
Defeating Image Obfuscation with Deep Learning

Richard McPherson
The University of Texas at

Austin

Reza Shokri Vitaly Shmatikov

ar
X

iv
:1

60
9.

00
40

8v
2

[c
s.

C
R

]
6

Se
p

20
16

ABSTRACT
We demonstrate that modern image recognition methods
based on artificial neural networks can recover hidden in
formation from images protected by various forms of obfus
cation. The obfuscation techniques considered in this pa
per are mosaicing (also known as pixelation), blurring (as
used by YouTube), and P3, a recently proposed system for
privacy-preserving photo sharing that encrypts the signifi
cant JPEG coefficients to make images unrecognizable by
humans. We empirically show how to train artificial neural
networks to successfully identify faces and recognize objects
and handwritten digits even if the images are protected us
ing any of the above obfuscation techniques.

1. INTRODUCTION
As user-contributed photographs and videos proliferate

online social networks, video-streaming services, and photo-
sharing websites, many of them can be found to leak sensi
tive information about the users who upload them, as well as
bystanders accidentally captured in the frame. In addition
to the obvious identifiers such as human faces, privacy can
be breached by images of physical objects, typed or hand
written text, license plates, contents of computer screens,
etc.
Fully encrypting photos and videos before sharing or up

loading them blocks direct information leakage, but also de
stroys information that is not privacy-breaching. Further
more, encryption prevents many common forms of process
ing. For example, encrypted photos cannot be easily com
pressed for network transmission or cloud storage.
Several privacy protection technologies aim to solve this

challenge by obfuscating or partially encrypting the sensi
tive parts of the image while leaving the rest untouched. A
classic example of such a technology is facial blurring. It
suppresses recognizable facial features but keeps everything
else intact, thus preserving the utility of photographs for
purposes such as news reporting. These techniques do not
provide well-defined privacy guarantees. Privacy is argued
informally, by appealing to the human users’ inability to rec
ognize faces and other sensitive objects in the transformed
images.
We argue that humans may no longer be the “gold stan

dard” for extracting information from visual data. Recent
advances in machine learning based on artificial neural net
works have led to dramatic improvements in the state of
the art for automated image recognition. Trained machine
learning models now outperform humans on tasks such as
object recognition [15, 20] and determining the geographic
location of an image [49]. In this paper, we investigate what
these advances mean for privacy protection technologies that
rely on obfuscating or partial encrypting sensitive informa

tion in images.

Our contributions. We empirically demonstrate how
modern image recognition techniques based on artificial neu
ral networks can be used as an adversarial tool to recover
hidden sensitive information from “privacy-protected” im
ages. We focus on three privacy technologies. The first
is mosaicing (pixelation), which is a popular way of obfus
cating faces and numbers. The second is face blurring, as
deployed by YouTube [51]. The third is P3 [39], a recently
proposed system for privacy-preserving photo sharing that
encrypts the significant coefficients in the JPEG representa
tion of the image. P3 aims to make the image unrecognizable
yet preserve its JPEG structure and enable servers to per
form certain operations on it (e.g., compress it for storage
or transmission).

To illustrate how neural networks defeat these privacy pro
tection technologies, we apply them to four datasets that are
often used as benchmarks for face, object, and handwritten-
digit recognition. All of these tasks have significant privacy
implications. For example, successfully recognizing a face
can breach the privacy of the person appearing in a recorded
video. Recognizing digits can help infer the contents of writ
ten text or license plate numbers.

On the MNIST dataset [27] of black and white hand
written digits, our neural network achieves recognition accu
racy of almost 80% when the images are “encrypted” using
P3 with threshold level 20 (a value recommended by the
designers of P3 as striking a good balance between privacy
and utility). When the images are mosaiced with windows
of resolution 8 × 8 or smaller, accuracy exceeds 80%. By
contrast, the accuracy of random guessing is only 10%.

On the CIFAR-10 dataset [23] of colored images of vehicles
and animals, we achieve accuracy of 75% against P3 with
threshold 20, 70% for mosaicing with 4 × 4 windows, and
50% for mosaicing with 8 × 8 windows, vs. 10% for random
guessing.

On the AT&T [2] dataset of black-and-white faces from
40 individuals, we achieve accuracy of 57% against blurring,
97% against P3 with threshold 20, and over 95% against all
examined forms of mosaicing, vs. 2.5% for random guessing.
On the FaceScrub [32] dataset of photos of over 530 celebri

ties, we achieve accuracy of 57% against mosaicing with
16 × 16 windows and 40% against P3 with threshold 20,
vs. 0.19% for random guessing.

The key reason why our attacks work is that we do not
need to specify the relevant features in advance. We do
not even need to understand what exactly is leaked by a
partially encrypted or obfuscated image. Instead, neural
networks automatically discover the relevant features and
learn to exploit the correlations between hidden and visible
information (e.g., significant and “insignificant” coefficients

Figure 1: An image from The Guardian showing a police raid on a
drug gang [28]. The accompanying article explains that UK drug
gangs are growing more violent and that police informants and
undercover operatives face possible retaliation [1]. The officers’
faces are presumably mosaiced for their protection. The window
appears to be 12×12 pixels. Using 16×16 windows (which obfus
cate more information than 12× 12 windows), our neural network
achieves 57% accuracy in recognizing an obfuscated image from
a large dataset of 530 individuals. The accuracy increases to 72%
when considering the top five guesses.

in the JPEG representation of an image). As a consequence,
obfuscating an image so as to make it unrecognizable by a
human may no longer be sufficient for privacy.

In summary, this paper is the first to demonstrate the
power of modern neural networks for adversarial inference,
significantly raising the bar for the designers of privacy tech
nologies.

2. IMAGE OBFUSCATION
As the targets for our analysis, we chose three obfuscation

techniques that aim to remove sensitive information from
images. The first two techniques are mosaicing (or pixe
lation) and blurring. These are very popular methods for
redacting faces, license plates, adult content, and text (Fig
ure 1). The third technique is a recently proposed system
called P3 [39] that aims to protect the privacy of images up
loaded to online social networks such as Facebook while still
enabling some forms of image processing and compression.

2.1 Mosaicing
Mosaicing (pixelation) is used to obfuscate parts of an

image. The section to be obfuscated is divided into a square
grid. We refer to the size of each square (a.k.a., “pixel box”)
as the mosaic window. The average color of every pixel in
each square is computed and the entire square is set to that
color [16].

The size of the window can be varied to yield more or less
privacy. The larger the box, the more pixels will be averaged
together and the less fine-grained the resulting mosaiced im
age will be.

Although the size of the image stays the same, mosaicing
can be thought of as reducing the obfuscated section’s res
olution. For example, a window of size n × n applied to an
image effectively reduces the number of unique pixels in an
image by a factor of n 2 .

2.2 Blurring

Figure 2: A victim of human trafficking in India [35]. Her
face has been blurred, presumably to protect her identity. Our
neural networks, trained on black-and-white faces blurred with
YouTube, can identify a blurred face with over 50% accuracy
from a database of 40 faces.

Blurring (often called “Gaussian blur”) is similar to mo
saicing and used to obfuscate faces and sensitive text. Blur
ring removes details from an image by applying a Gaussian
kernel [16]. The result is a “smoothed” version of the original
image (see Figure 2).

