground. We believe this is either because developers believe 
users care less about these accesses [11], the uses are hard to 
explain clearly to non-experts, or the uses are not naturally 
associated with an immediately preceding interaction. 

Looking in more detail at the breakdown between Click and 
Page, we see that for most resources, Click is a clear majority 
of the interactive uses. The exception is location, which has 
more Page uses. This was mostly due to location use for 
map screens or lists of nearby places. Breaking down the 
background uses, we see the use of resources at Startup and in 
Bg-Ext becomes much more common lower in the chart. 

Resource Usage Across Apps 
We also measured the number of apps that used each resource 
at least once, as a rough approximation for how familiar each 
resource is to users. Table 1 shows the results. We found a 
wide range across resources, with little correlation between 
frequency of appearance in apps and usage patterns. For exam­
ple, location was used frequently, and Figure 3 shows that it 
was often used in the background, whereas media/SD card was 
also used frequently, but was rarely seen in the background. 

Discussion 
The results of our app survey suggest several possibilities. 
Given the large amount of interactive resource use overall, 
there seems to be a clear opportunity for better integrating 
authorization into the UI. However, the question remains to 
what extent interactions make resource use apparent to users. 
We try to answer this question in the next two sections. 

Our app survey also shows that many resources are used in 
the background, and many of these uses seem reasonable, at 
least to the authors. Moreover, apps sometimes use the same 
resource both in the foreground and in the background, to 
different purposes. This suggests interactive and background 
uses should be authorized separately. Thus, in the next two 
sections, we also try to answer questions about how back­
ground uses should be authorized, and about whether users’ 
expectations of interactive and non-interactive uses are related. 

USER EXPECTATIONS STUDY METHODOLOGY 
After our app survey, we conducted an online study to elicit 
users’ expectations about resource use as different user actions 
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Figure 4: User expectations study procedure. Lower portion 
shows partial examples of user actions and survey questions. 

are performed on a smartphone. Our goal was to understand 
to what extent user expectations align with the interactivity 
patterns we observed in our app study. Concretely, our user 
study examined the following three hypotheses: 

H1. Users are more likely to expect resource accesses with an 
interactive use pattern than without. 

H2. The more apps that use a resource (as measured in our 
app survey), the more likely users are to expect less-interactive 
uses of that resource. 

H3. Users are more likely to expect resource accesses they 
have seen before. 

Note that H1 and H3 have implications for the Android M 
permission system. Specifically, if H1 is true, users already 
expect a resource to be accessed due to user action, so an ex­
plicit authorization request may be unnecessary. Additionally, 
if H3 is false, then users granting authorization for a resource 
in one access pattern does not cause them to expect that re­
source to be used later in a different pattern. Thus, requesting 
authorization only on first use may be insufficient. 

H2 is a proxy for a more general hypothesis: that users are 
more likely to expect accesses to resources with which they 
are familiar. Familiarity is likely affected by many factors 
including how many apps use the resource and how often 
they do so, whether passive notifications are present (as for 
location), coverage in the news media, etc. For simplicity, we 
use the frequencies in Table 1 as a metric of familiarity. 

Study Overview 
We recruited participants through Amazon’s Mechanical Turk 
crowdsourcing service. All participants were at least 18 years 
old and located in the United States. Participants were paid 
$1.00 for completing the survey. The survey was approved by 
the University of Maryland IRB. Participants were instructed 
that we wanted their opinions about an app; privacy and sensi­
tive resources were not explicitly mentioned. 

Figure 4 gives a flowchart of the procedure followed by each 
study participant. First, the participant reads a short descrip­
tion of an app. We used two mock apps in our study: Find-
MeCoffee (Coffee) and HealthyFit Tracker (Fitness). FindMe-
Coffee locates nearby coffee shops, allows users to share the 
location of favorite coffee shops with friends, and supports 
ordering coffee via voice command. HealthyFit Tracker tracks 
workouts, allows sharing workouts with friends, and allows 
posting audio “smack talk” on the user’s profile. Note while 
these apps demonstrate different categories, we do not attempt 
to fully study the effect of app type on user perceptions. 

