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ABSTRACT 
Modern smartphones come equipped with a suite of high-
fidelity motion and environmental sensors: accelerometers, 
gyroscopes, and light sensors, among others. In order to pro­
tect user privacy, the dominant mobile platforms, Android 
and iOS, have placed restrictions on certain device resources 
deemed “sensitive.” Apps are required to ask the user for 
permission before accessing those capabilities; for instance, 
geolocation and phone calling functionality. These access 
controls don’t extend to environmental and motion sensors 
though. These sensors are considered "benign," so apps are 
able to collect measurements from these data sources with­
out informing the user of this usage. 

In this ongoing work, we consider that smartphones are 
highly personal devices, typically used by just one person, 
and remains in very close proximity to – if not in direct con­
tact with the body of – the sole user for much of the phone’s 
operation. We explore the feasibility of using unrestricted 
“benign” sensor data to infer private details about the user, 
such as their daily schedules, income levels, and relationship 
status. We propose our method of sensor data collection, 
analysis, and validation with user-reported ground truth to 
build a model to infer user information. Preliminary internal 
testing supports the possibility of relationships between mo­
tion sensors and certain everyday activities. Further analysis 
is warranted to explore the general implications of these in­
tuitions. 

1. INTRODUCTION 
Over the past decade, smartphones have evolved from 

high-end business tools and luxury goods, to commod­
ity items accessible to most consumers. In the United 
States, smartphones reached nearly 80% penetration 
among all mobile phone subscribers by Q1 2016 [9]. 
Apple’s iOS and Google’s Android platforms dominate 
this market, combining to power over 95% of American 
smartphones [9]. As smartphone capabilities improve 
and ownership costs drop, these mobile devices serve 
as the primary portal for a number of consumer needs: 
communications, entertainment, news and weather, doc­
umenting life, and the like. 
Part of what enables smartphones to be such versa­

tile and intuitive tools for so many users is their suite 
of onboard high-fidelity environmental and motion sen­
sors. These sensors include accelerometers to measure 
motion, light sensors to detect the level of ambient light­
ing, and magnetometers to determine a phone’s orienta­
tion relative to the Earth’s poles [8] [6]. Smartphones’ 
rich sensing capabilities have allowed software develop­
ers to create innovations like augmented reality appli­
cations [10] [4] and power-conserving adaptive bright­
ness [2]. 
The mobile software industry that develops these prod­

ucts relies on advertising revenue for their business mod­
els. As users heavily prefer free apps over paid ones, de­
velopers have implemented monetization strategies like 
in-app premium features and displaying targeted ad­
vertisements to specific audiences [17]. App develop­
ers that opt for in-app advertisements frequently do so 
through third-party advertising networks. Ad networks 
provide prebuilt libraries that handle ad retrieval, pre­
sentation, and user analytics. Mobile advertising rev­
enue depends on tracking individual users’ interests and 
backgrounds [12]. Advertising companies have been 
observed maintaining persistent identfiers to piece to­
gether personal profiles of consumers across services 
over time [3]. 
In order to stem potential concerns over the collec­

tion of personal information on smartphones by third 
parties, mobile platforms have permissions systems that 
regulate access to sensitive data [11] [7]. These protect 
highly personal data like contact lists, geolocation data, 
and SMS and phone call activity. Permissions systems 
require app developers to declare their use of personal 
information. Developers must request the user’s ap­
proval prior to accessing that data. On older versions 
of Android before 6.0 “Marshmallow,” users review and 
grant app permissions at the time of install. On iOS 
and current versions of Android, users are prompted for 
permission the first time an app attempts to access the 
protected resource. 
Despite these robust permissions frameworks, mobile 

operating systems don’t require user consent – or even 
user awareness – for an app to collect measurements 
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from the host device’s environmental and motion sen­
sors. Smartphones have attained majority market share 
among all mobile phone users in the US, and advertis­
ers seek to target such a large audience through supe­
rior user fingerprinting and profiling. There is strong 
economic incentive to tap into such a rich, unrestricted, 
and highly personal data source as device sensors to 
silently infer valuable details about the user. 
Moving forward, sensor access will no longer just be 

limited to native apps for a given mobile platform. HTML5 
proposes methods for dynamic websites to access host 
device sensor data [1]. This opens up the possibility 
of increasingly personal and persistent user fingerprint­
ing, as web applications can run as invisible elements 
on sites the user visits, able to collect sensor measure­
ments without alerting the user. As websites are gener­
ally designed to be platform-agnostic, this would allow 
advertisers and malicious developers to collect this sen­
sor data with greater ease, regardless of the underlying 
device or operating system. 

2. RELATED WORK 
The literature on inferring sensitive details about the 

user have tended to focus on discrete activities and in­
dividual sensors. Some of the existing research rely on 
data from peripheral devices tied to the smartphone. 
For instance, Liu 2015 [13] uses accelerometer data from 
wearable devices to build classifiers that distinguish be­
tween such activities as driving, eating, and using the 
phone. In the case that the user is driving, accelerome­
ter measurements are then used to calculate which way 
the steering wheel is pointed, and by proxy determine if 
the user is driving unsafely. Parate 2014 [16] similarly 
leverages sensors on wearables to detect arm motions as­
sociated with smoking a cigarette. For our research, we 
limit our scope to sensors (and other unprivileged data 
sources) available on smartphones themselves, as con­
sumers with wearable devices currently represent just a 
fraction of smartphone users in the US [?]. 
Other research efforts have also focused on strictly 

smartphone-based data sources. Owosu 2012 [15] demon­
strates a proof-of-concept side-channel attack to infer 
short on-screen keyboard input sequences (e.g., pass­
words, n ames, search queries) from phone accelerome­
ter readings; a classifier is trained on known accelerome­
ter measurements and screen tap locations. Michalevsky 
2015 [14] shows how battery voltage and current infor­
mation – data provided by the phone without special 
restrictions – can be used to infer user location and 
direction; this research observes that battery activity 
is (in part) a function of cell network signal strength, 
and signal strength is sufficiently stable and predictable 
for a given location. Our work expands on this by ex­
ploring relationships between multiple onboard sensors 
and other unrestricted data (e.g., battery state and sys-

Data Sources 
Accelerometer 
Ambient temperature 
Barometric pressure 
Battery state 
Gyroscope 
Humidity 
Light sensor 
Proximity sensor 
Rotation vector 
Screen state 
Step counter 
System-wide broadcasts 

Table 1: “Benign” data sources and sensors 
recorded, where available 

tem state broadcasts), instead of just individual data 
sources. 

