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Abstract—Hiding memory access patterns is required for 
secure computation, but remains prohibitively expensive 
for many interesting applications. Prior work has either 
developed custom algorithms that minimize the need for 
data-dependant memory access, or proposed the use of 
Oblivious RAM (ORAM) to provide a general-purpose 
solution. However, most ORAMs are designed for client-
server scenarios, and provide only asymptotic benefits in 
secure computation. Even the best prior schemes show 
concrete benefits over naïve linear scan only for array 
sizes greater than 100. This immediately implies each 
ORAM access is 100 times slower than a single access 
at a known location. Even then, prior evaluations ignore 
the substantial initialization cost of existing schemes. 

We show how the classical square-root ORAM of Gol
dreich and Ostrovsky can be modified to overcome these 
problems, even though it is asymptotically worse than the 
best known schemes. Specifically, we show a design that 
has over 100 times lower initialization cost, and provides 
benefits over linear scan for just 8 blocks of data. For all 
benchmark applications we tried, including Gale-Shapley 
stable matching and the scrypt key derivation function, our 
scheme outperforms alternate approaches across a wide 
range of parameters, often by several orders of magnitude. 

I. INTRODUCTION 

Over the past decade, advances in protocol design and 
implementation [2, 17, 26], cryptographic techniques [3, 
20, 29, 41], and approaches for constructing smaller 
circuits [19, 31] have combined to make circuit-based 
secure computation efficient enough for many practical 
uses. Nevertheless, typical applications still exhibit an 
unacceptable performance penalty when computed using 
such protocols — especially those employing algorithms 
that make heavy use of data-dependent memory access. 
Although such accesses are constant-time operations 
when performed locally, they require (in general) time 
proportional to the size of the memory when performed 
using circuit-based secure-computation protocols, be
cause the access patterns must be hidden. For this reason, 
researchers, beginning with Gordon et al. [15], have 

investigated secure computation in the random access 
machine (RAM) model of computation [7, 9, 18, 23, 24, 
25, 36, 40]. A primary building block in this model is 
oblivious RAM (ORAM) [12], which provides a memory 
abstraction that can read and write to arbitrary locations 
without leaking any information about which locations 
were accessed. 

ORAM protocols were originally proposed for a 
client-server setting, in which a client stores and ma
nipulates an array of length n on an untrusted server 
without revealing the data or access patterns to the server. 
Gordon et al. adapted ORAM to the setting of secure 
computation [15], in which parties collectively maintain 
a memory abstraction that they can jointly access ac
cess, while hiding the access patterns from everyone. In 
essence, the parties run a secure-computation protocol 
to store shares of the state of the underlying ORAM 
protocol, and then use circuit-based secure computation 
to execute the ORAM algorithms. 

Although there is a rich literature devoted to develop
ing ORAM protocols with improved performance [4, 13, 
14, 21, 28, 30, 32, 37], most of this literature focuses on 
optimizing performance in the client-server setting, and 
most work on RAM-based secure computation (RAM
SC) uses existing ORAM protocols (to a first approx
imation) as black boxes. We highlight, however, that 
there are a number of differences between applications 
of ORAM in the two settings: 

1) In the client-server setting the client owns the data 
and performs the accesses, so the privacy require
ment is unilateral. In the RAM-SC setting none of 
the parties should be able to learn anything about 
the data or access patterns. 

2) In the client-server setting the client’s state should 
be sublinear in n or else the problem is trivial; for 
RAM-SC, however, the linear state is stored across 
both parties. 

3) In the client-server setting the most important met
ric is the total communication complexity. In the 
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RAM-SC setting other measures of efficiency be
come more important. Specifically, the algorithmic 
complexity is important because the algorithms will 
be emulated using generic secure computation. 

4) In the client-server setting, the initialization step 
(when the client outsources its data to the server) is 
“free” because it is a local action on the part of the 
client. In the RAM-SC case, the parties must use 
a distributed protocol for initialization and the cost 
of doing so may be prohibitive. 

Existing work on ORAM has focused entirely on 
asymptotic performance; we are not aware of any prior 
work whose aim is to improve performance for concrete 
values of n. Indeed, prior work in the RAM-SC setting 
has found that a linear scan over the data (i.e., a triv
ial ORAM construction) outperforms more-complicated 
ORAM constructions until n becomes quite large [15, 
34, 35] (in practice, n is often small even when the 
inputs are large since n may denote the length of a single 
array rather than the entire memory being used by the 
computation, and each memory block may contain many 
individual data items). This means that for practical 
sizes, the entire body of research on ORAM has had 
little impact as far as RAM-SC is concerned. 

Contributions. We re-visit the classical square-root 
ORAM of Goldreich and Ostrovsky [12], and propose 
a number of modifications to that construction with the 
goal of obtaining an ORAM scheme suitable for secure 
computation in the semi-honest setting: 

1) In the original scheme, the client uses a hash func
tion to compute the position map (i.e., the mapping 
from semantic addresses to physical addresses). We 
replace this with a shared array storing the position 
map explicitly. This is particularly beneficial when 
the underlying ORAM algorithms are computed 
using generic circuit-based secure computation. 

2) Because the position map is stored explicitly, initial
ization and reshuffling (expensive operations per
formed sporadically) can be made much more effi
cient than in the original construction, as they can 
be based upon Waksman shuffling networks [33] 
rather than oblivious sorting. 

3) As observed in prior work [32] the position map is 
a constant factor smaller than the original mem
ory array. We use ORAMs recursively to enable 
oblivious access to the position map, and develop a 
number of optimizations in order to obtain a secure 
and efficient protocol. 

We implement and evaluate our construction (code 

available at http://oblivc.org/) and show that for small-to
moderate values of n our scheme offers more efficient 
data access than Circuit ORAM [34]. In fact, our scheme 
outperforms even the trivial ORAM (i.e., linear scan) for 
n as small as 8 (the exact crossover point depends on 
the block size used as well as the underlying network 
and processor). Our construction also significantly out
performs prior work in terms of initialization time. To 
understand how the properties of different applications 
impact ORAM performance, and demonstrate the general 
applicability of our design, we implement and evaluate 
several benchmark application, including secure two-
party computations of the Gale-Shapley stable matching 
algorithm, breadth-first search, binary search, and the 
Scrypt hash function. The resulting protocols are more 
efficient than prior approaches by an order of magnitude 
or more in some cases. 

II. BACKGROUND 

This section provides a brief introduction to multi-
party computation (MPC), oblivious RAM (ORAM), 
RAM-based secure computation (RAM-SC), and closely 
related protocols. 

A. Multi-Party Computation 

Secure multi-party computation [11, 38] enables two 
or more parties to collaboratively evaluate a function that 
depends on secret inputs from all parties, while revealing 
nothing aside from the result of the function. In most 
generic constructions of multi-party computation, the 
function to be evaluated is represented as a circuit (either 
Boolean or arithmetic). Numerous circuit-based multi-
party computation protocols have been developed for 
use in different scenarios. In this paper, we we assume 
the use of Yao’s garbled circuit protocol. However, 
our scheme does not depend on any specifics of Yao’s 
protocol, and also works with other MPC protocols. 

