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ABSTRACT 
We demonstrate that modern image recognition methods 
based on artificial neural networks can recover hidden in
formation from images protected by various forms of obfus
cation. The obfuscation techniques considered in this pa
per are mosaicing (also known as pixelation), blurring (as 
used by YouTube), and P3, a recently proposed system for 
privacy-preserving photo sharing that encrypts the signifi
cant JPEG coefficients to make images unrecognizable by 
humans. We empirically show how to train artificial neural 
networks to successfully identify faces and recognize objects 
and handwritten digits even if the images are protected us
ing any of the above obfuscation techniques. 

1. INTRODUCTION 
As user-contributed photographs and videos proliferate 

online social networks, video-streaming services, and photo-
sharing websites, many of them can be found to leak sensi
tive information about the users who upload them, as well as 
bystanders accidentally captured in the frame. In addition 
to the obvious identifiers such as human faces, privacy can 
be breached by images of physical objects, typed or hand
written text, license plates, contents of computer screens, 
etc. 
Fully encrypting photos and videos before sharing or up

loading them blocks direct information leakage, but also de
stroys information that is not privacy-breaching. Further
more, encryption prevents many common forms of process
ing. For example, encrypted photos cannot be easily com
pressed for network transmission or cloud storage. 
Several privacy protection technologies aim to solve this 

challenge by obfuscating or partially encrypting the sensi
tive parts of the image while leaving the rest untouched. A 
classic example of such a technology is facial blurring. It 
suppresses recognizable facial features but keeps everything 
else intact, thus preserving the utility of photographs for 
purposes such as news reporting. These techniques do not 
provide well-defined privacy guarantees. Privacy is argued 
informally, by appealing to the human users’ inability to rec
ognize faces and other sensitive objects in the transformed 
images. 
We argue that humans may no longer be the “gold stan

dard” for extracting information from visual data. Recent 
advances in machine learning based on artificial neural net
works have led to dramatic improvements in the state of 
the art for automated image recognition. Trained machine 
learning models now outperform humans on tasks such as 
object recognition [15, 20] and determining the geographic 
location of an image [49]. In this paper, we investigate what 
these advances mean for privacy protection technologies that 
rely on obfuscating or partial encrypting sensitive informa

tion in images. 

Our contributions. We empirically demonstrate how 
modern image recognition techniques based on artificial neu
ral networks can be used as an adversarial tool to recover 
hidden sensitive information from “privacy-protected” im
ages. We focus on three privacy technologies. The first 
is mosaicing (pixelation), which is a popular way of obfus
cating faces and numbers. The second is face blurring, as 
deployed by YouTube [51]. The third is P3 [39], a recently 
proposed system for privacy-preserving photo sharing that 
encrypts the significant coefficients in the JPEG representa
tion of the image. P3 aims to make the image unrecognizable 
yet preserve its JPEG structure and enable servers to per
form certain operations on it (e.g., compress it for storage 
or transmission). 

To illustrate how neural networks defeat these privacy pro
tection technologies, we apply them to four datasets that are 
often used as benchmarks for face, object, and handwritten-
digit recognition. All of these tasks have significant privacy 
implications. For example, successfully recognizing a face 
can breach the privacy of the person appearing in a recorded 
video. Recognizing digits can help infer the contents of writ
ten text or license plate numbers. 

On the MNIST dataset [27] of black and white hand
written digits, our neural network achieves recognition accu
racy of almost 80% when the images are “encrypted” using 
P3 with threshold level 20 (a value recommended by the 
designers of P3 as striking a good balance between privacy 
and utility). When the images are mosaiced with windows 
of resolution 8 × 8 or smaller, accuracy exceeds 80%. By 
contrast, the accuracy of random guessing is only 10%. 

On the CIFAR-10 dataset [23] of colored images of vehicles 
and animals, we achieve accuracy of 75% against P3 with 
threshold 20, 70% for mosaicing with 4 × 4 windows, and 
50% for mosaicing with 8 × 8 windows, vs. 10% for random 
guessing. 

On the AT&T [2] dataset of black-and-white faces from 
40 individuals, we achieve accuracy of 57% against blurring, 
97% against P3 with threshold 20, and over 95% against all 
examined forms of mosaicing, vs. 2.5% for random guessing. 
On the FaceScrub [32] dataset of photos of over 530 celebri

ties, we achieve accuracy of 57% against mosaicing with 
16 × 16 windows and 40% against P3 with threshold 20, 
vs. 0.19% for random guessing. 

The key reason why our attacks work is that we do not 
need to specify the relevant features in advance. We do 
not even need to understand what exactly is leaked by a 
partially encrypted or obfuscated image. Instead, neural 
networks automatically discover the relevant features and 
learn to exploit the correlations between hidden and visible 
information (e.g., significant and “insignificant” coefficients 



Figure 1: An image from The Guardian showing a police raid on a 
drug gang [28]. The accompanying article explains that UK drug 
gangs are growing more violent and that police informants and 
undercover operatives face possible retaliation [1]. The officers’ 
faces are presumably mosaiced for their protection. The window 
appears to be 12×12 pixels. Using 16×16 windows (which obfus
cate more information than 12× 12 windows), our neural network 
achieves 57% accuracy in recognizing an obfuscated image from 
a large dataset of 530 individuals. The accuracy increases to 72% 
when considering the top five guesses. 

in the JPEG representation of an image). As a consequence, 
obfuscating an image so as to make it unrecognizable by a 
human may no longer be sufficient for privacy. 

In summary, this paper is the first to demonstrate the 
power of modern neural networks for adversarial inference, 
significantly raising the bar for the designers of privacy tech
nologies. 

2. IMAGE OBFUSCATION 
As the targets for our analysis, we chose three obfuscation 

techniques that aim to remove sensitive information from 
images. The first two techniques are mosaicing (or pixe
lation) and blurring. These are very popular methods for 
redacting faces, license plates, adult content, and text (Fig
ure 1). The third technique is a recently proposed system 
called P3 [39] that aims to protect the privacy of images up
loaded to online social networks such as Facebook while still 
enabling some forms of image processing and compression. 