In 2012, YouTube introduced the ability to automatically
blur all faces in a video [51]. YouTube presents their au
tomatic facial blurring as a way to improve video privacy.
For example, they suggest that it can be used it to “share
sensitive protest footage without exposing the faces of the
activists involved.” In 2016 YouTube introduced the ability
to blur arbitrary objects in a video [52]. Once this feature
is selected, YouTube will attempt to continue blurring the
selected objects as they move around the screen. YouTube
claims to have added this feature “with visual anonymity in
mind.”

Mosaicing and blurring do not remove all information
from an image, but aim to prevent human users from rec
ognizing the blurred text or face. The result of these tech
niques also often used as it is less visually jarring than, for
example, a black box produced by full redaction.

In Section 7, we survey prior papers that demonstrated
the insufficiency of mosaicing and blurring as a privacy pro
tection technique. To the best of our knowledge, this paper
is the first to demonstrate that standard image recognition
models can extract information from mosaiced and blurred
images.

2.3 P3
Privacy Preserving Photo Sharing (P3) [39] was designed

to protect the privacy of JPEG images hosted on social me
dia sites. P3 is intended to be applied by users, but it also
assumes that the sites will not prevent users from uploading
P3-protected images.

The main idea of P3 is to split each JPEG into a public
image and a secret image. The public image contains most
of the original image but is intended to exclude the sensitive
information. Public images can thus be uploaded to online
social networks and untrusted servers. It is essential that
the public image is not encrypted and correctly formatted
as a JPEG since some popular sites (e.g., Facebook) do not
allow users to upload malformed images.

The secret image is much smaller in size but contains most
of the sensitive information from the original image. It is

Figure 3: P3 works by removing the DC and large AC coefficients
from the public version of image and placing them in a secret
image. (Image from [39])

encrypted and uploaded to a third-party hosting service like
Dropbox.

Given a public image and a private image, it is easy to
combine them back into the original image. P3 proposes a
browser plugin that can be used while browsing social me
dia sites. It automatically downloads an encrypted image,
decrypts it if the user has the appropriate keys, and displays
the combined image. Anyone browsing the social media site
without the plugin or the corresponding keys would only see
the public parts of images.

P3 supports the recovery of original images even after
transformations (e.g., cropping and resizing) are applied to
the public image, but the details of this do not affect the
privacy properties of P3.

To explain how P3 works, we first review the basics of
JPEG image formatting [46]. When converting an image
to JPEG, the color values of each block of 8 × 8 pixels are
processed with a discrete cosine transform (DCT), and the
resulting DCT coefficients are saved as the image represen
tation (after some additional formatting).

P3 assumes that the DC coefficient (the 0th one) and the
larger AC coefficients (the remaining 63) carry the most in
formation about the image. When applying P3 to an im
age, the user sets a threshold value. The DC coefficients,
as well as any AC coefficients whose values are larger than
the threshold, are encrypted and stored in the secret image
(see Figure 3). In the public image, these coefficients are re
placed by the threshold value. All remaining AC coefficients
are stored in in the public image in plaintext. To reconstruct
the original image, the coefficients in the secret image are
decrypted and copied to their places in the public image.

By varying the threshold value, the user can balance the
size of the secret image against the amount of data removed
from the public image. The authors of P3 recommend using
threshold values between 10 and 20.

P3 explicitly aims to protect images from“automatic recog
nition technologies” [39]. P3 uses signal processing tests, in
cluding edge detection, face detection, face recognition, and
SIFT features, as privacy metrics. Since these features in
the public images do not match those in the original im
ages and standard techniques do not find or recognize faces
in the public images, the authors of P3 conclude that the
system protects privacy. They do not evaluate the human
recognition rate of public images, but as examples in Table 1

Figure 4: Schematic architecture of a convolutional neural net
work [9]. The network is composed of convolutional layers fol
lowed by max-pooling sub-sampling layers. The last layers are
fully connected.

illustrate, public P3 images produced with the recommended
threshold values do not appear to be human-recognizable.

3. ARTIFICIAL NEURAL NETWORKS
Neural networks with many layers, also known as deep

neural networks, have become very effective in classifying
high-dimensional data such as images and speech signals [14,
15, 26]. As opposed to other machine learning algorithms,
which require explicit feature specification and engineering,
neural networks can, given a classification task, automati
cally extract complex features from high-dimensional data
and use these features to find the relationship between the
data and the model’s output. In this paper, we focus on
training neural networks in a supervised setting for classifi
cation. The training process involves constructing a model
that learns the relationship between data and classes from
a labeled dataset (where for each data record we know its
true class).

An artificial neural network is composed of multiple lay
ers of nonlinear functions so that more abstract features
are computed as nonlinear functions of lower-level features.
Each function is modeled as a neuron in the network. The
input to the inner layer’s neurons is the output of the neu
rons in the previous layer. The functions implemented in the
neurons are referred to as activation units and are usually
pre-determined by the model designer. The nonlinear func
tions are constructed to maximize the prediction accuracy
of the whole model on a training dataset. In Section 5.4, we
give concrete examples of neural networks used for image
recognition tasks.

In our networks, we use two activation units: ReLU (rec
tified linear units) and LeakyReLU. The ReLU is an activa
tion function f(x) = max(0, x), while the LeakyReLU is the
activation function

x, if x > 1
f (x) =

0.01x, otherwise.

Model training or learning is an optimization problem
whose objective is to (1) extract the most relevant features
for a particular classification task, and (2) find the best rela
tionship between these features and the output of the model
(i.e., classification of inputs).

The architecture of the network, which determines how
different layers interact with each other, greatly affects the
potential accuracy of the model. Convolutional neural net
works (CNN) are a common deep neural-network architec
ture for object recognition and image classification, known
to yield high prediction accuracy [24, 43]. CNNs have also
been widely used for face recognition. Zhou et al. [56] and
Parkhi et al. [36] presented CNNs for the Labeled Faces in
the Wild database [17] supplemented with large datasets of

Web images. Also, FaceNet [42] is an efficient CNN for fa
cial recognition trained on triplets of two matching and one
non-matching facial thumbnails.

As opposed to fully connected neural networks, in which
all neurons in one layer are connected to all neurons in the
previous layer, in a convolutional neural network each neu
ron may process the output of only a subset of other neu
rons. This technique allows the model to embed some known
structure of the data (e.g., relationship between neighboring
pixels). Figure 4 illustrates the schematic architecture of a
convolutional neural network. These networks are composed
of multiple convolutional and sub-sampling layers with sev
eral fully connected layers at the end. Each neuron in a
convolutional layer works on a small connected region of
the previous layer (e.g., neighboring pixels in the first layer)
over their full depth (e.g., all color signals in the first layer).
Usually, multiple convolutional neurons operate on the same
region in the previous layer, which results in extracting mul
tiple features for the same region. In the sub-sampling layer,
a function of these features is computed and passed to the
next layer. Max-pooling, where the feature with the highest
value is selected, is typically used for this purpose. After a
few convolutional and max-pooling layers, the final layers of
the network are fully connected.

Given a network architecture, the training process in
volves learning the importance weights of each input for each
neuron. These weights are referred to as neural-network
parameters. The objective is to find the parameter values
that minimize the classification error of the model’s output.
Training is an iterative process. In each iteration (known as
a training epoch), the weights are updated so as to reduce
the model’s error on its training set. This is done by stochas
tic gradient descent algorithm [40] which computes the gra
dient of the model’s error over each parameter and updates
the parameter towards lower errors. The magnitude of the
update is controlled by the “learning rate” hyper-parameter.

