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ABSTRACT 
Differential privacy has become the dominant standard in the re­
search community for strong privacy protection. There has been 
a flood of research into query answering algorithms that meet this 
standard. Algorithms are becoming increasingly complex, and in 
particular, the performance of many emerging algorithms is data 
dependent, meaning the distribution of the noise added to query an­
swers may change depending on the input data. Theoretical analy­
sis typically only considers the worst case, making empirical study 
of average case performance increasingly important. 

In this paper we propose a set of evaluation principles which we 
argue are essential for sound evaluation. Based on these principles 
we propose DPBENCH, a novel evaluation framework for standard­
ized evaluation of privacy algorithms. We then apply our bench­
mark to evaluate algorithms for answering 1- and 2-dimensional 
range queries. The result is a thorough empirical study of 15 pub­
lished algorithms on a total of 27 datasets that offers new insights 
into algorithm behavior—in particular the influence of dataset scale 
and shape—and a more complete characterization of the state of the 
art. Our methodology is able to resolve inconsistencies in prior em­
pirical studies and place algorithm performance in context through 
comparison to simple baselines. Finally, we pose open research 
questions which we hope will guide future algorithm design. 

1. INTRODUCTION 
Privacy is a major obstacle to deriving important insights from 

collections of sensitive records donated by individuals. Differen­
tial privacy [5–8] has emerged as an important standard for protec­
tion of individuals’ sensitive information. Informally, differential 
privacy is a property of the analysis algorithm which guarantees 
that the output the analyst receives is statistically indistinguishable 
(governed by a privacy parameter ✏) from the output the analyst 
would have received if any one individual had opted out of the col­
lection. Its general acceptance by researchers has led to a flood of 
work across the database, data mining, theory, machine learning, 
programming languages, security, and statistics communities. 

Most differentially private algorithms work by introducing noise 
into query answers. Finding algorithms that satisfy ✏-differential 

Permission to make digital or hard copies of all or part of this work for personal or 
classroom use is granted without fee provided that copies are not made or distributed 
for profit or commercial advantage and that copies bear this notice and the full cita­
tion on the first page. Copyrights for components of this work owned by others than 
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re­
publish, to post on servers or to redistribute to lists, requires prior specific permission 
and/or a fee. Request permissions from permissions@acm.org. 
SIGMOD’16, June 26-July 01, 2016, San Francisco, CA, USA 

© 2016 ACM. ISBN 978-1-4503-3531-7/16/06. . . $15.00 

DOI: http://dx.doi.org/10.1145/2882903.2882931 

privacy and introduce the least possible error for a given analy­
sis task is a major ongoing challenge, in both research and prac­
tice. Standard techniques for satisfying differential privacy that 
are broadly-applicable (e.g. the Laplace and exponential mecha­
nisms [8]) often offer sub-optimal error rates. Much recent work 
that deems differential privacy impractical for real world data (e.g., 
[13]) use only these standard techniques. 

Many new differentially private algorithms have been proposed 
to address these limitations and reduce achievable error rates. Take 
the example task of privately answering 1- and 2-dimensional range 
queries on a dataset (the primary focus of this paper). Proposed 
techniques for this task include answering range queries using noisy 
hierarchies of equi-width histograms [4,11,16,22], noisy counts on 
a coarsened domain [15, 21, 26, 27, 29], or by reconstructing per­
turbed wavelet [25] or Fourier [1] coefficients, or based on a syn­
thetic dataset built using multiplicative weights updates [10]. These 
recent innovations reduce error at a fixed privacy level ✏ by many 
orders of magnitude for certain datasets, and can have a large im­
pact on the success of practical differentially private applications. 

However, the current state-of-the-art poses a new challenge of al­
gorithm selection. Consider a data owner (say from the US Census 
Bureau) who would like to use differentially private algorithms to 
release a 1- or 2- dimensional histogram over their data. She sees a 
wide variety of algorithms in the published literature, each demon­
strating settings or contexts in which they have advantageous the­
oretical and empirical properties. Unlike in other fields (e.g. data 
mining), the data owner can not run all the algorithms on her dataset 
and choose the algorithm that incurs the least error – this violates 
differential privacy, as the choice of the algorithm would leak infor­
mation about the input dataset. Hence, the data owner must make 
this choice using prior theoretical and empirical analyses of these 
algorithms, and faces the following problems: 

1.	 Gaps in Empirical Evaluations: As algorithms become progres­
sively more complex, their error rates are harder to analyze the­
oretically, underscoring the importance of good empirical eval­
uations. For a number of reasons, including lack of benchmark 
datasets, space constraints in publications, and the chronology 
of proposed algorithms, existing empirical evaluations do not 
comprehensively evaluate all known algorithms leaving gaps 
(and even inconsistencies; see Section 3.2) in our knowledge 
about algorithm performance. 

2.	 Understanding Data-Dependence: A number of recent algo­
rithms are data dependent; i.e., their error is sensitive to proper­
ties of the input. Thus, a data dependent algorithm A may have 
lower error than another algorithm B on one dataset, but the 
reverse may be true on another dataset. While a few prior em­
pirical evaluations evaluate algorithms on diverse datasets, there 
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is little guidance for the data owner on how the error would ex­
trapolate to a new dataset (e.g., one with a greater number of 
tuples) or a new experimental setting (e.g., a smaller ✏). 

3.	 Choosing Values for Free Parameters: Algorithms are often as­
sociated with free parameters (other than the privacy parameter 
✏), but their effect on error is incompletely quantified. Published 
research provides little guidance to the data owner on how to set 
these parameters, and in many cases the default values are sub­
optimal. 

4.	 Unsound Utility Comparisons: Even when empirical analyses 
are comprehensive, the results may not be useful to a practi­
tioner. For instance, the error of a differentially private algo­
rithm is a random variable. However, most empirical analyses 
only report the mean error and not the variability in error. More­
over, algorithm error is often not compared with that of simple 
baselines like the Laplace mechanism, which are the first algo­
rithms a practitioner would attempt applying. 

Given these problems, even as research progresses, the practi­
tioner is lost and incapable of deploying the right algorithm. More­
over, researchers are likely to propose new algorithms that improve 
performance in narrow contexts. In this paper, we attempt to rem­
edy the above problems with a rigorous framework for empirical 
evaluation, and we shed light on the algorithm selection problem 
for 1- and 2-dimensional range query answering. We make the fol­
lowing novel contributions: 

1. We propose a set of principles that any differentially private 
evaluation must satisfy (Section 4). Based on these principles 
we develop DPBENCH, a novel methodology for evaluating dif­
ferentially private algorithms (Section 5). Experiments designed 
using DPBENCH help tease out dependence of algorithm error 
on specific data characteristics like the size of the domain, the 
dataset’s number of tuples (or scale) and its empirical distri­
bution (or shape). DPBENCH provides an algorithm to auto­
matically tune free parameters of algorithms, and ensures fair 
comparisons between algorithms. Finally, by reporting both the 
mean and variation of error as well as comparing algorithms to 
baselines the results of DPBENCH experiments help the practi­
tioner get a better handle on the algorithm selection problem. 

2. Using DPBENCH, we present a comprehensive empirical study 
of 15 published algorithms for releasing 1- or 2-dimensional 
range queries on a total of 27 datasets (Section 6). We evalu­
ate algorithm error on 7,920 experimental settings. Our study 
presents the following novel insights into algorithm error (Sec­
tion 7): 

(a)	 Scale and Data Dependence: The error incurred by re­
cently proposed data dependent algorithms is heavily in­
fluenced by scale (number of tuples). At smaller scales, 
the best data-dependent algorithms can beat simpler data 
independent algorithms by an order of magnitude. How­
ever, at large scales, many data dependent algorithms start 
performing worse than data independent algorithms. 

(b)	 Baselines: A majority of the recent algorithms do not even 
consistently beat the Laplace mechanism, especially at med­
ium and larger scales in both the 1- and 2-D cases. 

(c)	 Understanding Inconsistencies: Our results also help us 
resolve and explain inconsistencies from prior work. For 
instance, a technique that uses multiplicative weights [10] 
was shown to outperform a large class of data independent 
mechanisms (like [25]), but in a subsequent paper [15], the 

reverse was shown to be true. Our results explain this ap­
parent inconsistency by identifying that the former conclu­
sion was drawn using a dataset with small scale while the 
latter conclusions were made on datasets with larger scales. 

3. While the DPBENCH algorithm for tuning free parameters is 
straightforward, we show a 13× improvement in error for certain 
algorithms like the multiplicative weights method [10] over the 
original implementations with default parameters. 

4. We formalize two important theoretical properties, scale-epsilon 
exchangeability and consistency, that can help extrapolate re­
sults from an empirical study to other experimental setting not 
considered by the study. For an algorithm that is scale-espilon 
exchangeable, increasing the scale of the input dataset and in­
creasing epsilon have equivalent effects on the error. Thus, an 
algorithm’s error is roughly the same for all scale and ✏ pairs 
with the same product. We prove that most algorithms we con­
sider in this paper satisfy this property. An algorithm that is 
consistent has error that tends to 0 as the privacy parameter ✏ 
tends to ∞. That is, inconsistent algorithms return answers that 
are biased even in the absence of privacy constraints. While all 
the data independent algorithms considered in the paper are con­
sistent, we show that some data dependent algorithms are not 
consistent, and hence a practitioner must be wary about using 
such algorithms. 

While our analysis is restricted to 1- and 2-dimensional range 
queries, we believe our results will be useful beyond this context as 
the evaluation principles will extend to evaluation of differentially 
private algorithms for other tasks. We conclude the paper with 
comparisons to published results, lessons for practitioners, and a 
discussion of open questions in Section 8. 

2. PRELIMINARIES 
In this section we review basic privacy definitions and introduce 

notation for databases and queries. 

2.1 Differential Privacy 
In this paper we are concerned with algorithms that run on a 

private database and publish their output. To ensure the released 
data does not violate privacy, we require the algorithms to obey the 
standard of differential privacy. 

Let I be a database instance consisting of a single relation. Let 
nbrs(I) denote the set of databases differing from I in at most one 
record; i.e., if I ′ ∈ nbrs(I), then �(I − I ′) ∪ (I ′ − I)� = 1. 

DEFINITION 1 (DIFFERENTIAL PRIVACY [7]). A randomized 
algorithm A is ✏-differentially private if for any instance I , any 
I ′ ∈ nbrs(I), and any subset of outputs S ⊆ Range(A), 

Pr[A(I) ∈ S] ≤ exp(✏) × Pr[A(I ′) ∈ S]
For an individual whose data is represented by a record in I , dif­
ferential privacy offers an appealing guarantee. It says that includ­
ing this individual’s record cannot significantly affect the output: it 
can only make some outputs slightly more (or less) likely – where 
“slightly” is defined as at most a factor of e ✏. If an adversary infers 
something about the individual based on the output, then the same 
inference would also be likely to occur even if the individual’s data 
had been removed from the database prior to running the algorithm. 

Many of the algorithms considered in this paper are composed 
of multiple subroutines, each taking the private data as input. Pro­
vided each subroutine achieves differential privacy, the whole al­
gorithm is differentially private. More precisely, the sequential ex­
ecution of k algorithms A1, . . . ,  A

k

, each satisfying ✏
i

-differential 
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privacy, results in an algorithm that is ✏-differentially private for 
✏ = ∑

i ✏i [19]. Hence, we think of ✏ as representing an algorithm’s 
privacy budget which can be allocated across its subroutines. 

A commonly used subroutine is the Laplace mechanism, a gen­
eral purpose algorithm for computing numerical functions on the 
private data. It achieves privacy by adding noise to the function’s 
output. We use Laplace(O) to denote the Laplace probability dis­
tribution with mean 0 and scale O. 

DEFINITION 2 (LAPLACE MECHANISM [7]). Let f(I) denote 
a function on I that outputs a vector in Rd . The Laplace mecha­
nism L is defined as L(I) = f(I) + z, where z is a d-length vector 
of random variables such that z

i ∼ Laplace(!f �✏). 
The constant !f is called the sensitivity of f and is the maxi­

mum difference in f between any two databases that differ only by 
a single record, !f = max

I,I  ′∈nbrs(I) �f(I) − f(I ′)�1. 