2.1 Mosaicing 
Mosaicing (pixelation) is used to obfuscate parts of an 

image. The section to be obfuscated is divided into a square 
grid. We refer to the size of each square (a.k.a., “pixel box”) 
as the mosaic window. The average color of every pixel in 
each square is computed and the entire square is set to that 
color [16]. 

The size of the window can be varied to yield more or less 
privacy. The larger the box, the more pixels will be averaged 
together and the less fine-grained the resulting mosaiced im
age will be. 

Although the size of the image stays the same, mosaicing 
can be thought of as reducing the obfuscated section’s res
olution. For example, a window of size n × n applied to an 
image effectively reduces the number of unique pixels in an 
image by a factor of n 2 . 

2.2 Blurring 

Figure 2: A victim of human trafficking in India [35]. Her 
face has been blurred, presumably to protect her identity. Our 
neural networks, trained on black-and-white faces blurred with 
YouTube, can identify a blurred face with over 50% accuracy 
from a database of 40 faces. 

Blurring (often called “Gaussian blur”) is similar to mo
saicing and used to obfuscate faces and sensitive text. Blur
ring removes details from an image by applying a Gaussian 
kernel [16]. The result is a “smoothed” version of the original 
image (see Figure 2). 

In 2012, YouTube introduced the ability to automatically 
blur all faces in a video [51]. YouTube presents their au
tomatic facial blurring as a way to improve video privacy. 
For example, they suggest that it can be used it to “share 
sensitive protest footage without exposing the faces of the 
activists involved.” In 2016 YouTube introduced the ability 
to blur arbitrary objects in a video [52]. Once this feature 
is selected, YouTube will attempt to continue blurring the 
selected objects as they move around the screen. YouTube 
claims to have added this feature “with visual anonymity in 
mind.” 

Mosaicing and blurring do not remove all information 
from an image, but aim to prevent human users from rec
ognizing the blurred text or face. The result of these tech
niques also often used as it is less visually jarring than, for 
example, a black box produced by full redaction. 

In Section 7, we survey prior papers that demonstrated 
the insufficiency of mosaicing and blurring as a privacy pro
tection technique. To the best of our knowledge, this paper 
is the first to demonstrate that standard image recognition 
models can extract information from mosaiced and blurred 
images. 

2.3 P3 
Privacy Preserving Photo Sharing (P3) [39] was designed 

to protect the privacy of JPEG images hosted on social me
dia sites. P3 is intended to be applied by users, but it also 
assumes that the sites will not prevent users from uploading 
P3-protected images. 

The main idea of P3 is to split each JPEG into a public 
image and a secret image. The public image contains most 
of the original image but is intended to exclude the sensitive 
information. Public images can thus be uploaded to online 
social networks and untrusted servers. It is essential that 
the public image is not encrypted and correctly formatted 
as a JPEG since some popular sites (e.g., Facebook) do not 
allow users to upload malformed images. 

The secret image is much smaller in size but contains most 
of the sensitive information from the original image. It is 



Figure 3: P3 works by removing the DC and large AC coefficients 
from the public version of image and placing them in a secret 
image. (Image from [39]) 

encrypted and uploaded to a third-party hosting service like 
Dropbox. 

Given a public image and a private image, it is easy to 
combine them back into the original image. P3 proposes a 
browser plugin that can be used while browsing social me
dia sites. It automatically downloads an encrypted image, 
decrypts it if the user has the appropriate keys, and displays 
the combined image. Anyone browsing the social media site 
without the plugin or the corresponding keys would only see 
the public parts of images. 

P3 supports the recovery of original images even after 
transformations (e.g., cropping and resizing) are applied to 
the public image, but the details of this do not affect the 
privacy properties of P3. 

To explain how P3 works, we first review the basics of 
JPEG image formatting [46]. When converting an image 
to JPEG, the color values of each block of 8 × 8 pixels are 
processed with a discrete cosine transform (DCT), and the 
resulting DCT coefficients are saved as the image represen
tation (after some additional formatting). 

P3 assumes that the DC coefficient (the 0th one) and the 
larger AC coefficients (the remaining 63) carry the most in
formation about the image. When applying P3 to an im
age, the user sets a threshold value. The DC coefficients, 
as well as any AC coefficients whose values are larger than 
the threshold, are encrypted and stored in the secret image 
(see Figure 3). In the public image, these coefficients are re
placed by the threshold value. All remaining AC coefficients 
are stored in in the public image in plaintext. To reconstruct 
the original image, the coefficients in the secret image are 
decrypted and copied to their places in the public image. 

By varying the threshold value, the user can balance the 
size of the secret image against the amount of data removed 
from the public image. The authors of P3 recommend using 
threshold values between 10 and 20. 

P3 explicitly aims to protect images from“automatic recog
nition technologies” [39]. P3 uses signal processing tests, in
cluding edge detection, face detection, face recognition, and 
SIFT features, as privacy metrics. Since these features in 
the public images do not match those in the original im
ages and standard techniques do not find or recognize faces 
in the public images, the authors of P3 conclude that the 
system protects privacy. They do not evaluate the human 
recognition rate of public images, but as examples in Table 1 

Figure 4: Schematic architecture of a convolutional neural net
work [9]. The network is composed of convolutional layers fol
lowed by max-pooling sub-sampling layers. The last layers are 
fully connected. 

illustrate, public P3 images produced with the recommended 
threshold values do not appear to be human-recognizable. 

3. ARTIFICIAL NEURAL NETWORKS 
Neural networks with many layers, also known as deep 

neural networks, have become very effective in classifying 
high-dimensional data such as images and speech signals [14, 
15, 26]. As opposed to other machine learning algorithms, 
which require explicit feature specification and engineering, 
neural networks can, given a classification task, automati
cally extract complex features from high-dimensional data 
and use these features to find the relationship between the 
data and the model’s output. In this paper, we focus on 
training neural networks in a supervised setting for classifi
cation. The training process involves constructing a model 
that learns the relationship between data and classes from 
a labeled dataset (where for each data record we know its 
true class). 

An artificial neural network is composed of multiple lay
ers of nonlinear functions so that more abstract features 
are computed as nonlinear functions of lower-level features. 
Each function is modeled as a neuron in the network. The 
input to the inner layer’s neurons is the output of the neu
rons in the previous layer. The functions implemented in the 
neurons are referred to as activation units and are usually 
pre-determined by the model designer. The nonlinear func
tions are constructed to maximize the prediction accuracy 
of the whole model on a training dataset. In Section 5.4, we 
give concrete examples of neural networks used for image 
recognition tasks. 