Garbled circuits protocols involve two parties, denoted 
the generator and evaluator. Given a publicly known 
function f , the generator associates each input bit with 
two garbled keys k0 ,k1, and computes a “garbled” circuit 
representation of the function f , GCf . Given garbled 
keys corresponding to inputs x and y, the evaluator 
can obliviously evaluate GCf to learn garbled keys for 
output f (x,y). The generator generates and sends GCf 
and the input keys for its own input. The generator and 
evaluator execute an oblivious transfer protocol to enable 
the evaluator to learn the input keys corresponding to its 
input without revealing that input to the generator. After 
obtaining its input keys, the evaluator can obliviously 
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evaluate GCf to obtain the output keys which are de
coded in the final step. 

B. Oblivious RAM 

Oblivious RAM is a memory structure that hides 
access patterns [12]. An ORAM scheme consists of two 
protocols: an initialization protocol that takes as input an 
array of elements and initializes a new oblivious structure 
in memory to contain them, and an access protocol that 
implements each logical access to the ORAM with a 
sequence of physical accesses to the underlying structure. 

To be secure, an ORAM must satisfy two proper
ties: 1) the physical access pattern of the initialization 
protocol is indistinguishable when initializing different 
input arrays of the same size; 2) for any two sequences 
of semantic accesses of the same length, the physical 
access patterns produced by the access protocol must 
be indistinguishable. Note that it is always possible to 
implement a secure initialization protocol by performing 
the access protocol iteratively on all input elements, and 
this is the approach taken by previous ORAM designs 
used in RAM-SC. However, it can be very inefficient to 
initialize the ORAM through repeated accesses. 

Goldreich and Ostrovsky [12] introduced two ORAM 
constructions with a hierarchical layered structure: the 
first, Square-Root ORAM, provides square root access 
complexity; the second, Hierarchical ORAM, requires a 
logarithmic number of layers and has polylogarithmic 
access complexity. A recent series of ORAM schemes, 
beginning with the work of Shi et al. [30], adopted a se
quence of binary trees as the underlying structure. While 
the most asymptotically bandwidth efficient ORAM con
structions known use the hierarchical paradigm [21], 
tree-based ORAMs are considered more efficient for 
practical implementations, especially when used in MPC 
protocols. This is primarily because classical hierarchical 
constructions use hash functions or pseudorandom func
tions (PRFs) to shuffle data in the oblivious memory. 
In an MPC context these functions must be executed as 
secure computations with large circuits. 

C. RAM-Based Secure Computation 

In traditional MPC, general input-dependent array 
access incurs a linear-time overhead since all elements 
need to be touched to hide the position of interest. RAM-
based secure computation (RAM-SC) combines ORAMs 
with circuit-based MPC protocols, to enable secure ran
dom memory accesses [15]. In RAM-SC, the bulk of 
the computation is still performed by a circuit-based 
protocol as in traditional MPC, but memory accesses 

are performed using an ORAM that is implemented 
within the MPC protocol. For each access, the circuit 
emulates an ORAM access step to translate a secret 
logical location into multiple physical locations that must 
be accessed. The physical locations are then revealed to 
the two parties, which pass the requested elements back 
into the circuit for use in the oblivious computation. 
Finally, the circuit produces new data elements to be 
written back to those physical positions, hiding which 
elements were modified and how they were permuted. 
One such structure is maintained for each array that 
needs input-dependent general random access. 

Two-party RAM-SC was first formulated by Gordon et 
al. [15] with an implementation based on a tree-based 
ORAM scheme proposed by Shi et al. [30]. Subsequent 
works [7, 9, 18, 36] presented improved protocols, 
all based on tree-based ORAM constructions. Wang et 
al. [34] proposed Circuit ORAM, which yields the best 
known circuit size both in terms of asymptotic behavior 
and concrete performance. In Section V, we provide per
formance comparisons between our new ORAM scheme 
and Circuit ORAM, showing orders of magnitude im
provement for access and initialization across a wide 
range of parameters and applications. 

D. Variations 

In addition to the RAM-SC model that we focus on, 
there are other uses for ORAMs in secure computation 
protocols. Some of the ORAM innovations produced in 
these settings have been applied to the RAM-SC designs 
described in Section II-C. Although it is beyond the 
scope of this work, we believe our ORAM design may 
likewise yield benefits in other contexts. 

Gentry et al. [9] proposed several optimizations for 
tree-based ORAMs and considered briefly how to build 
a HE-over-ORAM system. A system based on Path 
ORAM [32] was built in their subsequent work [10]. 
They showed a per-access time of 30 minutes for a 
database with 4 million 120-bit records, excluding the 
cost of initialization. 

Lu and Ostrovsky [25] designed an ORAM algorithm 
for two non-colluding servers. When applied to a two-
party secure RAM computation setting, these servers 
become parties engaging in an MPC protocol. Their con
struction achieves O(logN) overhead, but suffers from 
huge concrete costs because it requires oblivious eval
uation of Θ(logN) cryptographic operations per access, 
which is prohibitively expensive in an MPC protocol. 

Afshar et al. [1] discussed how to extend RAM-SC 
with malicious security, where both parties can arbitrarily 

3
 



deviate from the protocol. They proposed efficient con
sistency checks that avoid evaluating MAC in circuits. 
In this paper, we only consider semi-honest adversaries, 
and hope that future work will extend our protocol to be 
secure against malicious adversaries. 

III. REVISITING SQUARE-ROOT ORAM 

In this section we revisit Goldreich and Ostrovsky’s 
square-root ORAM design [12] and adapt it to the RAM
SC setting. Section III-A introduces notations used to 
describe ORAM algorithms; Section III-B provides a 
brief description of the original scheme; Section III-C in
troduces a basic (but inefficient) construction by making 
some key changes to the original scheme; Section III-D 
shows how to improve its efficiency with a recursive 
construction which is our final design. 

A. Notation 

We use (x) to denote a variable x secretly shared by 
the two parties. In our garbled circuit implementation, 
(x) means the generator knows (k0 ,k1) and the evaluator 
knows kx. Since the actual value of x is not known to 
either party, we interchangeably use the terms “private”, 
“garbled”, and “oblivious” to describe it. 

The length of an array is always public, although 
padding can be used to hide its exact length when nec
essary. An array containing private elements is denoted 
using angle brackets (e.g., (Array)). We denote the ith 

element of an array using a subscript (e.g., (Array)i). 
The index may be oblivious (e.g., (Array)(i)), in which 
case the array access is performed via linear scan. 