Next the participant views one sequence of user interactions 
with the app, shown as a slideshow of app screenshots. To 
avoid confusion with terminology in the next section, we refer 
to such a sequence as a user action. For example, in the user 
action in Figure 4A, the user clicks the bottom-most button 
(outlined in red), and the app then displays an authorization 
request dialog. In Figure 4C, which is only shown partially, 
the user exits the app and returns to the device home screen. 

After viewing a user action, the participant answers five-point 
Likert questions such as those in Figure 4B, which ask whether 
a resource is “Definitely not” to “Definitely yes” accessed 
immediately after the user action. To avoid priming the user, 
the survey asks about camera, SMS, flashlight, “accessing 
credit card information,” and “looking up coffee shop reviews” 
(Coffee) or “reading your heart rate” (Fitness) as well as the 
three resources we study. 

Next, the participant answers five distractor questions, views 
another user action, and answers the same Likert questions 
about the second user action. The distractors are designed to 
induce a cognitive break and ensure the two access patterns 
are treated as separate events. For example, one distractor asks 
users “Which button would you press if you wanted to find a 
new coffee shop?” We did not measure the effectiveness of 
distractors. The participant concludes the survey by answering 
demographic questions. Participants took 4 minutes and 45 
seconds on average to complete the survey. 

To understand the effect of resource access patterns on user 
expectation, we analyze responses about the first user action 
each participant viewed. We use responses about the second 
user action to examine how prior exposure affects expectation. 
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Conditions 
Participants were assigned round-robin to one of 42 conditions, 
which varied across four variables: the app, the resource being 
accessed, the authorization pattern, and the pair of interaction 
(int) patterns.2 Table 2 lists possible values for each variable, 
and conditions comprise one value from each column. 

As mentioned earlier, our study used two mock apps, FindMe-
Coffee and HealthyFitTracker, and three resources, chosen to 
cover a range of int. patterns observed in our app survey: Mi­
crophone (Mic, only interactive accesses observed), Contacts 
(Con, mixed interactive and background uses observed), and 
Location (Loc, also mixed). 

Our study considered three different authorization patterns. 
First use (Fst) mimics Android M, presenting an authorization 
dialog during the first user action but not the second. Launch 
(Lch) presents an authorization dialog immediately after the 
app’s home page is shown, but before any further screenshots. 
We noticed anecdotally that a few apps in our study used this 
strategy. Never (Nvr) does not show any authorization dialog 
at run time. This mimics older versions of Android. 

We examined three different int. patterns, also drawn from the 
app survey: Button Click (Clk), Background with Notification 
(Bn, uses a resource without interaction, but displays an icon 
and short message in the notification drawer indicating some 
condition is met, such as being located near a coffee shop) and 
Background Only (Bg, uses a resource in a way not clearly 
shown in the UI). We can order these from most (Clk) to least 
(Bg) interactive. We always label the button clearly for its use 
(no deception). We do not test UI widgets besides buttons. 

Regardless of a participant’s assigned condition, the survey 
always asks about expectations for all resources and auxiliary 
actions. As a result, we implicitly collect data about users’ 
expectations for the Bg-Bg int. pattern pair, with authoriza­
tion pattern Nvr, for the two non-targeted resources in each 
condition. For example, a participant assigned to the Cof-
fee-Mic-Fst-Clk-Clk condition also answers Likert questions 
about contacts and location that are analyzed within the Cof­
fee-Con-Nvr-Bg-Bg and Coffee-Loc-Nvr-Bg-Bg conditions. 

Testing the full-factorial combination of all variables was in­
feasible, so we eliminated conditions that were redundant or 

2Through this section we will use the abbreviation int. pattern to 
avoid confusion with the interactions in our regression analysis. 