In our networks, we use two activation units: ReLU (rec
tified linear units) and LeakyReLU. The ReLU is an activa
tion function f(x) = max(0, x), while the LeakyReLU is the 
activation function  

x, if x > 1 
f (x) =

0.01x, otherwise. 

Model training or learning is an optimization problem 
whose objective is to (1) extract the most relevant features 
for a particular classification task, and (2) find the best rela
tionship between these features and the output of the model 
(i.e., classification of inputs). 

The architecture of the network, which determines how 
different layers interact with each other, greatly affects the 
potential accuracy of the model. Convolutional neural net
works (CNN) are a common deep neural-network architec
ture for object recognition and image classification, known 
to yield high prediction accuracy [24, 43]. CNNs have also 
been widely used for face recognition. Zhou et al. [56] and 
Parkhi et al. [36] presented CNNs for the Labeled Faces in 
the Wild database [17] supplemented with large datasets of 



Web images. Also, FaceNet [42] is an efficient CNN for fa
cial recognition trained on triplets of two matching and one 
non-matching facial thumbnails. 

As opposed to fully connected neural networks, in which 
all neurons in one layer are connected to all neurons in the 
previous layer, in a convolutional neural network each neu
ron may process the output of only a subset of other neu
rons. This technique allows the model to embed some known 
structure of the data (e.g., relationship between neighboring 
pixels). Figure 4 illustrates the schematic architecture of a 
convolutional neural network. These networks are composed 
of multiple convolutional and sub-sampling layers with sev
eral fully connected layers at the end. Each neuron in a 
convolutional layer works on a small connected region of 
the previous layer (e.g., neighboring pixels in the first layer) 
over their full depth (e.g., all color signals in the first layer). 
Usually, multiple convolutional neurons operate on the same 
region in the previous layer, which results in extracting mul
tiple features for the same region. In the sub-sampling layer, 
a function of these features is computed and passed to the 
next layer. Max-pooling, where the feature with the highest 
value is selected, is typically used for this purpose. After a 
few convolutional and max-pooling layers, the final layers of 
the network are fully connected. 

Given a network architecture, the training process in
volves learning the importance weights of each input for each 
neuron. These weights are referred to as neural-network 
parameters. The objective is to find the parameter values 
that minimize the classification error of the model’s output. 
Training is an iterative process. In each iteration (known as 
a training epoch), the weights are updated so as to reduce 
the model’s error on its training set. This is done by stochas
tic gradient descent algorithm [40] which computes the gra
dient of the model’s error over each parameter and updates 
the parameter towards lower errors. The magnitude of the 
update is controlled by the “learning rate” hyper-parameter. 

To avoid overfitting on the training set and to help the 
trained model generalize to data beyond its training set, 
various regularization techniques are used. Dropout [45] 
is an effective regularization technique for neural networks 
which works by randomly dropping nodes (neurons) during 
the training with a pre-determined probability. 

4. THREAT MODEL 
We assume that the adversary has a set of obfuscated im

ages and his goal is to uncover certain types of sensitive 
information hidden in these images: namely, recognize ob
jects, faces, and/or digits that appear in the image. Rec
ognizing objects or faces from a known set is a standard 
image recognition task, except that in this case it must be 
performed on obfuscated images. For example, the operator 
of a storage service that stores obfuscated photos from an 
online social network may want to determine which users 
appear in a given photo. 

We also assume that the adversary has access to a set of 
plain, unobfuscated images that can be used for training the 
adversary’s neural networks. In the case of objects or hand
written digits, the adversary needs many different images of 
objects and digits. Such datasets are publicly available and 
used as benchmarks for training image recognition models. 
In the case of face recognition, the adversary needs the set 
of possible faces that may appear in a given photo. This 
is a realistic assumption for online social networks, where 

the faces of most users are either public, or known to the 
network operator. 

We assume that the adversary knows the exact algorithm 
used to obfuscate the images but not the cryptographic keys 
(if any) used during obfuscation. In the case of P3, this 
means that the adversary knows which threshold level was 
used but not the keys that encrypt the significant JPEG co
efficients. In the case of mosaicing, the adversary knows 
the size of the pixelation window. In the case of blur
ring, the adversary has black-box access to the blurring al
gorithm and does not have any information about this algo
rithm other than what this algorithm produces on adversary-
supplied videos and images. This accurately models the case 
of YouTube blurring, which from the viewpoint of a video 
creator has a simple on/off switch. 

5. METHODOLOGY 

5.1 How the attack works 
The main idea of our attack is to train artificial neural 

networks to perform image recognition tasks on obfuscated 
images. We train a separate neural-network model for each 
combination of an obfuscation technique and a recognition 
task. 

As explained in Section 4, we assume that the adversary 
has access to a set of plain, unobfuscated images that he can 
use for training. We generate the training set by applying 
the given obfuscation technique to these images (for exam
ple, request YouTube’s Video Manager to blur the faces). 
We then perform supervised learning on the obfuscated im
ages to create an obfuscated-image recognition model, as de
scribed in Section 5.5. Complete descriptions of our neural-
network architectures are in the appendices. Finally, we 
measure the accuracy of our models. 

In all of our experiments, the training set and the test set 
are disjoint. For example, the images used for training the 
mosaiced-face recognition model are drawn from the same 
dataset of facial photos as the images used for measuring the 
accuracy of this model, but the two subsets have no images 
in common. 

5.2 Datasets 
We used four different, diverse datasets: the MNIST database 

of handwritten digits, the CIFAR-10 image dataset, the AT&T 
database of faces, and the FaceScrub celebrity facial dataset. 

MNIST. The MNIST dataset [27] consists of 28×28 grayscale 
images of handwritten digits collected from US Census Bu
reau employees and high-school students. Each image con
sists of one handwritten digit (i.e., an Arabic numeral be
tween 0 and 9). The dataset is divided into a training set 
of 60,000 images and a test set of 10,000 images. We ex
panded the MNIST images to 32x32 images by adding a 
2-pixel white border around the edge of each image. 

