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Abstract 
16 out of the top 100 free apps in the Google Play store “access Bluetooth settings” or “pair 
with Bluetooth devices”. And while the promise of innovations that can be enabled by 
Bluetooth Low Energy technology is alluring, the privacy implications of it are poorly 
understood. This research demonstrates that the Bluetooth Low Energy (BLE) protocol together 
with the Bluetooth permission model implemented in the Android and iOS operating systems 
can be used for device tracking unbeknownst to the individuals. 

Specifically, through a series of experiments and analyses based on real-world data we show 
that: 
•  by listening to advertising packets broadcasted by nearby BLE-enabled devices and 

recording information contained in them, app developers can derive a fairly unique 
“fingerprint” for each of their users that can be subsequently used for cross-app tracking; 

•  the privacy protections put in place by Bluetooth Special Interest Group, Google, and 
Android are not sufficient to prevent such fingerprinting or to make cross-app tracking 
difficult to execute. 

Further, our preliminary findings based on an analysis of 50 Android apps suggests that the 
tracking we describe is not merely a theoretical possibility. The behavior of 5 apps from the 
ones we analyzed suggests the possibility that they are deliberately acquiring BLE data when it 
is not needed for their stated functionality, and therefore, may be engaging in covert tracking.  

We propose mitigation strategies that rely on a combination of policy, technology, and usable 
privacy techniques that can decrease the feasibility of tracking using nearby BLE devices while 
preserving the utility of BLE technology.  

Use of fingerprints derived from data obtained from nearby BLE devices could power a new 
type of tracking, that would enable app developers to identify users across apps and across 
devices without reliance on shared log-in credentials or other device identifiers. It is a new 

http://www-bcf.usc.edu/~korolova/


and significant user privacy threat, as it can happen without an individual’s knowledge and 
with a limited ability for her to detect or prevent it. In the desktop world, an individual who 
would like to prevent distinct websites from sharing information about her has several 
options: she can use different log-in credentials for different websites requiring them, control 
and clear the cookies that are being set, etc. In the mobile-first world, when interactions 
happen via apps on a cellphone that she has with her all the time, using different log-in 
credentials or resetting device identifiers made available to the app developers by the mobile 
OS, does not help prevent the type of tracking we analyze. 

Enclosed is a draft of the research paper demonstrating feasibility of cross-app tracking using 
nearby BLE devices. Our findings regarding applications that may be implementing such 
tracking represent a work-in-progress, and will be made available after responsible disclosure 
to the application developers in question. 

Related Work 
There is extensive literature on mobile device fingerprinting that exploits hardware 
imperfections in the sensors introduced during manufacturing or information contained in Wi-
Fi probes. As far as we know, we are the first to investigate the feasibility of fingerprinting 
using nearby BLE devices without reliance on pairing with those devices.
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I. ABSTRACT

16 out of the top 100 free apps in the Google Play store
“access Bluetooth settings” or “pair with Bluetooth devices.”
Although the promise of innovations that can be enabled by
Bluetooth Low Energy technology is alluring, the privacy im-
plications of it are poorly understood. This paper demonstrates
that the Bluetooth Low Energy (BLE) protocol together with
the Bluetooth permission model implemented in the Android
and iOS operating systems can be used for device tracking
unbeknownst to the individuals.

Specifically, through a series of experiments and analyses
based on real-world smartphone data we show that:

• by listening to advertising packets broadcasted by
nearby BLE-enabled devices and recording informa-
tion contained in them, app developers can derive a
fairly unique “fingerprint” for each of their users that
can be subsequently used for cross-app tracking;

• the privacy protections put in place by the Bluetooth
Special Interest Group, Google, and Apple are not
sufficient to prevent such fingerprinting or to make
cross-app tracking difficult to execute.

We propose mitigation strategies to decrease the feasibility
of tracking using nearby BLE devices while preserving the
utility of the BLE technology.

II. INTRODUCTION

Online tracking and profiling is one of the main privacy
concerns of individuals today. The mechanisms of tracking
when individuals access the Internet on their computers are
well-understood by privacy researchers, legal scholars, and
individuals themselves, and there have been significant efforts
in many communities to empower individuals to be able to
limit or make choices about tracking. In the technological tools
space that includes browser privacy settings to control and
remove cookies, extensions that block trackers, privacy settings
to control third-party cookies, incognito mode, and so on;
in the research space – investigation of browser, canvas, and
other types of fingerprinting and remediations against them; in
the policy space – the Do Not Track initiative, the Network
Advertising Initiative1, and others.

However, with the recent shift to smartphones and the rise
of mobile applications as the primary interface to the Internet
and between individuals and businesses, the question of what is
being done to track individuals and what can be done to restrict
it or give individuals choices regarding it arises anew. In a

1https://www.networkadvertising.org/about-nai

sense, mobile tracking and its circumvention is a new arms-
race between mobile app developers and individuals. It is a
high-stakes race for the former, because profile-based advertis-
ing is one of the main vehicles for online monetization and so
better tracking may lead to better monetization; for the latter,
because activity performed on smartphones has increasingly
far-reaching privacy implications as the smartphone becomes
the main device with which one interacts with the world.

From the app-developer perspective, cookies, the most
prevalent tracking mechanism for desktops, are less useful in
the mobile context as typically each mobile application runs in
a separate sandbox that cannot share information with others.
Thus, app developers interested in exchanging information
about their users are constantly looking for new tracking
approaches. The main tracking strategies rely on the following
mechanisms:2

1) Device-specific identifiers, such as Apple’s Unique
Device ID, Google’s Android ID, MAC address, etc.

2) Log-in credentials provided to the app, such as an
email address, a phone number, or identity obtained
through a set of authentication APIs (e.g., Facebook,
OpenID, Google) provided by the user in order to
sign up for the app.

3) Fingerprints of the user device derived from its prop-
erties using statistical techniques.

