
Creating a privacy tool to give consumers app transparency and
 
control of their data
 

Gianpaolo Russo and Andrew C. Dingman 

October 4, 2016 

1 Abstract 

Smart phones commonly contain and gather large amounts of information that users may consider 
private, and this phenomenon is only increasing as they become hubs for personal networks of wearable 
technology such as smart watches, fitness monitors, and similar devices. This data is accessible to 
applications running on the phone in various ways, and may be transmitted to the creators of those 
applications. Recent work has highlighted that users are not always aware of how their data is being 
accessed or transmitted. In a recent app insecurity episode, even when users disabled location-based 
sharing settings, that privacy preference only extended as far as the app’s user interface. Fine-grained 
location information was transmitted to remote servers regardless of the setting. Due to lack of security 
or privacy controls, the entirety of a user’s location information was accessible to anyone sophisticated 
enough to request it. [15] 

There is presently no practical ability on the Android platform to provide insight into and control over 
data that may transit the network. This research creates a tool that enables this capability on-device, 
to provide every end user insight into how apps are using their data, and the capability to filter or block 
certain kinds of data from leaving their device. Previous attempts to monitor app behavior for privacy 
violations are hamstrung by the complexity of their implementation, either requiring root access and 
system calls or needing an entirely new custom ROM. 

2 Introduction 

Previous work [21, 4, 16] indicates that substantial personal information is transferred from mobile 
applications to both their authors and third parties, such as advertising networks and other data brokers. 
The Android operating system does provide for limitations on access to certain data by applications. 
However, with the exception of applications compiled for the the most recent versions of Android, 
these permissions are presented at installation time rather than when used. Even in the case of native 
applications for Android 6 and above, permissions are granted for an application to access a type of data 
without regard to either frequency of access nor how that data may be used or transmitted. Thus, a user 
who grants an application permission to determine their current location may be surprised to learn that 
an application vendor has not only determined the nearest coffee shop upon request, but also tracked 
the user’s path through several cities since. Similarly, a user might grant a social networking application 
access to their address book for the purpose of updating their friends’ phone numbers and addresses, 
only to later discover that their entire “rolodex” has been copied into the social network and used to 
solicit new memberships from their contacts. 

1
 



This project attempts to provide users of Android devices with a means to monitor and prevent 
such breaches. Previous systems have used tools such as static and dynamic analysis to determine 
which applications might leak personal information in undesired ways. Unfortunately, these tools are 
not always usable in practice. Despite considerable advances in the field, for example, the TaintDroid[9] 
taint analysis system suffers from up to 14% overhead and a requirement not only of root access, but 
replacement of the core Java run-time environment. Other systems[4] instead track access to data, but 
cannot determine how that data was used and when or whether it was transmitted over the network. We 
attempt to provide this information by means of network traffic analysis on outbound connections. Our 
research seeks to answer two questions: 

1. Can we monitor app behavior without breaking the user experience? 
2. Can we modify app behavior without breaking the user experience? 
To accomplish this goal, we instrument the outbound traffic of Android devices, looking for signatures 

of sensitive information. This approach shares many similarities with network intrusion detection systems, 
application-level firewalls, and other signature-based monitoring systems. To avoid a requirement of root 
access, we take advantage of the Android VPN facility to re-direct traffic to our application. 

3 Overview of Approach 

Rather than rely on approaches which depend on heavy modification of the Android operating system, 
we attempt to report on exfiltration of data through monitoring at a network level. This approach does 
not attempt to track use of data within the device. Rather, it observes outbound traffic for signatures of 
sensitive data. Such signatures may be based on a variety of factors. For example, “canary” data such 
as contact information for “Arthur Dent”, “Ford Prefect”, and “Zaphod Beeblebrox” could be inserted 
into a user’s address book, allowing the system to monitor for those names in outbound communication. 
Such monitoring might also look for tell-tale strings such as “<location>” tags in XMLRPC requests, or 
dynamically set values such as the current public IP of the device, BSSIDs of visible and/or connected 
wireless networks, the device IMEI, and so-on. The ultimate goal is to incorporate this processing locally 
on the user’s phone, under the user’s control. 