CIFAR-10. The CIFAR-10 dataset [23] consists of 32×32 
color images. Each image contains an object belonging to 
one of 10 classes. Each class is either a vehicle (e.g., plane, 
car, etc.) or an animal (e.g., dog, cat, etc.). There are 50,000 
images in the CIFAR-10 training set and 10,000 images in 
the test set. 

AT&T. The AT&T database of faces [2] contains 400 92 × 
112 grayscale images of 40 individuals. Each individual has 
10 images in the dataset, taken under a variety of lighting 



Dataset Original 2 × 2 
Mosaic 

4 × 4 8 × 8 16 × 16 20 
P3 
10 1 

MNIST 

CIFAR
10 

AT&T 

FaceScrub 

Table 1: Examples images from each dataset. The leftmost image is the original image. The remaining columns are the image obfuscated 
with mosaicing with windows of 2 × 2, 4 × 4, 8 × 8, and 16 × 16 pixels and P3 with thresholds of 20, 10, and 1. 

conditions, with different expressions and facial details (i.e., 
with or without glasses). For our training set, we randomly 
selected 8 images of each person. The remaining 2 were used 
in the test set. 

FaceScrub. The FaceScrub dataset [32] is a large dataset 
originally consisting of over 100,000 facial images of 530 
celebrities. The images have been compiled from various on-
line articles. Due to copyright concerns only the image URLs 
are distributed, not the images themselves. Some of the im
ages are no longer accessible and we were able to download 
only 66,033 images. FaceScrub includes the bounding boxes 
for the faces in each image and we used those to extract the 
faces. 10 images of each person was used in the test set, 
the remaining 60,733 were used for training. Because some 
of the images are not in color, we converted all images to 
grayscale and scaled them to 224 × 224. 

5.3 Obfuscation 
For mosaicing (pixelation), we used a simple Python script 

with NumPy [34] to compute the average color of a block of 
pixels and then change the entire block to that color. 

To obfuscate images using the P3 technique, we modi
fied the 9a version of the Independent JPEG Group’s JPEG 
compression software [19] to replace any JPEG coefficient 
whose absolute value is bigger than the threshold with the 
threshold value. The resulting image is the same as the 
public image that would have been produced by P3. 

For blurring faces in the AT&T dataset, we used YouTube’s 
facial blurring [51]. For the training and test sets, we used 
ffmpeg to create videos of the original faces from the dataset 
and uploaded them to YouTube. Each face was shown for 1 
second and followed by 1 second of white frames before the 
next face was shown. Video resolution was 1280 × 720, with 
92 × 112 faces were centered in their frames. 

After uploading the training and test videos, we used 
YouTube’s Video Manager to automatically blur all faces in 
these videos, then downloaded the videos and used ffmpeg 
to extract each frame. We did not notice any faces that 

Figure 5: An original AT&T image and two blurred frames ex
tracted from a blurred YouTube video. Although the unblurred 
frames were identical, the two blurred frames are different. 

YouTube did not blur, but some edges of a few images were 
not blurred. 

Although the images in the videos were static, many of 
the faces in the blurred videos shifted in appearance, that 
is, parts of an image would become lighter or darker be
tween frames. We do not know if this is a feature added by 
YouTube to make identification harder or an artifact of their 
blurring technique. To account for the different blurrings of 
each image and to avoid any bleeding across images, we used 
the middle 5 frames of each image in the videos. This in
creased the size of our training and testing sets to 1,600 and 
400 images each. 

Because the blurring often extended outside of the original 
image borders, we extracted the center 184×224 pixels from 
each frame and then resized them to 92 × 112 pixels. Two 
examples of a blurred image can be seen in Figure 5. 

5.4 Neural networks 
Our experiments were done with three different neural 

networks: a digit recognition model for the MNIST dataset, 
an object recognition model for CIFAR-10, and a face recog
nition model for AT&T and FaceScrub datasets. All of our 
models are deep convolutional neural networks [21,24] with 
dropout [45] regularization. 



Note that we use the same architecture for training clas
sification models on the original and obfuscated images. We 
compare the accuracy of our models on obfuscated images 
with the accuracy of similar models on the original images. 
If we had used more accurate neural-network models or tai
lored neural networks specifically for recognizing obfuscated 
images, we could have achieved even higher accuracy than 
reported in this paper. 

MNIST. We used a simple neural network for classifying 
images in the MNIST dataset, based on Torch’s template 
neural network for MNIST [7]. See Appendix A.1 for the 
exact description of the network architecture. 

In this network, each convolutional layer with a leaky rec
tified linear unit (LeakyReLU) is followed by a layer of pool
ing. The network ends with a simple fully connected layer 
and a softmax layer that normalizes the output of the model 
into classification probabilities. A dropout layer with a prob
ability of 0.5 is introduced between the linear layer and the 
softmax layer. 

CIFAR-10. For CIFAR-10, we used Zagoruyko’s CIFAR
10 neural network [54]. This network was created to see how 
batch normalization worked with dropout. Batch normaliza
tion speeds up the training and improves neural networks by 
normalizing mini-batches between layers inside the neural 
network [20]. The Zagoruyko method creates a large convo
lutional neural network and adds batch normalization after 
every convolutional and linear layer. Zagoruyko’s network 
consists of 13 convolutional layers with batch normalization, 
each with a rectified linear unit (ReLU). See Appendix A.2 
for the exact description of the network architecture. 

AT&T and FaceScrub. The networks used for the AT&T 
and FaceScrub datasets of facial images are similar to the 
one used on the MNIST dataset, with an extra round of 
convolution. See Appendix A.3 and A.4 for the exact de
scription of the network architecture. 

5.5 Training 
For each of our experiments, we obfuscated the entire 

dataset and then split it into a training set and a test set. 
In the MNIST and CIFAR-10 datasets, images are already 
designated as training or test images. For AT&T and Face-
Scrub, we randomly allocated images to each set. 

For training the MNIST model, we used the learning rate 
of 0.01 with the learning rate decay of 10−7, momentum of 
0.9, and weight decay of 5 × 10−4 . The learning rate and 
momentum control the magnitude of updates to the neural-
network parameters during the training [4,40]. For training 
the CIFAR-10 model, we initialized the learning rate to 1 
and decreased it by a factor of 2 every 25 epochs. Weight 
decay was 5 × 10−4, momentum was 0.9, and learning rate 
decay was 10−7 . For the AT&T and FaceScrub models, we 
used the same learning rate and momentum as in the MNIST 
training. 