Concurrently to the development of techniques for
smartphone-specific user tracking by app developers, mobile
operating system developers Apple and Google and individ-
uals have been looking for techniques to curb or circumvent
tracking. For example, to address 1), Apple has moved away
from making the Unique Device ID accessible to apps through
the developer API3, replacing it instead with an Advertising
Identifier that can be reset by the phone owner at any time4.
To address 2), individuals often choose to provide different
credentials to different apps, and numerous services have
arisen to aid in the generation of one-time email addresses
or phone numbers that can be used for this purpose (e.g.,
https://throttlehq.com, http://www.burnerapp.com). Finally, to
address 3), privacy researchers investigate techniques that may
be used for fingerprinting phones and develop countermea-
sures [1], [2], [3], [4], [5], [6].

Our work brings to light a novel tracking technique of
the third type, and, by creating awareness of its feasibility,
argues for modifications needed to protect privacy. Specifically,
we observe that developer APIs on both Android and iOS

2http://www.allaboutcookies.org/mobile/mobile-tracking.html
3http://now.avg.com/apple-ios-7-puts-unique-device-ids
4https://support.apple.com/en-us/HT205223
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do not require a user’s permission for an app to run a scan
that listens for presence announcements from nearby Bluetooth
Low Energy (BLE) devices5. We hypothesize that, even though
the Bluetooth Special Interest Group, Apple, and Google have
taken some steps to decrease the potential privacy impact of
such scans, those steps are not sufficient to prevent cross-app
tracking. Specifically, we hypothesize that by running periodic
scans for nearby BLE devices and recording the information
contained in them, app developers could derive a fairly unique
“fingerprint” for each of their users. Use of these fingerprints
could power a new type of tracking, that would enable app
developers to identify users across apps and across devices
without reliance on shared log-in credentials or other device
identifiers. We hypothesize that derivation of a fairly unique
fingerprint from observations of packets from nearby BLE
peripherals is feasible due to the rapidly increasing number and
diversity of BLE devices, virtually unfettered access to BLE
data in Android and iOS, and information-theoretic richness
of that data.

To verify our hypothesis of the feasibility of cross-app
tracking via nearby BLE devices, we build Android and iOS
apps that run scans listening for presence announcements of
BLE devices with fixed periodicity and record the results. We
discover that due to Apple’s design choices related to the
Bluetooth API implementation, cross-app tracking is trivial for
iPhone developers. We then incentivize 100 individuals from
a university to install and keep our Android app running on
their mobile devices for a week. We analyze the data obtained
and find strong support for our hypothesis also on Android;
namely, that the data of each scan is rich enough to make it
feasible for multiple app developers to identify their shared
users even in the absence of other identifiers.

Cross app-tracking using BLE data constitutes a serious
privacy threat as under the current implementations of BLE
protocol and mobile APIs and permission models it could hap-
pen without the individual’s knowledge or consent, and with
limited ability for them to detect or prevent it. Although one
may argue that app developers can use advertising identifiers
to track users, and thus there is hardly a need to worry about
possible more sophisticated tracking, such as BLE tracking,
that is not the case, at least conceptually, from the users’
standpoint. The advertising identifier can be reset in Android
and iOS, and its tracking implications are well-publicized and
well-understood. Thus the privacy-conscious users have some
recourse to limit advertising id-based tracking. Furthermore,
removal of an advertising identifier altogether by Apple and
Google, or automated frequent resets of it, is merely a matter
of policy, not technology. Currently, there is no such recourse
for BLE-based tracking, for two reasons. First, the feasibility
of such tracking prior to our work was unknown and, second,
the mobile ecosystem does not provide tools to curb it (we
consider the idea of keeping the phone’s Bluetooth off at all
times incompatible with functionality). We hope that as a result
of this work, the privacy implications of BLE technology for
tracking will become better understood and that the Bluetooth
Special Interest Group, Bluetooth device manufacturers, and
mobile OS developers Apple and Google will implement
changes that will give individuals ability to limit such tracking

5Starting with Android 6.0, a location permission is required, as discussed
in Section III-C.

if they so choose, without having to give up on using innovative
technologies enabled by BLE.

The rest of the paper is organized as follows. Section III
provides background on the BLE protocol and related privacy
features put forth by the Bluetooth Consortium, Apple, and
Google. Section IV describes the Android app we built, the
design of our data collection study, and relevant characteristics
of the obtained dataset. Section V presents the data analyses
and experiments we ran to support our hypothesis of feasibility
of cross-app tracking using nearby BLE devices on Android.
Section VI explains why BLE-based tracking is trivial on iOS.
We discuss the implications of our findings, including possible
approaches to decreasing the feasibility of cross-app tracking
using nearby BLE devices in Section VII. Finally, Section VIII
describes related work.

III. BLE BACKGROUND & PRIVACY FEATURES

BLE (aka LE) is a Bluetooth protocol introduced in June
2010 by the Bluetooth Special Interest Group designed to
enable a new set of devices with low power consumption [7]6.
Under this protocol, each BLE peripheral device, such as a
fitness tracker, announces its presence to all nearby central
devices, such as phones or computers, through advertising.
Advertising consists of 8-39 byte advertising packets broad-
casted by BLE peripherals through three dedicated advertising
channels in the 2.4GHz ISM band. The advertising packets
are sent with a periodicity of 20ms to 10.24 seconds.7 The
distance range within which the advertising packets may be
read varies depending on the transmit power of the peripheral
device, and can be as large as 100 meters.8

We refer to a central device that merely listens to the
dedicated advertising channels and thus discovers nearby BLE
devices as a passive scanner. In addition to learning infor-
mation by listening for advertisements, a central device can
also send scan requests and connection requests to peripherals.
In this work, we focus on cross-app tracking that can be
performed by passive scanning alone, and therefore, cannot
be detected by peripherals as it does not communicate any
information to peripherals. Subsequently, we refer to phones
acting as central devices as scanners.