3. METHODOLOGY 
We intend to recruit approximately 200 participants 

in the United States through Amazon Mechanical Turk 
(MTURK). In order to mitigate attrition, we target 
experienced MTURK workers with at least a 95% job 
completion rate over a history of at least 500 accepted 
tasks. We require participants to have fairly recent An­
droid devices. Current models (i.e., from the past 3 
years) support low-power continuous monitoring of sen­
sors. Targeting phones with this capability ensures a 
rich dataset without incurring significant battery over­
head. All available sensors listed in Table 1 are moni­
tored. Per MTURK policy, all workers are at least 18 
years of age. 
We devise a payment schedule to increase the likeli­

hood that subjects will actively participate through the 
study’s 7-day data collection period. A $1 payment is 
issued upon completion of an online entry survey, which 
triggers the data collection. Additional $1 payments are 
available for each activity survey, offered each evening 
for a maximum of 6 times. At the end of the collection 
period, the user completes an exit survey and receives 
a final $2 bonus for their full participation. 

3.1 Survey and location ground truth 
We establish ground truth through surveys (entry, 

daily activity, and exit) and geolocation data. Our en­
try survey asks participants for their demographic in­
formation (e.g., income, age, weight, occupation, mari­
tal status, etc.). The daily surveys gather information 
about the participant’s activities that day (e.g., work­
ing hours, physical activity, transportation, etc.). The 
exit survey asks the same questions as the entry form in 
order to validate the initial responses. We selected sur­
vey questions based on what marketers find valuable [5] 
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and what individuals might consider sensitive. 
Geolocation data provides additional ground truth to 

validate inferences about work and home schedules. 

3.2 Analysis 
After we collect sufficient sensor and ground truth 

data from a diverse set of participants, we then test 
possible inferences one by one; some user details may 
be more easily inferred from sensor measurements than 
others. We define a successful inference as a predictive 
correlation between some collection of sensor measure­
ments and a sensitive detail about the user, as seen in 
the ground truth. 
Our proposed inferences broadly fall into two cate­

gories: what the user does (i.e., habits and activities), 
and who the user is (i.e., demographic details). One in­
tuition we have is that there is a relationship between 
physical activity and income levels; a white-collar pro­
fessional is more likely to have a sedentary lifestyle than 
a retail sector worker, for instance. Physical activity 
could be measured through smartphone motion sensors 
like accelerometers, gyroscopes, and step counters. An­
other potential inference to test is detecting whether the 
user is at home, at work, or elsewhere; we suspect that 
individuals most often charge their phones at work and 
at home, and do so in roughly the same place out of 
habit. Battery charging state, device orientation, and 
magnetometer data could be validated against geoloca­
tion ground truth to test this inference. Headphone con­
nection state might also allow inferences about sleeping 
habits and physical activity. 
Evaluation will use methods established in the lit­

erature: feature selection based on our intuitions, se­
lection and training of viable supervised learning mod­
els (e.g, SVMs, artificial neural nets, nearest neighbor), 
and cross-validation to reduce spurrious correlations. 

4. PRELIMINARY RESULTS 
We conducted internal tests of our data collection app 

to verify that it works, as well as generate some pre­
liminary data to examine for possible inferences. The 
app was installed on a researcher’s personal Nexus 5 
for about 24 hours on a typical weekday. The Nexus 5 
supports low-power continuous monitoring for the ac­
celerometer and gyroscope. This model is equipped 
with all the sensors in Table 1, except for ambient tem­
perature and relative humidity. 
Figures 1 and 2 show two points (denoted by the 

green line in the graph) in this subjects’s morning com­
mute: a walking commute in progress, and shortly after 
arriving at the office, respectively. The map is ground 
truth geolocation data at that time. The graphs show 
accelerometer (blue) and step counter (orange) activity 
from early in the morning through the afternoon. 
Minimal motion sensor activity is observed during the 

early morning hours, when the subject is asleep and not 
actively using the phone. By contrast, the accelerome­
ter and step counter both record high levels of activity 
while the subject is commuting by foot that morning 
(as shown in the ground truth data). A period of inac­
tivity follows this commute, corresponding to when the 
subject arrives at the destination. Similar patterns of 
increased accelerometer and step counter activity occur 
later in the day, corresponding to the walk back home. 
Although this is just one individual in a well-controlled 

observation, this limited data suggests some correlation 
between sensor measurements and certain everyday ac­
tivities. Broader testing is needed to validate more gen­
eral inferences across a variety of individuals and de­
vices. 

5. CONCLUSION 
We present our ongoing work on inferring sensitive 

user details from “benign” smartphone sensor data. This 
project explores sensitive user information that might 
be leaked through a combination of smartphone data 
sources outside the protection of the OS’s permissions 
system. We’ve developed a data collection app to gather 
sensor measurements and ground truth data, and will 
use this information to test our intuitions on the rela­
tionships between unrestricted sensor data and private 
user details. More general results will be presented in 
the future as this ongoing project continues. 
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