We ran all of our experiments for 100-200 training epochs. 
For each epoch, we trained our neural networks on the ob
fuscated training set and then measured the accuracy of the 
network on the obfuscated test set. 

Our neural networks were programmed in Torch. The 
MNIST and AT&T networks were distributed across mul
tiple Linux machines in an HTCondor cluster. The larger 
CIFAR-10 and FaceScrub networks made use of the Torch 
CUDA backend and were trained on Amazon AWS g2.8xlarge 

machines with GRID K520 Nvidia cards running Ubuntu 
14.04. 

6. RESULTS 
From each of the original datasets, we created seven ob

fuscated datasets for a total of eight datasets (see Table 1). 
For each neural networks defined in 5.4, we created eight 
models: one for classifying images in the original dataset 
and one each for classifying the obfuscated versions of that 
dataset. In addition to these eight sets, we created a ninth 
set from the AT&T dataset. This set used facial images that 
were blurred by YouTube. While the same network was used 
for all versions of a dataset, the networks were trained and 
tested on only one version at a time (i.e., there was no mix
ing between the images obfuscated with different techniques 
or with the original images). 

Three of the obfuscated datasets were created by running 
P3 on the original images and saving the P3 public images. 
We used P3 with thresholds of 1, 10, and 20. 10 and 20 
are the thresholds recommended by the designers of P3 as 
striking a good balance between privacy and utility [39]. The 
threshold of 1 is the most privacy-protective setting that P3 
allows. 

The remaining four obfuscated datasets were created by 
mosaicing the original dataset with different windows. Mo
saic windows of 2 × 2, 4 × 4, 8 × 8, 16 × 16 were used. 
When analyzing the accuracy of our network with different 
mosaic window sizes, image resolution should be taken into 
account. For datasets with 32 × 32 resolution (i.e., MNIST 
and CIFAR-10), 16×16 windows reduce the practical size of 
each image to only 2 × 2 pixels. On the FaceScrub dataset, 
however, we could maintain the resolution of 14 × 14 pixels 
after the image was mosaiced with the same 16×16 window. 

We computed the accuracy of the network in classifying 
the test set after every round of training. We recorded the 
accuracy of the top guess as well as the top 5 guesses. Re
sults are shown in Table 2. 

6.1 MNIST 
The results for the MNIST neural network are shown in 

Figure 6. The accuracy of the neural network on the original 
images increases quickly and exceeds 90% within 10 epochs. 
This is not surprising since MNIST is one of the older ma
chine learning datasets and is used pervasively to test mod
els. Top models achieve 98%-99% accuracy [3] and neural 
networks that can get over 90% accuracy are so simple that 
they are often used in deep-learning and neural-network tu
torials. 

The models for mosaiced images with smaller windows 
(i.e., 2 × 2 and 4 × 4) also quickly exceeded 90% accuracy. 
Although the MNIST images are relatively small, just 32×32 
pixels, these small windows have little effect on obscuring the 
digits. The 2 × 2 mosaiced images are human-recognizable 
(see Table 1) and the 4 × 4 mosaiced images still show the 
general shape and pixel intensity to a large enough resolution 
that a neural network can achieve accuracy of over 96%. 

The models for the 8 × 8 and 16 × 16 mosaiced images 
reached accuracy of over 80% and 50%, respectively. While 
these are not as impressive as the other results, it’s impor
tant to note that mosaicing with these windows reduced the 
MNIST images to just 4×4 and 2×2 unique pixels. Even the 
accuracy of 50% is significantly larger than the 10% chance 
of random guessing the correct digit. 



Dataset 
Base
line 

Origi
nal 

2 × 2 

Mosaic 

4 × 4 8 × 8 16 × 16 20 

P3 

10 1 

MNIST Top 1 10.00 98.71 98.49 96.17 83.42 52.13 79.93 74.19 58.54 
MNIST Top 5 50.00 100 100 99.95 99.36 93.90 98.91 97.95 94.82 

CIFAR Top 1 10.00 89.57 81.76 70.21 53.95 31.81 74.56 65.98 33.21 
CIFAR Top 5 50.00 99.46 98.85 97.10 92.26 81.76 96.98 94.99 80.72 

AT&T Top 1 2.50 95.00 95.00 96.25 95.00 96.25 97.50 93.75 83.75 
AT&T Top 5 12.50 100 100 100 98.75 98.75 100 100 95.00 

FaceScrub Top 
1 

0.19 75.49 71.53 69.91 65.25 57.56 40.02 31.21 17.42 

FaceScrub Top 
5 

0.94 86.06 83.74 82.08 79.13 72.23 58.38 51.28 34.79 

Table 2: Accuracy of neural networks classifying the original datasets as well as those obfuscated with mosaicing with windows of 2 × 2, 
4 × 4, 8 × 8, and 16 × 16 pixels and P3 thresholds of 20, 10, and 1. The baseline accuracy corresponds to random guessing. 

Dataset Baseline Original Blurred 
AT&T Top 1 2.50 95.00 57.75 
AT&T Top 5 12.50 100 85.75 

Table 3: The accuracy of classifying the AT&T faces blurred 
with YouTube. 

The accuracy of recognizing public P3 images falls be
tween the 8 × 8 and 16 × 16 mosaicing. The accuracy of 
the threshold-20 model is just below 80%. Looking at the 
threshold-20 image, the general shape of the digit can be 
seen. It is not surprising that the accuracy is close to to the 
8 × 8 mosaicing because P3 follows the JPEG specifications 
and obfuscates each 8 × 8 block of pixels separately [46]. 

6.2 CIFAR-10 
The CIFAR-10 model trained on the original images achieved 

just under 90% accuracy. This is not as high as the MNIST 
results, but the CIFAR-10 images are much more complex 
and cluttered than the simple digits from the MNIST dataset. 
The CIFAR-10 mosaiced results are also not as strong as 
the MNIST results. While it would seem that the larger 
amounts of color information would make classification of 
the original and mosaiced information easier, it also increases 
the dimensionality and complexity of both the data and the 
neural network. When using 16×16 windows, the obfuscated 
CIFAR-10 images are reduced to just four colors. It is im
pressive that even in this challenging scenario, the accuracy 
of our neural network is 31%. 