A. Data Available in Passive Scanning Phase

We now describe the information typically contained in
advertising packets sent by peripherals. The contents of the
advertising packet can vary, depending on the peripheral, but
each advertisement always includes a 2-byte header and a 6-
byte advertisement address, typically referred to as the Blue-
tooth MAC address or simply, the address of the peripheral,
and, optionally, up to 31 bytes of other data9. Besides the
peripheral address, some of the data types frequently included
that may be useful for cross-app tracking are:

• Service UUID: a unique identifier for each service pro-
vided by the peripheral. Each advertisement contains

6https://www.bluetooth.com/what-is-bluetooth-technology/
bluetooth-technology-basics/low-energy

7http://www.argenox.com/a-ble-advertising-primer
8https://www.sans.edu/research/security-laboratory/article/bluetooth
9https://www.bluetooth.org/en-us/specification/assigned-numbers/

generic-access-profile
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zero or multiple service UUIDs and the same service
UUID can be advertised by different peripherals. For
manufacturer-specific service UUIDs, only different
peripherals which are of similar type (e.g., all fitness
trackers of the same brand and type) will advertise the
same service UUID.

• Peripheral Name: a name of the peripheral device.
Different peripherals can have the same name if their
manufacturer has assigned a fixed name to its devices.

• Transmitting Power Level: the current (numerical)
transmitting power level of the peripheral device.
Although this value can be changed by users, typi-
cally it remains unchanged from the value set by the
manufacturer of the peripheral.

• Manufacturer Data: information provided by the spe-
cific manufacturer in binary format. This field contains
two or more octets. The first two octets contain
manufacturer IDs and the format of the other octets
depends on the specific manufacturer and usually is
not public knowledge. The manufacturer ID (aka com-
pany ID)10 is a 16-bit number assigned to Bluetooth
SIG members.

• RSSI: the current received signal strength indicator
of the peripheral (in decibels). RSSI is a mandatory
field and indicates the closeness of the peripheral to
the scanner and changes continuously in every new
advertisement.

B. Peripheral Address Privacy

The Bluetooth Special Interest Group recognized that much
like MAC addresses transmitted in other contexts [8], Blue-
tooth peripheral addresses can pose a privacy risk11. Specifi-
cally, they observed that a person who carries a BLE device
with them throughout the day can be tracked using the MAC
address that peripheral broadcasts in its advertisements. To
remedy this, they introduced an “LE Privacy” feature that
enables the peripheral MAC address broadcast within the
advertising packets to be replaced with a random value that
changes at timing intervals chosen by the manufacturer of
the peripheral device. However, according to a recent survey
by [9], many manufacturers do not properly implement this
feature. A notable exception is Apple who ensures all their
devices change their Bluetooth address every 15 minutes.

1) Treatment of Peripheral Addresses by Android and iOS:
Both Android and iOS implement APIs methods that enable
app developers to obtain information contained in BLE adver-
tising packets. The Android APIs provide app developers with
the peripheral addresses as they are presented in advertising
packets. In other words, all Android applications running on all
phones receiving advertising packets from the same peripheral
at the same time will obtain the same peripheral address.

Unlike on Android, applications installed on iOS are pro-
vided with a 128-bit number called peripheral uuid via

10https://www.bluetooth.com/specifications/assigned-numbers/
company-Identifiers

11http://blog.bluetooth.com/bluetooth-technology-protecting-your-privacy/,
https://developer.bluetooth.org/TechnologyOverview/pages/le-security.aspx

iOS Android
Apps phone1 phone2 phone3 phone4
app1 x y p p

app2 x y p p

TABLE I. ADDRESSES OBSERVED BY TWO IOS AND TWO ANDROID
APPLICATIONS RUNNING ON FOUR DIFFERENT PHONES FOR A PERIPHERAL

ADVERTISING ADDRESS p

the Core Bluetooth API12 instead of the peripheral address.
This is a privacy feature introduced by Apple as a countermea-
sure against tracking [10] – Apple replaces the BLE peripheral
address with a randomized peripheral uuid. The randomization
procedure for transforming peripheral addresses to reported
uuids is not publicly known. However, through our experiments
we observe the following pattern: if two apps are installed
on the same phone, the peripheral uuids of a peripheral with
address p that they receive through the API will be identical;
if two apps are installed on different phones, the peripheral
uuids of a peripheral with address p will be different. Table I
schematically shows the values of the peripheral addresses
reported through the APIs for a fixed peripheral with address
p as observed by two different applications running on two
iPhones and two Android Phones.

We will refer to the peripheral addresses that apps obtain
through Android and iOS APIs as peripheral uuids in subse-
quent discussions in order to reflect the fact that the mobile
OSes have the liberty to change the peripheral addresses that
they present to app developers through their APIs.

As will become clear from subsequent discussion in Sec-
tion VI, the fact that Apple’s randomization ensures that a
peripheral uuid of a particular peripheral is seen as the same
for apps installed on the same phone, but as different for apps
installed on different phones, makes cross-app tracking using
nearby BLE devices on iOS trivial.

C. Application Permissions Needed to Run Scans

We now describe what is needed for an application installed
on an iOS or Android-based phone to passively scan for nearby
BLE devices, that is, obtain the contents of advertising packets
broadcast by nearby BLE devices through the APIs.

1) iOS: An iOS application does not require any permis-
sions to run Bluetooth scans if the app is running in the fore-
ground, allowing any application to conduct scans for nearby
Bluetooth devices. Although an iOS application can also run
scans in the background using bluetooth-central background
mode provided by the iOS, scans in the background mode are
limited, i.e., they can scan only for BLE devices supporting
specific services13 14.

