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ABSTRACT 
When a group of individuals and organizations wish to compute a 
stable matching—for example, when medical students are matched 
to medical residency programs—they often outsource the compu­
tation to a trusted arbiter in order to preserve the privacy of par­
ticipants’ preferences. Secure multi-party computation offers the 
possibility of private matching processes that do not rely on any 
common trusted third party. However, stable matching algorithms 
have previously been considered infeasible for execution in a se­
cure multi-party context on non-trivial inputs because they are com­
putationally intensive and involve complex data-dependent mem­
ory access patterns. 

We adapt the classic Gale-Shapley algorithm for use in such a 
context, and show experimentally that our modifications yield a 
lower asymptotic complexity and more than an order of magni­
tude in practical cost improvement over previous techniques. Our 
main improvements stem from designing new oblivious data struc­
tures that exploit the properties of the matching algorithms. We ap­
ply a similar strategy to scale the Roth-Peranson instability chain­
ing algorithm, currently in use by the National Resident Matching 
Program. The resulting protocol is efficient enough to be useful 
at the scale required for matching medical residents nationwide, 
taking just over 18 hours to complete an execution simulating the 
2016 national resident match with more than 35,000 participants 
and 30,000 residency slots. 

1. INTRODUCTION 
In 1962, David Gale and Lloyd Shapley proved that for any two 

sets of n members, each of whom provides a ranking of the mem­
bers of the opposing set, there exists a bijection of the two sets such 
that no pair of two members from opposite sets would prefer to be 
matched to each other rather than to their assigned partners [15]. 
A set of pairings that satisfies this property is known as a stable 
matching; it can be computed using an algorithm that Gale and 
Shapley developed. 

Fifty years later, the development of a theory of stable matching 
and the exploration of its practical applications would win Shap­
ley and Alvin Roth the Nobel Prize in Economics [53]. Today, 
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stable matching algorithms are used to match medical residents to 
residency programs [41], students to schools [1, 54], candidates to 
sororities [37], to run special types of auctions [3], and to manage 
supply chains [42]. 

In practice, stable matching processes are often outsourced to 
trusted arbiters in order to keep the participants’ reported prefer­
ences private. We consider how to run instances of stable matching 
using secure multi-party computation, so that participants’ privacy 
and confidence in the results can be maintained without relying on 
a single common trusted party. We express the problem as a two-
party secure computation in which all members of the pairing sets 
trust two representatives to execute on their behalf without collud­
ing. The participants can XOR-share their preference lists between 
the two representatives so that even the trusted representatives learn 
nothing about the preferences of any participant. 

Executing an algorithm as complex and data-dependent as the 
Gale-Shapley stable matching algorithm as a secure computation 
has been a longstanding goal. Secure computation requires that 
all data-dependent memory accesses be hidden in order to main­
tain privacy; this has traditionally been a significant contributor to 
the inefficiency of secure computation relative to its insecure coun­
terpart. For example, the protocols of Golle [19] and Franklin et 
al. [13] required roughly O(n5) and O(n4) public-key operations 
respectively and were too complicated to implement. 

Recent advances in ORAM design [56, 63] have reduced costs 
significantly, but have not yielded solutions scalable enough for 
interesting matching problems. Using a state-of-the-art ORAM, 
the best previous implementation of Gale-Shapley still required 
over 33 hours to match 512 × 512 participants [63]. We overcome 
this barrier by combining general-purpose ORAMs with special-
purpose constructs to create efficient oblivious data structures that 
leverage data partitions and memory access patterns inherent to the 
problem to restrict the ways in which the data can be accessed with­
out leaking any data-dependent access information. 

Contributions. The primary contributions of this paper are the 
development of strategies for RAM-based secure computation for 
algorithms that predominantly access memory in a data-dependent, 
but “read-once" fashion. In particular, we present the design of an 
oblivious linked list structure that can be used when the order in 
which data is accessed must be hidden, but it is known that each 
element is accessed at most once; we further refine this structure to 
support multiple lists in order to enable more complex access pat­
terns (Section 3.1). We also introduce a modification to the ORAM 
access protocol that enables efficient function application within an 
ORAM access (Section 4.2). 

These techniques are developed and evaluated in the context of 
two secure stable matching algorithms, but we believe they have 
wider applicability to constructing secure variants of many algo­
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rithms that involve data-dependent memory access. Our secure 
Gale-Shapley implementation exhibits the best asymptotic perfor­
mance of any yet developed, and it is over 40 times faster in practice 
than the best previous design. We also develop the first ever secure 
version of the instability chaining algorithm used in most practi­
cal stable-matching applications, including the national residency 
match. We evaluate our protocol by simulating the 2016 US resi­
dency match and find that the total execution cost using commodity 
cloud resources is less than $16. 