The Laplace mechanism can be used to provide noisy counts of 
records satisfying arbitrary predicates. For example, suppose I 
contains medical records and f reports two counts: the number of 
male patients with heart disease and the number of female patients 
with heart disease. The sensitivity of f is 1: given any database in­
stance I , adding one record to it (to produce neighboring instance 
I ′ ), could cause at most one of the two counts to increase by ex­
actly 1. Thus, the Laplace mechanism would add random noise 
from Laplace(1�✏) to each count and release the noisy counts. 

2.2 Data Model and Task 
The database I is an instance of a single-relation schema R(A), 

with attributes A = {A1,A2, . . . ,A
`

}. Each attribute is discrete, 
having an ordered domain (continuous attributes can be suitably 
discretized). We are interested in answering range queries over this 
data; range queries support a wide range of data analysis tasks in­
cluding histograms, marginals, data cubes, etc. 

We consider the following task. The analyst specifies a subset of 
target attributes, denoted B ⊆ A, and W, a set of multi-dimensional 
range queries over B. We call W the workload. For example, sup­
pose the database I contains records from the US Census describ­
ing various demographic characteristics of US citizens. The analyst 
might specify B = {age, salary} and a set W where each query is 
of the form, 

select count(*) from R 

where a
low ≤ age ≤ a

high and s
low ≤ salary ≤ s

high 

with different values for a
low , ahigh

, s
low

, s
high

. We restrict our 
attention to the setting where the dimensionality, k = �B�, is small 
(our experiments report on k ∈ {1, 2}). All the differentially private 
algorithms considered in this paper attempt to answer the range 
queries in W on the private database I while incurring as little 
error as possible. 

In this paper, we will often represent the database as a multi­
dimensional array x of counts. For B = {B1, . . . ,B

k

}, let n
j de­

note the domain size of B
j for j ∈ [1, k]. Then x has (n1 × n2 × 

. . .  × n
k

) cells and the count in the (i1, i2, . . . , i
k

)th cell is 

select count(*) from R 

where B1 = i1 and B2 = i2 and . . . B
k = i

k 

To compute the answer to a query in W, one can simply sum the 
corresponding entries in x. Because they are range queries, the 
corresponding entries form a (hyper-)rectangle in x. 

Example: Suppose B has the attributes age and salary (in tens of 
thousands) with domains [1, 100] and [1, 50] respectively. Then x 
is a 100 × 50 matrix. The (25, 10)th entry is the number of tuples 
with age 25 and salary $100,000. 

Properties Analysis 

Algorithm 
H P Dimen­

sion 
Param­
eters 

Side 
info 

Consis­
tent 

Scale-✏ 
Exch. 

Data-independent 
IDENTITY [7] Multi-D – yes yes 
PRIVELET [25] X Multi-D – yes yes 
H [11] X 1D b = 2 yes yes 
H

b [22] X Multi-D – yes yes 
GREEDY H [15] X 1D, 2D b = 2 yes yes 

Data-dependent 
UNIFORM ∼ Multi-D – no yes 
MWEM [10] Multi-D T scale no yes 
MWEM ∗ Multi-D – no yes 
AHP [29] X Multi-D ⇢, ⌘ yes yes 
AHP ∗ X Multi-D – yes yes 

DPCUBE [26] ∼ X Multi-D 
⇢ = .5, 
n
p = 10 

yes yes 

DAWA [15] X X 1D, 2D 
⇢ = .25, 
b = 2 

yes 
∗ 

yes 

QUADTREE [4] X X 2D c=10 no yes 
UGRID [21] X 2D c = 10 scale yes yes 

AGRID [21] ∼ X 2D 
c = 10, 
c2 = 5, 
⇢ = .5 

scale yes yes 

PHP [1] X 1D ⇢ = .5 no yes 
EFPA [1] 1D – yes∗ 

yes 
SF [27] X 1D ⇢, k,F  scale yes no 

Table 1: Algorithms evaluated in benchmark. Property column H 
indicates hierarchical algorithms and P indicates partitioning. 

Parameters without assignments are ones that remain free. Side 
information is discussed in Section 4.2. Analysis columns are 
discussed in Section 5.5 and Section 7.4. Algorithm variants 

MWEM ∗ and AHP ∗ are explained in Section 6.4. 

We identify three key properties of x, each of which significantly 
impacts the behavior of privacy algorithms. The first is the domain 
size, n, which is equivalently the number of cells in x (i.e., n = 
n1 × ⋅ ⋅ ⋅ ×  n

k

). The second is the scale of the dataset, which is the 
total number of tuples, or the sum of the counts in x, which we 
write as �x�1. Finally, the shape of a dataset is denoted as p where 
p = x� �x� = [p1, . . . , pn] is a non-negative vector that sums to 1 
1. The shape captures how the data is distributed over the domain 
and is independent of scale. 

3. ALGORITHMS & PRIOR RESULTS 

3.1 Overview of Algorithm Strategies 
The algorithms evaluated in this paper are listed in Table 1. For 

each algorithm, the table identifies the dataset dimensionality it 
supports as well as other key properties (discussed further below). 
In addition, it identifies algorithm-specific parameters and the pos­
sible use of “side information” (discussed in Section 4). The table 
also summarizes our theoretical analysis, which is described in de­
tail later (Sections 5.5 and 7.4). Descriptions of individual algo­
rithms are provided in Appendix B. 

In this section, we categorize algorithms as either data-independent 
or data-dependent, and further highlight some key strategies em­
ployed, such as the use of hierarchical aggregations and partition­
ing. In addition, we also illustrate how algorithm behavior is af­
fected by properties of the input including dataset shape, scale, and 
domain size. 

First, we describe a simple baseline strategy: release x after 
adding independent random noise to each count in x. To ensure 
differential privacy, the noise distribution is calibrated according to 
Definition 2, and each cell receives independent Laplace noise with 
a scale of 1�✏. The limitation with this simple strategy is that when 
answering range queries, the variance in the answer increases lin­
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early with the number of cells that fall within the range. For large 
ranges, the error becomes intolerably high. Thus, the performance 
of this approach depends critically on the domain size. 

Hierarchical aggregation: To mitigate the noise accumulation, 
several approaches not only obtain noisy counts for the individ­
ual cells in x, but also obtain noisy estimates for the total count 
in hierarchically grouped subsets of cells. Because each record 
is now being counted multiple times, the noise must be propor­
tionally increased. However, it has been shown in the 1D case 
that the increase is only logarithmic in the domain size and, fur­
ther, any range query now requires summing only a logarithmic, 
rather than linear, number of noisy counts [11, 24]. For higher di­
mensions, the relative benefit of hierarchical aggregations dimin­
ishes [22]. Algorithms employing hierarchical aggregations in­
clude H [11], H

b [22], GREEDY H [15], DAWA [15], AGRID [21], 
DPCUBE [26], QUADTREE [4], HYBRIDTREE [4], PRIVELET [25]. 

For many of the algorithms mentioned above, the noise added 
does not depend on the data. Thus, the performance is the same on 
all datasets of a given domain size. Following [15], an algorithm 
whose error rate is the same for all possible datasets on a given do­
main is characterized as data independent. Table 1 indicates which 
algorithms are data-independent. 

It can be shown that all of the data independent algorithms stud­
ied here are instances of the matrix mechanism [16, 18], a generic 
framework that computes linear combinations of cell counts, adds 
noise, and then reconstructs estimates for the individual cells by 
linear transformations. The algorithms differ in the choice of lin­
ear combination and thus experience different error rates on a given 
workload W. (Computing the optimal linear combination is com­
putationally infeasible.) 

Thus, for data-independent algorithms, the only property of the 
input that affects performance is domain size. We next describe 
strategies of data-dependent algorithms, whose performance is af­
fected by dataset shape and scale. 

Partitioning: One class of data-dependent algorithm partitions 
the data, reducing the error due to noise by only computing noisy 
aggregations of cell groups. An example of such an approach is 
an equi-width histogram: the domain is partitioned into disjoint in­
tervals (called “buckets”) of equal size and a noisy count for each 
bucket is obtained. To approximate the count for a cell within a 
bucket, the standard assumption of uniformity is employed. The 
success of such a strategy depends critically on the shape of the 
dataset: If the distribution of cell counts within a bucket are nearly 
uniform, the noise is effectively reduced because each cell only re­
ceives a fraction of the noise; on the other hand, a non-uniform 
distribution implies high error due to approximating each cell by 
the bucket average. Algorithms that partition include AGRID, 
HYBRIDTREE, QUADTREE, DPCUBE, DAWA, as well as PHP [1], 
AHP [29], SF [27], UGRID [21]. 

Equi-width partitions are used by QUADTREE, UGRID, and 
AGRID whereas other algorithms select the partition adaptively 
based on the characteristics of the data. This is non-trivial because 
one must prove that the adaptive component of the algorithm satis­
fies differential privacy (and thus does not adapt too specifically to 
the input). Other algorithms, such as MWEM and EFPA [1], adapt 
to the data as well, but use a different strategy than partitioning. 

While one might expect that the performance of data-dependent 
algorithms is affected by dataset shape, a novel contribution of this 
paper is to show that it is also affected by scale. The intuition for 
this can be seen by considering equi-width histograms. Holding 
shape fixed, as scale increases, any deviations from a uniform dis­
tribution become magnified. Thus, the relative benefit of partition­
ing cells into buckets diminishes. While data adaptive approaches 

could, in principle, adjust with increasing scale, our findings and 
theoretical analysis show that this is not always the case. 

Baselines: IDENTITY is a data-independent algorithm described 
earlier: it adds noise to each cell count in x, and is equivalent to 
applying the Laplace mechanism on the function that transforms I 
into x. UNIFORM is the second baseline, which uses its privacy 
budget to estimate the number of tuples (scale) and then produces 
a data-dependent estimate of the dataset by assuming uniformity. 
It is equivalent to an equi-width histogram that contains a single 
bucket as wide as the entire domain. 

With each baseline, the workload queries can be answered by 
summing the corresponding noisy cell counts. 

3.2 Empirical Comparisons in Prior Work 
We review prior studies with a focus on two things. First, we 

characterize what is known about the state of the art for both 1D 
and 2D settings and identify gaps and inconsistencies. Second, we 
look at the algorithmic strategies described in Section 3.1 and what 
is known about their effect on performance. 

For the 1D setting, the study of Qardaji et al. [22] suggests that 
H

b generally is the best data-independent algorithm, achieving lower 
error than many competing techniques, including IDENTITY, H,  
PRIVELET, SF, and others [4,17,18,28]. However, their study does 
not include any data-dependent algorithms other than SF. Thus, 
their study does not address whether H

b can outperform the data-
dependent algorithms listed in Table 1, a gap in knowledge that has 
yet to be resolved. 

The results of Hardt et al. [10] suggest that H
b and the other data-

independent techniques studied in [22] would be outperformed by 
MWEM for both 1D and 2D range queries. In their study, MWEM 
almost always achieves an error rate that is less than a lower bound 
that applies to any instance of the matrix mechanism [16, 18], a 
generic class of differentially private algorithms that includes the 
top performers from the study of Qardaji et al. [22] and all of the 
data-independent techniques listed in Table 1. 

Data-dependent and data-independent techniques are also com­
pared in Li et al. [15] and their findings are inconsistent with the re­
sults of Hardt et al. Specifically, MWEM and other data-dependent 
techniques do not always outperform matrix mechanism techniques; 
for some “hard” datasets, the error of MWEM is 2-10× higher than 
PRIVELET, one of the matrix mechanism instances included in their 
study. The authors investigate the difficulty of datasets, but do not 
identify what properties of the input affect the performance of data-
dependent algorithms. In this paper, by explicitly controlling for 
scale and shape, we are able to resolve this gap and offer a much 
richer characterization of when data-dependent algorithms do well 
and explain the apparent contradiction between [10] and [15]. 