App Resource1 Authorization2 Int. Patterns3 

Coffee Mic Fst Clk-Clk 4 

Fitness Con 4 Lch Clk-Bg 
Loc Nvr Bn-Bg 

Bg-Bg 4,5 

1 Mic - Microphone, Con - Contacts, Loc - Location
 
2 Fst - First, Lch - Launch, Nvr - Never
 
3 Clk - Click, Bn - Background w/Notif., Bg - Background Only
 
4 Only used with Coffee
 
5 Only used with Lch
 

Table 2: Possible values for each variable in tested conditions. 

less relevant to our hypotheses, resulting in 42 final conditions. 
In more detail: We exclude conditions where the second int. 
pattern is more interactive than the first, as we assume the 
participant’s second expectation would be dominated by the 
second int. pattern, rather than by the combination of patterns. 
We use Bn only in the first user action, because we are primar­
ily interested in its effect on user expectations for the second 
user action. We assume expectations for Bn itself will depend 
entirely on whether the participant notices the passive cue, 
a topic that has been well studied [28, 31] but is somewhat 
orthogonal to our work. These two rules limit the int. pattern 
pairs we study to those in the last column of Table 2. 

We exclude Nvr-Bg-Bg conditions because they provide no 
evidence of resource use, and are therefore identical to the im­
plicit scenarios discussed above. We also exclude Fst-Bg-Bg 
because, in our experimental design, they are indistinguishable 
from Lch-Bg-Bg. In Table 2, Bg-Bg is highlighted in blue to 
indicate that it is only used with the Lch authorization pattern. 

Because we do not comprehensively consider the effect of 
app type, we limit Fitness conditions to those we anticipated 
would have the largest variation in expectations. Specifically, 
we consider only Loc and Mic and only conditions where the 
two user actions exhibit different int. patterns. The Fitness 
scenarios therefore include all combinations of variables in 
Table 2 that not are not highlighted in blue or yellow. 

Statistical Analysis 
To test H1 and H2, we primarily consider the expectations 
expressed by participants after the first user action. We use 
a logistic regression, appropriate for ordinal Likert data, to 
estimate the effect of the app, resource, authorization pattern, 
and int. pattern on participants’ expectation. To test H3, 
which concerns the effect of the prior user action, we also 
use a logistic regression, with participants’ expectation for the 
second user action as the outcome variable. We use the same 
input factors as before, this time including both int. patterns. 

Each regression includes multiple observations of each par­
ticipant: the explicit condition plus two implicit Nvr-Bg-Bg 
responses. As is standard, we include a mixed-model random 
effect that groups observations from the same participant [16]. 

Our initial model for each regression included the input vari­
ables plus all possible two-way interaction terms. To prevent 
overfitting, we tested all possible combinations of these inputs 
and selected the model with minimum Akaike Information 
Criterion (AIC), a standard measure of model quality [2]. We 
present only the final model for each regression. 

Ecological Validity and Limitations 
We use a controlled experiment with mock apps. While this 
limits ecological validity, it allows us to reason statistically 
about the effect of specific factors on participants’ expecta­
tions, and to disregard factors such as participants’ history 
with an app or reputation of the app’s developer. In a study 
environment, participants may be less suspicious than if their 
real data were at risk. To partially account for this, we ask 
about expectation rather than comfort level [23]. 
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By limiting our survey to two apps and restricting the int. 
patterns and resources tested, we likely miss factors, and par­
ticularly combinations of factors, that influence expectations. 
As one example, users likely expect SMS and Calls to have 
different usage patterns, and these expectations may vary with 
app type. However, based on the results of our app survey, we 
believe the variables chosen still provide useful insights. 

Each participant sees two user actions in a relatively short 
time period. We do not study the effect of longer sequences of 
actions or long-term use (e.g., over days or weeks) of an app. 