2. BACKGROUND 
Our secure stable matching protocols build on extensive prior 

work in secure multi-party computation and RAM-based secure 
computation, which we briefly introduce in this section. 

Multi-Party Computation. Secure multi-party computation [17, 
59] enables two or more parties to collaboratively evaluate a func­
tion that depends on private inputs from all parties, while revealing 
nothing aside from the result of the function. Generic approaches to 
multi-party computation (MPC) can compute any function that can 
be represented as a Boolean-circuit. Our experiments use Yao’s 
garbled circuit protocol [33, 58], although our general design is 
compatible with any Boolean-circuit based MPC protocol. 

Garbled Circuits. Garbled circuits protocols involve two parties 
known as the generator and evaluator. Given a publicly known 
function f , the generator creates a garbled circuit corresponding to 
f and the evaluator evaluates that circuit to produce an output that 
can be decoded to the semantic output. Although garbled circuits 
were once thought to be of only theoretical interest, recent works 
have shown that such protocols can be practical [23, 24, 25, 30, 36, 
43], even in settings where full active security is required [2, 7, 14, 
22, 26, 30, 32, 34, 35]. Current implementations [8, 11, 38, 62] can 
execute approximately three million gates per second over a fast 
network (using a single core for each party). 

RAM-based Secure Computation. In traditional MPC, general 
input-dependent array access incurs a linear-time overhead since 
all elements in the array need to be read to hide the position of 
interest. RAM-based secure computation combines circuit-based 
MPC with oblivious random-access memory (ORAM) to enable 
secure random memory accesses in sublinear time [18, 20]. An 
ORAM scheme consists of an initialization protocol that accepts 
an array of elements and initializes a new oblivious structure with 
those elements, and an access protocol that performs each logical 
ORAM access using a sequence of physical memory accesses. To 
be secure, an ORAM must ensure that for any two input arrays of 
the same length, the physical access patterns of the initialization 
protocol are indistinguishable, and that for any two sequences of 
semantic accesses of the same length, the physical access patterns 
produced by the access protocol are indistinguishable. 

To use ORAM in secure computation, the parties run a secure-
computation protocol to store shares of the state of the underlying 
ORAM protocol, and then use circuit-based secure computation to 
execute the ORAM algorithms [20]. For each memory access, the 
circuit obliviously translates a secret logical location into a set of 
physical locations that must be accessed. The ORAM’s security 
properties ensure that these physical locations can be revealed to 
the two parties without leaking any private information, and the 
data stored at those locations can be passed back into the circuit for 
use in the oblivious computation. 

Several ORAM designs for secure computation have been pro­
posed [12,16,20,27,57] which offer various trade-offs in initializa­
tion cost, per-access cost, and scalability. The ORAM with the best 

asymptotic per-access cost to date is Circuit ORAM [56]; the most 
efficient in practice over a wide range of parameters is Square-Root 
ORAM [63]. We evaluate both experimentally in Section 5. 

3. SECURE GALE-SHAPLEY 
We first consider the structure of the standard Gale-Shapley algo­

rithm, typically presented via a process in which proposers (mem­
bers of set A) present pairings to reviewers (members of set B), 
who may accept or reject them. The inputs are the lists of prefer­
ences for each participant. For the secure two-party version, these 
lists are divided among two parties either by partitioning the lists 
or XOR-sharing the entries. 

The algorithm steps through each proposer’s preference list from 
most to least-preferred, swapping between proposers as they be­
come matched or invalidated by other matches. This algorithm re­
quires that the sizes of the proposer and reviewer sets are equal, 
ensuring that everyone ends up part of some pair. We use n to de­
note the size of these sets. The algorithm iterates over at most n2 

potential pairings, but, critically, it cannot determine in advance 
which proposer’s preferences will be evaluated, nor how far along 
that proposer’s preference list it will have advanced at any point. 

As any iteration could require access to any pairing, a straightfor­
ward approach is to store the preferences in an ORAM. Such an im­

2plementation would require n2 accesses to an ORAM of length n . 
This would dominate the overall cost, since all other ORAMs and 
queues required by the textbook algorithm are of length n. Thus, 
our design focuses on reducing the costs of reading the preferences. 

Notation. We use (x) to indicate a variable which is secret-shared 
between multiple parties. We refer to this state interchangeably as 
“oblivious”, “private”, and “garbled”. The garbled variable (x) is 
distinct from the variable x, which is public. Arrays have a pub­
lic length and are accessed via public indices; we use (Array) to 
denote an array of oblivious data, (Array)i to specify element i 
within that array, and (Array)i: j to indiciate an array slice con­
taining elements i through j of (Array), inclusive. We indicate 
multidimensional array access with multiple indices delimited by 
commas. Conditionals on secret values are indicated using (if) and 
(else). The instructions within oblivious conditionals are always 
executed, but have no effect if the condition is false. 