To avoid overfitting on the training set and to help the
trained model generalize to data beyond its training set,
various regularization techniques are used. Dropout [45]
is an effective regularization technique for neural networks
which works by randomly dropping nodes (neurons) during
the training with a pre-determined probability.

4. THREAT MODEL
We assume that the adversary has a set of obfuscated im

ages and his goal is to uncover certain types of sensitive
information hidden in these images: namely, recognize ob
jects, faces, and/or digits that appear in the image. Rec
ognizing objects or faces from a known set is a standard
image recognition task, except that in this case it must be
performed on obfuscated images. For example, the operator
of a storage service that stores obfuscated photos from an
online social network may want to determine which users
appear in a given photo.

We also assume that the adversary has access to a set of
plain, unobfuscated images that can be used for training the
adversary’s neural networks. In the case of objects or hand
written digits, the adversary needs many different images of
objects and digits. Such datasets are publicly available and
used as benchmarks for training image recognition models.
In the case of face recognition, the adversary needs the set
of possible faces that may appear in a given photo. This
is a realistic assumption for online social networks, where

the faces of most users are either public, or known to the
network operator.

We assume that the adversary knows the exact algorithm
used to obfuscate the images but not the cryptographic keys
(if any) used during obfuscation. In the case of P3, this
means that the adversary knows which threshold level was
used but not the keys that encrypt the significant JPEG co
efficients. In the case of mosaicing, the adversary knows
the size of the pixelation window. In the case of blur
ring, the adversary has black-box access to the blurring al
gorithm and does not have any information about this algo
rithm other than what this algorithm produces on adversary-
supplied videos and images. This accurately models the case
of YouTube blurring, which from the viewpoint of a video
creator has a simple on/off switch.

5. METHODOLOGY

5.1 How the attack works
The main idea of our attack is to train artificial neural

networks to perform image recognition tasks on obfuscated
images. We train a separate neural-network model for each
combination of an obfuscation technique and a recognition
task.

As explained in Section 4, we assume that the adversary
has access to a set of plain, unobfuscated images that he can
use for training. We generate the training set by applying
the given obfuscation technique to these images (for exam
ple, request YouTube’s Video Manager to blur the faces).
We then perform supervised learning on the obfuscated im
ages to create an obfuscated-image recognition model, as de
scribed in Section 5.5. Complete descriptions of our neural-
network architectures are in the appendices. Finally, we
measure the accuracy of our models.

In all of our experiments, the training set and the test set
are disjoint. For example, the images used for training the
mosaiced-face recognition model are drawn from the same
dataset of facial photos as the images used for measuring the
accuracy of this model, but the two subsets have no images
in common.

5.2 Datasets
We used four different, diverse datasets: the MNIST database

of handwritten digits, the CIFAR-10 image dataset, the AT&T
database of faces, and the FaceScrub celebrity facial dataset.

MNIST. The MNIST dataset [27] consists of 28×28 grayscale
images of handwritten digits collected from US Census Bu
reau employees and high-school students. Each image con
sists of one handwritten digit (i.e., an Arabic numeral be
tween 0 and 9). The dataset is divided into a training set
of 60,000 images and a test set of 10,000 images. We ex
panded the MNIST images to 32x32 images by adding a
2-pixel white border around the edge of each image.

CIFAR-10. The CIFAR-10 dataset [23] consists of 32×32
color images. Each image contains an object belonging to
one of 10 classes. Each class is either a vehicle (e.g., plane,
car, etc.) or an animal (e.g., dog, cat, etc.). There are 50,000
images in the CIFAR-10 training set and 10,000 images in
the test set.

AT&T. The AT&T database of faces [2] contains 400 92 ×
112 grayscale images of 40 individuals. Each individual has
10 images in the dataset, taken under a variety of lighting

Dataset Original 2 × 2
Mosaic

4 × 4 8 × 8 16 × 16 20
P3
10 1

MNIST

CIFAR
10

AT&T

FaceScrub

Table 1: Examples images from each dataset. The leftmost image is the original image. The remaining columns are the image obfuscated
with mosaicing with windows of 2 × 2, 4 × 4, 8 × 8, and 16 × 16 pixels and P3 with thresholds of 20, 10, and 1.

conditions, with different expressions and facial details (i.e.,
with or without glasses). For our training set, we randomly
selected 8 images of each person. The remaining 2 were used
in the test set.

FaceScrub. The FaceScrub dataset [32] is a large dataset
originally consisting of over 100,000 facial images of 530
celebrities. The images have been compiled from various on-
line articles. Due to copyright concerns only the image URLs
are distributed, not the images themselves. Some of the im
ages are no longer accessible and we were able to download
only 66,033 images. FaceScrub includes the bounding boxes
for the faces in each image and we used those to extract the
faces. 10 images of each person was used in the test set,
the remaining 60,733 were used for training. Because some
of the images are not in color, we converted all images to
grayscale and scaled them to 224 × 224.

5.3 Obfuscation
For mosaicing (pixelation), we used a simple Python script

with NumPy [34] to compute the average color of a block of
pixels and then change the entire block to that color.

To obfuscate images using the P3 technique, we modi
fied the 9a version of the Independent JPEG Group’s JPEG
compression software [19] to replace any JPEG coefficient
whose absolute value is bigger than the threshold with the
threshold value. The resulting image is the same as the
public image that would have been produced by P3.

For blurring faces in the AT&T dataset, we used YouTube’s
facial blurring [51]. For the training and test sets, we used
ffmpeg to create videos of the original faces from the dataset
and uploaded them to YouTube. Each face was shown for 1
second and followed by 1 second of white frames before the
next face was shown. Video resolution was 1280 × 720, with
92 × 112 faces were centered in their frames.

After uploading the training and test videos, we used
YouTube’s Video Manager to automatically blur all faces in
these videos, then downloaded the videos and used ffmpeg
to extract each frame. We did not notice any faces that

Figure 5: An original AT&T image and two blurred frames ex
tracted from a blurred YouTube video. Although the unblurred
frames were identical, the two blurred frames are different.

YouTube did not blur, but some edges of a few images were
not blurred.

Although the images in the videos were static, many of
the faces in the blurred videos shifted in appearance, that
is, parts of an image would become lighter or darker be
tween frames. We do not know if this is a feature added by
YouTube to make identification harder or an artifact of their
blurring technique. To account for the different blurrings of
each image and to avoid any bleeding across images, we used
the middle 5 frames of each image in the videos. This in
creased the size of our training and testing sets to 1,600 and
400 images each.

Because the blurring often extended outside of the original
image borders, we extracted the center 184×224 pixels from
each frame and then resized them to 92 × 112 pixels. Two
examples of a blurred image can be seen in Figure 5.

5.4 Neural networks
Our experiments were done with three different neural

networks: a digit recognition model for the MNIST dataset,
an object recognition model for CIFAR-10, and a face recog
nition model for AT&T and FaceScrub datasets. All of our
models are deep convolutional neural networks [21,24] with
dropout [45] regularization.

Note that we use the same architecture for training clas
sification models on the original and obfuscated images. We
compare the accuracy of our models on obfuscated images
with the accuracy of similar models on the original images.
If we had used more accurate neural-network models or tai
lored neural networks specifically for recognizing obfuscated
images, we could have achieved even higher accuracy than
reported in this paper.