4 Protocol/Architecture/Design 

The system begins with a network capture component. There are numerous ways to get access to 
traffic flowing in and out of network interfaces, not all off which are suitable for mobile devices. This 
system uses a straightforward approach, creating a Virtual Private Network (VPN) to control network 
connections destined to remote servers. On the host device, a VPN is established by creating a virtual 
network interface to be used by all application traffic, instead of the regular network interfaces available 
to the system. The VPN service acts as a middle man, passing traffic between its virtual interface and 
real networks such as the device’s cellular data or WiFi connection. Executing in user space with few 
permissions, a typical VPN application processes and exchanges packets with a remote server to create a 
tunnel. Because a true VPN would be expected to encapsulate packets in an encrypted tunnel, arbitrary 
monitoring and manipulation is possible at this point. 

Having this capability creates many opportunities. The standard use case for the VPN API is to add 
an encrypted tunnel (often via SSL or TLS), in order to securely transport connections across networks. 
In such a scenario, the connection between the originating device and the remote server is secure, and the 
remote VPN server will typically pass on the communications with no modification beyond terminating 
the tunnel and possibly applying network address translation. However, the control over network flows 
afforded by the VPN interface also allows for inspection of data, much in the way that traffic checkpoints 

2
 



Figure 1: Architecture
 

NO

YES

Send to lter?

Internet

Deep Packet Inspection

slow traffic down and allow inspection for drunk drivers. Analysis of data flows can be done solely through 
scanning the metadata of packets (origin/destination/protocol/time, etc.), or can look into the actual 
contents of the packet, a practice called Deep Packet Inspection (DPI). The effect of the VPN interface 
is that all network activity can be collected and routed through the application, yet root privileges are not 
required. This is particularly important in the mobile context, where even the owner of a device typically 
does not have root access and cannot grant it to applications. Thus typical traffic capture techniques 
can not be used in a tool intended to be widely adoptable. 

Following capture, DPI techniques, such as tcp stream reassembly and ip fragment reassembly, are 
used to examine the content of network traffic flows. Thus we are able to inspect not just individual 
packets at the IP layer, but contents of logical streams at the TCP layer and even application-level content 
such as URL paths, query strings, and request or reply headers and bodies. In this way, DPI extends 
network security capabilities beyond intrusion detection systems and firewalls which mostly monitor and 
react to the higher level protocols. In order for DPI to be implemented however, packets must be 
presented at the correct network layer. The Android API presents individual packets at the IP layer. 
Within the IP packets are TCP segments which may contain only part of a given stream and therefore 
only partially match our search criteria in an individual packet. Data is sent in this segmented way to 
achieve reliable transmission of entire messages across the network. The result is that a monitoring 
application must examine the IP and TCP layer metadata to assemble a logical application-level data 
stream for inspection. 

The tasks of packet capture and deep packet analysis, with the attendant need for TCP stream 
reassembly, strongly resemble those required for the more mature technology of signature-based Network 
Intrusion Detection Systems (also known as NIDS), such as the well known Snort and Bro tools. Both 
our system and NIDS systems must re-assemble the contents of TCP streams and examine their content 

3
 



at “line speed”, and must do so efficiently. In the case of a NIDS, the requirement for speed and efficient 
processing arises from a need to observe an organization’s entire Internet connection using a limited 
number of processors and memory. In the mobile device context, the traffic volume is reduced to a 
single device WiFi or cellular data connection, and the available processing power is commensurately 
reduced to a portion of the CPU and memory resources of the host device. Thus, similar techniques 
should be applicable in our case; fast packet re-assembly and protocol analysis are still core tasks. The 
major difference is the direction of flow of the traffic we are most concerned with. Where NIDS systems 
are typically concerned with analysis of inbound traffic, our system is primarily concerned with detecting 
outbound data. 