12https://developer.apple.com/library/mac/documentation/
NetworkingInternetWeb/Conceptual/CoreBluetooth concepts/
AboutCoreBluetooth/Introduction.html

13https://developer.apple.com/library/ios/documentation/
NetworkingInternetWeb/Conceptual/CoreBluetooth
concepts/CoreBluetoothBackgroundProcessingForIOSApps/
PerformingTasksWhileYourAppIsInTheBackground.html

14https://developer.apple.com/library/ios/documentation/CoreBluetooth/
Reference/CBCentralManager Class/#//apple ref/occ/instm/
CBCentralManager/scanForPeripheralsWithServices:options:
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2) Android: An Android application that wants to run
scans requires the BLUETOOTH and BLUETOOTH ADMIN
permissions. However, these permissions are automatically
granted to an app that declares them in their manifest, because
they belong to the “normal” protection level. The Android
divides system permissions into protection levels, the most
common of which are normal and dangerous15. Normal per-
missions are those whose access, according to Android’s
documentation, poses “very little risk to the user’s privacy”,
and thus are automatically granted.

Starting with Android 6.0 (API level 23), in addition to
the BLUETOOTH and BLUETOOTH ADMIN permissions,
applications also need ACCESS COARSE LOCATION or
ACCESS FINE LOCATION permissions to run BLE scans16.
Both of these location-related permissions belong to the “dan-
gerous” protection level and thus require an explicit approval
from the user of the app.

However, a malicious application developer can overcome
the need to obtain a user’s explicit permission by exploiting
forward compatibility17 features of Android. A developer can
set the application target integer specifying the desired API
level, targetSdkVersion, to 22 or smaller and thus bypass
the need to ask a user’s approval for accessing location when
the app desires to run BLE scans. As of November 2016,
76.7% of Android devices are running with API 22 or lower18,
which suggests that many apps could be willing to give up on
the new features of API level 23 to preserve ability to perform
surreptitious cross-app tracking.

IV. A REAL-WORLD DATASET OF BLE SCAN DATA

A. Data Collection

In order to perform a realistic evaluation of the feasibility of
cross-app tracking using nearby BLE devices, we developed an
Android app that uses Android’s Bluetooth API19 to conduct
scans while running in the background. Our app conducted
scans every 10 minutes as follows:

• Start a scan, scan for 1 minute, stop the scan

• Wait for 1 minute

• Start a scan, scan for 1 minute, stop the scan

In the period between April 25, 2016, and May 6, 2016
through our university’s mailing lists we recruited 100 vol-
unteers with phones running Android 5.1 lollypop or higher
to install our app and leave it running on their phone for a
week. 46 individuals installed the app between Apr 25-27, 20
– between Apr 28 - May 3, 34 – between May 4-6. Of those
100 individuals, 70 left our app running on their phone for a
full week, and are the ones whose data we will be considering
in subsequent analysis.

15https://developer.android.com/guide/topics/security/permissions.html#
normal-dangerous

16https://developer.android.com/about/versions/marshmallow/android-6.
0-changes.html

17https://developer.android.com/guide/topics/manifest/uses-sdk-element.
html#fc

18https://developer.android.com/about/dashboards/index.html
19https://developer.android.com/guide/topics/connectivity/bluetooth.html

1) Ethics: Our institution did not require IRB approval
since we took the following measures to protect the privacy of
our volunteers:

• No registration of any kind was required, and thus we
did not collect names, emails, phone numbers, or any
other identifying information.

• The app was distributed through a public web page
and required no interaction between study participants
and researchers. The modest compensation for partic-
ipation – an electronic gift card to a party unrelated
to the researchers – was distributed by displaying its
code in the user interface of the app a week after the
app’s installation.

• We disclosed the purpose of the app and collected
only information needed for that purpose (i.e., only in-
formation contained in the Bluetooth advertisements).
In particular, we did not collect location data, which
limited the analyses we could run on the data obtained.

B. Dataset Characteristics

In the subsequent text, we refer to the phones on which
the participants installed the app as scanners.

Our collected data provides evidence that most individuals
(at least among those on a college campus) are near a variety
of BLE-enabled devices much of the time.

Given our app’s scanning behavior, each scanner that used
our app for a week conducted 2,016 scans (2 scans every
10 minutes for 7 days). We call a scan during which a
scanner receives some BLE advertisements non-empty. Each
scanner had some non-empty scans: 57 out of the 70 scanners
observed their first peripheral within 10 minutes of installing
our app, 65 – within 1 hour of installing our app. The median
number of non-empty scans for a scanner is 870, and 54
out of 70 scanners have carried out at least 504 non-empty
scans, meaning that for 54 scanners, at least 1

4 -th of the scans
conducted were non-empty.

The scanners together observed 45,283 distinct peripheral
uuids.20 Each scanner observed as few as 7 and as many as
2,429 distinct peripheral uuids, with the median number of
distinct peripheral uuids observed by a scanner of 658. Most
of the scanners observe a high number of peripheral uuids that
are unique to them.

47 scanners observed the same peripheral uuid in 30% or
more of their non-empty scans, suggesting that most scanners
consistently and frequently see the same peripheral, and the
peripheral uuid of the most commonly seen peripheral may
provide a “fingerprint” or unique identifier for the phone.
Furthermore, most scanners see many peripheral uuids that
are not seen by any other scanner in the dataset, suggesting
that these peripherals can also meaningfully contribute to the
fingerprint. Detailed information for each scanner is presented
in Table II.