MNIST. We used a simple neural network for classifying
images in the MNIST dataset, based on Torch’s template
neural network for MNIST [7]. See Appendix A.1 for the
exact description of the network architecture.

In this network, each convolutional layer with a leaky rec
tified linear unit (LeakyReLU) is followed by a layer of pool
ing. The network ends with a simple fully connected layer
and a softmax layer that normalizes the output of the model
into classification probabilities. A dropout layer with a prob
ability of 0.5 is introduced between the linear layer and the
softmax layer.

CIFAR-10. For CIFAR-10, we used Zagoruyko’s CIFAR
10 neural network [54]. This network was created to see how
batch normalization worked with dropout. Batch normaliza
tion speeds up the training and improves neural networks by
normalizing mini-batches between layers inside the neural
network [20]. The Zagoruyko method creates a large convo
lutional neural network and adds batch normalization after
every convolutional and linear layer. Zagoruyko’s network
consists of 13 convolutional layers with batch normalization,
each with a rectified linear unit (ReLU). See Appendix A.2
for the exact description of the network architecture.

AT&T and FaceScrub. The networks used for the AT&T
and FaceScrub datasets of facial images are similar to the
one used on the MNIST dataset, with an extra round of
convolution. See Appendix A.3 and A.4 for the exact de
scription of the network architecture.

5.5 Training
For each of our experiments, we obfuscated the entire

dataset and then split it into a training set and a test set.
In the MNIST and CIFAR-10 datasets, images are already
designated as training or test images. For AT&T and Face-
Scrub, we randomly allocated images to each set.

For training the MNIST model, we used the learning rate
of 0.01 with the learning rate decay of 10−7, momentum of
0.9, and weight decay of 5 × 10−4 . The learning rate and
momentum control the magnitude of updates to the neural-
network parameters during the training [4,40]. For training
the CIFAR-10 model, we initialized the learning rate to 1
and decreased it by a factor of 2 every 25 epochs. Weight
decay was 5 × 10−4, momentum was 0.9, and learning rate
decay was 10−7 . For the AT&T and FaceScrub models, we
used the same learning rate and momentum as in the MNIST
training.

We ran all of our experiments for 100-200 training epochs.
For each epoch, we trained our neural networks on the ob
fuscated training set and then measured the accuracy of the
network on the obfuscated test set.

Our neural networks were programmed in Torch. The
MNIST and AT&T networks were distributed across mul
tiple Linux machines in an HTCondor cluster. The larger
CIFAR-10 and FaceScrub networks made use of the Torch
CUDA backend and were trained on Amazon AWS g2.8xlarge

machines with GRID K520 Nvidia cards running Ubuntu
14.04.

6. RESULTS
From each of the original datasets, we created seven ob

fuscated datasets for a total of eight datasets (see Table 1).
For each neural networks defined in 5.4, we created eight
models: one for classifying images in the original dataset
and one each for classifying the obfuscated versions of that
dataset. In addition to these eight sets, we created a ninth
set from the AT&T dataset. This set used facial images that
were blurred by YouTube. While the same network was used
for all versions of a dataset, the networks were trained and
tested on only one version at a time (i.e., there was no mix
ing between the images obfuscated with different techniques
or with the original images).

Three of the obfuscated datasets were created by running
P3 on the original images and saving the P3 public images.
We used P3 with thresholds of 1, 10, and 20. 10 and 20
are the thresholds recommended by the designers of P3 as
striking a good balance between privacy and utility [39]. The
threshold of 1 is the most privacy-protective setting that P3
allows.

The remaining four obfuscated datasets were created by
mosaicing the original dataset with different windows. Mo
saic windows of 2 × 2, 4 × 4, 8 × 8, 16 × 16 were used.
When analyzing the accuracy of our network with different
mosaic window sizes, image resolution should be taken into
account. For datasets with 32 × 32 resolution (i.e., MNIST
and CIFAR-10), 16×16 windows reduce the practical size of
each image to only 2 × 2 pixels. On the FaceScrub dataset,
however, we could maintain the resolution of 14 × 14 pixels
after the image was mosaiced with the same 16×16 window.

We computed the accuracy of the network in classifying
the test set after every round of training. We recorded the
accuracy of the top guess as well as the top 5 guesses. Re
sults are shown in Table 2.

6.1 MNIST
The results for the MNIST neural network are shown in

Figure 6. The accuracy of the neural network on the original
images increases quickly and exceeds 90% within 10 epochs.
This is not surprising since MNIST is one of the older ma
chine learning datasets and is used pervasively to test mod
els. Top models achieve 98%-99% accuracy [3] and neural
networks that can get over 90% accuracy are so simple that
they are often used in deep-learning and neural-network tu
torials.

The models for mosaiced images with smaller windows
(i.e., 2 × 2 and 4 × 4) also quickly exceeded 90% accuracy.
Although the MNIST images are relatively small, just 32×32
pixels, these small windows have little effect on obscuring the
digits. The 2 × 2 mosaiced images are human-recognizable
(see Table 1) and the 4 × 4 mosaiced images still show the
general shape and pixel intensity to a large enough resolution
that a neural network can achieve accuracy of over 96%.

The models for the 8 × 8 and 16 × 16 mosaiced images
reached accuracy of over 80% and 50%, respectively. While
these are not as impressive as the other results, it’s impor
tant to note that mosaicing with these windows reduced the
MNIST images to just 4×4 and 2×2 unique pixels. Even the
accuracy of 50% is significantly larger than the 10% chance
of random guessing the correct digit.

Dataset
Base
line

Origi
nal

2 × 2

Mosaic

4 × 4 8 × 8 16 × 16 20

P3

10 1

MNIST Top 1 10.00 98.71 98.49 96.17 83.42 52.13 79.93 74.19 58.54
MNIST Top 5 50.00 100 100 99.95 99.36 93.90 98.91 97.95 94.82

CIFAR Top 1 10.00 89.57 81.76 70.21 53.95 31.81 74.56 65.98 33.21
CIFAR Top 5 50.00 99.46 98.85 97.10 92.26 81.76 96.98 94.99 80.72

AT&T Top 1 2.50 95.00 95.00 96.25 95.00 96.25 97.50 93.75 83.75
AT&T Top 5 12.50 100 100 100 98.75 98.75 100 100 95.00

FaceScrub Top
1

0.19 75.49 71.53 69.91 65.25 57.56 40.02 31.21 17.42

FaceScrub Top
5

0.94 86.06 83.74 82.08 79.13 72.23 58.38 51.28 34.79

Table 2: Accuracy of neural networks classifying the original datasets as well as those obfuscated with mosaicing with windows of 2 × 2,
4 × 4, 8 × 8, and 16 × 16 pixels and P3 thresholds of 20, 10, and 1. The baseline accuracy corresponds to random guessing.

Dataset Baseline Original Blurred
AT&T Top 1 2.50 95.00 57.75
AT&T Top 5 12.50 100 85.75

Table 3: The accuracy of classifying the AT&T faces blurred
with YouTube.

The accuracy of recognizing public P3 images falls be
tween the 8 × 8 and 16 × 16 mosaicing. The accuracy of
the threshold-20 model is just below 80%. Looking at the
threshold-20 image, the general shape of the digit can be
seen. It is not surprising that the accuracy is close to to the
8 × 8 mosaicing because P3 follows the JPEG specifications
and obfuscates each 8 × 8 block of pixels separately [46].