The structure blocks represents an array of block ob
jects. Each block contains private data, block.(data), and 
a private record of its logical index, block.(index). Thus, 
i is the physical index of blocksi, and blocksi.(index) is 
the logical index of the same block. Neither changing 
the contents of a block nor moving it from one structure 
to another alters its logical index, unless explicitly noted. 

In pseudocode, ordinary conditional statements will 
use the keyword if, while conditionals on secret values 
will use (if). The bodies of secret conditionals are 

define Access(Oram,(i),Φ): 
for j from 0 to Oram.n − 1: 
(if) (i) = j: Φ(Oram j) 

Fig. 1: Access algorithm for the linear scan ORAM.
 

define Write(Oram,(i),(val)): 
define Φ(block): 
block.(data) ← (val) 

Access(Oram,(i),Φ) 

define Read(Oram,(i)): 
(val) ←⊥ 
define Φ(block): 
(val) ← block.(data) 

Access(Oram,(i),Φ) 
return (val) 

Fig. 2: Read and write wrappers defined using Access() 

always executed, but the statements in them are executed 
conditionally, becoming no-ops if the condition is false. 

$We use (a) ←− B to denote random choice of a secret 
element a from a public set B. 

Figure 1 shows how the access algorithm for a naïve 
linear scan ORAM is written in our notation. The algo
rithm Access takes three parameters as inputs: 
•	 Oram: the main data structure storing the payload. 
•	 (i): the private, logical index of the block we want 

to access. 
•	 Φ(): a function that is invoked during access to read, 

write or modify the desired block. 
The ORAM hides index (i) by performing a linear 

scan over all elements. Note that we use (if) for the 
conditional, so the body of the conditional statement will 
actually be executed n times, although only one will have 
effect. Both parties will see the garbled keys representing 
(val) or (data) change n times inside Φ() but they will 
not know if the associated plaintext has also changed, 
since that depends on secret index (i). 

Applications will not typically use ORAMs by directly 
invoking Access, but by using the wrapper functions 
shown in Figure 2. These wrappers are exactly the 
same across all ORAM constructions we consider; the 
essential logic is in Access. 

B. Square-Root ORAM 

Figure 3 shows the original square-root ORAM pro
posed by Goldreich and Ostrovsky [12]. The ORAM 
structure consists of following components: 

1) Shuffle: an array of blocks, also referred to as 
“permuted memory” in the original paper. 

2) Stash: an array of blocks, termed the “shelter” in 
the original paper. 
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define Initialize(blocks,T ) 
n ← |blocks|
π ← pseudorandom function 

√
append n dummy blocks to Shuffle 

Shuffle ← ObliviousSort(blocks,π) 
Oram ← (n, t ← 0,T,π,Shuffle, Stash ← ∅) 
return Oram 

define Access(Oram,(i),Φ) 
(found) ← false 
for j from 0 to Oram.t: 
(if) Oram.Stash j.(index) = (i):
 
(found) ← true
 
Φ(Oram.Stash j)
 

(if)(found) : 
(k) ← Oram.n + Oram.t 

(else) : (k) ← (i) 

p ← reveal(π((k)))
 
(if) not (found) :
 

Φ(Oram.Shufflep)
 
append Oram.Shufflep to Oram.Stash
 

Oram.Shufflep ← dummy block 
Oram.t ← Oram.t + 1
 
if Oram.t = Oram.T :
 

blocks ← real blocks in
 

Oram.Shuffle ∪ Oram.Stash 

Oram ← Initialize(blocks,Oram.T ) 

Fig. 3: The original square-root ORAM scheme [12]. 

3)	 π: a pseudorandom function (PRF) mapping indices 
to random strings. Note that π needs to be evaluated 
securely using MPC protocols, which is why pre
vious RAM-SC designs dismissed the square-root 
ORAM construction. 

To initialize an ORAM from an array of blocks, we √ 
first append n dummy blocks to the input array and 
generate an oblivious pseudorandom permutation map √	 √ 
using π(i)∀i ∈ {1, ...,(n + n)}. We shuffle the n + n 
blocks by sorting them according to the permutation 
map, and reveal the sorted map, which relates physical 
locations to values of π(i). Once the blocks are shuffled, 
their physical locations and semantic indices are uncor

define Initialize(blocks,T ) 
n ← |blocks|
(π) ← random permutation on n elements 

Shuffle ← ObliviousPermute(blocks,(π)) 
Oram ← (n, t ← 0,T,(π),Shuffle, 

Used ← ∅ ,Stash ← ∅) 

return Oram 

define Access(Oram,(i),Φ) 
(found) ← false 
for j from 0 to Oram.t: 
(if) Oram.Stash j.(index) = (i):
 
(found) ← true
 
Φ(Oram.Stash j)
 

(if)(found) : 
$(p) ←− {0, . . . ,(Oram.n − 1)}\ Oram.Used 

(else) : (p) ← Oram.(π)(i) 
p ← reveal((p))
 
(if) not (found) :
 

Φ(Oram.Shufflep)
 
append Oram.Shufflep to Oram.Stash
 

Oram.Used ← Oram.Used ∪{p}
 
Oram.t ← Oram.t + 1
 
if Oram.t = Oram.T :
 

for j from 0 to |Oram.Used|− 1:
 

p1 ← Oram.Used j
 

Oram.Shufflep1 ← Oram.Stash j 

Oram ← Initialize(Oram.Shuffle,Oram.T ) 

Fig. 4: Our basic square-root ORAM scheme. 

related, and so each block may be accessed once (and 
only once) without revealing anything about the access 
pattern. Accessing a physical location in the shuffled 
array multiple times would leak information, revealing 
that the logical access sequence contains a repeat. 

To access logical index (i), we first scan the blocks in 
Stash. If the block with logical index i is not found, we 
compute (p)← π((i)); otherwise, we find the location of 
the next unaccessed dummy block, (p)← π(n+Oram.t). 
The value (p) is then revealed to both parties, but no 
information is leaked about the logical index. The block 
at the physical location referred to by p is found by 
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performing a binary search over the permutation map 
and accessing the block with the same physical index. 
This block is then accessed and moved to Stash. 

After T accesses have been performed, we oblivi
ously remove all dummy blocks in Oram.Stash and 
Oram.Shuffle and re-initialize the whole structure. The 
complete protocol is shown in pseudocode in Figure 3. 
In Goldreich and Ostrovsky’s original protocol, Oram.T√ √ 
is set to n, resulting in O( n log2 n) amortized cost 
per access. 

The original scheme was not designed for a RAM-SC 
setting, and suffers from two key problems that make it 
very expensive to implement in an MPC: 

1) It evaluates the PRF π(x) for each access; in the √ 
initialization algorithm, n + n evaluations of π(i) 
are needed. This is inefficient, especially in MPC 
protocols since evaluating each PRF requires tens 
of thousands of gates. 

2) It requires a Θ(n log2 n) oblivious sort on the data 
blocks in two different places: to shuffle data blocks 
according to the PRF results, and to remove dummy 
blocks before initialization. 