20Recall from our discussion in Section III-B that observing 45,283 distinct
peripheral uuids does not imply that there were as many distinct bluetooth-
enabled devices near our volunteers, as some peripherals (most notably,
Apple’s devices) implement the “LE privacy” feature of periodically changing
the peripheral address advertised.
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Scanner
#

# of non-
empty
scans
observed
by
scanner

# of
distinct
peripheral
uuids
observed
by scanner

# of scans in
which the most
frequently seen
peripheral uuid
of this scanner
is observed

# of
peripheral
uuids not
observed by
any other
scanner

fraction of
non-empty
scans that
contain
the same
peripheral

1 2011 273 2011 273 1
2 1926 1148 1026 963 0.53
3 1848 1360 1388 1285 0.75
4 1842 965 1323 781 0.72
5 1834 1424 803 1290 0.44
6 1749 1350 1218 856 0.7
7 1721 1703 684 1204 0.4
8 1674 1228 1305 1200 0.78
9 1650 897 1407 612 0.85
10 1622 2429 795 2429 0.49
11 1612 2007 668 1443 0.41
12 1554 2216 935 1778 0.6
13 1491 424 1181 343 0.79
14 1450 1613 980 1127 0.68
15 1443 1003 608 932 0.42
16 1441 755 1021 409 0.71
17 1437 862 412 605 0.29
18 1433 333 1346 205 0.94
19 1407 1345 387 1120 0.28
20 1188 339 840 233 0.71
21 1168 1510 537 985 0.46
22 1152 282 521 163 0.45
23 1149 1269 89 946 0.08
24 1132 538 292 509 0.26
25 1130 963 561 875 0.5
26 1116 860 714 776 0.64
27 1112 1388 565 1190 0.51
28 1081 576 773 305 0.72
29 1076 922 397 680 0.37
30 1067 1333 83 885 0.08
31 1000 676 277 443 0.28
32 948 900 160 738 0.17
33 918 290 578 165 0.63
34 918 585 227 399 0.25
35 873 733 108 557 0.12
36 867 415 393 377 0.45
37 832 2040 313 1430 0.38
38 817 891 801 564 0.98
39 817 907 70 595 0.09
40 800 652 281 589 0.35
41 796 1254 73 1010 0.09
42 790 1116 333 805 0.42
43 735 404 129 240 0.18
44 732 702 394 596 0.54
45 694 446 559 369 0.81
46 674 1020 172 491 0.26
47 668 940 127 667 0.19
48 661 284 214 206 0.32
49 620 561 124 377 0.2
50 578 326 108 220 0.19
51 576 334 356 222 0.62
52 549 457 224 393 0.41
53 524 654 199 449 0.38
54 519 308 172 273 0.33
55 475 272 304 228 0.64
56 443 180 427 142 0.96
57 396 513 38 333 0.1
58 385 160 8 160 0.02
59 378 462 108 413 0.29
60 336 327 125 181 0.37
61 329 46 253 33 0.77
62 276 661 152 540 0.55
63 254 202 33 158 0.13
64 156 58 32 41 0.21
65 119 153 36 121 0.3
66 116 48 36 43 0.31
67 69 106 36 17 0.52
68 27 61 5 35 0.19
69 25 69 6 36 0.24
70 17 7 9 6 0.53

TABLE II. STATISTICS, PER SCANNER, ON THE NUMBER OF
NON-EMPTY SCANS, DISTINCT PERIPHERAL UUIDS, FREQUENCY OF THE
MOST FREQUENT PERIPHERAL, NUMBER OF PERIPHERALS UNIQUE TO A

SCANNER.

Finally, for each of the peripheral uuids in our dataset,
we compute the number of different scanners that see this
peripheral uuid. There are a number of peripheral uuids that
are seen by many scanners; for example, one of the peripheral
uuids in our dataset is seen by 36 out of the 70 scanners,
another – by 33 scanners, two others – by 30 scanners, and so
on. Detailed information on the number of peripherals that are
observed by a fixed number of distinct scanners is presented
in Table III.

There are a number of reasons why a peripheral uuid
may be observed by many scanners: it could be a stationary
BLE device, such as a beacon, that many individuals pass by,
or it could be a BLE device of some individual who meets
many of the other individuals in our dataset (e.g., during a
crowded campus-wide event). The fact that our dataset contains
some peripheral uuids that are observed by more than one
scanner is a good sanity check – it shows that our users are
not completely disconnected from each other, and at least
occasionally, are near each other or visit the same places.
The peripheral uuids that are seen by many scanners make
the task of fingerprinting harder, but as we will see next, not
insurmountable. Furthermore, the vast majority of peripheral
uuids (41,064) are observed by at most one scanner.

N Number of peripheral uuids that are observed by exactly N distinct scanners
1 41064
2 2756
3 696
4 307
5 147
6 95
7 54
8 41
9 33
10 15
11 17
12 13
13 2
14 9
15 9
17 4
18 2
19 4
20 2
21 3
22 3
24 1
25 1
28 1
30 2
33 1
36 1

TABLE III. CHARACTERIZING HOW MANY SCANNERS OBSERVE THE
SAME PERIPHERAL UUDS

V. CROSS-APP TRACKING FEASIBILITY ON ANDROID

In this section, we present experiments based on the
data collected aimed to illustrate that our hypothesis of the
feasibility of cross-app tracking via nearby BLE devices holds.
We do not utilize the full set of information available to app
developers from BLE scans; rather, we demonstrate that the
tracking is feasible even when the only information used are
the peripheral uuids collected in those scans. Our goal is
to present a proof-of-concept that uses only the most basic
data and relies on the most basic algorithms. In practice,
the cross-app tracking can be more successful than shown
in our experiments, as app developers can build sophisticated
algorithms that utilize the full set of data.

5



A. Experimental Set-Up

The problem of cross-app tracking can be formulated as a
problem of finding matching users between two applications
(App1 and App2) based on the BLE scan data each application
possesses for each user. We assume that the apps are sharing
the scan data with each other. For ease of exposition, when
we refer to a “user”, we mean the BLE scan data an app
has collected for that user. Specifically, for experiments in this
section, each user U of an app A is represented by a (numpy)
array, whose size is equal to the total number of distinct
peripheral uuids observed in our data and whose array entry j

corresponds to the number of scans in which app A running
on user U ’s phone observed peripheral uuid j (we create a
1-1 mapping between peripheral uuids and array indexes for
simplicity).

We assume the collaborating apps deploy the simple match-
ing strategy described in Algorithm 1.