For the 2D setting, we are not aware of any work that offers a 
comprehensive evaluation of all available techniques. The 2D study 
of Qardaji et al. [22] only compares H

b against IDENTITY. A sec­
ond work by Qardaji et al. [21] compare their proposed algorithms 
with four techniques from the literature, and so is not as compre­
hensive as our study here. Li et al. [15] which appeared later did 
not compare to [21]. Thus, another gap in the literature is a clear 
picture of the state of the art for 2D. 

Finally, we highlight key findings regarding the algorithmic strate­
gies discussed in Section 3.1. For hierarchical aggregation, Qardaji 
et al. [22] carefully consider the effect of domain size and show 
that hierarchies can achieve significantly lower error than “flat” ap­
proaches like IDENTITY but only when the domain size is suffi­
ciently large. Further, the minimum domain size increases expo­
nentially with dimensionality. It must be at least 45 for 1D; at least 
64

2 for 2D, and at least 1213 for 3D. For the data-dependent strat­
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egy of partitioning, a number of works show that it leads to low 
error for some datasets [1,4,15,21,26,27,29]; however, we are not 
aware of any work that characterizes precisely when it improves 
upon data-independent techniques. 

In summary, the existing literature has shown that data-dependent 
algorithms can sometimes do well and that domain size is an im­
portant factor in algorithm performance. However, it has not clar­
ified whether the best data-dependent algorithms can consistently 
outperform data-independent algorithms, and also leaves open the 
question of what factors, beyond domain size, affect performance. 

4. EVALUATION PRINCIPLES 
In this section we present fundamental principles that our evalu­

ation framework DPBENCH (see Section 5) is based on. These are 
principles that are often not followed in prior work, and when un­
heeded, can result in (a) gaps/incomplete understanding of the per­
formance of differentially private algorithms, or (b) unfair compari­
son of algorithms. Our principles are categorized into three classes: 
diversity of inputs, end-to-end private algorithms and sound evalu­
ation of outputs. 

4.1 Diversity of Inputs 
The first set of principles pertain to key inputs to the algorithm: 

the private data vector x and the differential privacy parameter ✏. 
The intent of the principles is to ensure that algorithms are evalu­
ated across a diverse set of inputs in order to provide a data owner 
with a comprehensive picture of algorithm performance. Almost 
all work adheres to Principle 1, but we state it for completeness. 

PRINCIPLE 1 (✏ DIVERSITY). Evaluate algorithms under dif­
ferent ✏ values. 

In addition, most empirical work compares algorithms on several 
datasets. We identify three critical characteristics of the dataset – 
domain size, scale, and shape, as described in Section 2.2 – each 
of which significantly impacts the behavior of privacy algorithms. 
A novelty of our evaluation approach is to study the sensitivity of 
algorithm error to each of these properties (while holding the other 
two constant). 

PRINCIPLE 2 (SCALE DIVERSITY). Evaluate algorithms us­
ing datasets of varying scales. 

PRINCIPLE 3 (SHAPE DIVERSITY). Evaluate algorithms us­
ing datasets of varying shapes. 

PRINCIPLE 4 (DOMAIN SIZE DIVERSITY). Evaluate algor­
ithms using datasets (and workloads) defined over varying domain 
sizes. 

We cannot anticipate in advance what dataset the algorithm might 
be run on, and what settings of ✏ a data owner may select. A sound 
evaluation should be able to predict algorithm performance on as 
many values of ✏, scale, shape and domain size as possible. This is 
especially important for data-dependent algorithms as their perfor­
mance changes not only quantitatively but also qualitatively when 
changing these settings. 

Our empirical comparisons of differentially private algorithms 
for range queries (Section 7), in both the one- and two-dimensional 
cases, show that the algorithms offering least error vary depending 
on the values of ✏, scale, shape, and domain size. Because cur­
rent algorithms offer no clear winner, evaluation on diverse inputs 
remains very important. 

Remarks on Prior Work. Empirical evaluations in prior work 
only compared algorithms on a single shape (e.g., [4, 26]), or a 
single domain size (e.g., [15]), or on multiple datasets without con­
trolling for each of the input characteristics (e.g. [1,10,15,27,29]). 
These result in some of the gaps/inconsistencies in algorithm per­
formance discussed in Section 3.2. 

4.2 End-to-End Private Algorithms 
The next three principles require that algorithms provide equiva­

lent privacy guarantees to ensure fair comparisons. While all pub­
lished algorithms include a proof of differential privacy, some ac­
tions taken during deployment or evaluation of the algorithm can 
undermine that guarantee in subtle ways. 

PRINCIPLE 5 (PRIVATE PRE- AND POST-PROCESSING). Any 
computation on the input dataset must be accounted for in the over­
all privacy guarantee of the algorithm being evaluated. 

Any computation that comes before or after the execution of the 
private algorithm must also be considered in the analysis of privacy. 
This includes pre-processing steps such as data cleaning as well as 
any post-processing (e.g., selecting the “best” output from among a 
set of outputs). If necessary, a portion of the user’s ✏ privacy budget 
can be devoted to these tasks. 

PRINCIPLE 6 (NO FREE PARAMETERS). Include in every al­
gorithm definition a data-independent or differentially private meth­
od for setting each required parameter. 

An important special case of preprocessing is parameter selec­
tion. Many published algorithms have additional parameters (be­
yond ✏) whose setting can have a large impact on the algorithm’s 
behavior. Borrowing a notion from physics, a parameter is con­
sidered free if it can be adjusted to fit the data – in other words, 
the value of the parameter that optimizes algorithm performance is 
data-dependent. Free parameters are problematic if they are later 
set by tuning them to the input data. In a production environment, 
it risks violating the differential privacy guarantee. In a research 
environment, it may impede a fair evaluation of algorithm perfor­
mance, as some algorithms may be more sensitive to tuning than 
others. A principled methodology of parameter tuning is proposed 
in Section 5.2 and evaluated in Section 7.3. 

PRINCIPLE 7 (KNOWLEDGE OF SIDE INFORMATION). Use 
public knowledge of side information about the input dataset (e.g., 
scale) consistently across algorithms. 

Some algorithms assume that certain properties of the input dataset 
(e.g., scale) are considered public and use this during the execution 
of the algorithm. Other algorithms do not use this information, or 
allocate some privacy budget to estimate it, leading to inconsistent 
comparisons. In general, if the availability of “side information” is 
not accounted for properly, it can weaken the privacy guarantee. 

Remarks on Prior Work. Some work on differentially private 
machine learning pre-processes the input dataset using non-private 
data transformation algorithms [3, 9]. In other work, parameters 
were tuned on the same datasets on which the algorithm’s perfor­
mance is later evaluated [4, 10, 24, 27, 29]. Moreover, a few algo­
rithms [10, 21, 27] assume that the scale of the dataset is known. 

4.3 Sound Evaluation of Outputs 
The last four principles pertain to algorithm evaluation. 

PRINCIPLE 8 (MEASUREMENT OF VARIABILITY). Algorithm 
output should be evaluated by expected error as well as a measure 
of error variability. 
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The error of a differentially private algorithm is a random vari­
able. Most evaluations report its expectation or estimate it empiri­
cally. However, when the algorithm is deployed, a user will apply 
it to private data and receive a single output. Thus, it is also im­
portant to measure variability of error around its expectation. Note 
that this is different from reporting error bars representing standard 
error, which measures the uncertainty in the estimate of mean error 
and shrinks with increasing trials. Instead, we want to measure how 
much the error of any single output might deviate from the mean. 

PRINCIPLE 9 (MEASUREMENT OF BIAS). Algorithm output 
should be evaluated for bias in the answer. 

In addition to the expected error, a sound evaluation should also 
check whether the algorithm’s output is biased. For instance, the 
Laplace mechanism is unbiased; i.e., the expected value of the out­
put of the Laplace mechanism is equal to the original input. An 
attractive property of unbiased algorithms like the Laplace mecha­
nism is that they are consistent – as ✏ tends to ∞, the error tends 
to 0. Recent data-dependent algorithms incur less error than the 
Laplace mechanism by introducing some bias in the output. Under­
standing the bias is important; we show in this paper (Section 7.4) 
that some algorithms incur a bias (and therefore incur error) even 
when ✏ tends to infinity. 

PRINCIPLE 10 (REASONABLE PRIVACY AND UTILITY). 
Evaluate algorithms for input settings that result in reasonable pri­
vacy and utility. 

Under extreme settings of the input parameters, one algorithm 
may outperform another, but both algorithms may produce useless 
results. Similarly, it is not meaningful to make relative comparisons 
of algorithm performance when a reasonable privacy guarantee is 
not offered. 

Remarks on Prior Work. Almost all prior empirical work on 
differential privacy (with the exception of those that prove theoret­
ical bounds on the error in terms of (↵, �)-usefulness [2]) focus on 
mean error and not its variability. Algorithm bias is seldom ana­
lyzed. While most algorithms are explicitly compared to a baseline 
like IDENTITY ( [4] is an exception), none of algorithms have been 
compared with a data-dependent baseline like UNIFORM. 

5. DPBENCH EVALUATION FRAMEWORK 
In this section, we describe DPBENCH, a framework for evaluat­

ing the accuracy of differentially private algorithms. DPBENCH’s 
goal is to formulate a set of standards for empirical evaluation that 
adhere to the principles from Section 4. The framework can be ap­
plied to a number of analysis tasks. Because different analysis tasks 
require the use of disparate algorithms, it is necessary to instanti­
ate distinct benchmarks for each kind of task.1 DPBENCH aims to 
provide a common framework for developing these benchmarks. 

We define a benchmark as a 9-tuple {T , W, D, M, L, G, R, E
M ,E

I }. T denotes the task that the benchmark is associated with. W 
denotes the set of query workloads that are representative for the 
task T . For instance, if T is the task of “answering one-dimensional 
range queries”, W could contain a workload of random range queries. 
Note that one could use more than one workload to evaluate algo­
rithms for a task. Evaluating differentially private algorithms is 
typically done on publicly available datasets, which we refer to as 
a source data instance I . D denotes a set of such source datasets. 
1This is akin to the various TPC benchmarks for evaluating 
database performance. 

M lists the set of algorithms that are compared by the benchmark. L denotes loss functions that are used to measure the error (or dis­
tance) between y = Wx, the true answer to a workload, and ŷ, the 
output of a differentially private algorithm in M. An example of 
a loss function that we will consistently use in this paper is the L2 

norm of the difference between y and ŷ; i.e. error is �Wx − ŷ�2. 
We call W, D, M and L task specific components of a DP­

BENCH benchmark, since they vary depending on the task under 
consideration. We discuss them in detail in Section 6. On the 
other hand the remaining components G, R, E

M , EI are task inde­
pendent, and help benchmarks to adhere to the principles in Sec­
tion 4. G is a data generator that ensures diversity of inputs (Prin­
ciples 1 to 4). R defines a set of algorithm repair functions that en­
sure that the algorithms being evaluated satisfy end-to-end privacy 
(Principles 5 to 7). In particular, DPBENCH provides a technique 
to automatically train free parameters of an algorithm. E

M andE
I denote standards for measuring and interpreting empirical error. 

These help adhere to Principles 8 to 10 by explicitly defining stan­
dards for measuring variation and bias, declaring winners among 
algorithms, and defining baselines for interpreting error. Next, we 
describe these in detail, and on the way define two novel theoretical 
properties scale-epsilon exchangeability and consistency. 

5.1 Data Generator G 
Let I ∈ D be a source dataset with true domain D

I = (A1 × 
. . .A

k

) and true scale s
I . The data generator G takes as input a 

scale m, and a new domain D, which may be constructed by (i) 
considering a subset of attributes B, and (ii) coarsening the domain 
of attributes in B. Note that m and D are possibly different from the 
true scale s

I and domain D
I . G outputs a new data vector x with 

the new scale m and new domain D as follows. First, G computes 
a histogram x ′ of counts on the new domain based on I . Then, G′ normalizes x by its true scale to isolate the shape p of the source 
data on the new domain D. G generates x by sampling m times 
(with replacement) from p. If we set the desired scale to the true 
scale s

I we will generate a data vector x that is approximately the 
same as the original (modulo sampling differences). 