Next, we discuss how to adapt the scheme for efficient 
use in RAM-SC by eliminating these problems. 

C. Basic Construction 

Figure 4 presents our basic construction, a step to
wards our final scheme. The construction is similar to 
the original scheme, with a key difference: instead of 
using PRF to generate a random permutation, it stores the 
permutation π explicitly as a private array. This enables 
several performance improvements: 

1) Storing the permutation π as a private array enables 
us to replace oblivious sorting during the initializa
tion with a faster oblivious permutation. In addition, 
the value p revealed during the access refers to the 
real location, which avoids using binary search to 
find the location for p. Section III-D shows how to 
recursively implement π for better efficiency. 

2) We eliminate the need of dummy blocks. When 
a dummy access is needed, we instead access a 
random location for real blocks that is not accessed 
before and append the block to the Stash. 

3) By using a public set Used, we avoid the oblivious 
sorting needed when moving blocks from the Stash 
to Shuffle. This is efficient since Used is maintained 
in the clear, and it is secure because all elements in 
Used have already been revealed. 

Security. Assuming the MPC protocol itself is secure 
and does not leak any information about oblivious 
variables, this protocol satisfies the ORAM requirement 
that no information is revealed about the logical access 
pattern. On each access, a uniform unused element 
from Shuffle is selected, regardless of the semantic 
index requested. Subsequently, the entire Stash is always 
scanned. Finally, the entire structure is reshuffled at a 
fixed interval, in a manner independent of the access 
pattern. The only values revealed are the permuted 
physical indices p; the set Used, which contains no 
information about the semantic indices; and the counter 
t, which increments deterministically. 

Asymptotic cost. Now we analyze the average cost of 
accessing a block in this basic scheme. We represent the 
combined cost of accessing (π) and Used as c(n), some 
value that depends on the number of blocks, n, but not 
block size. We use B to denote the cost of accessing a 
single block (this could be bandwidth, time, or energy 
cost). The augmented cost, B1 = B + Θ(log2 n), includes 
the additional cost of accessing the metadata containing 
the block’s logical index. For an ORAM of size n, each 
logical index requires log2 n bits, so it incurs Θ(log2 n) 
cost to retrieve or compare an index. 

Since our construction is a periodic algorithm that 
performs a shuffle every T accesses, we obtain the 
amortized per-access cost by computing the average over 
T accesses. This is the cost of the shuffle plus the cost 
of B1 for each block touched thereafter until the next 
shuffle. 

The cost of shuffling is approximately B1W (n) using 
a Waksman network [33]. Here, W (n) = n log2 n − n + 1 
is the number of oblivious swaps required to permute n 
elements. On each access, the entire Stash, comprising 
t blocks, must be scanned. Thus, the total cost of the T 
accesses and one shuffle which constitute a full cycle is 
given by 

T   
B1W (n)+ ∑ B1t + c(n)

t=1

≤ B1n log2 n + 
1

B1T (T + 1)+ T c(n)
2  

= T
1 

B1n log2 n + 
1

B1(T + 1)+ c(n)
T 2


= T F(n)
 

where F(n) is the amortized per-access cost. 
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+ 
If we set shuffle period T = n log2 n, the asymptotic + 

cost is F(n) = Θ(B1 n log2 n), assuming the block size 
is large enough to make c(n) negligible compared to B. 

Concrete cost. This design is less expensive than linear 
scan, even for reasonably small block sizes and for block 
counts as low as four. With linear scan, the cost is nB per 
access, ignoring smaller terms that are independent of B. 
With four blocks, the cost of a linear scan is 4B. Using a 
shuffling period of T = 3, we get a cost of B(W (4)+1+ 
2 + 3) = 11B for three accesses, again ignoring smaller 
terms that are independent of B. This is slightly better 
than the linear scan cost for three accesses, 3 × 4B = 
12B. Thus, for four blocks of a large enough size, the 
simplified one-level square-root ORAM is less expensive 
than a linear scan, even after accounting for the cost of 
initialization. However, in the case of small blocks, the 
terms independent of B (which we have ignored) become 
significant enough that linear scan has a slight advantage. 

In our experiments, we observed the square-root 
scheme to be more efficient in terms of bandwidth for 
four blocks of just 36 bytes each (see Section V-B for 
details). For larger block sizes, we found that the cost 
ratio reaches 11 : 12, as expected. 

D. Scalable Construction 

So far, we have not discussed how to implement the 
structure (π) more efficiently than linear scan, aside from 
claiming that its costs do not depend on the block size. 
For small values of n, linear scan is good enough, as in 
the four-block example above. At this size, π comprises 
just four records of two secret bits each. However, for 
larger values of n, it may seem natural to build these 
structures upon recursive ORAMs of decreasing size. As 
we discuss next, however, this method is unacceptably 
costly. Our solution is to specialize the structure for 
position maps. 

The position map structure is common to most exist
ing tree-based constructions [30, 32, 34]. It is usually 
implemented atop recursive ORAMs of decreasing size, 
each level packing multiple indices of the previous into 
a single block, and the whole thing is updated incre
mentally as elements of the main ORAM are accessed. 
In these constructions, each ORAM access requires a 
single corresponding access to each recursive position 
map. However, in our scheme, a naïve recursive structure 
for (π) would require n + T position lookups for every 
T accesses to the main ORAM (where T is the number 
of accesses between shuffles), since each of the T main 
accesses would require an access to the position map, 

and n additional accesses would be required to store the 
regenerated permutation π 1 when the ORAM is shuffled. 

This is a serious problem. Each level of the recursive 
structure stores pack indices of the previous level in a 
single block, which are traversed by linear scan. Thus, 
each subsequent level decreases in element count by a 
factor of pack, but all levels require pack time to linear 
scan the relevant block. We can multiply by (n+T )/T to+ 
amortize the cost over T accesses, where T = n log2 n, 
the shuffle period (as computed in Section III-C). If the 
amortized cost per access to level i of this map is ci(n), 
we have: 

n + T 
ci(n) ≥ 

T 
(ci+1(n/pack) + pack) 

n ≥ + ci+1(n/pack) 
n log2 n  

n ≥ ci+1(n/pack).log2 n 

This is a super-polynomial function with Θ(logn) levels 
of recursion, which is unacceptable for our efficiency 
goals. Fixing this involves three changes to our basic 
construction. 

The first change is to take advantage of our ability 
to initialize quickly from an oblivious array. On each 
shuffle we regenerate π and, instead of writing it into the 
recursive structure element by element, we re-initialize 
the recursive structure using π 1 as the seed data. This 
eliminates the extra n accesses to the position map on 
each cycle. 

Second, we lock all levels of the recursive structure + 
to the same shuffle period, T = n log2 n, where n is 
the number of blocks in the main ORAM (the level that 
contains the original data). We terminate the recursion at 
the first level with fewer than T blocks, and access this 
final level using linear scan. Using this arrangement, we 
can initialize the entire ORAM in Θ(Bn log n) bandwidth 
and time. 