The P3 models on threshold-20 and threshold-10 images 
achieved accuracies of 74% and 66%, respectively. The accu
racy on threshold-1 images, however, dropped to only 32%. 

6.3 AT&T 
The results for the models trained on the AT&T dataset 

of faces are shown in Figure 8. The models for the original 
and mosaiced images all achieved over 95% accuracy. For 
the original images and the smaller mosaicing windows, this 
is not surprising. The images in the AT&T dataset are 92 × 
112 pixels, much larger than the MNIST and CIFAR-10’s 
resolution of 32 × 32. Even the 8 × 8 mosaiced faces are 
probably recognizable by a human (see Figure 1). 

A human might be able to recognize 16 × 16 mosaiced 
images as faces, but we hypothesize that individual identifi

cation would become challenging at that level of pixelization. 
However, these mosaiced images have 6 × 7 resolution and 
there is still enough information for the neural networks to 
be able to accurately recognize people in the images. 

The models trained on P3 images did not all reach as 
high an accuracy as the models working against mosaicing, 
but their accuracy was above 80%, still much higher than 
the 2.5% accuracy of random guessing. The results for the 
threshold-20 images are the best, producing correct identifi
cation 97% of the time. Looking at the threshold-20 images, 
rough outlines of faces can be seen, although many of the 
helpful details, such as differences in color, have been re
moved by the P3 algorithm. The accuracy of our model was 
lowest on the threshold-1 images. However, it was still ac
curate over 83% of the time, which is a major improvement 
vs. the 2.5% success rate of random guessing. 

The AT&T dataset was the only set that we obfuscated 
with YouTube’s facial blurring. Anecdotally, the authors of 
this paper were at a complete loss when trying to identify 
the blurred faces by sight. Our simple neural network, how
ever, was able to recognize individuals with 57.75% accuracy 
(Table 3). 

6.4 FaceScrub 
The AT&T dataset is relatively small, with only 40 in

dividuals and 10 images per individual. While it is helpful 
to illustrate the power of neural networks, a larger dataset 
like FaceScrub, with 530 individuals, is more indicative of 
achievable accuracy. The full results of the FaceScrub mod
els are shown in Figure 9. 

The accuracy of our neural network on the original Face-
Scrub dataset is 75%. This is impressive for such a simple 
network on a large dataset. Once again, a more sophisti
cated network architecture could likely achieve much better 
results, but our experiments show that even a simple net
work can defeat the image obfuscation techniques. 

The models for recognizing mosaiced faces exhibit the 
same pattern as the models on the MNIST and CIFAR-10 
datasets, with the smaller mosaicing window resulting in the 
almost the same accuracy as the original images. It is not 
surprising that the accuracy of recognizing mosaiced faces 
did not drop below 50%. The FaceScrub images have rel
atively large resolution, 224 × 224, thus a 16 × 16 window 
only reduces the resolution of the image to 14 × 14 pixels. 



(a) Top guess. 

(b) Top 5 guesses. 

Figure 6: Test accuracy of the neural networks trained on the 
MNIST handwritten digits. The networks were trained and 
tested on digits obfuscated with different techniques: P3 with 
thresholds of 1, 10, and 20, and mosaicing with 2 × 2, 4 × 4, 8 × 8, 
and 16 × 16 windows. 

The results for FaceScrub protected using P3 show some 
of the worst accuracies in all our experiments. Nevertheless, 
even the threshold-1 accuracy of 17% is still almost two or
ders of magnitude larger the accuracy of random guessing 
(0.19%). 

7. RELATED WORK 
We survey related work in two areas: image obfuscation 

and applications of neural networks in security and privacy. 

Image obfuscation. Many existing systems and tech
niques use blurring and mosaicing to protect users’ privacy. 
Face/Off [18] uses facial blurring to prevent identification in 
“restricted” Facebook images. YouTube supports blurring of 
faces [51] and objects [52] in videos as well. Google Street 
View blurs license plates and faces [10]. 

There is a large body of literature on why simple blurring 
techniques are insufficient for protecting privacy. To eval
uate the effectiveness of blurring and pixelation for hiding 
identities, Lander et al. [25] asked participants to identify 

(a) Top guess. 

(b) Top 5 guesses. 

Figure 7: Test accuracy of the neural networks trained on the 
CIFAR-10 images. The networks were trained and tested on col
ored images obfuscated with different techniques: P3 with thresh
olds of 1, 10, and 20, and mosaicing with 2 × 2, 4 × 4, 8 × 8, and 
16 × 16 windows. 

famous people in obfuscated movie clips and static images. 
Their result show that famous people can still be recognized 
in some obfuscated images. They also reported higher iden
tification accuracy for movie clips compared to static im
ages. Neustaedter et al. [30] analyzed how obfuscation can 
balance privacy with awareness in always-on remote video 
situations, where users would like to recognize the remote 
person without being able to see the privacy-sensitive parts 
of the video. Their results show that blurring and pixela
tion do not achieve both sufficient privacy and satisfactory 
awareness in remote work settings. 

Newton et al. [31] examined many de-identification tech
niques for obfuscated face images and achieved an extremely 
high (99%) recognition rate. However, they only considered 
obfuscating a small rectangle on the top part of the face, 
including the eyes and top of the nose. Gross et al. [13] de
signed an algorithmic attack to identify people from their 
pixelated and blurred face images. Their attack is based 
on the similarity of the obfuscated image and the original 



(a) Top guess. (a) Top guess. 

(b) Top 5 guesses. 

Figure 8: Test accuracy at each epoch of neural-network training 
on the AT&T dataset of faces. The networks were trained and 
tested on black-and-white faces obfuscated with different tech
niques: P3 with thresholds of 1, 10, and 20, mosaicing with 2 × 2, 
4×4, 8×8, and 16×16 windows, and automatic YouTube blurring. 

images. They showed that small mosaic boxes (e.g., 2-4 
pixels) and simple blurring would not prevent identifica
tion attacks. The authors suggested a new de-identification 
technique based on Newton et al. [31]. Cavedon et al. [6] 
exploited the changes in pixel boxes for obfuscating video 
frames to reconstruct pixelated videos using image process
ing methods so that humans can identify objects in the re
constructed images. Wilber et al. [50] used Facebook’s face 
tagging system as a black-box tool to determine if faces ob
fuscated with various techniques, including blurring, are still 
recognizable by Facebook. 