The output vector x of G is used as input to the privacy algo­
rithms. Diversity of scale (Principle 2) is achieved by varying m. 
Diversity of domain size (Principle 4) is achieved by varying D. 
Shape is primarily determined by I but also impacted by the do­
main definition, D, so diversity of shape (Principle 3) requires a 
variety of source datasets and coordinated domain selection. 

The data generator G outputs datasets that help evaluate algo­
rithms on each of the data characteristics shape, scale and domain 
size while keeping the other two properties constant. Without such 
a data generator, the effects of shape and scale on algorithm er­
ror can’t be distinguished, thus prior work was unable to correctly 
identify features of datasets that impacted error. For a fixed shape, 
increasing scale offers a stronger “signal” about the underlying 
properties of the data. In addition, this sampling strategy always 
results in datasets with integral counts (simply multiplying the dis­
tribution by some scale factor may not). 

5.2 Algorithm Repair Functions R 

While automatically verifying whether an algorithm performs 
pre- or post-processing that violates differential privacy is out of 
the scope of this benchmark, we discuss two repair functions to 
help adhere to the free parameters and side information principles 
(Principles 6 and 7, respectively). 

Learning Free Parameter Settings R
param

. We present a 
first cut solution to handling free parameters. Let K

✓ denote a pri­
vate algorithm K instantiated with a vector of free parameters ✓. 
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We use a separate set of datasets to tune these parameters; these 
datasets will not be used in the evaluation. Given a set of training 
datasets D

train

, we apply data generator G and learn a function 
R

param ∶ (✏, �x� , n) → ✓ that given ✏, scale, and the domain 1 
size, outputs parameters ✓ that result in the lowest error for the 
algorithm. Given this function, the benchmark extends the algo­
rithm by adaptively selecting parameter settings based on scale and 
epsilon. If the parameter setting depends on scale, a part of the pri­
vacy budget is spent estimating scale, and this introduces a new free 
parameter, namely the budget spent for estimating scale. The best 
setting for this parameter can also be learned in a similar manner. 

Side Information R
side

. Algorithms which use non-private side 
information can typically be corrected by devoting a portion of the 
privacy budget to learning the required side information, then us­
ing the noisy value in place of the side information. This process is 
difficult to automate but may be possible with program analysis in 
some cases. This has the side-effect of introducing a new parame­
ter which determines the fraction of the privacy budget to devote to 
this component of the algorithm, which in turn can be set using our 
learning algorithm (described above). 

5.3 Standards for Measuring Error E
M 

Error. DPBENCH uses scaled average per-query error to quan­
tify an algorithm’s error on a workload. 

DEFINITION 3 (SCALED AVERAGE PER-QUERY ERROR). Let 
W be a workload of q queries, x a data vector and s = �x�1 its 
scale. Let ŷ = K(x, W, ✏) denote the noisy output of algorithm K. 
Given a loss function L, we define scale average per-query error as 
1 
L(ŷ, Wx). 

s⋅q 

By reporting scaled error, we avoid considering a fixed abso­
lute error rate to be equivalent on a small scale dataset and a large 
scale dataset. For example, for a given workload query, an absolute 
error of 100 on a dataset of scale 1000 has very different implica­
tions than an absolute error of 100 for a dataset with scale 100,000. 
In our scaled terms, these absolute errors would be clearly distin­
guished as 0.1 and 0.001 scaled error. Accordingly, scaled error can 
be interpreted in terms of population percentages. Using scaled er­
ror also helps us define the scale-epsilon exchangeability property 
in Section 5.5. 

Considering per-query error allows us to compare the error on 
different workloads of potentially different sizes. For instance, 
when examining the effect of domain size n on the accuracy of 
algorithms answering the identity workload, the number of queries 
q equals n and hence would vary as n varies. 

Measuring Error. The error measure (Definition 3) is a random 
variable. We can estimate properties such as their mean and vari­
ance through repeated executions of the algorithm. In addition to 
comparing algorithms using mean error, DPBENCH also compares 
algorithms based on the 95 percentile of the error. This takes into 
account the variability in the error (adhering to Principle 8) and 
might be an appropriate measure for a “risk averse” analyst who 
prefers an algorithm with reliable performance over an algorithm 
that has lower mean performance but is more volatile. Means and 
95 percentile error values are computed on multiple independent 
repetitions of the algorithm over multiple samples x drawn from 
the data generator to ensure high confidence estimates. 

DPBENCH also identifies algorithms that are competitive for 
state-of-the-art performance for each setting of scale, shape and do­
main size. An algorithm is competitive if it either (i) achieves the 
lowest error, or (ii) the difference between its error and the lowest 

error is not statistically significant. Significance is assessed using a 
unpaired t-test with a Bonferroni corrected ↵ = 0.05�(n

algs − 1), 
for running (n

algs − 1) tests in parallel. n
algs denotes the num­

ber of algorithms being compared. Competitive algorithms can be 
chosen both based on mean error (a “risk neutral” analyst) and 95 
percentile error (a “risk averse” analyst). 

5.4 Standards for Interpreting Error E
I 

When drawing conclusions from experimental results, Princi­
ple 10 should be respected. One way to assess reasonable utility 
is by comparing with appropriate baselines. 

We use IDENTITY and UNIFORM (described in Section 3.1) as 
upper-bound baselines. Since IDENTITY is a straightforward appli­
cation of the Laplace mechanism, we expect a more sophisticated 
algorithm to provide a substantial benefit over the error achievable 
with IDENTITY. Similarly, UNIFORM learns very little about x, 
only its scale. An algorithm that offers error rates comparable or 
worse than UNIFORM is unlikely to provide useful information in 
practical settings. Note that there might be a few settings where 
these baselines can’t be beaten (e.g., when shape of x is indeed 
uniform). However, an algorithm should be able to beat these base­
lines in a majority of settings. 

5.5 Scale Epsilon Exchangeability 
We describe next a novel property of most algorithms due to 

which increasing ✏ and scale both have an equivalent effect on al­
gorithm error. We say an algorithm is scale-epsilon exchangeable if 
increasing scale by a multiplicative factor c has a precisely equiv­
alent effect, on the scaled error, as increasing epsilon by a factor 
of c. Exchangeability has an intuitive meaning: to get better ac­
curacy from an exchangeable algorithm, a user can either acquire 
more data or, equivalently, find a way to increase their privacy bud­
get. Moreover, for such algorithms, diversity of scale (Principle 2) 
implies diversity of ✏ (Principle 1). 

DEFINITION 4 (SCALE-EPSILON EXCHANGEABILITY). Let p 
be a shape and W a workload. If x1 = m1p and x2 = m2p, then 
algorithm K is scale-epsilon exchangeable if error(K(x1, W, ✏1)) = 
error(K(x2, W, ✏2)) whenever ✏1m1 = ✏2m2. 

We prove in Appendix C that all but one of the algorithms we 
evaluate in this paper are scale-epsilon exchangeable. The excep­
tion is SF [27], which is not exchangeable but empirically behaves 
so. An important side-effect of this insight is that in empirical eval­
uations one can equivalently vary scale rather than ✏ if the algorithm 
is proven to satisfy scale-✏ exchangeability. 

5.6 Consistency 
As ✏ increases, the privacy guarantee weakens. A desirable prop­

erty of a differential privacy algorithm is that its error decreases 
with increasing ✏ and ultimately disappears as ✏ → ∞. We call 
this property consistency. Algorithms that are not consistent are 
inherently biased. 

DEFINITION 5 (CONSISTENCY). An algorithm satisfies con­
sistency if the error for answering any workload tends to zero as ✏ 
tends to infinity. 

6. EXPERIMENTAL SETUP 
In this section we use our benchmark framework to define con­

crete benchmarks for 1- and 2-D range queries. For each bench­
mark, we precisely describe the task-specific components of the 
benchmark (D, W, M, L), namely the datasets, workloads, algo­
rithms and loss functions with the goal of providing a reproducible 
standard of evaluation. Experimental results appear in Section 7. 
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Dataset name Original 
Scale 

% Zero 
Counts 

Previous 
works 

1D datasets 
ADULT 32,558 97.80% [10, 15] 
HEPPH 347,414 21.17% [15] 
INCOME 20,787,122 44.97% [15] 
MEDCOST 9,415 74.80% [15] 
TRACE 25,714 96.61% [1, 11, 27, 29] 
PATENT 27,948,226 6.20% [15] 
SEARCH 335,889 51.03% [1, 11, 27, 29] 
BIDS-FJ 1,901,799 0% new 
BIDS-FM 2,126,344 0% new 
BIDS-ALL 7,655,502 0% new 
MD-SAL 135,727 83.12% new 
MD-SAL-FA 100,534 83.17% new 
LC-REQ-F1 3,737,472 61.57% new 
LC-REQ-F2 198,045 67.69% new 
LC-REQ-ALL 3,999,425 60.15% new 
LC-DTIR-F1 3,336,740 0% new 
LC-DTIR-F2 189,827 11.91% new 
LC-DTIR-ALL 3,589,119 0% new 
2D datasets 
BJ-CABS-S 4268780 78.17% [12] 
BJ-CABS-E 4268780 76.83% [12] 
GOWALLA 6442863 88.92% [21] 
ADULT-2D 32561 99.30% [10] 
SF-CABS-S 464040 95.04% [20] 
SF-CABS-E 464040 97.31% [20] 
MD-SAL-2D 70526 97.89% new 
LC-2D 550559 92.66% new 
STROKE 19435 79.02% new 

Table 2: Overview of datasets. 

6.1 Datasets 
Table 2 is an overview of the datasets we consider. 11 of the 

datasets have been used to evaluate private algorithms in prior work. 
We have introduced 14 new datasets to increase shape diversity. 
Datasets are described in Appendix A. The table reports the original 
scale of each dataset. We use the data generator G described before 
to generate datasets with scales of {103 

, 104 
, 105 

, 106 
, 107 

, 108}. 
The maximum domain size is 4096 for 1D datasets and 256×256 

for 2D datasets. The table also reports the fraction of cells in x that 
have a count of zero at this domain size. By grouping adjacent 
buckets, we derive versions of each dataset with smaller domain 
sizes. For 1D, the domain sizes are {256, 512, 1024, 2048}; for 
2D, they are {32 × 32, 64 × 64, 128 × 128, 256 × 256}. 

For each scale and domain size, we randomly sample 5 data vec­
tors from our data generator and for each data vector, we run the 
algorithms 10 times. 

6.2 Workloads & Loss Functions 
We evaluate our algorithms on different workloads of range quer­

ies. For 1D, we primarily use the Prefix workload, which consists 
of n range queries [1, i] for each i ∈ [1, n]. The Prefix workload 
has the desirable property that any range query can be derived by 
combining the answers to exactly two queries from Prefix. For 2D, 
we use 2000 random range queries as an approximation of the set 
of all range queries. 

As mentioned in Section 5, we use L2 as the loss function. 

6.3 Algorithms 
The algorithms compared are listed in Table 1. The dimension 

column indicates what dimensionalities the algorithm can support; 
algorithms labeled as Multi-D are included in both experiments. 
Complete descriptions of algorithms appear in Appendix B. 

6.4 Resolving End-to-End Privacy Violations 
Inconsistent side information: Recall that Principle 7 prevents the 
inappropriate use of private side information by an algorithm. SF, 

MWEM, UGRID, and AGRID assume the true scale of the dataset 
is known. To gauge any potential advantage gained from side in­
formation, we evaluated algorithm variants where a portion of the 
privacy budget, denoted ⇢

total

, is used to noisily estimate the scale. 
To set ⇢

total

, we evaluated the algorithms on synthetic data using 
varying values of ⇢

total

. In results not shown, we find that set­
ting ⇢

total = 0.05 achieves reasonable performance. For the most 
part, the effect is modestly increased error (presumably due to the 
reduced privacy budget available to the algorithm). However, the 
error rate of MWEM increases significantly at small scales (sug­
gesting it is benefiting from side information). In Section 7, all 
results report performance of the original unmodified algorithms. 
While this gives a slight advantage to algorithms that use side infor­
mation, it also faithfully represents the original algorithm design. 