Algorithm 1: Match App1 Users with App2 Users
1 For each user U of App1 compute his similarity score

with each user of App2.
2 Select the user of App2 with the highest similarity

score to U as the matching user.

For simplicity, we assume that Apps 1 and 2 are used by
the same set of users.

It remains to detail how we transform our data collected
from a single app into simulated data from multiple apps, and
how we compute the similarity score between users and the
accuracy of the matching, which we do next.

1) Modeling Data From Multiple Apps: Our matching
experiment requires data from multiple apps, but as explained
in Section IV, the scan data collected by our volunteers came
from one app. We could have chosen to ask our volunteers
to install multiple apps, but the increased effort needed could
have deterred some volunteers from participating in our study.
Instead, we chose to use the data collected by our app that
does very frequent scans, in order to model data collected by
multiple apps doing less frequent scans.

Specifically, we model scan data that would be obtained
from two applications running on the phone of the same user
by splitting the data collected by our app on each scanner
into two scanner instances. Suppose we want to model that
each app is used by a user every 10x minutes, where x is
an integer from 1 to 144. Then we assign data from scans
numbered i · 2x, where i is an integer starting at 0 to App 1,
and data from scans numbered x + i · 2x to App2 (scans are
numbered in the increasing order of the time at which they are
run). Given the frequency with which our Android app runs
scans (Section IV) this corresponds to Apps 1 and 2 being
used by the user within 1 minute of each other when x = 1,
and within 5x minutes of each other for larger values of x.
By varying x between 1 and 144, we can model apps that are
used as frequently as every 10 minutes, and as infrequently as
once a day.

A distinct advantage of using the modeling approach, rather
than asking our users to install multiple apps, is that we can

model apps doing scans with different intervals between them.
Via modeling, we also automatically obtain the “ground truth”
of who are the matching users between apps. A disadvantage is
that the simulated data results in scans at fixed intervals, which
is more structured than what application developers might see
in practice21.

2) Similarity Scores: Given two arrays representing the
scan data of two users held by two different apps, we would
like to estimate the likelihood that the scan data belongs to the
same user. We do so by computing a similarity score between
the arrays. We use the off-the-shelf Cosine similarity score.

Given two arrays x and y of size n, each containing the
number of scans in which each peripheral uuid has occurred for
that user, the Cosine similarity score are computed as follows:

If (8i, x
i

= 0) _ (8j, y
j

= 0) then Cosine(x, y) = 0;

otherwise Cosine(x, y) =
Pn�1

i=0 xiyi�Pn�1
i=0

p
x

2
i

��Pn�1
i=0

p
y

2
i

�
.

The intuition behind using cosine similarity as a similarity
measure is as follows. Two applications can see the same
peripheral uuid during scans for BLE devices if: they are
installed on the same phone OR they are installed on different
phones, but the owners of those phones have passed by the
same peripheral (not necessarily at the same time). If one
application sees a particular peripheral uuid during scans, and
another does not, it could be because the peripheral changes its
address frequently or because these applications are running on
different phones. The more common peripheral uuids the apps
see and the more often it happens, the more likely these apps
are to run on the same phone; the more distinct peripheral uuids
the apps see and the more often that happens, the less likely
these apps are to run on the same phone. The cosine similarity
measure is just one option to encoding this, Jaccard similarity
and many others would also be suitable. We deliberately do
not optimize the similarity measure in order to demonstrate
that tracking is feasible even without any optimization.

B. Experiment Results Using Peripheral UUIDs

Our results unequivocally demonstrate that cross-app track-
ing using nearby BLE-devices is a realistic possibility. Model-
ing frequency of app usage from every 10 mins to once a day,
we split our data into two apps with 70 different users each.
For each user of App 1, we computed his cosine similarity
score with each user of App2 and select the user of App2 with
the highest similarity score as the candidate matching user as
per Algorithm 1. We present the number of correct matches
(out of 70 possible) made by this algorithm depending on the
app usage frequency in Figure 1. Even when the apps are used
only once a day, more than half the users are matched correctly.
This is an impressive result, as the expected number of users
matched correctly by a random matching is one.

VI. CROSS-APP TRACKING FEASIBILITY ON IOS

We also investigated the possibility of cross-app tracking
using nearby BLE devices on iOS, and concluded that cross-
app tracking is even easier on iOS than on Android, due to the
differences in how Apple and Android transform the peripheral

21This disadvantage can be mitigated via modeling that sub-samples scans
using a randomized, rather than a deterministic, process.
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Fig. 1. Number of correctly matched users (out of 70) using cosine similarity
score as a function of app usage frequency.

addresses received in advertisements before giving them to app
developers through their APIs (Section III-B1 and Table I) and
lack of permissions needed to run scans (Section III-C).

Since iOS limits the ability to run scans for all BLE devices
when the application is in the background22, it makes frequent
data collection by volunteers more difficult, as they have to
actively engage with our app. Thus, rather than trying to
collect large-scale iOS data from volunteers, we focused on
identifying possible differences between BLE data presented
to app developers in iOS vs in Android. To that end, we
developed an app for iOS identical to the one described in
Section IV with the exception that an individual has to specify
manually when the app should run a scan for BLE devices.
In parallel, we modified our Android app to permit manual
specification of when the scans should be run. For 4 days
in May 2016, we manually ran two scans within one-minute
interval of each other on an iPhone 5S running iOS 9.0 and on
an Android device (Motorola Moto G3 running Android 6.0) at
18 distinct locations on our university’s campus and recorded
the data received. Our iOS application was compiled with
iOS Deployment Target set to 9.0 and our Android application
was compiled using targetSDKVersion set to 22. We observed
no quantitative or qualitative differences in the data, except
when scans were conducted at one particular location. In that
location, our iOS app observed more distinct peripheral devices
than our Android app, which can likely be attributed to a slight
variation in the different vendor implementation of the BLE
protocol for a particular BLE device located in that location.