Venkatraman [48] presented a brute-force attack to recon
struct pixelated check numbers and concluded that obfuscat
ing sensitive information using blurring provides poor pro
tection, although it might not be easy to reconstruct faces 
from blurred images. Hill et al. [16] showed that obfuscated 
text can be reconstructed with a large accuracy using lan
guage models. They used hidden Markov models (HMM) 
to achieve better speed and accuracy vs. Venkatraman’s 

(b) Top 5 guesses. 

Figure 9: Test accuracy at each epoch of neural-network train
ing on the FaceScrub dataset. The networks were trained and 
tested on black-and-white celebrity faces obfuscated with differ
ent techniques: P3 with thresholds of 1, 10, and 20, mosaicing 
with 2 × 2, 4 × 4, 8 × 8, and 16 × 16 windows, and automatic 
YouTube blurring. 

method. They were also able to accurately reconstruct texts 
when the size of the mosaic box exceeds the size of the let
ters. Hill’s technique relies heavily on knowing the text font 
and size, as well as the size of the mosaic box. 

Gopalan et al. [12] presented a method to recognize faces 
obfuscated with non-uniform blurring by examining the space 
spanned by the blurred images. Punnappurath et al. [38] 
extended this work by applying possible blurring effects to 
images in the target gallery and finding the minimal distance 
between the gallery images and the blurred image. 

Neural networks. Neural networks have been successfully 
used extract information from (unobfuscated) images. For 
example, Golomb et al. [11] used neural networks to identify 
the sex of human faces. 

Beyond their applications in image recognition, (deep) 
neural networks have been used in many privacy and secu
rity contexts. For example, Cannady et al. [5] and Ryan et 
al. [41] used neural networks in intrusion detection systems 



(IDS). Neural networks are particularly useful for this pur
pose because the IDS designer does not need to engineer rel
evant network-flow features and can rely on the network to 
discover these features automatically. Deep neural networks 
have been used for malware classification in general [8, 37] 
and for specifically detecting Android malware [53]. 

Deep convolutional neural networks can be used to detect 
objects in images. This enables detecting sensitive objects in 
a video stream or static images. Korayem et al. [22] proposed 
a technique to detect computer screens in images. The goal 
is to alert the user or to hide the screen to protect privacy of 
users who may have sensitive information on their screens. 
Tran et al. [47] detect privacy-sensitive photos using deep 
neural networks. 

Sivakorn et al. [44] used deep convolutional neural net
works to break Google’s image CAPTCHAs (which ask users 
to identify images that have a particular object in them). 
Melicher et al. [29] used deep neural networks to analyze 
user passwords and construct a password prediction model. 

Concurrently with our work, Oh et al. released a preprint [33] 
where they use a neural network to recognize untagged indi
viduals in social-media images. Our work differs in several 
ways: 1) Oh et al. only examine the obfuscation of faces 
in larger images while we work with entirely obfuscated im
ages (including backgrounds); 2) Oh et al. take advantage of 
unobfuscated body cues and contextual information in the 
images to correlate multiple images, whereas we do not make 
use of any external information beyond the obfuscated im
age itself; 3) we focus on a broader class of image recognition 
problems and defeat more types of obfuscation (including, in 
the case of P3, partially encrypted images that are not rec
ognizable by humans, and real-world protections deployed 
by popular systems such as YouTube); and 4) Oh et al. only 
evaluate a single dataset (the People in Photo Albums [55]), 
whereas we evaluate our attack against diverse datasets, in
cluding MNIST, CIFAR-10, AT&T Database of Faces, and 
FaceScrub. Considering the most comparable results (their 
unary model of blurred faces across events vs. our blurred 
faces from the AT&T datasets), our model achieved 18% 
higher accuracy than theirs. 

8. CONCLUSIONS 
The experiments in this paper demonstrate a fundamen

tal problem faced by ad hoc image obfuscation techniques. 
These techniques partially remove sensitive information so 
as to render certain parts of the image (such as faces and 
objects) unrecognizable by humans, but retain the image’s 
basic structure and appearance and allow conventional stor
age, compression, and processing. Unfortunately, we show 
that obfuscated images contain enough information corre
lated with the obfuscated content to enable accurate recon
struction of the latter. 

Modern image recognition methods based on deep learn
ing are especially powerful in this setting because the adver
sary does not need to specify the relevant features of obfus
cated images in advance or even understand how exactly the 
remaining information is correlated with the hidden infor
mation. We demonstrate that deep learning can be used to 
accurately recognize faces, objects, and handwritten digits 
even if the image has been obfuscated by mosaicing, blur
ring, or encrypting the significant JPEG coefficients. 

Instead of informal arguments based on human users’ in
ability to recognize faces and objects in the obfuscated im

age, the designers of privacy protection technologies for vi
sual data should measure how much information can be re
constructed or inferred from the obfuscated images using 
state-of-the-art image recognition algorithms. As the power 
of machine learning grows, this tradeoff will shift in favor 
of the adversaries. At the other end of the spectrum, full 
encryption blocks all forms of image recognition, at the cost 
of destroying all utility of the images. 