As is typical for online studies and self-reported data, some 
participants may not take the survey seriously, and some may 
try to complete the survey multiple times. We limit repeat 
participants using MTurk ID and browser cookies. While 
MTurk has generally been validated for high-quality data [7,9, 
20, 32], U.S. MTurkers are somewhat younger and more male, 
tech-savvy, and privacy-sensitive than the general population, 
which may limit the generalizability of our results [18]. 

These limitations apply similarly across all conditions; we 
therefore consider comparisons among conditions to be valid. 

USER EXPECTATIONS STUDY RESULTS 
We now present the results of our online user study. We found 
that H1 holds: users were the most likely to expect a resource 
use when shown a more interactive int. pattern. In contrast, we 
observed that while resource type does affect user expectation, 
H2 was not strongly supported. Finally, we found that H3 does 
not hold. However, our results indicate that both background 
notification (Bn) and on-launch authorization requests (Lch) 
increase user expectation of future resource accesses. 

For each of our hypotheses, we present key findings from 
our regression analysis. Summaries of our regressions are 
shown in Tables 3 and 4. Each table shows the included in­
put variables and their values. Each variable includes a base 
case value (identified by dashes in the remaining columns). 
The odds ratio (OR) shows the observed effect of each value 
relative to the base case, measured as odds of expectation in­
creasing one unit on our Likert scale. We also provide the 95% 
confidence interval (CI) and p-value for each measurement. 

For example, the third row of Table 3 shows that switching 
from Bg to Clk in the first user action, all other variables held 
constant, is associated with a 106.3× likelihood of increasing 
one unit of expectation. The CI expresses 95% confidence that 
the “true” odds ratio is between 63.6 and 177.7. A p-value 
less than 0.05 is interpreted as statistically significant. 

The second half of each table shows interactions between value 
pairs, given as the two values separated by a colon. These 
odds ratio indicate the change in likelihood when the two 
variables co-occur, relative to considering them independently. 
For example, the Loc:Clk odds ratio of 0.2 in Table 3 suggests 
the combined effect of these two values is subadditive: only 
20% as strong as predicted by their individual effects. 

Demographics 
A total of 961 participants completed the study. Participants’ 
ages ranged from 18 to 70+ years, with 37% age 18-29. Fifty-

Variable Value Odds Ratio CI p-value 

App Coffee 
Fitness 

– 
1.3 

– 
[0.96, 1.78] 

– 
0.086 

Int 
Bg 
Clk 
Bn 

– 
106.3 

4.1 

– 
[63.6, 177.7] 

[2.6, 6.7] 

– 
< 0.001* 
< 0.001* 

Res 
Mic 
Loc 
Con 

– 
17.5 
0.8 

– 
[13.4, 22.9] 
[0.6, 1.0] 

– 
< 0.001* 

0.056 

Auth 
Nvr 
Fst 
Lch 

– 
2.2 
1.9 

– 
[1.2, 4.0] 
[1.2, 3.2] 

– 
0.008* 
0.008* 

Coffee:Mic – – –
 
App:Res Fitness:Loc 0.4 [0.3, 0.6] < 0.001*
 

Fitness:Con 1.1 [0.8, 1.7] 0.546
 

Mic:Nvr – – – 
Con:Lch 3.2 [1.5, 6.7] 0.002* 

Res:Auth Con:Fst 1.5 [0.6, 3.6] 0.41 
Loc:Lch 0.8 [0.4, 1.6] 0.487 
Loc:Fst 0.5 [0.2, 1.3] 0.166 

Mic:Bg – – – 
Loc:Bn 2.4 [1.2, 5.0] 0.021*Res:Int Con:Bn 5.0 [2.3, 11.3] < 0.001* 
Loc:Clk 0.2 [0.1, 0.4] < 0.001* 
Con:Clk 0.2 [0.1, 0.4] < 0.001* 

*Significant effect – Base case (OR=1, definitionally) 

Table 3: Summary of regression over participant expectations 
after the first user action. 

three percent reported being male and 47% female. (“Prefer 
not to answer” and “other” options for gender were provided.) 
Participants were required to be from the United States. Forty-
five percent of participants reported holding a college degree, 
and 25% reported having “far above average” smartphone ex­
pertise. Each condition had at least 20 unique participants. 
Twenty people dropped out partway through the survey, dis­
tributed evenly across conditions. 