This second modification has a downside. All levels 
of the recursive ORAM shuffle in synchronization with 
one another, using a shuffle period determined by the 
largest level. This shuffle period will be significantly 
suboptimal for levels with fewer blocks. We pay a 
time and bandwidth cost of Θ(T ) at each level of the 
ORAM (for linearly scanning the Θ(T ) blocks in each 
level’s Stash). An ORAM instantiated with n elements 
will have logn levels, which brings the cost per access + 
to Θ(T logn) = Θ( n log3 n). However, the linear scan 
overhead incurred by using a global shuffling period is 
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define Initialize(blocks) define Access (Oram0,(i),Φ,) 
n ← |blocks| (found) ← false 
(π) ← random permutation on n elements for j from 0 to Oram.t: 
Shuffle ← ObliviousPermute(blocks,(π)) (if) Oram0.Stash j.(index) = (i):+ 
T ← I W (n)l (found) ← true 
Oram1 ← InitializePosMap((π),1,T ) Φ(Oram0.Stash j) 
Oram0 ← (n, t ← 0,T,Oram1,Shuffle, p ← GetPos(Oram0.Oram1,(i),(found)) 

Used ← ∅,Stash ← ∅) (if) not (found): 
return Oram0 Φ(Oram0.Shufflep) 

append Oram0.Shufflep to Oram0.Stash 
Oram0.Used ← Oram0.Used ∪{p}
Oram0.t ← Oram0.t + 1 
if Oram0.t = Oram0.T : 

for j from 0 to Oram0.T − 1: 
p1 ← Oram.Used j 
Oram0.Shufflep1 ← Oram0.Stash j 

Oram0 ← Initialize(Oram0.Shuffle) 

Fig. 5: Our recursive square-root ORAM scheme. W (n) is the number of swaps needed in a n-sized Waksman 
permutation network. 

compensated for by gains in the efficiency of Used which 
it enables. 

Constructing an efficient mechanism for keeping track 
of used and unused physical blocks poses a challenge. 
Used contains inherently public data — both parties 
are aware which physical locations in Shuffle have al
ready been accessed — yet, they must obliviously check 
whether it contains a secret logical index (p). Moreover, 
they must be able to sample a secret, uniform element 
from S = {0, . . . ,n − 1} \ Used. The simplest method 
would be to sample an integer from {0, . . . , |S| − 1}
and then obliviously map it to the set S, an expensive 
operation. 

The third change removes the need to obliviously 
check Used for secret index (p). Instead of using an 
explicit data structure, our choice of a global shuffle 
period allows us to implicitly represent a superset of 
Used in the recursive structure (π), by tracking which 
blocks at the smallest recursive level have been used. 
We use the notation Oramk.Stash, Oramk.Shuffle, and 
Oramk.Used to represent the corresponding structures in 
recursive ORAM at level k. Oram0 is the main ORAM 
that holds the data blocks; Oram1 is the top level of 
the position map (π); Oram2 and so on indicate deeper 
levels of the recursive position map structure. 

We maintain the invariant that if a block has already 
been moved from Oramn.Shuffle to Oramn.Stash, the 

corresponding block in Oramn+1 has also been moved 
from Oramn+1.Shuffle to Oramn+1.Stash. The converse 
is not necessarily true: it is possible for Oramn+1.Stash 
to contain blocks that map to unaccessed blocks in 
Oramn. This can happen, for example, if logical block 
i of Oram0 has been accessed and block i + 1 has not, 
but mapping information for both blocks resides in the 
same block of Oram1. 

Randomly sampling an unused block with this con
struction is simple. At the smallest level the blocks are 
linearly scanned; during the scan we pick the first unused 
element. This is guaranteed to point to a random unused 
position. At the next recursive level, we can use any 
element in the block referred to by the index from the 
first level, since they are all random and unused. The 
process continues to ripple upward until an unused block 
in the required ORAM level has been selected. This 
method excludes from the set to be randomly sampled 
any block referred to by a block that has been accessed 
at a lower level. Nonetheless, blocks sampled randomly 
remain indistinguishable from genuine accesses, as, for 
each top level access, exactly one unused block is 
accessed at each lower level. 

The final construction is presented in Figures 5 and 6, 
and the life-cycle of the ORAM is illustrated in Figure 7. 
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define InitializePosMap((π),k,T ) 
n ← |(π)| 
if n/pack ≤ T :n ( 

Used0···(n−1) ← (false, . . . , false)
 
Oramk ← (n, t ← 0,T,(π),(Used))
 

else: 
for i ∈ {0 . . .In/packl− 1}:
 
(data) ← ((π)pack·i, . . . ,(π)pack·(i+1)−1)
 
blocksi ← ((data),(index) ← i)
 
(π 1) ← random permutation on In/packl elements
 
Shuffle ← ObliviousPermute(blocks,(π 1))
 
Oramk+1 ← InitializePosMap((π 1),k + 1,T )
 
Oramk ← (n, t ← 0,T,Oramk+1,Shuffle,
 

Stash ← ∅)
 
return Oramk
 

define GetPosBase(Oramk,(i),(fake)) 
(p) ← ⊥
 
(done) ← false
 
for j from 0 to (Oramk.n − 1):
 
(s1) ← (not (fake) and (i) = j)
 
(s2) ← (fake) and not Oramk.(Used) j
 

and not (done)

(if) (s1) or (s2):
n ( 
(p) ← π j 
Oramk.(Used) j ← true 
(done) ← true 

p ← reveal((p)) 
return p 

define GetPos(Oramk,(i),(fake)) 
if Oramk.n/pack ≤ Oramk.T : 

p ← GetPosBase(Oramk,(i),(fake)) 
else:
 
(found) ← false
 
(h) ← (i)/pack 
(l) ← ((i) mod pack)
 
for j from 0 to Oramk.t − 1:
 
(if) Oramk.Stash j.(index) = (h): 
(found) ← true 
block ← Oramk.Stash j 
(p) ← block.(data)(l)

p1 ← GetPos(Oramk+1,(h),(fake) or (found)) 
append Oramk.Shufflep1 to Oramk.Stash 
Oramk.t ← Oramk.t + 1 
(if) (fake) or not (found): 
block ← Oramk.Stash(Oramk.t−1) 
(p) ← block.(data)(l)

p ← reveal((p))
 
return p
 

Fig. 6: Implementation of the recursive position map.
 

IV. TECHNIQUES AND OPTIMIZATIONS 

This section presents some of the lower-level tech
niques used in our implementation. 

Shuffling. We employ a Waksman network [33] for 
shuffling. The network executes many oblivious swap 
operations, each controlled by a secret bit determined 
by the permutation π . Let B be the number of bytes 
transferred when obliviously swapping two blocks of 
data. Since a Waksman network for shuffling requires 
W (n) = n log2 n − n + 1 swap operations, it is expected 
that the two parties will transfer BW (n) bytes during a 
shuffle, excluding the secret control bits. 