We then ran two identical versions (differing only in
the app’s name) on two identical iPhones and two identical
Android devices, performing scans both at various locations on
campus, as well as in the authors’ homes and offices, where the
set of all BLE-enabled devices was known to us. It is through
these experiments we discovered and verified the difference
between Android’s and iOS’s Bluetooth APIs described in
Section III-B1. Namely, a peripheral with address p will appear
as having address p in (simultaneously run) scans of all apps

22https://developer.apple.com/library/ios/documentation/CoreBluetooth/
Reference/CBCentralManager Class/#//apple ref/occ/instm/
CBCentralManager/scanForPeripheralsWithServices:options:

installed on all Android phones, whereas the peripheral uuids
seen by iPhone apps in advertisements coming from peripheral
with address p will be different if these apps are installed on
different iPhones but the same if they are installed on the same
iPhone (see again Table I). This feature, introduced by Apple
for privacy [10], has the (presumably unintended) consequence
of making cross-app tracking using nearby BLE devices trivial
on iOS. Indeed, if there is even one peripheral uuid that appears
in the scan data of both applications, these applications can
with certainty conclude that the scan data belongs to the same
user. If apps installed on the same phone are conducting scans
within a short timeframe of each other or if the user is near the
same BLE peripheral during large chunks of the day (which
our data of Section IV-B supports), the apps are virtually
guaranteed to observe at least one common peripheral uuid.

VII. DISCUSSION

A. Study Limitations and Feasible Improvements

The experiments and analyses we presented have many
caveats and limitations. For example, we conducted the study
with volunteers who visit a university campus, where one can
presumably find more BLE devices than in a poor residential
neighborhood. Our data collection was done using one app, and
then we sub-divided this data to simulate data from multiple
apps running on the same phone, resulting in scans that were
done with more regularity than one would expect from typical
mobile app usage. When computing matching accuracy scores,
we assumed the apps trying to match users had the same set
of users. The list goes on.

These are all valid criticisms, some of which can be
addressed with additional research. However, it was not our
goal to provide a definitive robust cross-app tracking tech-
nology for today’s BLE device landscape. Rather, our goal
was to demonstrate that the current treatment of BLE, if
unchanged, will give rise to possibilities of fairly successful
cross-app user tracking in the future, and thus, to argue for
modifications needed from Bluetooth Special Interest Group,
Apple, Google, and BLE device manufacturers to safeguard
user privacy before BLE-based tracking becomes widespread.
Thus, we have deliberately used unsophisticated techniques to
demonstrate the feasibility of cross-app tracking using nearby
BLE devices. We could have increased the accuracy of our
tracking by using more sophisticated approaches such as:

• relying on a more complex similarity score, including
one derived using machine learning on part of the
data (in practice, apps may know which of their users
match through other means for a fraction of the users,
and can use that data for training),

• distinguishing between advertisements received at
nights vs during the day, to take advantage of the
knowledge that users tend to be at home at night,

• building a more complex feature vector, that takes into
account all information contained in advertisements
(Section III-A), including Service UUIDs, manufac-
turer data, the time when the advertisement is received,
the RSSI, Transmitting Power Level, peripheral name
and others, periodicity with which advertisements are
received from a peripheral with a particular uuid, etc.,
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• paying particular attention to paired BLE devices,
rather than relying on passive scanning,23

• obtaining information about manufacturer specific set-
tings for common BLE devices and incorporating it
into our feature vector building and similarity scoring
functions.

Furthermore, with time, the number and variety of BLE devices
used will increase, and so will the richness of the data, thus
making cross-app tracking easier.

Our study was done using data of only 70 users who are all
in some way connected to our university. A natural question
is what happens when the number of users applications have
is orders of magnitude bigger. We are interested in answering
this question ourselves but a significantly more extensive study
is not feasible in an academic setting. However, even though
our dataset is small, it has characteristics that make cross-
app tracking in it more difficult than for an arbitrary set of
users. Specifically, because our volunteers live or work or study
in close proximity, observations of identical peripheral uuids
from different phones are more likely than they would be for a
population of users that never overlaps in space (see Table III).

Finally, even if BLE-based tracking alone is not sufficient
for full accuracy, our findings show that the data carries enough
signal that it could amplify other forms of tracking. Thus,
despite the limitations of our study, we believe that given
the gravity of the privacy risk, the experiments presented are
sufficient to confirm the viability of cross-app tracking and
motivate a call for privacy-enhancing changes.

Cross-app tracking using nearby BLE devices is indeed
a serious privacy risk as this tracking happens without an
individual’s knowledge. Furthermore, even a knowledgeable
individual has no recourse other than to completely dis-
able Bluetooth functionality on their phone, as there are no
equivalents to “clearing cookies” or “resetting an advertising
identifier” in the BLE tracking context. What could be learned
about an individual in the course of such tracking is virtually
unlimited – imagine an insurance app, a medical app, and a
financial app collaborating to cross-app track users, and once
the match is made, sharing information learned from within-
app activities among each other.

B. Building Richer Profiles Using nearby BLE Devices

Although it was not a focus of our study, we observe that
information collected via nearby BLE devices can also be used
to refine a profile an app may have about the user. Specifically,
our dataset contains more than 1,000 distinct peripheral names,
some of which could be quite useful for profiling. For example,

• an app that observes a BLE device with name “Alice
Smith’s Fitbit” in most of its scans can conclude that
the user’s name is likely Alice Smith, a female,

23Although omitted for brevity, we have experimentally established that
pairing, a core primitive in LE communication, between a central and a
peripheral device, although initiated at the application-level, is done at the
device-level in iOS. This fact was already known for Android [11]. Thus,
if one application on a phone has paired with a peripheral, then all other
applications running on the same phone will see the same peripheral hardware
address, effectively making cross-app tracking for users with at least one paired
peripheral that can frequently be found near the user, trivial.