H1 – Interactivity v. Expectation 
We found that H1 holds: the more interactive the int. pattern, 
the more likely the user is to expect the resource access. In 
fact, interactivity (specifically Clk) is the strongest indicator 
of expectation we measured. 

Table 3 shows that both Clk and Bn significantly increase 
the likelihood the user expects a resource access compared 
to Bg. The effect of Clk is particularly strong (OR 106.3, 
p < 0.001). Because the confidence intervals of Clk and Bn do 
not overlap, we can also conclude Clk generates significantly 
more expectation than Bn. Table 4 confirms that the strong 
association between Clk and expectation holds for the second 
user action as well (OR 810.4, p < 0.001). Figure 5a illustrates 
this finding, showing that 90% of participants who saw a Clk 
int. pattern first definitely or probably expected the associated 
resource use, compared to 72% for Bn and 25% for Bg. 

Explicit authorization, which is by definition interactive, is 
also associated with a significant increase in expectation. Com­
pared to Nvr, both Fst and Lch have odds ratio effects of about 
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Variable Value Odds Ratio CI p-value 

Bg – – – Int 2 Clk 810.4 [352.2, 1864.9] < 0.001* 

Bg – – – 
Int 1 Clk 1.0 [0.8, 1.4] 0.9 

Bn 2.1 [1.5, 2.8] < 0.001* 

Mic – – – 
Res Loc 20.0 [15.5, 25.9] < 0.001* 

Con 1.0 [0.8, 1.3] 0.768 

Nvr – – – 
Auth Fst 1.4 [0.9, 2.4] 0.174 

Lch 1.7 [1.1, 2.7] 0.027* 

Mic:Nvr – – – 

Res:Auth 
Con:Lch 
Con:Fst 
Loc:Lch 
Loc:Fst 

4.4 
2.1 
0.8 
0.5 

[2.2,8.5] 
[1, 4.5] 

[0.4, 1.5] 
[0.2, 0.9] 

< 0.001* 
0.056 
0.445 

0.029* 

Res:Int 2 
Mic:Bg 
Loc:Clk 
Con:Clk 

– 
0.1 

0.03 

– 
[0.03, 0.3] 
[0.01, 0.1] 

– 
< 0.001* 
< 0.001* 

*Significant effect – Base case (OR=1, definitionally) 

Table 4: Summary of regression over participant expectations 
after the second user action. 

2× for the first user action (Table 3), both significant. This 
result makes intuitive sense, as the dialogs for both (Fst and 
Lch) occur very closely in time to the first int. pattern. 

H2 – Real-World Frequency v. Expectation 
We observed an inconsistent relationship between real-world 
frequency and expectation. Location was the most frequently 
seen resource in the app study (75 apps according to Table 1) 
and was also the most expected resource we tested. As shown 
in Tables 3 and 4, Loc was associated with 17-22× higher 
likelihood of expectation compared to Con (seen in 30 apps) 
or Mic (seen in 14 apps). Non-overlapping CIs and p-values 
less than 0.05 indicate these effects are significant. This is 
consistent with H2; however, as our frequency measurement is 
only a very rough approximation of user familiarity, we note 
that this effect could relate to existing passive notifications for 
location, the higher volume of academic and media coverage 
of the location permission, or other factors. 

Figure 5: Likert-scale expectation responses for (a) the first 
user action, organized by int. pattern, and (b) the second user 
action, organized by authorization pattern. 