6.2 CIFAR-10
The CIFAR-10 model trained on the original images achieved

just under 90% accuracy. This is not as high as the MNIST
results, but the CIFAR-10 images are much more complex
and cluttered than the simple digits from the MNIST dataset.
The CIFAR-10 mosaiced results are also not as strong as
the MNIST results. While it would seem that the larger
amounts of color information would make classification of
the original and mosaiced information easier, it also increases
the dimensionality and complexity of both the data and the
neural network. When using 16×16 windows, the obfuscated
CIFAR-10 images are reduced to just four colors. It is im
pressive that even in this challenging scenario, the accuracy
of our neural network is 31%.

The P3 models on threshold-20 and threshold-10 images
achieved accuracies of 74% and 66%, respectively. The accu
racy on threshold-1 images, however, dropped to only 32%.

6.3 AT&T
The results for the models trained on the AT&T dataset

of faces are shown in Figure 8. The models for the original
and mosaiced images all achieved over 95% accuracy. For
the original images and the smaller mosaicing windows, this
is not surprising. The images in the AT&T dataset are 92 ×
112 pixels, much larger than the MNIST and CIFAR-10’s
resolution of 32 × 32. Even the 8 × 8 mosaiced faces are
probably recognizable by a human (see Figure 1).

A human might be able to recognize 16 × 16 mosaiced
images as faces, but we hypothesize that individual identifi

cation would become challenging at that level of pixelization.
However, these mosaiced images have 6 × 7 resolution and
there is still enough information for the neural networks to
be able to accurately recognize people in the images.

The models trained on P3 images did not all reach as
high an accuracy as the models working against mosaicing,
but their accuracy was above 80%, still much higher than
the 2.5% accuracy of random guessing. The results for the
threshold-20 images are the best, producing correct identifi
cation 97% of the time. Looking at the threshold-20 images,
rough outlines of faces can be seen, although many of the
helpful details, such as differences in color, have been re
moved by the P3 algorithm. The accuracy of our model was
lowest on the threshold-1 images. However, it was still ac
curate over 83% of the time, which is a major improvement
vs. the 2.5% success rate of random guessing.

The AT&T dataset was the only set that we obfuscated
with YouTube’s facial blurring. Anecdotally, the authors of
this paper were at a complete loss when trying to identify
the blurred faces by sight. Our simple neural network, how
ever, was able to recognize individuals with 57.75% accuracy
(Table 3).

6.4 FaceScrub
The AT&T dataset is relatively small, with only 40 in

dividuals and 10 images per individual. While it is helpful
to illustrate the power of neural networks, a larger dataset
like FaceScrub, with 530 individuals, is more indicative of
achievable accuracy. The full results of the FaceScrub mod
els are shown in Figure 9.

The accuracy of our neural network on the original Face-
Scrub dataset is 75%. This is impressive for such a simple
network on a large dataset. Once again, a more sophisti
cated network architecture could likely achieve much better
results, but our experiments show that even a simple net
work can defeat the image obfuscation techniques.

The models for recognizing mosaiced faces exhibit the
same pattern as the models on the MNIST and CIFAR-10
datasets, with the smaller mosaicing window resulting in the
almost the same accuracy as the original images. It is not
surprising that the accuracy of recognizing mosaiced faces
did not drop below 50%. The FaceScrub images have rel
atively large resolution, 224 × 224, thus a 16 × 16 window
only reduces the resolution of the image to 14 × 14 pixels.

(a) Top guess.

(b) Top 5 guesses.

Figure 6: Test accuracy of the neural networks trained on the
MNIST handwritten digits. The networks were trained and
tested on digits obfuscated with different techniques: P3 with
thresholds of 1, 10, and 20, and mosaicing with 2 × 2, 4 × 4, 8 × 8,
and 16 × 16 windows.

The results for FaceScrub protected using P3 show some
of the worst accuracies in all our experiments. Nevertheless,
even the threshold-1 accuracy of 17% is still almost two or
ders of magnitude larger the accuracy of random guessing
(0.19%).

7. RELATED WORK
We survey related work in two areas: image obfuscation

and applications of neural networks in security and privacy.

Image obfuscation. Many existing systems and tech
niques use blurring and mosaicing to protect users’ privacy.
Face/Off [18] uses facial blurring to prevent identification in
“restricted” Facebook images. YouTube supports blurring of
faces [51] and objects [52] in videos as well. Google Street
View blurs license plates and faces [10].

There is a large body of literature on why simple blurring
techniques are insufficient for protecting privacy. To eval
uate the effectiveness of blurring and pixelation for hiding
identities, Lander et al. [25] asked participants to identify

(a) Top guess.

(b) Top 5 guesses.

Figure 7: Test accuracy of the neural networks trained on the
CIFAR-10 images. The networks were trained and tested on col
ored images obfuscated with different techniques: P3 with thresh
olds of 1, 10, and 20, and mosaicing with 2 × 2, 4 × 4, 8 × 8, and
16 × 16 windows.

famous people in obfuscated movie clips and static images.
Their result show that famous people can still be recognized
in some obfuscated images. They also reported higher iden
tification accuracy for movie clips compared to static im
ages. Neustaedter et al. [30] analyzed how obfuscation can
balance privacy with awareness in always-on remote video
situations, where users would like to recognize the remote
person without being able to see the privacy-sensitive parts
of the video. Their results show that blurring and pixela
tion do not achieve both sufficient privacy and satisfactory
awareness in remote work settings.

Newton et al. [31] examined many de-identification tech
niques for obfuscated face images and achieved an extremely
high (99%) recognition rate. However, they only considered
obfuscating a small rectangle on the top part of the face,
including the eyes and top of the nose. Gross et al. [13] de
signed an algorithmic attack to identify people from their
pixelated and blurred face images. Their attack is based
on the similarity of the obfuscated image and the original

(a) Top guess. (a) Top guess.

(b) Top 5 guesses.

Figure 8: Test accuracy at each epoch of neural-network training
on the AT&T dataset of faces. The networks were trained and
tested on black-and-white faces obfuscated with different tech
niques: P3 with thresholds of 1, 10, and 20, mosaicing with 2 × 2,
4×4, 8×8, and 16×16 windows, and automatic YouTube blurring.

images. They showed that small mosaic boxes (e.g., 2-4
pixels) and simple blurring would not prevent identifica
tion attacks. The authors suggested a new de-identification
technique based on Newton et al. [31]. Cavedon et al. [6]
exploited the changes in pixel boxes for obfuscating video
frames to reconstruct pixelated videos using image process
ing methods so that humans can identify objects in the re
constructed images. Wilber et al. [50] used Facebook’s face
tagging system as a black-box tool to determine if faces ob
fuscated with various techniques, including blurring, are still
recognizable by Facebook.

Venkatraman [48] presented a brute-force attack to recon
struct pixelated check numbers and concluded that obfuscat
ing sensitive information using blurring provides poor pro
tection, although it might not be easy to reconstruct faces
from blurred images. Hill et al. [16] showed that obfuscated
text can be reconstructed with a large accuracy using lan
guage models. They used hidden Markov models (HMM)
to achieve better speed and accuracy vs. Venkatraman’s

(b) Top 5 guesses.

Figure 9: Test accuracy at each epoch of neural-network train
ing on the FaceScrub dataset. The networks were trained and
tested on black-and-white celebrity faces obfuscated with differ
ent techniques: P3 with thresholds of 1, 10, and 20, mosaicing
with 2 × 2, 4 × 4, 8 × 8, and 16 × 16 windows, and automatic
YouTube blurring.

method. They were also able to accurately reconstruct texts
when the size of the mosaic box exceeds the size of the let
ters. Hill’s technique relies heavily on knowing the text font
and size, as well as the size of the mosaic box.