• an app that often observes a BLE device with name
“mamaRoo” in its evening and night scans can con-
clude that the user lives in a household with an infant,

• an app that observes a BLE device with name “[TV]
Samsung 9 Series (65)” in its evening scans may make
certain conclusions about the size of its users living
room and income.

C. Mitigations of BLE Privacy Risks

We suggest some modifications that would make tracking
of the kind we describe more difficult while preserving the
promise of innovative devices enabled by the BLE protocol,
based on our experience of trying to demonstrate the feasibility
of cross-app tracking using BLE devices.

With respect to peripheral device address, we suggest
that both Android and Apple should reveal a peripheral uuid
rather than the device address to the applications using their
Bluetooth APIs, and that these peripheral uuids are randomized
at the application and device levels. In other words, different
apps should see different peripheral uuids for the peripheral
with address P even if the apps are installed on the same
phone, and the same app should see a different peripheral uuid
for the peripheral P on each phone that it is installed on. Such
a change would not significantly impact functionality of BLE
devices, but would make peripheral uuids essentially useless
for tracking.

Furthermore, we suggest that both Apple and Android
increase the barrier for applications to perform scans. On An-
droid, that would mean classifying Bluetooth-related systems
permissions as dangerous and requiring per-app user consent
for the scans24. For Apple, that would mean introducing a user-
controlled Bluetooth permission, analogous to the one iOS has
for location. Both operating systems could also limit or de-
prioritize background scanning, making sure that most of the
Bluetooth-related actions happen when the user is using the
app. Finally, both could consider introducing a user-visible
indicator for when Bluetooth is being used and providing a list
of apps that recently used it, similar to Apple’s information on
location usage by apps.

The Bluetooth Special Interest Group should require and
enforce the manufacturers’ effective utilization of the “LE
privacy” feature.

The proposed modifications, with the exception of back-
ground scanning, would not significantly affect true innova-
tions that BLE protocol aims to empower. Thus, their im-
plementation would be a clear win for privacy. They would
not fully prevent cross-app tracking, both because once the
individual grants an app permission to use Bluetooth for
one purpose, there is nothing to stop the app from covertly
using it also for tracking, and because of the nature of BLE
advertisements that are prone to contain unique data (such as
peripheral name) or structured data that is persistent for each
peripheral (such as service UUID or manufacturer ID). Thus, to
succeed in the cat-and-mouse game of tracking and preventing
tracking, additional research is needed to be able to distinguish

24This hurdle could be bypassed using forward compatibility, which is an
argument for gradually stopping support of older API levels.
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Bluetooth-related activity crucial for an app’s functionality
from activity serving other purposes, such as tracking.

VIII. RELATED WORK

The works most closely related to ours are those of
[9], [12], [13], as they suggest that it may be possible to
use fixed Bluetooth MAC addresses for tracking peripheral
owners. Specifically, [13] presents a detailed analysis of MAC
address persistence in advertising packets for a variety of
fitness trackers. [12] also focuses on fitness trackers, shows
that most do not change their MAC addresses, and further,
demonstrates that the BLE traffic between the fitness tracker
and the paired central device can serve as a fingerprint. Finally,
[9] hypothesizes that other fields besides MAC addresses
present in BLE advertisements can also be useful for tracking.
We differ from these works in two ways: first, we collect
real-world experimental data and perform analyses to support
the hypothesis that a particular kind of tracking, cross-app
tracking, is indeed feasible in practice. Second, we do so
without reliance on an individual owning a particular kind of
BLE device such as a fitness tracker.

[14] and [15] aim to mitigate various privacy threats
emanating from the BLE protocol but do not address the threat
of cross-app tracking. In particular, both focus on preventing
unauthorized scanner devices from accessing advertisement
information transmitted by devices owned by the user (such
as the phone itself), which is a different type of tracking risk
than the one we consider.

[16], [17], [18] are works similar to ours but with the
tracking risk emanating from the Wi-Fi domain, rather than
the BLE domain. [16] presents a tracking attack using in-
formation contained in Wi-Fi probes, and is similar to our
usage of BLE advertisements. [18] explains Android’s failure
to assign the appropriate level of protection level to the
ACCESS WIFI STATE permission and that decision’s impli-
cations for user privacy, paralleling our observations regarding
the BLUETOOTH and BLUETOOTH ADMIN permissions
on Android and no such permission on iOS. [17] finds that
a large number of devices from popular manufacturers con-
tinue to send Wi-Fi probes with enough information to allow
tracking, despite numerous proposed defenses.

[1], [2], [3], [4], [5], [6] present smartphone device finger-
printing techniques for user tracking which exploit hardware
imperfections in the sensors introduced during manufactur-
ing. [1] use hardware imperfections in the microphone and
accelerometer to fingerprint a device, [3] and [5] rely on
microphone and speakers, [2] use diagnostic features such
as hardware statistics and system settings extracted using the
smartphone’s operating system’s API, [6] use the personalized
device configuration created using the list of applications
installed, songs frequently played, language settings, etc. The
major difference between our works is in the choice of feature
source used for fingerprinting. We rely on BLE sensor data,
not previously discussed in this context.

IX. CONCLUSIONS AND FUTURE WORK

We presented a data-driven study demonstrating the fea-
sibility of surreptitious cross-app user tracking using current

BLE protocols and Android and iOS APIs. Through our anal-
ysis, we motivated the need for modest changes by Bluetooth
Special Interest Group, BLE device manufacturers, Apple, and
Google that could make such tracking more difficult and give
users more control over it, while preserving BLE functionality.

Our future plans are two-fold: first, to disclose the findings
to the relevant parties, including the app developers whose apps
may be already pursuing such tracking, and work with them
to facilitate change. Second, to investigate the feasibility of
cross-app tracking without using peripheral uuids, but using
other data, optionally contained in the advertising packets
(Section III-A) in order to measure the feasibility of tracking
and provide additional recommendations for limiting it.
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