How to design privacy protection technologies that can, 
for example, protect faces in photos and videos while pre
serving the news value of these images is an important topic 
for future research. 
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Appendices 
A. NEURAL NETWORK ARCHITECTURES 

A.1 MNIST Neural Network 
nn.Sequential { 

[input -> (1) -> (2) -> ... -> (11) -> (12) -> output] 
(1): nn.SpatialConvolutionMM(1 -> 32, 5x5) 
(2): nn.LeakyReLU(0.01) 
(3): nn.SpatialMaxPooling(3x3, 3,3) 
(4): nn.SpatialConvolutionMM(32 -> 64, 5x5) 
(5): nn.LeakyReLU(0.01) 
(6): nn.SpatialMaxPooling(2x2, 2,2) 
(7): nn.Reshape(256) 
(8): nn.Linear(256 -> 200) 
(9): nn.LeakyReLU(0.01) 
(10): nn.Dropout(0.500000) 
(11): nn.Linear(200 -> 10) 
(12): nn.LogSoftMax 

} 

A.2 CIFAR Neural Network 
nn.Sequential { 
[input -> (1) -> (2) -> (3) -> output] 
(1): nn.BatchFlip 
(2): nn.Copy 

http://www.ijg.org/
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https://youtube.googleblog.com/2012/07/face-blurring-when-footage-requires.html
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(3): nn.Sequential { 
[input -> (1) -> (2) -> ... -> (53) -> (54) -> output] 
(1): nn.SpatialConvolution(3 -> 64, 3x3, 1,1, 1,1) 
(2): nn.SpatialBatchNormalization 
(3): nn.ReLU 

(4): nn.Dropout(0.300000) 
(5): nn.SpatialConvolution(64 -> 64, 3x3, 1,1, 1,1) 
(6): nn.SpatialBatchNormalization 
(7): nn.ReLU 
(8): nn.SpatialMaxPooling(2x2, 2,2) 
(9): nn.SpatialConvolution(64 -> 128, 3x3, 1,1, 1,1) 
(10): nn.SpatialBatchNormalization 
(11): nn.ReLU 
(12): nn.Dropout(0.400000) 
(13): nn.SpatialConvolution(128 -> 128, 3x3, 1,1, 1,1) 
(14): nn.SpatialBatchNormalization 
(15): nn.ReLU 
(16): nn.SpatialMaxPooling(2x2, 2,2) 
(17): nn.SpatialConvolution(128 -> 256, 3x3, 1,1, 1,1) 
(18): nn.SpatialBatchNormalization 
(19): nn.ReLU 
(20): nn.Dropout(0.400000) 
(21): nn.SpatialConvolution(256 -> 256, 3x3, 1,1, 1,1) 
(22): nn.SpatialBatchNormalization 
(23): nn.ReLU 
(24): nn.Dropout(0.400000) 
(25): nn.SpatialConvolution(256 -> 256, 3x3, 1,1, 1,1) 
(26): nn.SpatialBatchNormalization 
(27): nn.ReLU 
(28): nn.SpatialMaxPooling(2x2, 2,2) 
(29): nn.SpatialConvolution(256 -> 512, 3x3, 1,1, 1,1) 
(30): nn.SpatialBatchNormalization 
(31): nn.ReLU 
(32): nn.Dropout(0.400000) 
(33): nn.SpatialConvolution(512 -> 512, 3x3, 1,1, 1,1) 
(34): nn.SpatialBatchNormalization 
(35): nn.ReLU 
(36): nn.Dropout(0.400000) 
(37): nn.SpatialConvolution(512 -> 512, 3x3, 1,1, 1,1) 
(38): nn.SpatialBatchNormalization 
(39): nn.ReLU 
(40): nn.SpatialMaxPooling(2x2, 2,2) 
(41): nn.SpatialConvolution(512 -> 512, 3x3, 1,1, 1,1) 
(42): nn.SpatialBatchNormalization 
(43): nn.ReLU 
(44): nn.Dropout(0.400000) 
(45): nn.SpatialConvolution(512 -> 512, 3x3, 1,1, 1,1) 
(46): nn.SpatialBatchNormalization 
(47): nn.ReLU 
(48): nn.Dropout(0.400000) 
(49): nn.SpatialConvolution(512 -> 512, 3x3, 1,1, 1,1) 
(50): nn.SpatialBatchNormalization 
(51): nn.ReLU 
(52): nn.SpatialMaxPooling(2x2, 2,2) 
(53): nn.View(512) 
(54): nn.Sequential { 

[input -> (1) -> (2) -> ... -> (5) -> (6) -> output]
 
(1): nn.Dropout(0.500000)
 
(2): nn.Linear(512 -> 512)
 
(3): nn.BatchNormalization
 
(4): nn.ReLU
 
(5): nn.Dropout(0.500000)
 
(6): nn.Linear(512 -> 10)
 

} 
} 

} 

A.3 AT&T Neural Network 

nn.Sequential { 
[input -> (1) -> (2) -> ... -> (14) -> (15) -> output] 
(1): nn.SpatialConvolutionMM(1 -> 32, 3x3, 1,1, 1,1) 
(2): nn.LeakyReLU(0.01) 
(3): nn.SpatialMaxPooling(2x2, 2,2) 

(4): nn.SpatialConvolutionMM(32 -> 64, 3x3, 1,1, 1,1)
 
(5): nn.LeakyReLU(0.01)
 
(6): nn.SpatialMaxPooling(2x2, 2,2)
 
(7): nn.SpatialConvolutionMM(64 -> 128, 3x3, 1,1, 1,1)
 
(8): nn.LeakyReLU(0.01)
 
(9): nn.SpatialMaxPooling(3x3, 3,3)
 
(10): nn.Reshape(8064)
 
(11): nn.Linear(8064 -> 1024)
 
(12): nn.LeakyReLU(0.01)
 
(13): nn.Dropout(0.500000)
 
(14): nn.Linear(1024 -> 40)
 
(15): nn.LogSoftMax
 

} 

A.4 FaceScrub Neural Network 
FaceScrub 
nn.Sequential { 

[input -> (1) -> (2) -> ... -> (13) -> (14) -> output] 
(1): nn.SpatialConvolutionMM(1 -> 32, 3x3, 1,1, 1,1) 
(2): nn.LeakyReLU(0.01) 
(3): nn.SpatialMaxPooling(2x2, 2,2) 
(4): nn.SpatialConvolutionMM(32 -> 64, 3x3, 1,1, 1,1) 
(5): nn.LeakyReLU(0.01) 
(6): nn.SpatialMaxPooling(2x2, 2,2) 
(7): nn.SpatialConvolutionMM(64 -> 128, 3x3, 1,1, 1,1) 
(8): nn.LeakyReLU(0.01) 
(9): nn.SpatialMaxPooling(2x2, 2,2) 
(10): nn.Reshape(100352) 
(11): nn.Linear(100352 -> 1024) 
(12): nn.LeakyReLU(0.01) 
(13): nn.Dropout(0.500000) 
(14): nn.Linear(1024 -> 530) 

} 
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