Similarly, the tasks required to extend our system to modify outbound traffic in real time is remark
ably similar to the goal of an application-level firewall or Network Intrusion Prevention System (NIPS). 
These systems require the same capabilities as the NIDS case, with the additional task of modifying 
outbound data. NIPS systems and firewalls, however, typically terminate hostile connections rather than 
making more subtle modifications. When application-level firewalls do make modifications, it is typically 
to prevent the use of entire protocol features, such as refusing to forward a DELETE method on an 
HTTP connection. In our case, more subtle modifications are desired. Such changes might be random 
with bounds permutation of location data, or substitution of fake address book entries. Unfortunately, 
it is possible that making these modifications without introducing errors will require application level 
understanding of the data being transmitted. For example, if an outbound contact is modified, it may 
be necessary to replace a corresponding field describing the size or the record or the number of records 
being transmitted. However, profiling an application and its protocols need only be done once, as what 
is learned can then be used to efficiently parse the applications activity at any point in the future. 

5 Evaluation 

5.1 Implementation Challenges 

Although these similarities present opportunities to re-use existing techniques, and even existing code, in 
the mobile device context, there are some challenges to such re-use. One such challenge is the difference 
in development and run-time environments. NIDS and NIPS are generally designed to run on hardware 
platforms that strongly resemble server computer systems. As such, they often rely on languages such 
as C or C++, which compile to native machine code. In the context of an Android device, using such 
code introduces substantial complexity. Although Android is, at its core, a Linux operating system, the 
run-time environment available to developers is a Java-derived environment with a custom JVM and 
limited ability to “wrap” native compiled libraries for use in the primary application. This has been a 
major challenge to re-using code from Snort, Wireshark, and similar projects. 

Another significant difference between the environments arises from available privilege levels. Typical 
NIDS and NIPS systems run on dedicated appliances. While they may take advantage of privilege 
separation between components of the system, it is straightforward for the creators of such systems to 
assume that root privileges will be available for such purposes as raw access to the network devices. In 
the case of a mobile device, most users do not have access to such root-level operations and cannot grant 
them to an application. Thus to be useful for the majority of users, an egress monitoring or filtering 
application will need to operate without such privileged components. 

We believe the necessary access is available through the use of the VPN API introduced in Android 
4.4, particularly in light of our success at monitoring traffic captured through that API by an actual 
VPN system. However, it requires a different architecture and data structures than typically found in 
libpcap-based systems. Unfortunately for our purposes, nearly all existing open systems (e.g. pcap4j, 
jNetPcap) are based on Libpcap, a C Library which requires privileged raw access to network devices. 

4
 



Various forum posts indicate that others have attempted to port these wrappers to Android, but the 
projects have met with little success and been abandoned. As a result, full implementation of the design 
will require either a new wrapper project around code from libpcap and a tool like Wireshark, Bro, or 
Snort; or a new native Android implementation of the packet capture and DPI features required. 

In addition, meaningful DPI for many applications will require intercepting SSL connections, including 
generation of new certificates for each server to which an application connects. Depending on the 
frequency with which new servers are encountered, this may result in a significant overhead for certificate 
generation which may not scale down to the device capabilities in the same way as total traffic volume. 
This is because while a typical transparent SSL proxy system would need to generate one certificate per 
site for an arbitrary number of users, a system running locally on the device will need to generate a 
new certificate for each site the phone’s single user chooses to visit. Thus there may be a much larger 
number of new certificates required per user. However, we are hopeful that since most users habitually 
visit a relatively small set of sites and most applications will tend to connect to a limited set of servers 
as well, this burden will be manageable and largely limited to the first few times a given application is 
launched. Unfortunately, most existing projects implement these functions in languages other than Java 
as well, so this component may also require re-implementation in a suitable execution environment for 
mobile devices. 

5.2 Current Implementation 

The system needs to test several overarching questions in order to fulfill a proof-of-concept. Prior research 
shows that apps are connecting and communicating all types of personal information to third parties. 
Other research efforts provide tools for examining app behavior, but end up burdening or breaking the 
user experience. A proof of concept needs to address our following two research questions: 

1. Can we monitor app behavior without breaking the user experience? 
2. Can we modify app behavior without breaking the user experience? 
The components of the system can exist hosted both on-device and on external infrastructure. To 

create a proof-of-concept that enabled evaluation of these questions, a hybrid system was deployed, with 
some components on device, and some in the cloud. Critical design requirements and restrictions (ie. 
not rooting the device, minimal resource drain, mobile networking) were maintained. 