The control bits pose a problem: neither party can 
learn anything about the randomly sampled permutation 
π , but we do not know an efficient oblivious algorithm 
for computing the corresponding control bits. To solve 

this problem, we perform two shuffles: the parties lo
cally a pick secret permutation each and compute their 
corresponding control bits in the clear. Each party’s 
local permutation constitutes its share in the final secret 
permutation π , which is the composition of the two 
permutations. So long as at least one party behaves 
honestly, the result is a uniformly random permutation, 
discoverable to neither. They can jointly shuffle the data 
by running two consecutive shuffling networks, one for 
each permutation. 

Performing a shuffle in this way is quite inexpensive. 
The bandwidth cost of 2W (n) swaps is comparable to 
W (n) AND gates, using the oblivious shuffle design from 
Huang et al. [16] and half-gates technique from Zahur et 
al. [41]. However, each time we perform a shuffle, we 
incur the latency of a network round-trip, since the 
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(f) Third request: logical index 8 

Fig. 7: Illustration of data flow for one full cycle of an example ORAM. In subfigures (d), (e), and (f) we 
present the logical dependencies for three sequential accesses. 

evaluator retrieves new garbled labels for control bits 
via oblivious transfer extension [2]. 

Computing the permutation. Whenever the data in 
Shuffle is shuffled, we must reinitialize the recursive 
position map so that it contains the new secret permuta
tion, π . The first time we perform a shuffle obliviously 
computing π is straightforward. Because the shuffle 
was performed with the composition of two Waksman 
networks as described previously, we can run the same 
network backwards using (0, . . . ,n − 1) as inputs to 

obtain π . 

On subsequent shuffles, the process becomes compli
cated. The blocks in Shuffle are no longer in logical 
order because they have previously been shuffled and 
moved from Shuffle to Stash and back. Obtaining the 
permutation by the same method as above would require 
us to run both shuffles (four Waksman networks in total) 
in reverse, along with any other swaps that may have 
happened due to ordinary ORAM access. Each additional 
shuffle requires two more Waksman networks, and the 
number continues to increase without bound. 
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Instead, we augment each data block with a secret 
record of its logical index. When the blocks are shuffled, 
the logical indices are shuffled with them through the 
Waksman networks, and these indices comprise π−1, the 
mapping from physical to logical index. To find π , the 
mapping from logical to physical, we simply invert π−1. 

To invert π−1 efficiently without allowing either party 
to learn anything about it, we adopt a technique from 
Damgård et al. [6]. The first party (Alice) locally samples 
a new random permutation πa and computes the corre
sponding Waksman control bits. These are then used to 
jointly permute the elements of the secret permutation 
π−1, producing π−1 ·πa = πb. Next, πb is revealed to the 
second party, Bob (but not to Alice). Bob does not learn 
anything about π−1 because it is masked by πa. Bob 
locally computes π−1, and the two parties jointly execute b 

π
−1another Waksman network to compute πa · = π .b 

V. EVALUATION 

We implemented our Square-Root ORAM and Circuit 
ORAM (the best-performing previous ORAM scheme) 
using the same state-of-the-art MPC frameworks, and 
measured their performance on a set of microbenchmarks 
in order to evaluate our design. We also wanted to 
understand the impact of different ORAM designs on 
application performance, and to understand how close 
we are to enabling general-purpose MPC. To this end, 
we implemented several application benchmarks repre
senting a wide range of memory behaviors and evaluated 
their performance with different ORAM designs. 

A. Experimental Setup 

We implemented and benchmarked RAM-SC proto
cols based on our ORAM as well as linear scan and Cir
cuit ORAM, using the Obliv-C [40] framework executing 
a Yao’s garbled circuit protocol. Obliv-C provides a C-
like language interface, and it incorporates many recent 
optimizations [3, 17, 41]. 

All code was compiled using gcc version 4.8.4, with 
the -O3 flag enabled. Unless otherwise specified, all 
reported times are wall-clock time for the entire pro
tocol execution. Our benchmarks were performed with 
commercially available computing resources from Ama
zon Elastic Compute Cloud (EC2). We used compute-
optimized instances of type C4.2xlarge, running Ama
zon’s distribution of Ubuntu 14.04 (64 bit). These nodes 
provide four physical cores (capable of executing eight 
simultaneous threads in total), partitioned from an In
tel Xeon E5-2666 v3, and 15 GiB of memory. Our 
benchmarks are all single-threaded and cannot saturate 
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Fig. 8: Per-access cost crossover points between 
ORAM schemes. Below the green line, linear scan is 
most efficient. Above the red line, Circuit ORAM is most 
efficient. Between the two, Square-Root ORAM is most 
efficient. 

the processing power available. We selected C4.2xlarge 
nodes on the basis of the greater bandwidth and memory 
they offer. Each benchmark was executed between two 
separate nodes within the same datacenter. We used iperf 
to measure the inter-node bandwidth, and found it to be 
about 1.03 Gbps. 

Our implementation of Circuit ORAM is much more 
efficient than the original implementation described in 
Wang et al. [34]. For example, while executing bench
marks on an Amazon C4.8xlarge EC2 instance for an 
ORAM of one million 32-bit blocks, they reported an 
access time of two seconds. On a less powerful, more 
bandwidth-constrained C4.2xlarge EC2 instance, our im
plementation requires only 0.16 seconds per access for 
an ORAM with the same parameters. This reduction 
by a factor of roughly twelve is mostly due to the 
efficiency advantages of the Obliv-C framework over 
the ObliVM [24] framework used by Wang et al.’s 
implementation. For all benchmarks we performed, we 
configured Circuit ORAM and Square-Root ORAM to 
pack 8 entries into each recursive level. Circuit ORAM 
stops recursion when there are fewer than 28 entries. 

B. Microbenchmarks 

We performed several microbenchmarks to assess the 
granular performance of different ORAM designs. We 
observed single-access execution time for block counts 
varying from 4 to 1024 and block sizes varying from 
4 to 1024 bytes. This is the region of parameter space 
where the efficiencies of Square-Root ORAM and linear 
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Fig. 9: Cost per access omitting initialization. Solid 
lines are for block size of 16 bytes, dashed lines are for block 
size of 32 bytes. We collected a number of samples for each 
ORAM configuration equal to a multiple of the Square-Root 
ORAM shuffle period that is greater than thirty, except in the 
case of linear scan, for which exactly thirty samples were 
collected. 

scan overlap. Figure 8 shows the efficiency crossover 
points derived from this data, ignoring initialization cost. 
Due to the nature of the Square-Root ORAM algorithm, 
each access is more expensive than the previous one, 
until a shuffle occurs and resets the cycle. To ensure our 
averages truly are representative, we collected a number 
of samples for each ORAM configuration equal to a 
multiple the shuffle period that is greater than thirty, 
except in the case of linear scan, for which exactly thirty 
samples were collected. 