Illegal parameter setting Table 1 shows all the parameters used 
for each algorithm. Parameters with assignments have been set ac­
cording to fixed values provided by the authors of the algorithm. 
Those without assignments are free parameters that were set in 
prior work in violation of Principle 6. 

For MWEM, the number of rounds T is a free variable that has 
a major impact on MWEM’s error. According to a pre-print ver­
sion of [10], the best performing value of T is used for each task 
considered. For the one-dimensional range query task considered, 
T is set to 10. Similarly, for AHP, two parameters are left free: ⌘ 
and ⇢ which were tuned on the input data. 

To adhere to Principle 6, we use the learning algorithm for setting 
free parameters (Section 5.2) to set free parameters for MWEM 
and AHP. In our experiments, the extended versions of the algo­
rithms are denoted MWEM ∗ and AHP ∗ . In both cases, we train 
on shape distributions synthetically generated from power law and 
normal distributions. 

For MWEM ∗ , we determine experimentally the optimal T ∈[1, 200] for a range of ✏-scale products. As a result, T varies 
from 2 to 100 over the range of scales we consider. This improves 
the performance of MWEM (versus a static setting of T ) and does 
not violate our principles for private parameter setting. The suc­
cess of this method is an example of data-independent parameter 
setting. 

SF requires three parameters: ⇢, k, F . Parameter F is free only 
in the sense that it is a function of scale, which is side information 
(as discussed above). For k, the authors propose a recommendation 
of k = � n � after evaluating various k on input datasets. Their eval­

10 
uation, therefore, did not adhere to Principle 6. However, because 
our evaluation uses different datasets, we can adopt their recom­
mendation without violating Principle 6 – in effect, their experi­
ment serves as a “training phase” for ours. Finally, ⇢ is a function 
of k and F , and thus is no longer free once those are fixed. 

6.5 Implementation Details 
We use implementations from the authors for DAWA, GREEDY H, 

H, PHP, EFPA, and SF. We implemented MWEM, H
b

, PRIVELET, 
AHP, DPCUBE, AGRID, UGRID and QUADTREE ourselves in 
Python. All experiments are conducted on Linux machines running 
CentOS 2.6.32 (64-bit) with 16 Intel(R) Xeon(R) CPU E5-2643 0 
@ 3.30GHz with 16G or 24G of RAM. 

7. EXPERIMENTAL FINDINGS 
We present our findings for the 1D and 2D settings. For the 1D 

case, we evaluated 14 algorithms on 18 different datasets, each at 6 
different scales and 4 different domain sizes. For 2D, we evaluated 
14 algorithms on 9 different datasets, each at 6 scales and 4 domain 
sizes. In total we evaluated 7,920 different experimental configu­
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rations. The total computational time was ≈ 22 days of single core 
computation. Given space constraints, we present a subset of the 
experiments that illustrate key findings. 

In results not shown, we compare the error of data-independent 
algorithms (H

b

, GREEDY H, H, PRIVELET, IDENTITY) on various 
range query workloads. The error of these algorithms is, of course, 
independent of the input data distribution, and the absolute error is 
independent of scale. (Or, in scaled-error terms, it diminishes pre­
dictably with increasing scale for all algorithms). The error for this 
class of techniques is well-understood because it is more amenable 
to analysis than data-dependent techniques. In order to simplify the 
presentation of subsequent results, we restrict our attention to two 
data-independent algorithms: IDENTITY, which is a useful base­
line, and H

b

, which is the best performing data-independent tech­
nique for 1D and 2D range query workloads with larger ranges. 

7.1 Impact of Input Properties on Performance 
As advocated in Principles 1 to 4, we now systematically ex­

amine the key properties of algorithm input that can affect perfor­
mance: scale, domain size, shape, and ✏. To aid in readability of 
figures, we report mean error without error bars but discuss vari­
ability over trials in detail in Section 7.4. 
Scale: Figs. 1a and 1b compare algorithm performance at a fixed 
epsilon (✏ = 0.1) and increasing scales. Because of the scale-
epsilon exchangeability property (Definition 4), which almost all 
algorithms satisfy,2 the figures look identical if we fix scale and 
show increasing ✏. For example, the first panel of Fig. 1a reports 
error for scale=1000 and ✏ = .1 but the plotted error rates and re­
lationships are identical to those for scale=10, 000 and ✏ = .01, 
scale=100,000 and ✏ = .001, etc. Figs. 1a and 1b also capture vari­
ation across datasets (each black dot is the error of an algorithm 
on a particular dataset at the given scale; the white diamond is the 
algorithm’s error averaged over all datasets). 

FINDING 1 (BENEFITS OF DATA-DEPENDENCE). Data-dep­
endence can offer significant improvements in error, especially at 
smaller scales or lower epsilon values. 

The figures show that at small scales, almost all data-dependent 
algorithms outperform the best data-independent algorithm, H

b

, on 
at least one dataset (black dot), sometimes by an order of mag­
nitude. Further, the best data-dependent algorithms beat the best 
data-independent algorithms on average across all datasets (white 
diamonds), often by a significant margin. (For 1D, at the smallest 
scale, it is as much as a factor of 2.47; for 2D, it is up to a factor of 
3.10.) 

FINDING 2 (PENALTY OF DATA DEPENDENCE). Some data-
dependent algorithms break down at larger scales (or higher ✏). 

Despite the good performance of data-dependent algorithms at 
small scales, at moderate or larger scales, many data-dependent al­
gorithms have error significantly larger than IDENTITY, the data-
independent baseline, which indicates quite disappointing perfor­
mance. Even for the best data-dependent methods, the compara­
tive advantage of data-dependence decreases and, for the most part, 
eventually disappears as scale increases. At the largest scales in 
both 1D and 2D, almost all data-dependent algorithms are beaten 
by H

b

. At these scales, the only algorithms to beat H
b are DAWA 

and AHP ∗ . In the 1D case, this only happens on a couple of 
datasets; in the 2D case, it happens on about half the datasets. 
Shape: In Figs. 1a and 1b, the effect of shape is evident in the 
spread of black dots for a given algorithm. 
2SF is not exchangeable, but it empirically behaves so. 

FINDING 3 (VARIATION OF ERROR WITH DATA SHAPE). 
Algorithm error varies significantly with dataset shape, even for a 
fixed scale, and algorithms differ on the dataset shapes on which 
they perform well. 

Even when we control for scale, each data-dependent algorithm 
displays significant variation of error across datasets. In the 1D 
case (Fig. 1a) at the smallest scale, EFPA’s error varies by a factor 
of 24.88 from lowest error to highest. Across all scales, algorithms 
like MWEM, MWEM ∗ , PHP, EFPA, and AHP ∗ show signifi­
cantly different error rates across shape. SF and DAWA offer the 
lowest variation across dataset shapes. In the 2D case (Fig. 1b), we 
also see significant variation at all scales. (Interestingly, DAWA 
exhibits high variation in 2D.) 

While Figs. 1a and 1b show variation, one cannot compare al­
gorithms across shapes. To do that, we use Figs. 2a and 2b, where 
scale is fixed and shape is varied. (For readability, we show only a 
subset of algorithms as explained in the caption for Fig. 2.) These 
figures show that the comparative performance of algorithms varies 
across shape. Fig. 2a shows that four different algorithms achieve 
the lowest error on some shape. In addition, a dataset that is “easy” 
for one algorithm appears “hard” for another: witness EFPA is 
able to exploit the shape of BIDS-ALL yet suffers on TRACE; the 
opposite is true for MWEM. In Fig. 2b, the shapes where DAWA 
performs poorly, AGRID does quite well. These results suggest that 
data-dependent algorithms are exploiting different properties of the 
dataset. 

The unpredictable performance across data shape is a challenge 
in deployment scenarios because privacy algorithms cannot be se­
lected by looking at the input data and because data-dependent al­
gorithms rarely come with public error bounds. We discuss these 
issues further in Section 8. 
Domain Size: Fig. 2c shows the effect of domain size for the 2D 
case. For two datasets (ADULT-2D and BJ-CABS-E) at two differ­
ent scales (104 and 106), it reports error for domain sizes varying 
from 32 × 32 to 256 × 256. 

FINDING 4 (DIFFERENT DOMAIN SIZE EFFECT). Domain size 
affects data-dependent algorithms differently than data-independent 
algorithms. 

As discussed in [22], the error of data-independent algorithms 
IDENTITY and H

b is expected to increase with domain size, and 
at sufficiently large domains, H

b should achieve lower error than 
IDENTITY. Those effects are confirmed in Fig. 2c. However, the 
data-dependent algorithms exhibit different behavior. AGRID’s er­
ror is nearly flat across domain size. This makes sense because the 
grid size is selected independent of domain size. DAWA’s error 
is flat for some datasets but for others, it increases with domain 
size. DAWA selects a partition based on the data shape: for some 
shapes, the partition selected may grow increasingly fine-grained 
with domain size. 

7.2 Assessment of State of the Art 
Tables 3a and 3b show the number of datasets for which an al­

gorithm is competitive for a given scale. We determine which algo­
rithms are competitive by accounting for the variability in the mean 
error using t-tests (as discussed in Section 5.4). 

FINDING 5 (COMPETITIVE ALGORITHMS). No single algo­
rithm offers uniformly low error. At small scales, data-dependent 
algorithms dominate; at large scales data-independent algorithms 
dominate. 

There is no algorithm that dominates all others by offering uni­
formly lower error. For 1D, 8 algorithms are competitive for at 
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ALGORITHM ALGORITHM 

(a) 1D case: domain=4096, workload=Prefix (b) 2D case: domain=128x128, workload=2000 random range queries 

Figure 1: These figures show how average error rates of algorithms vary across the datasets described in Table 2, for both the 1D case (a) 
and 2D case (b). Each black dot (●) corresponds to average error for one dataset; white diamonds (◇) correspond to the mean error over all 

datasets. Horizontal lines are used to emphasize the error rates of the best and worst data-independent algorithms. 

Scale 
103 105 107 

DAWA 8 17 3 
H

b 

MWEM ∗ 15 
14 16 

EFPA 4 2 
PHP 2 
MWEM 3 
UNIFORM 

AHP ∗ 
3 

1 

Scale 
104 106 108 

DAWA 5 3 5 
AGRID 5 6 
H

b 4 
QUADTREE 4 
AHP 1 

(b) 2D case for domain size 

To demonstrate the sensitivity of performance to parameter set­
tings, we ran AHP, DAWA, and MWEM under several different 
scenarios (i.e., 1D datasets of varying scale and shape) and found 
settings of their respective parameters that were optimal for some 
scenario (i.e., achieved lowest error on some 1D dataset at some 
scale). Then for a particular 1D dataset, MEDCOST, at a scale of 
10

5, we measure the lowest error and the highest error achieved, 
considering only those parameter settings that were optimal for 

(a) 1D case for domain size 4096 128 × 128. 

Table 3: Tables show the number of datasets on which algorithms 
are competitive, based on statistical significance of mean error. 

least one combination of scale and shape; for 2D, 5 algorithms are 
competitive. At small scales for both 1D and 2D, the competitive 
algorithms are all data-dependent. At the largest scales, the only 
truly data-dependent algorithms are DAWA and AHP ∗ (in the 2D 
case, QUADTREE is effectively data-independent at this domain 
size because the leaves of the tree are individual cells). 

While no algorithm universally dominates across settings, DAWA 
offers the best overall performance in the following sense. We 
compare the error experienced by a user who selects a single al­
gorithm to run on all datasets and scales to the error experienced 
by a user with access to an oracle allowing them to select the opti­
mal algorithm (which would vary among the algorithms mentioned 
above on a case-by-case basis). We compute the ratio of errors per 
dataset/scale and then compute the average ratio, using a geometric 
mean. We call this measure “regret.” DAWA has a regret of 1.32 on 
1D and 1.73 on 2D. No single algorithm achieves lower regret (the 

some scenario. All three algorithms are significantly impacted by 
the choice of parameters. Errors can be 2.5x (for DAWA) and 
around 7.5x (for MWEM and AHP) larger using sub-optimal pa­
rameters (even though those same parameters were in fact optimal 
for other reasonable inputs). 