5.3 Results 

The only user interaction necessary for the proof-of-concept system was interaction at the initial phase 
in establishing the VPN connection. The results of our testing, as displayed in Table 1, show that 
for the most part, the user experience of app functionality was not affected, despite traffic monitoring 
and modification occurring on the network. When connected to the school network where the rest 
of the system infrastructure was hosted, only a single network hop was introduced by the VPN, and 
no latency was noticeable to the user. When the system is fully implemented on-device, any minute 
latency introduced by this implementation would be absent. Resource consumption by the services 
running external to the device is minimal as well, and well within the constraints of a modern smartphone 
platform. 

The observed differences in which various parts of an application communicate over the network is 
notable. In the banking app for example, advertising functionality, likely implemented through a 3rd party 
library, accepted our monitoring and modification without hesitation in an attempt to greedily send out 
various identifiers. However, the functionality specific to the banking institution, such as authenticating 
to their servers, gave network errors in the presence of our custom certificate. In apps where 3rd party 
advertising libraries are tacked on as an afterthought for monetization, and are not integral to the apps 

5
 



Table 1: Observed Applications
 
App Monitored Modified Comments 
GMail Yes Yes GZIP content 
Twitter No No Privacy protection important part of app 

appeal. 
LinkedIn Yes Yes 
Spotify Yes Yes 
AirBnB Yes Yes 

Google Drive Yes Yes 
SolCalendar Yes Yes 

Google Play Store Yes Yes 
Signal No No Marketed as secure communication platform. 

WhatsApp Yes* – * Most app functions worked under monitoring. 
Image download failed. Lacking protocol 

support to test modification. 
Wunderground Yes Yes 

Yelp Yes Yes 
Bank of America Ads Yes, 

Banking No 
Ads Yes, 

Banking No 
Security or privacy integral to app functionality. 

functionality, this traffic could perhaps be sink-holed rather than monitored. With this compromise, the 
banking app could proceed in making its secure connections, and the user does not have to submit to 
ad tracking just to access their bank accounts. 

6 Discussion 

Along with many implementation similarities, our solution will share certain weaknesses with NIDS/NIPS 
systems. One such problem is the difficulty of developing a comprehensive set of signatures for sensitive 
outbound data. Since we are not observing local processing of data, applications may transmit it in forms 
we do not recognize. In the extreme case, an application could choose to encrypt the outbound data 
using a key held at the other end. That would render the data impossible to detect or manipulate using 
our approach. It is worth noting that the majority of content observed in this research and the related 
work sent out information in easily digestable formats such as JSON or XML. 

In addition, inspection of many connections will require what amounts to a man-in-the-middle attack 
against SSL connections to advertising networks and/or app providers. Our results so far indicate that 
most Android apps either are willing to trust certificates loaded into the system trust store or do not 
verify certificates at all. For these apps, our approach works well. 

Unfortunately for our purposes, some applications are more rigorous in certificate validation. Some 
applications fail to function under monitoring as a result. The appear to be among the more security
consious applications, such as the Signal encrypted messenger. Such applications can use techniques such 
as certificate pinning or their own internal store of trusted certificates. As a result, they do not honor 
user-added trusted certificate authorities, and will reject connections through the monitoring application. 
This could arise either from deliberate security practice on the part of the application vendor, in the 
case of certificate pinning and similar techniques. It may also arise from developer ignorance, if an app 
is written using a custom SSL library rather than the OS-provided SSL capability in Android. Initial 
preliminary testing suggests this is not a widespread problem. Major applications from Facebook and 

6
 



Google, for example, appear to honor user-added certificate authorities. 
For the initial prototype and proof of concept, traffic is captured on an Android device, and directed 

to an external service for processing. This implementation facilitates development and provides early 
indication that the approach is feasible. However, the use of an external system for processing introduces 
additional hops to every network connection, which can affect user experience depending on the location 
of the processing service and monitored device. It also requires prospective users to trust a “cloud” service 
provider with the very data they are seeking to control. Given the success of the initial trials, the next 
step will be to move these components into the Android device. Development of this capability is in 
progress. 

The initial system is also unable to provide alerts to a non-technical user in a useful manner, despite 
successful detection. This will be left to future work. 