Breakeven points. Linear scan is preferred to Square-
Root ORAM only for very small numbers of blocks. 
Circuit ORAM is orders of magnitude more expensive 
for similar parameters, due to its high fixed access cost. 
Our Square-Root ORAM implementation achieves a very 
low break-even point with linear scan. When using 4096 
or fewer blocks, Circuit ORAM never becomes more 
efficient. At a block size of 4 bytes, Circuit ORAM 
remains a suboptimal choice until we have more than 
500,000 blocks. Even this ignores initialization costs, 
however. 

Comparison to Circuit ORAM. In comparing our 
Square-Root ORAM scheme to Circuit ORAM, we con
sider initialization and access costs separately, since the 
number of accesses per initialization will vary across 
applications. Figure 9 shows the per-access wall-clock 
time for both designs, as well as for linear scan, ignoring 

Fig. 10: Cost of initialization. Solid lines are for block 
size of 16 bytes, dashed lines are for block size of 32 bytes. 

initialization. 
As expected, Circuit ORAM has the best asymptotic 

performance, but it also has a very high fixed cost per 
access, independent of the number of blocks. As a result, 
Square-Root ORAM performs better than Circuit ORAM 
for all block counts up to 216, even ignoring initialization 
costs. In fact, for block counts less than ~211 linear 
scan also outperforms Circuit ORAM. These results are 
consistent with our analysis in Section III-D that Square-
Root ORAM has worse asymptotic behavior, but smaller 
hidden constants. 

For any application where the number of accesses is 
not significantly larger than the number of blocks in the 
ORAM, initialization cost must be considered. Figure 10 
shows the initialization wall-clock times for Square-Root 
and Circuit ORAM, with parameters matching those 
in our access-time comparison. For this benchmark, 
we assume each ORAM must be populated using data 
already stored in an array of oblivious variables. In such 
a scenario, a linear scan ORAM requires only that the 
data be copied; the reported linear scan initialization 
speed is therefore equivalent to the time required to copy 
the data. 

Initializing Square-Root ORAM is approximately 100 
times faster than initializing Circuit ORAM, regardless 
of block count or block size. The standard way to pop
ulate Circuit ORAM is to insert each data element indi
vidually, using ordinary ORAM access operations; thus, 
the cost scales linearly with the number of blocks to be 
populated. Circuit ORAM therefore requires Θ(N logN) 
round trips for initialization, while our scheme requires 
only Θ(logN). We hypothesize that much of the ob
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served speed improvement comes from having fewer 
network round trips in our initialization process. 

C. Oblivious Binary Search 

Unlike our other application benchmarks, binary 
search performs very few accesses relative to the ORAM 
size. An equivalent search can be performed using a sin
gle linear scan, and if only one search is to be performed, 
the linear scan is always more efficient. Consequently, 
we varied the number of searches performed for this 
benchmark, rather than the block size or block count. 
We benchmarked binary search using a block size of 
16 bytes and element counts of 210 and 215. For arrays 
of 210 elements, we averaged the running time over 30 
samples, and for 215 elements we use 3 samples. A few 
representative combinations for 215 elements are reported 
in Table I. 

Initialization dominates execution time unless many 
searches are performed on the same data. As a result, 
Square-Root ORAM is more than two orders of magni
tude better than Circuit ORAM when only one search is 
performed. For searches of 210 elements, the linear scan 
method is more efficient than a binary search regardless 
of the ORAM type or the number of searches performed. 
Linear scan is initially faster for searches of 215 elements 
as well, but Square-Root ORAM becomes more efficient 
than the linear scan method at 25 searches. Accesses to 
a Circuit ORAM of 215 elements are more expensive 
than accesses to a Square-Root ORAM of the same size, 
so at this array size, Circuit ORAM will never be more 
efficient regardless of the number of searches performed. 

D. Oblivious Breadth-First Search 

Natively-oblivious formulations of Breadth-First 
Search (BFS) and other graph algorithms have been 
explored in the past [5]; however, we use a variant of 
the standard algorithm optimized for use in an oblivious 
context. It has complexity in Θ((V + E)CAccess), where 
CAccess is the complexity of accessing an element in 
the underlying ORAM construction. We allow our 
ORAM implementations to apply arbitrary functions 
to modify the blocks they access, as opposed to the 
simple read and write functions shown in Figure 2. 
This reduces the total number of ORAM accesses by, 
for example, permitting combined read and update 
operations. Rather than use an ORAM to house the 
queue, we use the oblivious queue data structure from 
Zahur and Evans [39]. 

We benchmarked our BFS implementation using linear 
scan, Circuit ORAM, and Square-Root ORAM. We took 

30 samples for experiments of n vertices and γ × n 
edges, with n ranging from 4 to 1024 and γ as 8. 
For each sample, a fresh set of edges were generated 
randomly among the chosen number of vertices. A few 
representative combinations are shown in Table I. 

The results of the BFS benchmark roughly follow 
the pattern established by the microbenchmarks in Sec
tion V-B. Small numbers of vertices and edges yield 
small ORAMs, and linear scan proves to be best in these 
cases. As the number of vertices or edges begins to rise, 
Square-Root ORAM quickly becomes more efficient 
than linear scan. Our BFS implementation uses blocks 
of only a few bytes each; as a result, Circuit ORAM 
eventually becomes more efficient than linear scan, but 
it does not approach the efficiency of Square-root ORAM 
before the upper bound of our testing range is reached at 
n = 210. Beyond that point the benchmarks would have 
required several hours to complete. 

E. Oblivious Stable Matching 

We implemented an oblivious version of the Gale-
Shapley stable matching algorithm [8] as a benchmark 
representative of high-complexity applications. We fol
lowed the textbook algorithm closely. Although we 
believe there are significant optimizations available in 
adapting the algorithm for use in MPC, they are beyond 
the scope of this work. 

As a result, our implementation requires Θ(n2) ac
cesses of an ORAM with n2 elements. It also uses of sev
eral ORAMs of length n. The most efficient arrangement 
may be to mix ORAM schemes, but we have not done 
this. As in our BFS implementation, we used function 
application to reduce the number of ORAM accesses. 

We benchmarked our implementation of Gale-Shapley 
with both Circuit and Square-Root ORAMs as the under
lying structure, but not linear scan, since it is clear that 
linear scan cannot be competitive for this benchmark and 
the expense of executing it on non-trivial sizes would be 
considerable. The number of pairs to be matched ranged 
from 4 to 512. When the pair count was less than 128, 
we collected 30 samples; for pair counts of 128 and 256 
we collected 3 samples; for 512 pairs, we collected one 
sample. Results for few representative configurations are 
included in Table I. 