However, H2 does not hold when comparing Con and Mic. 
While Con was seen about twice as often in the app study, 
there was no significant difference in expectation between 
the two resources, at either the first or second user action. 
This could be because our app frequency metric does not 
sufficiently capture differences (or in this case, similarities) in 
users’ overall exposure to each resource. 

While there was no significant difference between the main 
effects of Con and Mic, we found evidence that users rarely 
expected Mic to be used with Bg. Looking at the Res:Int inter­
action in Table 3, Loc:Bn and Con:Bn both show significant 
superadditive results, indicating that these combinations are 
even more expected, relative to the baseline Mic:Bg combi­
nation, than those factors’ main effects would predict. We 
hypothesize this difference is driven more by low expectation 
for background microphone access than high expectations for 
the other combinations. The interactions involving Clk are 
significantly subadditive, but we suspect this is a ceiling effect: 
expectations for Clk, which as shown in Figure 5a are very 
high, cannot increase beyond the end of our Likert scale. We 
see similar effects for the Clk interactions in Table 4. 

H3 – Effect of Previously Seen Accesses 
To examine the effects of prior accesses on participants’ ex­
pectations, we focus on Table 4. Overall, we find that H3 does 
not hold: participants are not more likely to expect resource 
accesses they have seen before. In particular, the int. pattern 
variable Int1:Int2 does not appear in the final model, suggest­
ing the combination of int. patterns does not meaningfully 
influence expectation at the second user action. 

However, participants did appear more likely to expect a back­
ground access if they had previously seen an indication that 
background accesses might be used. Table 4 shows expecta­
tion at the second user action was significantly higher when 
the first int. pattern was Bn (OR 2.1, p < 0.001) or the Lch 
authorization request was shown (OR 1.7, p = 0.027), both of 
which indicate that background access may occur. Figure 5b 
illustrates this finding, showing that in the second user action, 
more participants definitely or probably expected resource us­
age in Lch conditions (47%) than in Fst (42%) or Nvr (22%). 
Additionally, the superadditive relationship between Lch and 
Con in both regressions may suggest a Lch request primes 
users to expect non-interactive accesses to contacts. 

In contrast, we found evidence that the authorization pattern 
Fst implies only a single access. Table 4 shows that Fst did not 
have a significant effect (p = 0.174) compared to Nvr, indicat­
ing that an authorization associated with the first user action is 
no more effective than no authorization when thinking about 
a second user action. The subadditive relationship between 
Loc and Fst (OR 0.5, p = 0.029) also suggests that authoriza­
tion requests associated with a specific event train users to 
only expect a resource access after an authorization request. 
This decreases the otherwise relatively high expectation of 
background location access. These relationships, while not 
particularly strong, are notable because they imply that the 
Android M model may in some cases be counterproductive; 
we explore this further in the Discussion section below. 
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App v. Expectation 
Finally, we observed that the app type did have some effect on 
the way other variables were perceived. We found no signifi­
cant difference between the two mock apps with respect to the 
first user action (p = 0.086), and app effects did not appear 
in the final model for the second user action, suggesting no 
meaningful relationship with expectation. However, we do ob­
serve in Table 3 a significant, subadditive relationship between 
Fitness and Loc, indicating that location accesses were less 
expected in the fitness app than the coffee app. We expect that 
across a wider variety of apps, further relationships between 
app type and expected resource usage would be observable. 

CONCLUSIONS AND DESIGN RECOMMENDATIONS 
Based on our app survey and user study, we propose several 
ways to improve Android’s and similar authorization systems. 

Access Resources As Interactively As Possible 
Our app study found that camera, microphone, media, and 
calendar are already used almost exclusively interactively in 
popular apps. Moreover, our user study found that users over­
whelmingly expect resource access after an explicit click on a 
related item. We speculate that users would also have higher 
expectations of resource access under other interactive uses. 