Gopalan et al. [12] presented a method to recognize faces
obfuscated with non-uniform blurring by examining the space
spanned by the blurred images. Punnappurath et al. [38]
extended this work by applying possible blurring effects to
images in the target gallery and finding the minimal distance
between the gallery images and the blurred image.

Neural networks. Neural networks have been successfully
used extract information from (unobfuscated) images. For
example, Golomb et al. [11] used neural networks to identify
the sex of human faces.

Beyond their applications in image recognition, (deep)
neural networks have been used in many privacy and secu
rity contexts. For example, Cannady et al. [5] and Ryan et
al. [41] used neural networks in intrusion detection systems

(IDS). Neural networks are particularly useful for this pur
pose because the IDS designer does not need to engineer rel
evant network-flow features and can rely on the network to
discover these features automatically. Deep neural networks
have been used for malware classification in general [8, 37]
and for specifically detecting Android malware [53].

Deep convolutional neural networks can be used to detect
objects in images. This enables detecting sensitive objects in
a video stream or static images. Korayem et al. [22] proposed
a technique to detect computer screens in images. The goal
is to alert the user or to hide the screen to protect privacy of
users who may have sensitive information on their screens.
Tran et al. [47] detect privacy-sensitive photos using deep
neural networks.

Sivakorn et al. [44] used deep convolutional neural net
works to break Google’s image CAPTCHAs (which ask users
to identify images that have a particular object in them).
Melicher et al. [29] used deep neural networks to analyze
user passwords and construct a password prediction model.

Concurrently with our work, Oh et al. released a preprint [33]
where they use a neural network to recognize untagged indi
viduals in social-media images. Our work differs in several
ways: 1) Oh et al. only examine the obfuscation of faces
in larger images while we work with entirely obfuscated im
ages (including backgrounds); 2) Oh et al. take advantage of
unobfuscated body cues and contextual information in the
images to correlate multiple images, whereas we do not make
use of any external information beyond the obfuscated im
age itself; 3) we focus on a broader class of image recognition
problems and defeat more types of obfuscation (including, in
the case of P3, partially encrypted images that are not rec
ognizable by humans, and real-world protections deployed
by popular systems such as YouTube); and 4) Oh et al. only
evaluate a single dataset (the People in Photo Albums [55]),
whereas we evaluate our attack against diverse datasets, in
cluding MNIST, CIFAR-10, AT&T Database of Faces, and
FaceScrub. Considering the most comparable results (their
unary model of blurred faces across events vs. our blurred
faces from the AT&T datasets), our model achieved 18%
higher accuracy than theirs.

8. CONCLUSIONS
The experiments in this paper demonstrate a fundamen

tal problem faced by ad hoc image obfuscation techniques.
These techniques partially remove sensitive information so
as to render certain parts of the image (such as faces and
objects) unrecognizable by humans, but retain the image’s
basic structure and appearance and allow conventional stor
age, compression, and processing. Unfortunately, we show
that obfuscated images contain enough information corre
lated with the obfuscated content to enable accurate recon
struction of the latter.

Modern image recognition methods based on deep learn
ing are especially powerful in this setting because the adver
sary does not need to specify the relevant features of obfus
cated images in advance or even understand how exactly the
remaining information is correlated with the hidden infor
mation. We demonstrate that deep learning can be used to
accurately recognize faces, objects, and handwritten digits
even if the image has been obfuscated by mosaicing, blur
ring, or encrypting the significant JPEG coefficients.

Instead of informal arguments based on human users’ in
ability to recognize faces and objects in the obfuscated im

age, the designers of privacy protection technologies for vi
sual data should measure how much information can be re
constructed or inferred from the obfuscated images using
state-of-the-art image recognition algorithms. As the power
of machine learning grows, this tradeoff will shift in favor
of the adversaries. At the other end of the spectrum, full
encryption blocks all forms of image recognition, at the cost
of destroying all utility of the images.

How to design privacy protection technologies that can,
for example, protect faces in photos and videos while pre
serving the news value of these images is an important topic
for future research.

9. REFERENCES
[1]	 D. Aitkenhead. ‘I’ve done really bad things’: The

undercover cop who abandoned the war on drugs. The

Guardian, 2016.

[2]	 AT&T Laboratories Cambridge. The database of faces,

1994.

[3]	 R. Benenson. Who is the best at X?

http://rodrigob.github.io/are we there yet/build/, 2016.

[4]	 C. M. Bishop. Pattern recognition. Machine Learning, 128,
2006.

[5]	 J. Cannady. Artificial neural networks for misuse detection.
In National information systems security conference, 1998.

[6]	 L. Cavedon, L. Foschini, and G. Vigna. Getting the face
behind the squares: Reconstructing pixelized video streams.
In WOOT, 2011.

[7]	 R. Collobert, K. Kavukcuoglu, and C. Farabet. Torch7: A
matlab-like environment for machine learning. In BigLearn,
NIPS Workshop, 2011.

[8]	 G. E. Dahl, J. W. Stokes, L. Deng, and D. Yu. Large-scale
malware classification using random projections and neural
networks. In 2013 IEEE International Conference on
Acoustics, Speech and Signal Processing, 2013.

[9]	 Deeplearning.net. Convolutional neural networks (LeNet).
http://deeplearning.net/tutorial/lenet.html, 2016.

[10] A. Frome, G. Cheung, A. Abdulkader, M. Zennaro, B. Wu,
A. Bissacco, H. Adam, H. Neven, and L. Vincent.
Large-scale privacy protection in Google Street View. In
2009 IEEE 12th international conference on computer
vision, 2009.

[11]	 B. A. Golomb, D. T. Lawrence, and T. J. Sejnowski.
SEXNET: A neural network identifies sex from human
faces. In NIPS, 1990.

[12]	 R. Gopalan, S. Taheri, P. Turaga, and R. Chellappa. A
blur-robust descriptor with applications to face recognition.
IEEE transactions on pattern analysis and machine
intelligence, 2012.

[13]	 R. Gross, L. Sweeney, F. De la Torre, and S. Baker.
Model-based face de-identification. In CVPRW, 2006.

[14] A. Hannun, C. Case, J. Casper, B. Catanzaro, G. Diamos,
E. Elsen, R. Prenger, S. Satheesh, S. Sengupta, A. Coates,
et al. Deep speech: Scaling up end-to-end speech
recognition. arXiv:1412.5567, 2014.

[15]	 K. He, X. Zhang, S. Ren, and J. Sun. Delving deep into
rectifiers: Surpassing human-level performance on
ImageNet classification. In Proceedings of the IEEE
International Conference on Computer Vision, 2015.

[16]	 S. Hill, Z. Zhou, L. Saul, and H. Shacham. On the (in)
effectiveness of mosaicing and blurring as tools for
document redaction. PETS, 2016.

[17]	 G. B. Huang, M. Ramesh, T. Berg, and E. Learned-Miller.
Labeled faces in the wild: A database for studying face
recognition in unconstrained environments. Technical
report, Technical Report 07-49, University of
Massachusetts, Amherst, 2007.