We proposed a method (Section 6.4) for setting free parameters 
in a manner consistent with Principle 6 and for removing depen­
dence on side information (Principle 7). We applied this procedure 
to MWEM and AHP– violators of Principle 6 – to yield MWEM ∗ 

and AHP ∗ respectively. We report our results for the 1D case. 

FINDING 7 (IMPROVED MWEM). Training on synthetic data 
to decide free parameters (described in Section 6.4) leads to signif­
icant performance improvements for MWEM, especially at large 
scales. 

Scale 10

3 
10

4 
10

5 
10

6 
10

7 
10

8 

Error ratio 1.799 .951 1.063 5.166 12.000 27.875 

next best on 1D is H
b with regret of 1.51 and on 2D it is AGRID 

with regret of 1.90). 

7.3 Tuning Free Parameters 

FINDING 6 (IMPROPER TUNING SKEWS EVALUATION). For 
some algorithms tuning free parameters to fit the data can reduce 
error substantially, in some cases by a factor larger than 7.5. 

Ratio of error (MWEM�MWEM ∗ ), average all datasets 

The reason for this improved performance is that a stronger sig­
nal (here higher scale; equivalently higher epsilon) allows MWEM 
to benefit from a higher number of rounds because a larger number 
measurements can be taken with reasonable accuracy. The training 
procedure, even with a single synthetic dataset, can help to find the 
right relationship between the scale-epsilon product and T . Since 
our method for setting T does not depend on the input data, this 
result shows that T can be set profitably in a data-independent way. 
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(c) Error variation with 2D domain size 
(a) Error by shape (1D, scale= 103, domain (b) Error by shape (2D, scale= 104,domain (scale∈ {104 , 106},
 

size= 4096) size= 128 × 128) shape∈ {ADULT-2D,BJ-CABS-E})
 
Figure 2: Error variation with data shape (1D and 2D cases) and domain size (2D case, for two shapes and two scales). The only algorithms 

shown are baselines, H
b

, and those data-dependent algorithms that were competitive (on some dataset) for the scales shown. 

This result also shows that we can cope with the removal of side 
information of scale without a significant impact on error. 

For AHP, we applied our training method to determine parame­
ters ⌘ and ⇢. We compare the performance of AHP ∗ against AHP 
using one of the several parameters settings used in [29]. At smaller 
scales, the error rates of both algorithms were similar. At larger 
scales, the results were mixed: one some datasets AHP ∗ outper­
formed the fixed setting but on others vice versa. On average, over 
all datasets, AHP ∗ was slightly better, with a ratio of improvement 
of 1.03 at scale 107. This shows that parameter tuning for AHP is 
more sensitive to shape and that it may be worth using a portion of 
the privacy budget to derive parameters. 

7.4 Measurement of Variability and Bias 
FINDING 8 (RISK AVERSE ALGORITHM EVALUATION). 

Algorithms differ in the variation in error. The algorithm with low­
est mean error may not be preferred by a risk averse user. 

In a real deployment scenario, a user will receive the output of a 
single run of the algorithm. Thus, she has no opportunity to reliably 
achieve mean error rates if error rates vary considerably around the 
mean. We are not aware of any prior work that has considered this 
issue in empirical algorithm evaluation. 

While a risk-neutral user may evaluate algorithms with respect 
to mean error, a risk averse user should evaluate algorithms with 
respect to error rates she is very likely to achieve. Therefore, for 
the risk averse user, we consider the 95th percentile error rate (i.e. 
the error rate X for which 95% of trials have error less that X). 

In most cases algorithms that are the best according to mean error 
are also the best according to 95th percentile error. In 1D, we see 
that DAWA has high variability in error and hence in ten scenarios 
(i.e., 10 scale-shape pairs at domain size 4096), we see DAWA 
being the best under mean error but not under 95% error. We see 
three scenarios (PATENT at scale 103, MD-SAL at scale 105 and 
TRACE at scale 107, all at domain size 4096) where an algorithm 
that was not competitive under mean error has the least 95% error. 
That algorithm was either UNIFORM or H

b

, both of which have 
low variability in error. In 2D we see very few scenarios where an 
algorithm has the least mean error but not the least 95% error. 

FINDING 9 (BIAS AND CONSISTENCY). The high error of 
MWEM, MWEM ∗ , PHP, and UNIFORM at large scales is due to 
bias. These algorithms are proven to be inconsistent. 

As scale increases, one expects error to decrease. However, 
Fig. 1 shows that the rate of decrease varies by algorithm. In fact, 
for some algorithms – PHP (1D only), MWEM, MWEM ∗ , and 
UNIFORM– error remains quite high even at large scales. The cause 
is due to inherent bias introduced by these algorithms. In empiri­
cal results (not shown) we decompose error into bias and variance 
terms and find that at scale increases, the error of these algorithms 
becomes dominated by bias. 

We complement our empirical findings with theoretical analysis. 
We show these algorithms are, in fact, inconsistent – implying that 
the bias does not vanish even as scale (or ✏) goes to ∞. Table 1 
reports a complete analysis of consistency for all algorithms; proofs 
appear in Appendix C. 

7.5 Findings: Reasonable Utility 
The previous section compared published techniques in a relative 

sense: it examined which algorithm performs the best in a given 
experimental setting. In this section, we evaluate the algorithms 
in an absolute sense: do the published algorithms offer reasonable 
utility? This is not an easy question to answer, as the notion of 
“reasonable” may be specific to the particular task that an analyst 
wishes to perform on the dataset. We address this by identifying 
situations when the error is unreasonably high for any application 
by comparing algorithms against a few simple baselines. 

FINDING 10 (COMPARISON TO BASELINES). For both 1D 
and 2D, many algorithms are beaten by the IDENTITY baseline at 
large scales. For 1D, the UNIFORM baseline beats all algorithms 
on some datasets at small scales. 

The experiments include two baseline methods (defined in Sec­
tion 3.1) that can help us assess whether algorithms are provid­
ing meaningful improvements. The first baseline, UNIFORM learns 
virtually nothing about the input data (only its scale) and exploits 
a simplistic assumption of uniformity. Therefore, we argue that 
when sophisticated algorithms are delivering error rates compara­
ble to UNIFORM, even on datasets that are decidedly non-uniform, 
they are not providing reasonable utility. Fig. 1 shows that most 
algorithms outperform UNIFORM at larger scales in 1D and at all 
scales in 2D. However, for the 1D case at scale 1000, UNIFORM 

achieves lowest error on some datasets. By examining Fig. 2a, one 
can see on which datasets UNIFORM beats competing algorithms. 
This figure shows that on some datasets, many algorithms do not 
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offer much improvement over UNIFORM, suggesting that results 
for this scale (at least at this ✏) are unlikely to be useful. 

The second baseline is IDENTITY. A sophisticated algorithm 
that does not consistently and significantly improve over IDENTITY 

does not justify its complexity. This standard is highly dependent 
on scale, since, in terms of scaled error, IDENTITY improves with 
scale. For 1D, if we examine Fig. 1a and compare mean error 
across all datasets (the white diamonds), this standard rules out 
PHP, EFPA, AHP ∗ at moderate scales (105) and EFPA, AHP ∗ , 
MWEM, MWEM ∗ , PHP, DPCUBE at large scales (107). For 2D 
(Fig. 1b), this standard rules out MWEM, MWEM ∗ , DPCUBE, 
AHP at moderate scales (106) and AGRID, MWEM,  MWEM  ∗ , 
DPCUBE, AHP at large scales (108). 

8. DISCUSSION AND TAKEAWAYS 
In this section, we synthesize our findings to (a) explain gaps 

or resolve inconsistencies from prior work, (b) present lessons for 
practitioners and (c) pose open research questions. 

Explaining Results from Prior Work. We revisit the gaps 
and inconsistencies identified in Section 3.2 in light of our findings.
● We systematically compared data-dependent algorithms against 
the state of the art data-independent ones and learn there is no clear 
winner. Both scale and shape significantly affect algorithm error. 
Moreover, shape affects each data dependent algorithm differently.
● We can resolve the apparent inconsistency between [10] and [15] 
regarding the comparative performance of MWEM against data-
independent matrix mechanism techniques by accounting for the 
effect of scale as well as the scale-epsilon exchangeability prop­
erty. MWEM outperforms data-independent techniques (including 
instances of the matrix mechanism) either when the scale is small 
or when ✏ is small. Hardt et al. evaluate on small datasets and low ✏ 
whereas the datasets of Li et al. where MWEM struggled turn out 
to be datasets with large scale (over 335, 000). We demonstrated 
this by using the same datasets as [10,15] and controlling for scale.
● Our results are consistent with the findings of Qardaji et al. [22] 
regarding domain size and data-independent hierarchical algorithms. 
Interestingly, however, we show that data-dependent algorithms 
have a different relationship with domain size.
● We conduct a comprehensive evaluation of algorithms for an­
swering 2D range queries, which is missing from the literature. 

Lessons for practitioners. Our results identify guidelines for 
practitioners seeking the best utility for their task and facing the 
daunting task of selecting and configuring an appropriate algorithm. 

The first consideration for a practitioner should be the overall 
strength of the "signal" available to them. This is determined by 
both the ✏ budget and the scale of the dataset. (We have shown 
that these two factors are exactly exchangeable in their impact on 
scaled error.) In a “high signal” regime (high scale, high ✏), it is 
unlikely that any of the more complex, data-dependent algorithms 
will beat the simpler, easier-to-deploy, data independent methods 
such as IDENTITY and H

b

. This greatly simplifies algorithm se­
lection and deployment because error bounds are easy to derive, 
performance doesn’t depend on the input dataset, and there are few 
parameters to set for these algorithms. In “low signal” regimes 
(low scale, low ✏), deploying a data-dependent algorithm should 
be seriously considered, but with an awareness of the limitations: 
depending on the properties of the input data, error can vary con­
siderably and error bounds are not provided by the data-dependent 
algorithms. For answering 1D range queries, DAWA is a competi­
tive choice on most datasets in the low and medium signal regimes. 
For 2D range queries, AGRID consistently beats the data indepen­

dent techniques, but DAWA can significantly outperform AGRID 

and the data independent techniques on very sparse datasets. 

Open research Problems. Our experimental findings raise a 
number of research challenges we believe are important for advanc­
ing differentially private algorithms.
● Understanding Data Dependence: We have shown that data-
dependent algorithms do not appear to be exploiting the same fea­
tures of shape. The research community appears to know very little 
about the features of the input data that permit low error. Are there 
general algorithmic techniques that can be effective across diverse 
datasets, or should algorithm designers seek a set of specialized 
approaches that are effective for specific data properties?
● Algorithm Selection: While our evaluation of 1D and 2D algo­
rithms identifies a class of state-of-the-art algorithms, it still does 
not fully solve the problem faced by the practitioner of selecting the 
algorithm that would result in the least error given a new dataset. 
We believe further research into analytical and empirical methods 
for algorithm selection would greatly aid the adoption of differen­
tial privacy algorithms in real world systems.
● Error Bounds: A related problem is that data-dependent algo­
rithms typically do not provide public error bounds (unlike, e.g., 
the Laplace mechanism). Hence, users cannot predict the error 
they will witness without knowing the dataset, presenting a major 
challenge for algorithm deployment. Developing publishable error 
bounds is particularly important for this class of algorithms.
● Parameter Tuning: We showed that parameter tuning can re­
sult in significant gains in utility. Our training procedure is a first 
step towards setting parameters, but already distinguishes between 
a case where simple tuning can greatly improve performance over 
a fixed value (MWEM) and a case where parameter setting is more 
challenging because of data-dependence (AHP).
● Expected Error versus Variability: Existing empirical evalua­
tions have focused on mean error while ignoring the variation of 
error over trials. We show that risk-averse users favoring low vari­
ability over low expected error may choose different algorithms 
than risk-seeking users. Current algorithms do not offer users the 
ability to trade off expected error and variability of achieved error, 
which could be an important feature in practice. 