7 Related Work 

Related academic work falls into three main categories: 

1. Work which establishes that private information is being gathered and aggregated from smart 
phones 

2. Work which specifically tracks data leaks through various methods 

3. Work which discusses the effectiveness of permissions and notifications at enabling user choice 

Few would question the first point. It is widely understood that information about consumers has 
a significant market value, and that the various services we consume must be “paid for”. Thus, the 
conclusion that we are paying with our personal data is unsurprising. If there had been any doubt, the 
well-known “Taintdroid” paper[9], among others, establishes that private information is indeed leaving 
our devices. Further work from Zang et. al.[21], Wei et. al.[19], Mann and Starostin[13], and many 
others makes clear that not only are these applications accessing users’ private data, but they are sharing 
it with an increasingly sophisticated network of advertising and tracking businesses. 

Many of the papers which establish the gathering of data do so through some degree of tracking. For 
example, the authors of Taindroid[9] used taint tracking through a modified Android runtime to observe 
private data being propagated to the network stack. Almuhimedi et. al. observed frequency of access 
to sensitive data[4]. Others have looked at data exfiltration by app developers, both intentional and 
inadvertent[21, 7, 8, 10]. 

Although not yet implemented, the user interface to this system must be informed by the existing 
body of work on user’s understanding and ability to deal with security notices. Prior work has shown that 
security solutions are often not adopted even when individuals have expressed their desire to do so[6]. 
As such, it will be critical to conform risk communication to users’ existing mental models and present 
options in an accessible manner. Additionally, current IDS/IPS systems require dedicated technical staff 
to understand and respond to their notifications, which is clearly not an option in the personal mobile 
device market. Given the low rates of comprehension of privacy access controls[11, 20], careful attention 
will be needed to both alerts and settings. Some guidance can be found in the existing literature 
[12, 5, 17], which includes machine learning approaches to learning user preferences, timing of alerts, 
and crowd sourcing approaches. 

In addition, we will cite non-academic sources of library, API, and development resources related to 
Android, DPI technologies, and SSL interception. 

7
 



8 Conclusions 

1. We can monitor app behavior without breaking the user experience. Data flows, included those 
protected with transport encryption, are relatively easy to access without rooting the device or breaking 
trust. Within these data flows are easily identifiable data points with device-specific identifiers or resource 
information readily presented. Often this data is organized and labeled with minimal encoding. 

2. We have promising indications that we can effectively modify app behavior without breaking the 
user experience. Knowing whether data points can be modified before onward transmission needs to be 
evaluated on an app by app basis. When the protocol is readily identified, modification while retaining a 
compliant format is easily achieved. If an app is using a custom protocol, more effort will be necessary 
to modify data without breaking compliance and possibly creating errors. 

9 Acknowledgements 

The authors would like to thank Professor Apu Kapadia and Professor L. Jean Camp for their guidance 
and support. 

References 

[1] 

[2] 

[3] 

[4] Almuhimedi, H., Schaub, F., Sadeh, N., Adjerid, I., Acquisti, A., Gluck, J., Cra
nor, L. F., and Agarwal, Y. Your location has been shared 5,398 times! a field study on 
mobile app privacy nudging. In CHI ’15: ACM CHI Conference on Human Factors in Computing 
Systems (2015), ACM. 

[5] Balebako, R., Schaub, F., Adjerid, I., Acquisti, A., and Cranor, L. The impact of 
timing on the salience of smartphone app privacy notices. In SPSM ’15: 5th Annual ACM CCS 
Workshop on Security and Privacy in Smartphones and Mobile Devices (2015), ACM, pp. 63–74. 

[6] Camp, L. J. Mental models of privacy and security. IEEE Technology and Society Magazine 28, 
3 (Fall 2009), 37–46. 

[7] Do, Q., Martini, B., and Choo, K.-K. R. Exfiltrating data from android devices. Computers 
& Security 48 (2015), 74 – 91. 

[8] Egele, M., Brumley, D., Fratantonio, Y., and Kruegel, C. An empirical study of 
cryptographic misuse in android applications. In Proceedings of the 2013 ACM SIGSAC Conference 
on Computer &#38; Communications Security (New York, NY, USA, 2013), CCS ’13, ACM, 
pp. 73–84. 