[18] P. Ilia, I. Polakis, E. Athanasopoulos, F. Maggi, and
S. Ioannidis. Face/off: Preventing privacy leakage from
photos in social networks. In CCS, 2015.

http://rodrigob.github.io/are_we_there_yet/build/
http://deeplearning.net/tutorial/lenet.html
http:Deeplearning.net

[19]	 Independent JPEG Group. Independent JPEG group.
http://www.ijg.org/, 2012.

[20]	 S. Ioffe and C. Szegedy. Batch normalization: Accelerating
deep network training by reducing internal covariate shift.
arXiv:1502.03167, 2015.

[21]	 K. Jarrett, K. Kavukcuoglu, Y. Lecun, et al. What is the
best multi-stage architecture for object recognition? In
2009 IEEE 12th International Conference on Computer
Vision, pages 2146–2153. IEEE, 2009.

[22]	 M. Korayem, R. Templeman, D. Chen, and D. C. A.
Kapadia. Enhancing lifelogging privacy by detecting
screens. In Proceedings of the 2016 CHI Conference on
Human Factors in Computing Systems, 2016.

[23]	 A. Krizhevsky and G. Hinton. Learning multiple layers of
features from tiny images, 2009.

[24]	 A. Krizhevsky, I. Sutskever, and G. E. Hinton. ImageNet
classification with deep convolutional neural networks. In
Advances in neural information processing systems, 2012.

[25]	 K. Lander, V. Bruce, and H. Hill. Evaluating the
effectiveness of pixelation and blurring on masking the
identity of familiar faces. Applied Cognitive Psychology,
2001.

[26]	 Y. LeCun, Y. Bengio, and G. Hinton. Deep learning.
Nature, 2015.

[27]	 Y. LeCun, C. Cortes, and C. J. Burges. The mnist database
of handwritten digits, 1998.

[28]	 D. Levene. A police raid in London in 2011. The Guardian,
2011.

[29] W. Melicher, B. Ur, S. M. Segreti, S. Komanduri, L. Bauer,
N. Christin, and L. F. Cranor. Fast, lean and accurate:
Modeling password guessability using neural networks. In
Proceedings of USENIX Security, 2016.

[30]	 C. Neustaedter, S. Greenberg, and M. Boyle. Blur filtration
fails to preserve privacy for home-based video conferencing.
ACM Transactions on Computer-Human Interaction
(TOCHI), 2006.

[31]	 E. M. Newton, L. Sweeney, and B. Malin. Preserving
privacy by de-identifying face images. IEEE transactions
on Knowledge and Data Engineering, 2005.

[32]	 H.-W. Ng and S. Winkler. A data-driven approach to
cleaning large face datasets. In IEEE International
Conference on Image Processing (ICIP), 2014.

[33]	 S. J. Oh, R. Benenson, M. Fritz, and B. Schiele. Faceless
person recognition; privacy implications in social media.
arXiv:1607.08438, 2016.

[34]	 T. E. Oliphant. Python for scientific computing. Computing
in Science & Engineering, 2007.

[35]	 U. N. O. on Drugs and Crime. India: Community vigilance
rescues Roshni. 2010.

[36]	 O. M. Parkhi, A. Vedaldi, and A. Zisserman. Deep face
recognition. In British Machine Vision Conference, 2015.

[37] R. Pascanu, J. W. Stokes, H. Sanossian, M. Marinescu, and
A. Thomas. Malware classification with recurrent networks.
In ICASSP, 2015.

[38] A. Punnappurath, A. N. Rajagopalan, S. Taheri,
R. Chellappa, and G. Seetharaman. Face recognition across
non-uniform motion blur, illumination, and pose. IEEE
Transactions on Image Processing, 2015.

[39]	 M.-R. Ra, R. Govindan, and A. Ortega. P3: Toward
privacy-preserving photo sharing. In NSDI, 2013.

[40]	 D. E. Rumelhart, G. E. Hinton, and R. J. Williams.
Learning representations by back-propagating errors.
Cognitive modeling, 5(3):1, 1988.

[41]	 J. Ryan, M.-J. Lin, and R. Miikkulainen. Intrusion
detection with neural networks. Advances in neural
information processing systems, 1998.

[42]	 F. Schroff, D. Kalenichenko, and J. Philbin. Facenet: A
unified embedding for face recognition and clustering. In
Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, 2015.

[43] K. Simonyan and A. Zisserman. Very deep convolutional

networks for large-scale image recognition. arXiv preprint
arXiv:1409.1556, 2014.

[44]	 S. Sivakorn, I. Polakis, and A. D. Keromytis. I am
robot:(deep) learning to break semantic image captchas. In
2016 IEEE European Symposium on Security and Privacy
(EuroS&P), 2016.

[45]	 N. Srivastava, G. E. Hinton, A. Krizhevsky, I. Sutskever,
and R. Salakhutdinov. Dropout: a simple way to prevent
neural networks from overfitting. JMLR, 2014.

[46]	 Standard, JPEG. Information technology-digital
compression and coding of continuous-tone still
images-requirements and guidelines. International
Telecommunication Union. CCITT recommendation, 1992.

[47]	 L. Tran, D. Kong, H. Jin, and J. Liu. Privacy-cnh: A
framework to detect photo privacy with convolutional
neural network using hierarchical features. AAAI 2016,
2016.

[48]	 D. Venkatraman. Why blurring sensitive information is a
bad idea. https://dheera.net/projects/blur, 2014.

[49]	 T. Weyand, I. Kostrikov, and J. Philbin. Planet-photo
geolocation with convolutional neural networks.
arXiv:1602.05314, 2016.

[50]	 M. J. Wilber, V. Shmatikov, and S. Belongie. Can we still
avoid automatic face detection? In WACV, 2016.

[51]	 YouTube Official Blog. Face blurring: when footage
requires anonymity. https://youtube.googleblog.com/2012/
07/face-blurring-when-footage-requires.html, 2012.

[52]	 YouTube Official Blog. Face blurring: when footage requires
anonymity. https://youtube-creators.googleblog.com/2016/
02/blur-moving-objects-in-your-video-with.html, 2016.

[53]	 Z. Yuan, Y. Lu, Z. Wang, and Y. Xue. Droid-sec: Deep
learning in Android malware detection. In ACM
SIGCOMM Computer Communication Review, 2014.

[54]	 S. Zagoruyko. 92.45% on CIFAR-10 in Torch.
http://torch.ch/blog/2015/07/30/cifar.html, 2015.

[55] N. Zhang, M. Paluri, Y. Taigman, R. Fergus, and
L. Bourdev. Beyond frontal faces: Improving person
recognition using multiple cues. In CVPR, 2015.

[56]	 E. Zhou, Z. Cao, and Q. Yin. Naive-deep face recognition:
Touching the limit of LFW benchmark or not?
arXiv:1501.04690, 2015.