9. CONCLUSION 
We have presented DPBENCH a novel and principled framework 

for evaluating differential privacy algorithms. We use DPBENCH 

to evaluate algorithms for answering 1- and 2-D range queries and 
as a result (a) resolved gaps/inconsistencies in prior work, (b) iden­
tified state-of-the-art algorithms that achieve the least error for their 
datasets, and (c) posed open research questions. 

We are eager to extend our investigation in a number of ways. 
We have focused here primarily on evaluating the utility of algo­
rithms, assuming that standard settings of ✏ offer sufficient privacy. 
We would like to provide meaningful guidelines for setting privacy 
parameters along with utility standards. We hope to expand our 
investigation to broader tasks (beyond 1- and 2-D range queries), 
and, as noted in Table 1, some of the algorithms considered sup­
port broader classes of workloads and may offer advantages not 
seen in our present experiments. 
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APPENDIX 

A. DATASET DESCRIPTIONS 
Table 2 provides an overview of all datasets, 1D and 2D, consid­

ered in the paper. 

1D Datasets. The first seven were described in the papers in 
which they originally appeared [1,10,11,15,27,29]. The eleven new 
datasets were derived from three original data sources. A single pri­
mary attribute was selected for an initial shape distribution (denote 
by suffix -ALL). In addition, filters on a secondary attribute were 
applied to the data, resulting in alternative 1D shape distributions, 
still on the primary attribute. 

The BIDS datasets are derived from a Kaggle competition whose 
goal is to identify online auctions that are placed by robots.3 The 
histogram attribute is the IP address of each individual bid. BIDS-FJ 
and BIDS-FM result from applying distinct filtering conditions on 
attribute “merchandise”: BIDS-FJ is a histogram on IP address but 
counting only individuals where “merchandise=jewelry”, BIDS-FM 
is a histogram on IP address but counting only individuals where 
“merchandise=mobile”. 

The MD-SAL datasets are based on the Maryland salary database 
of state employees in 2012.4 The histogram attribute is “YTD­
gross-compensation”. MD-SAL-FA is filtered on condition “pay­
type=Annually”. 

The LC datasets are derived from data published by the “Lend­
ing Club” online credit market.5 It describes loan applications 
that were rejected. The LC-REQ datasets are based on attribute 
“Amount Requested” while the LC-DTIR datasets are based on 
attribute “Debt-To-Income Ratio”. In both cases, additional shapes 
are generated by applying filters on the “Employment” attribute. 
LC-REQ-F1 and LC-DTIR-F1 only count records with attribute 
“Employment” in range [0, 5], LC-REQ-F2 and LC-DTIR-F2 
only count records with attribute “Employment” in range (5, 10]. 
2D Datasets. The BJ-CABS datasets and GOWALLA have been 
used and described in previous papers [12, 21]. The SF-CABS 
datasets are derived from well-known mobility traces data from 
San Francisco taxis [20].These location-based data are represented 
as latitude longitude pairs. To get more diverse data shape, we di­
vide the two cab trace data into four by using only the start point 
and end point in a single dataset. BJ-CABS-S and SF-CABS-S 
contain only the start location of a cab trip, while BJ-CABS-E and 
SF-CABS-E record only the end locations. 

ADULT-2D, MD-SAL-2D and LC-2D are derived from same 
sources as a subset of data we used in the 1D experiments. ADULT-2D 
is derived from source of ADULT. This source is also used in 
[10] with attributes “age” and “hours”, but we use the attributes 
“capital-gain” and “capital-loss” in order to test on a larger domain. 
MD-SAL-2D is based on the Maryland salary database using the 
attributes “Annual Salary” and “Overtime earnings”. LC-2D is 
derived from the accepted loan data from Lending Club with at­
tributes “Funded Amount” and “Annual Income”. 

STROKE is a new dataset derived from the International Stroke 
Trial database [23], which is one of the largest randomized trial 
3https://www.kaggle.com/c/facebook-recruiting-iv-human-or­
bot/data
4http://data.baltimoresun.com/salaries/state/cy2012/ 
5https://www.lendingclub.com/info/download-data.action 
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conducted in acute stroke for public use. We used the attributes 
“Age” and “Systolic blood pressure”. 

B. ALGORITHM DESCRIPTIONS 
Section 3.1 and Table 1 provide an overview of the algorithms 

studied; here we describe each algorithm individually. We begin 
with data-independent approaches, whose expected error rate is 
the same for all datasets, then describe data-dependent approaches. 
Baseline algorithms IDENTITY and UNIFORM are already described 
in Section 3.1. 

Data-Independent Algorithms. Each of the data-independent 
approaches we consider can be described as an instance of the ma­
trix mechanism [16, 18] (although a number were developed in­
dependently). The central idea is to select a set of linear queries 
(called the strategy), estimate them privately using the Laplace mech­
anism, and then use the noisy results to reconstruct answers to 
the workload queries. The strategy queries, which can be conve­
niently represented as a matrix, should have lower sensitivity than 
the workload and should allow for effective reconstruction of the 
workload. 

If the discrete Haar wavelet matrix is selected as the strategy, 
the result is the PRIVELET method [25] which is based on the in­
sight that any range query can be reconstructed by just a few of 
the wavelet queries and that the sensitivity of the Haar wavelet 
grows with ∏k

i=1 log2 ni where k is the dimensionality (number 
of attributes) and n

i is the domain size of the ith attribute. 
Several approaches have been developed that use a strategy con­

sisting of hierarchically structured range queries. Conceptually the 
queries can be arranged in a tree. The leaves of the tree consist of 
individual queries x

i (for i = 1, . . . , n). Each internal node com­
putes the sum of its children; at the root, the sum is therefore equal 
to the number of records in the database, �x�1. The approaches 
differ in terms of the branching factor and the privacy budget allo­
cation. The H method [11] has a branching factor of b and uniform 
budget allocation. The H

b method [22] uses the domain size to 
determine the branching factor: specifically, it finds the b that min­
imizes the average variance of answering all range queries through 
summations of the noisy counts in the tree. It also uses a uniform 
budget allocation. GREEDY H is a subroutine of the DAWA [15] 
algorithm but can also be used as a stand-alone algorithm. It has a 
branching factor b and employs a greedy algorithm to tune the bud­
get allocation to the workload. When used in DAWA, GREEDY H 
is applied to the partition that DAWA computes; by itself, it is ap­
plied directly to x. 

All of the above techniques reduce error by using a set of strategy 
queries which are a good match for the workload of interest. H, 
H

b

, and PRIVELET were all initially designed to answer the set of 
all range queries, but the strategy each approach uses is static – it is 
not adapted to the particular queries in the workload. GREEDY H is 
the only technique that modifies the strategy (by choosing weights 
for hierarchical queries) in response to the input workload. In the 
table, it is marked as “workload-aware.” While H and H

b naturally 
extend to the multi-dimensional setting (quadtrees, octrees, etc.), 
GREEDY H extends to 2D by applying a Hilbert transform to obtain 
a 1D representation. 

Data-Dependent Partitioning Algorithms. Many of the data-
dependent approaches use a partitioning step to approximate the 
input data vector and we discuss them as a group. These algo­
rithms partition the domain into a collection of disjoint buckets 
whose union span the domain. The partition must be selected us­
ing a differentially private algorithm, since it is highly dependent
on the input data, and this constitutes the first step for each algo­

rithm in this group. Once a partition is selected, in a second step, 
they obtain noisy counts only for the buckets. A noisy data vec­
tor can be derived from the noisy bucket counts by assuming the 
data is uniform within each bucket, and this vector is then used 
to answer queries. Partitioning trades off between two sources of 
error: the error due to adding noise to the bucket count, which di­
minishes with increased bucket size, and the error from assuming 
uniformity within a bucket, which increases when non-uniform re­
gions are lumped together. When the partition step can effectively 
find regions of the data that are close to uniform, these algorithms 
can perform well. 

By the sequential composition property of differential privacy, 
any ✏1-differentially private algorithm for partition selection can 
be combined with any ✏2-differentially private algorithm for count 
estimation and achieve ✏-differential privacy provided that ✏1 +✏2 ≤ 
✏. All these algorithms therefore share a parameter that determines 
how to allocate the privacy budget across these two steps. We will 
use ⇢ to denote the proportion of ✏ used to identify the partition. 
Thus, ✏1 = ✏⇢ and ✏2 = ✏(1 − ⇢). 

Unlike the first step, the approaches for estimating the bucket 
counts are typically data-independent. In fact, PHP, AHP, SF, and 
UGRID use the Laplace mechanism to obtain noisy counts. 

The distinguishing features of each algorithm in this group are: 
PHP [1] finds a partition by recursively bisecting the domain into 

subintervals. The midpoint is found using the exponential mecha­
nism with a cost function based on the expected absolute error from 
the resulting partition. PHP is limited to 1D. 

AHP [29] uses the Laplace mechanism to obtain a noisy count 
for each x

i for i = 1, . . . , n  and sets noisy counts below a threshold 
to zero. The counts are then sorted and clustered to form a partition. 
As was done by [29], the greedy clustering algorithm is used in the 
experiments. The threshold is determined by parameter ⌘. AHP  
extends to the multi-dimensional setting. 

DAWA [17] uses dynamic programming to compute the least 
cost partition in a manner similar in spirit to V-optimal histograms [14]. 
The cost function is the same as the one used in the exponential 
mechanism of PHP [1]. To ensure differential privacy, noisy costs 
are used in place of actual costs. Once the partition is found, a hi­
erarchical set of strategy queries are derived using GREEDY H. To 
operate on 2D data, DAWA applies a Hilbert transformation. 

SF [27] aims to find a partition that minimizes the expected sum 
of squared error. While the aforementioned algorithms choose the 
size of the partition privately, in SF, the number of buckets is speci­
fied as a parameter k. Xu et al. [27] recommend setting k as a func­
tion of the domain size and we follow those guidelines in our exper­
imental evaluation (see Section 6.5). Given the specified number of 
buckets, the bucket boundaries are selected privately using the ex­
ponential mechanism. Xu et al. [27] propose two variants of the 
algorithm, one based on the mean and another based on the me­
dian; our experiments evaluate the former. The parameters of SF 
include k, the number of buckets; ⇢, the ratio for privacy budget al­
location; and F , an upper bound on the count of a bucket (which is 
necessary for the cost function used in the exponential mechanism 
to select bucket boundaries). SF is limited to 1D. 

DPCUBE [26], which is multi-dimensional, selects the partition 
by first applying the Laplace mechanism to obtain noisy counts for 
each cell in the domain, and then running a standard kd-tree on the 
noisy counts. Once the partition is selected it obtains fresh noisy 
counts for the partitions and uses inference to average the two sets 
of counts. 

The remaining partitioning algorithms are designed specifically 
for 2D. 

QUADTREE [4] generates a quadtree with fixed height and then 

152



noisily computes the counts of each node and does post-processing 
to maintain consistency. The height of the tree is a parameter. This 
algorithm becomes data-dependent if the tree is not high enough 
(i.e., the leaves contains aggregations of individual cells). Because 
the partition structure is fixed, this algorithm does not use any pri­
vacy budget to select it (i.e., ⇢ = 0). 

HYBRIDTREE [4] is the combination of a kd-tree and the afore­
mentioned quadtree. It uses a differentially private algorithm to 
build a kd-tree in a top down manner (DPCUBE goes bottom up). 
This tree extends a few levels and then a fixed quadtree structured is 
used for the remaining levels until a pre-specified height is reached. 

UGRID [21] builds an equi-width partition where the width is 
chosen in a data-dependent way, based on the scale of the dataset. 
AGRID [21] builds a two-level hierarchy of partitions. The top level 
partition produces equi-width buckets, similar to UGRID. Then 
within each bucket of the top-level partition, a second partition is 
chosen in a data-adaptive way based on a noisy count of the number 
of records in the bucket. 