Square-root ORAM proved more efficient over the 
entire range we benchmarked, although for sufficiently 
large sizes Circuit ORAM will eventually do better. For 
64 pairs, Square Root ORAM is over 9 times faster 
(finishing in 145 seconds); for 512 pairs, stable matching 
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Benchmark Parameters Linear Scan Square-Root ORAM Circuit ORAM 

Binary Search 
1 search 

25 searches 
210 searches 

1.00 
31.87 

1019.77 

10.41 
26.25 

824.81 

3228.69 
3282.40 
5040.82 

Breadth-First Search 
n = 22 

n = 25 

n = 210 

0.09 
4.77 

4569.31 

0.34 
4.08 

679.63 

4.28 
42.66 

3750.57 

Gale-Shapley 
23 pairs 
26 pairs 
29 pairs 

-
-
-

0.51 
145.13 

119405. 

6.57 
1328.50 

188972. 

Scrypt 

N = 25 

N = 210 

N = 214 

Litecoin 

4.11 
1678.16 

about 7 days 
210.92 

3.43 
293.79 

1919.92 
40.29 

34.47 
1453.85 
2846.51 

247.29 

TABLE I: Summary of benchmark results. All benchmark results are average measured wall-clock time in seconds 
for full protocol execution (see individual benchmark sections for details). 

requires just over 33 hours using Square-Root ORAM 
and 52.5 hours with Circuit ORAM. 

F. Oblivious Scrypt 

To explore the possibility of using ORAMs in a 
challenging cryptographic application, we implemented 
the key derivation function scrypt [27]. Scrypt was 
originally intended to be difficult to parallelize, and 
therefore difficult to break by brute force, even with 
custom high performance hardware. It achieves this 
goal by repeatedly enciphering a single block of data, 
retaining each intermediate result in memory. It then 
performs a second round of encipherment, mixing the 
block with an intermediate result from the first round 
selected according to the current value. In an oblivious 
context, scrypt requires the use of an ORAM of some 
sort, as the indices of the memory accesses in the second 
phase depend upon oblivious data generated in the first 
phase. Due to its unpredictable memory access pattern, 
the scrypt algorithm is designed to require sequential 
execution with no significant shortcuts. 

With typical parameters, scrypt requires a relatively 
small ORAM element count. For instance, Litecoin, 
which uses scrypt as a cryptocurrency proof-of-work, 
specifies N = 210 elements [22], and Colin Percival, the 
designer of scrypt, recommends a minimum of N = 214 

elements for normal use [27]. On the other hand, Percival 
recommends that each element be 1KB in size — much 
larger than required by any of our other application 
benchmarks. In the course of execution, scrypt performs 
exactly one access per element. 

We tested scrypt using the recommended parameters 
and test vectors from the scrypt specification [27], r = 8 
and p = 1, and we varied N from 4 to 214. In addition, 
we benchmarked the parameters used by Litecoin, (r = 1, 
p = 1, N = 210). A few representative combinations are 
presented in Table I. As in the other benchmarks, linear 
scan is marginally more efficient when the number of 
blocks (N) is small. Otherwise, Square-Root ORAM is 
preferred; it exceeds the performance of linear scan by 

= 210approximately one order of magnitude when N , 
and this ratio improves as N increases. 

The largest parameters we benchmarked are Perci
val’s recommended minimum parameters (r = 8, p = 1, 
N = 214), which he originally chose on the basis that they 
required less than 100ms to execute on contemporary 
hardware, this being what he considered a reasonable 
threshold for interactive use [27]. On our EC2 test node, 
the reference (non-oblivious) scrypt implementation re
quires 35ms with the same parameters. With Square-
Root ORAM as the underlying primitive, execution 
took 32 minutes, compared with 47 minutes for Circuit 
ORAM. The large block size required by scrypt causes 
block access time to form a greater portion of the total 
cost than in our other application benchmarks. As a 
result, Circuit ORAM becomes competitive earlier than 
in the other cases. We did not benchmark linear scan for 
the recommended parameters; we estimated that it would 
require roughly 7 days to complete, well beyond what 
could reasonably be considered useful in practice. 

Even with Square-root ORAM, scrypt requires 55,000 
times longer to execute with real-world parameters as 
an MPC protocol than it does to execute conventionally. 

14
 



This is almost certainly too expensive to be practical for 
any interactive application, but shows that even complex 
algorithms designed intentionally to be expensive to ex
ecute are not beyond the capabilities of general-purpose 
MPC today. 

VI. CONCLUSION 

The success of MPC depends upon enabling de
velopers to create efficient privacy-preserving applica
tions, without requiring excessive effort, expertise, or 
resources. It is important that MPC protocols be com
patible with conventional programming techniques and 
data structures which depend on random access memory. 
Our Square-Root ORAM design provides a general-
purpose oblivious memory that can be used anywhere 
a programmer would normally use an array. We have 
presented a new approach for designing ORAMs for 
MPC, which demonstrates how hierarchical ORAM de
signs can be implemented efficiently, and how they can 
overcome the high initialization costs and parameter 
restrictions of previous ORAM designs. This represents 
a step towards a programing model for MPC in which 
standard algorithms can be efficiently implemented as 
MPCs, using oblivious memory just like conventional 
memory is used today. 
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APPENDIX 

Figure 11 shows the actual Obliv-C source code of 
our ORAM construction, copied verbatim. The obliv 
keyword denotes secret variables. The variable ram→cpy 
is a structure with block size and copy constructor 
information. Since block size is only known at run
time, a pointer to array[i] must be obtained by calling 
element(ram→cpy, array, i). The actual Obliv-C code 
closely follows the pseudocode presented in Figure 5. 
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static void∗ element(OcCopy∗ cpy, void∗ arr, int i) obliv 
{ return i ∗ cpy→eltsize + (char∗)arr; } 

void ocSqrtOramAccess(OcSqrtOram∗ ram, obliv int index, 
ocBlockAccessFunction fn, void∗ data) 

{ 
int i; 
obliv bool foundi = false; 
// Scan through stash 
for (i=0; i<ram→time; ++i) obliv if (index == ram→stashi[i]) 
{ fn(ram→cpy, element(ram→cpy, ram→stash, i), data); 

found=true; 
} 

// Fake/unfake posmap lookup 
int lookupIndex = ram→pos→getPos(ram→pos, index, found); 

// Access one more element from shuffled array 
ocCopy(ram→cpy, element(ram→cpy, ram→stash, ram→time), 

element(ram→cpy, ram→shuff, lookupIndex)); 
ram→usedShuff[lookupIndex] = true; 
ram→stashi[ram→time] = ram→shuffi[lookupIndex]; 
obliv if(!found) 

fn(ram→cpy, element(ram→cpy, ram→stash, ram→time), data); 
ram→time++; 
if (ram→time == ram→period) { 

ocSqrtOramRefresh(ram); 
} 

} 

Fig. 11: Obliv-C implementation of the Access function of our ORAM construction
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