Appendices
A. NEURAL NETWORK ARCHITECTURES

A.1 MNIST Neural Network
nn.Sequential {

[input -> (1) -> (2) -> ... -> (11) -> (12) -> output]
(1): nn.SpatialConvolutionMM(1 -> 32, 5x5)
(2): nn.LeakyReLU(0.01)
(3): nn.SpatialMaxPooling(3x3, 3,3)
(4): nn.SpatialConvolutionMM(32 -> 64, 5x5)
(5): nn.LeakyReLU(0.01)
(6): nn.SpatialMaxPooling(2x2, 2,2)
(7): nn.Reshape(256)
(8): nn.Linear(256 -> 200)
(9): nn.LeakyReLU(0.01)
(10): nn.Dropout(0.500000)
(11): nn.Linear(200 -> 10)
(12): nn.LogSoftMax

}

A.2 CIFAR Neural Network
nn.Sequential {
[input -> (1) -> (2) -> (3) -> output]
(1): nn.BatchFlip
(2): nn.Copy

http://www.ijg.org/
https://dheera.net/projects/blur
https://youtube.googleblog.com/2012/07/face-blurring-when-footage-requires.html
https://youtube.googleblog.com/2012/07/face-blurring-when-footage-requires.html
https://youtube-creators.googleblog.com/2016/02/blur-moving-objects-in-your-video-with.html
https://youtube-creators.googleblog.com/2016/02/blur-moving-objects-in-your-video-with.html
http://torch.ch/blog/2015/07/30/cifar.html
http:nn.LeakyReLU(0.01
http:nn.LeakyReLU(0.01
http:nn.LeakyReLU(0.01

(3): nn.Sequential {
[input -> (1) -> (2) -> ... -> (53) -> (54) -> output]
(1): nn.SpatialConvolution(3 -> 64, 3x3, 1,1, 1,1)
(2): nn.SpatialBatchNormalization
(3): nn.ReLU

(4): nn.Dropout(0.300000)
(5): nn.SpatialConvolution(64 -> 64, 3x3, 1,1, 1,1)
(6): nn.SpatialBatchNormalization
(7): nn.ReLU
(8): nn.SpatialMaxPooling(2x2, 2,2)
(9): nn.SpatialConvolution(64 -> 128, 3x3, 1,1, 1,1)
(10): nn.SpatialBatchNormalization
(11): nn.ReLU
(12): nn.Dropout(0.400000)
(13): nn.SpatialConvolution(128 -> 128, 3x3, 1,1, 1,1)
(14): nn.SpatialBatchNormalization
(15): nn.ReLU
(16): nn.SpatialMaxPooling(2x2, 2,2)
(17): nn.SpatialConvolution(128 -> 256, 3x3, 1,1, 1,1)
(18): nn.SpatialBatchNormalization
(19): nn.ReLU
(20): nn.Dropout(0.400000)
(21): nn.SpatialConvolution(256 -> 256, 3x3, 1,1, 1,1)
(22): nn.SpatialBatchNormalization
(23): nn.ReLU
(24): nn.Dropout(0.400000)
(25): nn.SpatialConvolution(256 -> 256, 3x3, 1,1, 1,1)
(26): nn.SpatialBatchNormalization
(27): nn.ReLU
(28): nn.SpatialMaxPooling(2x2, 2,2)
(29): nn.SpatialConvolution(256 -> 512, 3x3, 1,1, 1,1)
(30): nn.SpatialBatchNormalization
(31): nn.ReLU
(32): nn.Dropout(0.400000)
(33): nn.SpatialConvolution(512 -> 512, 3x3, 1,1, 1,1)
(34): nn.SpatialBatchNormalization
(35): nn.ReLU
(36): nn.Dropout(0.400000)
(37): nn.SpatialConvolution(512 -> 512, 3x3, 1,1, 1,1)
(38): nn.SpatialBatchNormalization
(39): nn.ReLU
(40): nn.SpatialMaxPooling(2x2, 2,2)
(41): nn.SpatialConvolution(512 -> 512, 3x3, 1,1, 1,1)
(42): nn.SpatialBatchNormalization
(43): nn.ReLU
(44): nn.Dropout(0.400000)
(45): nn.SpatialConvolution(512 -> 512, 3x3, 1,1, 1,1)
(46): nn.SpatialBatchNormalization
(47): nn.ReLU
(48): nn.Dropout(0.400000)
(49): nn.SpatialConvolution(512 -> 512, 3x3, 1,1, 1,1)
(50): nn.SpatialBatchNormalization
(51): nn.ReLU
(52): nn.SpatialMaxPooling(2x2, 2,2)
(53): nn.View(512)
(54): nn.Sequential {

[input -> (1) -> (2) -> ... -> (5) -> (6) -> output]

(1): nn.Dropout(0.500000)

(2): nn.Linear(512 -> 512)

(3): nn.BatchNormalization

(4): nn.ReLU

(5): nn.Dropout(0.500000)

(6): nn.Linear(512 -> 10)

}
}

}

A.3 AT&T Neural Network

nn.Sequential {
[input -> (1) -> (2) -> ... -> (14) -> (15) -> output]
(1): nn.SpatialConvolutionMM(1 -> 32, 3x3, 1,1, 1,1)
(2): nn.LeakyReLU(0.01)
(3): nn.SpatialMaxPooling(2x2, 2,2)

(4): nn.SpatialConvolutionMM(32 -> 64, 3x3, 1,1, 1,1)

(5): nn.LeakyReLU(0.01)

(6): nn.SpatialMaxPooling(2x2, 2,2)

(7): nn.SpatialConvolutionMM(64 -> 128, 3x3, 1,1, 1,1)

(8): nn.LeakyReLU(0.01)

(9): nn.SpatialMaxPooling(3x3, 3,3)

(10): nn.Reshape(8064)

(11): nn.Linear(8064 -> 1024)

(12): nn.LeakyReLU(0.01)

(13): nn.Dropout(0.500000)

(14): nn.Linear(1024 -> 40)

(15): nn.LogSoftMax

}

A.4 FaceScrub Neural Network
FaceScrub
nn.Sequential {

[input -> (1) -> (2) -> ... -> (13) -> (14) -> output]
(1): nn.SpatialConvolutionMM(1 -> 32, 3x3, 1,1, 1,1)
(2): nn.LeakyReLU(0.01)
(3): nn.SpatialMaxPooling(2x2, 2,2)
(4): nn.SpatialConvolutionMM(32 -> 64, 3x3, 1,1, 1,1)
(5): nn.LeakyReLU(0.01)
(6): nn.SpatialMaxPooling(2x2, 2,2)
(7): nn.SpatialConvolutionMM(64 -> 128, 3x3, 1,1, 1,1)
(8): nn.LeakyReLU(0.01)
(9): nn.SpatialMaxPooling(2x2, 2,2)
(10): nn.Reshape(100352)
(11): nn.Linear(100352 -> 1024)
(12): nn.LeakyReLU(0.01)
(13): nn.Dropout(0.500000)
(14): nn.Linear(1024 -> 530)

}

http:nn.LeakyReLU(0.01
http:nn.LeakyReLU(0.01
http:nn.LeakyReLU(0.01
http:nn.LeakyReLU(0.01
http:nn.LeakyReLU(0.01
http:nn.LeakyReLU(0.01
http:nn.LeakyReLU(0.01
http:nn.LeakyReLU(0.01

	1 Introduction
	2 Image obfuscation
	2.1 Mosaicing
	2.2 Blurring
	2.3 P3

	3 Artificial neural networks
	4 Threat model
	5 Methodology
	5.1 How the attack works
	5.2 Datasets
	5.3 Obfuscation
	5.4 Neural networks
	5.5 Training

	6 Results
	6.1 MNIST
	6.2 CIFAR-10
	6.3 AT&T
	6.4 FaceScrub

	7 Related work
	8 Conclusions
	9 References
	Appendices
	A Neural Network Architectures
	A.1 MNIST Neural Network
	A.2 CIFAR Neural Network
	A.3 AT&T Neural Network
	A.4 FaceScrub Neural Network