Other Data-Dependent Algorithms. MWEM [10] is a work­
load aware algorithm that supports arbitrary workloads of linear 
queries (not just range queries). It starts with an estimate of the 
dataset that is completely uniform (based on assumed knowledge 
of the scale), and updates the estimate iteratively. Each iteration 
privately selects the workload query with highest error and then up­
dates the estimate using a multiplicative weights update step. The 
number of iterations is an important parameter whose setting has 
a significant impact on performance. We propose a method for 
setting T , described in Section 6.4, that adheres to our evaluation 
principles. 

EFPA [1] is based on applying the discrete Fourier transform 
(DFT) to a 1D data vector x. It retains the top k Fourier coeffi­
cients, adds noise to them using the Laplace mechanism, and then 
inverts the transformation. By choosing k < n, the magnitude of 
the noise is lowered at the potential cost of introducing approxi­
mation error. The value of k is chosen in a data-dependent way 
using the exponential mechanism with a cost function that is based 
on expected squared error. The privacy budget is divided evenly 
selecting k and measuring the k coefficients. 

C. THEORETICAL ANALYSIS 
In this section, we theoretically analyze the properties of scale-

epsilon exchangeability (Definition 4) and consistency (Definition 5) 
for the algorithms considered in the paper. 

THEOREM 1. Any instance of the Matrix Mechanism satisfies 
consistency and scale-epsilon exchangeability. 

PROOF. Given a n × k workload matrix W, let S be a p × k 
strategy matrix, and S+ denote its Moore-Penrose pseudoinverse, 
such that WSS

+ = W. The matrix mechanism is given by the 
following: 

M
S

(W, x) = Wx + WS

+
Lap(!

S

�✏)p (1) 

where, Lap(>)p denotes p independent random variables drawn 
from the Laplace distribution with scale >, and !

S is the sensitivity 
of the strategy workload. 

The expected scaled per query error of this mechanism on a 
database x is given by: 

+ � �S
E��WS

+
Lap(!

S

�✏)p��2 ��WS 1

p×1� ��2 
1= ∝�x� ⋅ k �x�✏ ⋅ k ✏ × �x�1 1 1 

(2) 
where 1

p×1 is a column vector of p ones. This completes the proof.
Matrix mechanism algorithms are consistent bacause the noise 

is additive and at high values of ✏ or high scales, the scaled error 
tends to 0. 

COROLLARY 1. IDENTITY, PRIVELET, H, H
b

, GREEDY H en­
sure both consistency and scale-epsilon exchangeability. 

PROOF. These techniques are instances of Matrix Mechanism 
and the proof follows from Theorem 1. 

LEMMA 1. When ✏ goes to infinity, Exponential Mechanism picks 
one of the items with the highest score with probability 1. 

PROOF. Suppose T is the set of all items, T ∗ contains all the 
items with the highest score ↵. Since Exponential Mechanism 
picks any item t with the probability proportional to e ✏score(t), the 
probability of picking any item in T ∗ is 

✏↵ ✏↵∑
t∈T ∗ e ∑

t∈T ∗ e 
P (T ∗) = ∑

t∈T e
✏score(t) = ∑

t∈T ∗ e
✏↵ + ∑

t∈T −T ∗ e
✏score(t)

�T ∗�= 
T ∗ + ∑

t∈T −T ∗ e
✏(score(t)−↵) = 1(as✏ →∞)� � 

THEOREM 2. EFPA ensures consistency. 

PROOF. EFPA works in two steps: (a) pick k < n coefficients, 
and (b) add noise to the chosen coefficients. The number of coeffi­
cients k is chosen by Exponential Mechanism with the score func­
tion of expected noise added to the k chosen coefficients ( 2

✏ 
k ) plus 

the error due to dropping n − k Fourier coefficients. When ✏ goes 
to infinity, the noise term goes to zero. Thus k = n (where all the 
coefficients are chosen) receives the highest score. By Lemma 1, 
this will be chosen as ✏ tends to infinity. Therefore, the scaled er­
ror from EFPA will tend to zero when ✏ tends to infinity, which 
satisfies consistency. 

THEOREM 3. AHP, DAWA and DPCUBE are consistent. 

PROOF. All AHP, DAWA and DPCUBE noisily partition the 
domain and then estimate partition counts. When ✏ tends to infinity, 
these algorithms will use a partitioning with zero bias. Also, parti­
tion counts are estimated using Laplace Mechanism whose scaled 
error goes to zero as ✏ or scale tends to infinity. Thus AHP, DAWA 
and DPCUBE ensure consistency. 

THEOREM 4. AGRID and UGRID ensure consistency. 

PROOF. When ✏ goes to infinity, both AGRID and UGRID are 
equal to IDENTITY having grids with size 1. Thus AGRID and 
UGRID are consistent. 

THEOREM 5. On sufficiently large domains, QUADTREE and 
HYBRIDTREE do not ensure consistency. 

PROOF. Both QUADTREE and HYBRIDTREE set the maximum 
height of the tree. If the input dataset has large domain size, the 
leaf node in the tree contains more than one cell in the domain 
introducing bias. Therefore, QUADTREE and HYBRIDTREE are 
not consistent. 

THEOREM 6. PHP does not ensure consistency. 

PROOF. PHP recursively bisects the domain but sets the maxi­
mum iterations to be log2 n (n is the domain size). After log2 n it­
erations, it is possible that there exist clusters with bias greater than 
zero. Example: Let the scale m = 2n − 1 and X = {x1, . . . , xn

}
be the dataset with x

i = 2n−i . In iteration j (✏ = ∞), PHP will 
divide the domain into {x

j } and {x
j+1, . . . , xn

}. After log2 n iter­
ations, the last partition will contain domain elements with different 
counts. Thus the bias of the partition does not go to zero even when 
✏ tends to infinity. 
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The consistency of SF depends on the implementation. Our ex­
periments use the implementation provided by the authors that in­
cludes the modification described in Sec. 6.2 of [27]. 

THEOREM 7. StructureFirst does not satisfy consistency. If the 
modification described in Sec. 6.2 of [27] is applied, then it does 
satisfy consistency. 

PROOF. StructureFirst fixes the number of clusters first (it sets 
the number k to be n empirically, n is the domain size), which 

10 
will introduce bias if the real number of clusters are greater than 
k. Example: Let X = {x1, . . . , xn

} be the dataset with x
i = i. 

nIf we set the number of clusters k < n (suppose k = 
10 ), there 

will be one cluster c containing more than one domain point. Since 
all the x

i are different, the bias of c does not go to zero even if 
✏ tends to infinity. The modification proposed in [27] builds a 
hierarchical histogram (i.e., H) within each bin. This makes the 
algorithm consistent for the same reason that H is consistent. 

THEOREM 8. MWEM does not ensure consistency. 

PROOF. MWEM fixes the number of iterations (it sets T = 10 

{1, 2} and ✏ = 0.5 on D2 = {2, 4}. For both D1 and D2, there 
are only two clusterings C1 = {(x1, x2)},C2 = {(x1), (x2)}. 

✏score(C1 ) 1.5 
e eFor D1, P1(C1) = 

e

✏score(C1) +e✏score(C2) = 
e

1.5+e2 . For D2, 
3 

e

P2(C1) = 4 . We can see P1(C1) ≠ P2(C2). 
e

3+e
THEOREM 11. DAWA ensures scale-epsilon exchangeability. 

PROOF. Let D1 = m1 ⋅ p and D2 = m2 ⋅ p be two datasets with 
the same shape p, but different scales m1 and m2. Suppose we run 
DAWA on D1 with privacy budget ✏1 and D2 with privacy budget 
✏2 such that m1✏1 = m2✏2. We show that the scaled expected error 
of the synthetic histogram output by DAWA (x̂) will be the same in 
both cases. The proof is in two steps: 

1. In both cases, the probability that DAWA picks any parition­
ing P is identical. 

2. Therefore, the scaled expected error of the noisy histogram x̂ 
is the same in both cases. 

To prove the first statement, consider all partitionings considered 
by DAWA. Every partitioning P is associated with a score 

x[v] − 
x[C]�C � �

empirically), which will introduce bias if T queries are not enough + 
1� �� � � (3)to update the estimate. Example: Let X = 

dataset with x
i 

✏

C∈P v∈C{x1, . . . , xn

} be the = i and workload W contains all the single count 
queries. If the number of iterations T is less than n (suppose T = 10< n), we can only pick T single count queries and correct T domain 
point when ✏ goes to infinity. The bias generated from other domain 

where x[v] is the count of domain value v, and x[C] is the total 
count of values in C. In fact, we can rewrite Eq 3 as 

1 
p[v] − 

p[C] � +�C ��x�1 � �� �
C∈P v∈C 

�points will not go to zero even if ✏ tends to infinity. (4)�x� ⋅ ✏1 

LEMMA 2. Laplace Mechanism is scale-epsilon exchangeable. DAWA uses the exponential mechanism to pick the best partition-
Exponential Mechanism is scale-epsilon exchangeable when the ing. Thus, P will be picked with a probability proportional to: 
score is a linear function of scale. ⋅ �x�

p[v] − 
p[C]�C � 

Applying DAWA with budget ✏1 on D1 = m1p and with budget ✏2 

exp � 
✏ 

1� �� � � + �� (5)PROOF. Laplace Mechanism ensures scale-epsilon exchangeabil­ 1 �x�1 ⋅2! ✏

C∈P v∈City since the scaled expected L2 error for Laplace Mechanism is 
(! is the fixed sensitivity given workloads). 

✏�x�1 

Exponential Mechanism picks any item t with the probability 
✏score(t)proportional to e . When the score is a linear function of 

scale, Exponential Mechanism is scale-epsilon exchangeable. 

THEOREM 9. PHP, MWEM, EFPA are scale-epsilon exchange­
able. 

PROOF. All these three methods use Exponential Mechanism 
to choose clustering or parameter. Since their score functions are 
all linear functions of scale, based on Lemma 2, they will choose 
the same clustering or parameter with the same probability when 
✏ * scale is fixed. Once they use the same clustering or parame­
ter, the scaled error is the sum of the bias and the variance. The 
variance comes from Laplace Mechanism which is scale-epsilon 
exchangeable by Lemma 2. It is also easy to check those bias re­
main the same when fixing ✏ * scale. Thus PHP, MWEM, EFPA 
ensure scale-epsilon exchangeability. 

THEOREM 10. StructureFirst does not satisfy scale-epsilon ex-
changeability. 

PROOF. The score function used in StructureFirst is a linear 
function of the square of scale. Based on Lemma 2, even if ✏ * 
scale is fixed, the probability of picking the same clustering will be 
different for different ✏ settings. Once the clustering is different, 
the bias will be different. Example: Suppose we use ✏ = 1 on D1 = 

on D2 = m2p will result in exactly the same probability distribu­
tion over partitionings. 

Furthermore, the second step of DAWA adds noise to all the 
counts x[C], for C ∈ P . If the partitioning in both datasets D1 

and D2 is the same, then the resulting noisy histograms will have 
the same scaled expected error due to the scale epsilon exchange-
ability of the Laplace mechanism. The proof is complete since we 
showed that the partitionings have the same probability distribution 
in D1 (with ✏1) and D2 (with ✏2). 

THEOREM 12. AHP ensures scale-epsilon exchangeability. 

PROOF. The proof is very similar to that of Theorem 11. 

THEOREM 13. AGRID, UGRID, QUADTREE and HYBRIDTREE 

are scale-epsilon exchangeable. 

PROOF. The partitioning or the tree generation of these four al­
gorithms are independent with m ⋅ ✏, where m is the scale of the 
input dataset and ✏ is the privacy budget. After the partitioning or 
tree generation, each algorithm applies Laplace Mechanism to an­
swer node queries. Laplace Mechanism is scale-epsilon exchange­
able. Thus, AGRID, UGRID, QUADTREE and HYBRIDTREE en­
sure scale-epsilon exchangeability. 
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