[9] Enck, W., Gilbert, P., Han, S., Tendulkar, V., Chun, B.-G., Cox, L. P., Jung, J., 
McDaniel, P., and Sheth, A. N. Taintdroid: An information-flow tracking system for realtime 
privacy monitoring on smartphones. ACM Trans. Comput. Syst. 32, 2 (June 2014), 5:1–5:29. 

8
 



[10] Fahl, S., Harbach, M., Muders, T., Baumgärtner, L., Freisleben, B., and Smith, 
M. Why eve and mallory love android: An analysis of android ssl (in)security. In Proceedings of the 
2012 ACM Conference on Computer and Communications Security (New York, NY, USA, 2012), 
CCS ’12, ACM, pp. 50–61. 

[11] Felt, A. P., Ha, E., Egelman, S., Haney, A., Chin, E., and Wagner, D. Android 
permissions: User attention, comprehension, and behavior. In Proceedings of the Eighth Symposium 
on Usable Privacy and Security (New York, NY, USA, 2012), SOUPS ’12, ACM, pp. 3:1–3:14. 

[12] Könings, B., Schaub, F., and Weber, M. Privacy and trust in ambient intelligent environ
ments. In Next Generation Intelligent Environments (Second Edition). Springer, 2016, pp. 133–164. 

[13] Mann, C., and Starostin, A. A framework for static detection of privacy leaks in android 
applications. In Proceedings of the 27th Annual ACM Symposium on Applied Computing (New 
York, NY, USA, 2012), SAC ’12, ACM, pp. 1457–1462. 

[14] Pearce, P., Felt, A. P., Nunez, G., and Wagner, D. Addroid: Privilege separation for 
applications and advertisers in android. In Proceedings of the 7th ACM Symposium on Information, 
Computer and Communications Security (New York, NY, USA, 2012), ASIACCS ’12, ACM, pp. 71– 
72. 

[15] Ragan, S. Gay and bisexual men placed at risk despite recent patches, September 2014. 

[16] Rao, A., Schaub, F., and Sadeh, N. M. What do they know about me? contents and 
concerns of online behavioral profiles. CoRR abs/1506.01675 (2015). 

[17] Sadeh, N., Acquisti, A., Breaux, T., Cranor, L., McDonald, A., Reidenberg, J., 
Smith, N., Liu, F., Russel, C., Schaub, F., et al. The usable privacy policy project: 
Combining crowdsourcing, machine learning and natural language processing to semi-automatically 
answer those privacy questions users care about. Tech. rep., Technical Report CMU-ISR-13-119, 
Carnegie Mellon University, 2013. 

[18] Sounthiraraj, D., Sahs, J., Greenwood, G., Lin, Z., and Khan, L. Smv-hunter: 
Large scale, automated detection of ssl/tls man-in-the-middle vulnerabilities in android apps. In In 
Proceedings of the 21st Annual Network and Distributed System Security Symposium (NDSS 14 
(2014). 

[19] Wei, X., Gomez, L., Neamtiu, I., and Faloutsos, M. Malicious android applications in 
the enterprise: What do they do and how do we fix it? In Data Engineering Workshops (ICDEW), 
2012 IEEE 28th International Conference on (April 2012), pp. 251–254. 

[20] Wijesekera, P., Baokar, A., Hosseini, A., Egelman, S., Wagner, D., and 
Beznosov, K. Android permissions remystified: A field study on contextual integrity. In 24th 
USENIX Security Symposium (USENIX Security 15) (Washington, D.C., 2015), USENIX Associa
tion, pp. 499–514. 

[21] Zang J, Dummit K, G. J. L. P. S. L. Who knows what about me? a survey of behind the 
scenes personal data sharing to third parties by mobile apps. Journal of Technology Science (2015). 
2015103001. 

9
 


	Abstract
	Introduction
	Overview of Approach
	Protocol/Architecture/Design
	Evaluation
	Implementation Challenges
	Current Implementation
	Results

	Discussion
	Related Work
	Conclusions
	Acknowledgements
	References