Thus, we recommend expecting (or perhaps even requiring) 
most or all accesses to these four resources to be interactive. 
Other resources are more frequently used in the background, 
and it is not always obvious how to associate their uses with 
a foreground interaction. However, we argue that developers 
should prioritize (and the Android framework should encour­
age) making background uses more interactive when possible. 
For example, a social media app that periodically pulls the 
user’s contacts to recommend new friends could tie this back­
ground access to a foreground interaction by asking the user 
to “turn on” this feature at launch and provide a settings menu 
where the user could turn the feature off at a later time. While 
this design is similar to the authorization mechanism provided 
by Android M, implementing it in the app provides context, 
which we have found is important to decision making. 

We also recommend that when resources that are more typi­
cally used interactively will be used in the background, these 
uses should be documented explicitly in the app’s description 
or a similar user-visible location. 

Use Interactions to Grant Authorization 
Our results further suggest that if a resource use is interac­
tive, then a separate authorization dialog can be eliminated. 
We speculate that removing explicit authorization requests in 
these cases could reduce potential user confusion (e.g., “I just 
clicked ‘Import Contacts,’ why is it asking me if I want the 
app to access contacts?”). In addition, removing these requests 
could reduce annoyance and habituation, potentially helping 
the user to focus on other, less clear authorization decisions. 
Eliminating request dialogs for interactive use cases could 
also help motivate developers to prioritize interactivity, as 
mentioned above. Of course, to handle potentially malicious 
apps we must be sure the preceding interaction is clearly re­
lated to the resource use. For example, clicking on a location 
icon should not cause the camera to be used. 

We envision two main approaches to enforce this principle. 
One idea is access-control gadgets [26, 27], which we dis­
cussed with Related Work. Another approach would be to 
leave apps as they are, but use a program analysis to ensure 
they conform. For example, we could use AppTracer to do 
so, in one of two possible modes. AppTracer could be run 
ahead of time, e.g., by an app market gatekeeper, to examine 
app behavior. Even though it would not necessarily observe 
all app behavior, results from analyzing behaviors users ac­
tually encounter would still be useful. AppTracer could also 
be used for auditing: power users and security experts could 
use AppTracer to log an app’s behavior as they use it and then 
retroactively check the AppTracer graphs for any suspicious 
behavior, which could then be reported to the broader public. 

Handle background authorization separately 
We found that users were much less likely to expect back­
ground resource access if authorization dialogs were presented 
after a prior user action or were not presented at all. Thus, we 
recommend requesting authorization separately and explicitly 
for background uses. Based on our study, it may be prefer­
able to do so when apps are first launched. However, because 
our study showed the increase in expectation is small (espe­
cially compared to the expectation after a click), it may be 
important to also show background notifications of use (which 
also increased expectation) so users remain aware. We note 
that while authorization on launch informs many users that 
background accesses should be anticipated, Figure 5 suggests 
there are others who do not recognize this possibility. Further 
research into the best approach is still needed. 

Resources that have a broad mix of interactive and background 
uses—such as contacts—might particularly benefit from sepa­
rate background authorization and limited requests for inter­
active uses. This could help avoid potential misconceptions 
about interactive uses being the only uses. 

Future work could shed light on how differences in back­
ground use cases affect user expectations and preferences. For 
example, users might be expected to react differently when 
contacts are accessed in the background for pre-fetch (a use 
case identified in our app survey) compared to advertising. We 
also expect that the frequency of access will impact the user’s 
decision. For example, it may be possible to tie high-frequency 
background uses to some foreground passive notification (e.g., 
a notification tray icon), similarly to the design presented by 
Balebako et al. for informing the user of data leakage [5]. This 
could make the user aware of the accesses without requiring 
additional authorization effort. Program analysis tools such as 
AppTracer could potentially be used to separate these cases 
and apply different authorization policies accordingly. 
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