3.1 Oblivious Linked Multi-lists 
We observe that in the Gale-Shapley algorithm, each proposer’s 

individual preference list is accessed strictly in order, and each el­
ement is accessed only once. Furthermore, a secure implementa­
tion of Gale-Shapley does not involve any accesses that depend on 
oblivious conditions (the algorithm must obliviously select which 
preference list is accessed on each iteration, but exactly one pref­
erence list is always accessed). Instead of using a generic ORAM, 
we design a new data structure to satisfy these requirements more 
efficiently, which we call an oblivious linked multi-list. 

The oblivious linked multi-list is designed to be able to iterate 
independently through n separate arrays, each containing an ar­
bitrary (and not necessarily uniform) number of elements, while 
hiding which of its component arrays is currently being iterated, 
and the iteration progress of all component arrays. It is defined by 
two algorithms: InitializeMultilist and TraverseMultilist, shown in 
pseudocode in Figure 1 and illustrated in Figure 2. 

The InitializeMultilist algorithm takes as input a single array of 
garbled data, comprising a concatenation of the n component lists. 
In addition, it takes an array of public entry pointers (i.e. the indices 
of the first elements of each of the component lists in the input 
array). It returns a (multilist) data object. 



define InitializeMultilist((data),entryIndices): 
π) ← random permutation on |(data)| elements.(( y 
π−1 ← InvertPermutation((π))
 
(multilist) ← ∅
 
(entryPointers) ← ∅
 
for i from 0 to |(data)| − 1:
 

if i ∈ entryIndices:
 ( y 
(entryPointers) ← (entryPointers)∪{ π−1 }i

(multilist)i ← {(data)i, π−1 } 
( y 

i+1
(multilist) ← Permute((multilist),(π))
 
return {(multilist), (entryPointers)}
 

define TraverseMultilist((multilist), (p)): 
p ← Reveal((p)) 
return (multilist)p 

Figure 1: Oblivious Linked Multi-List. Pseudocode for initializa­
tion and traversal. 

To explain the initialization procedure, we first consider an obliv­
ious linked list that can iterate over only a single component ar­
ray. To construct an oblivious linked list, we generate a random 
oblivious permutation and its inverse using the method of Zahur et 
al. [63]. The forward permutation comprises one set of Waksman 
control bits from each party, and the inverse permutation is stored 
as an array mapping one set of indices to another. To each element 
i of the data array, we append element i + 1 of the inverse permu­
tation, which corresponds to the physical index of element i + 1 of 
the permuted data array. We then apply the permutation to the data 
array using a Waksman Network [55], and store the first element 
of the inverse permutation (the entry pointer) in a variable. Both 
the permuted data array and the entry pointer are returned. This 
process is illustrated in Figure 2a. 

We can now extend our oblivious linked list into an oblivious 
linked multi-list by permuting multiple input arrays together, and 
storing the garbled entry pointers for each in a separate data struc­
ture. This is illustrated in Figure 2b. 

The TraverseMultilist algorithm takes as input a (multilist) data 
object and a garbled pointer, (p). Its operation is simple: it reveals 
the contents of (p) and selects the data element at the physical index 
indicated thereby. This physical element will contain the requested 
semantic element, as well as a garbled pointer, (p'), to its successor, 
both of which are returned to the caller. The complete traversal of 
one component list in a linked multi-list is illustrated in Figure 2c. 

Performance. Initializing a linked multi-list requires executing a 
Waksman network, at a cost of Θ(n logn). Iteration can be per­
formed in constant time; therefore, the amortized cost is Θ(logn) 
per element. However, pointers to the current positions in the com­
ponent lists must be stored in some structure external to the multi-
list itself, and in many cases this will incur additional costs. We 
will use an ORAM and an oblivious queue serve this purpose, as 
described in Section 3.2. 

3.2 Applying Our Construction 
In Secure Gale-Shapley, we use our multi-list to hold the joint 

preferences list for the proposers and reviewers, subdivided by pro­
poser ID into n lists of n elements ordered by proposer preference. 
We use an ORAM of length n to store current matches by reviewer 
ID, and an oblivious queue [60] to store unmatched proposers. Gar­
bled pointers into the multi-list representing the iteration progress 
for each proposer are stored in the match status ORAM for matched 

1 A B C D E F G H I J 2PC Random
Permutation Generation2

2PC Permutation Inversion4

7 9 0 5 2 6 8 1 4 3

A B C D E F G H I J73 09 25 86 41 3

75

7 9 0 5 2 6 8 1 4 3

C H E J I D F A G B
5 6 23 98 1 04

Apply to {0,...,9}

(a) Initialization. The input C is combined with a random permu­
tation C which has been shifted left by one place. The result ® is 
then permuted according to the inverse of the first permutation ®, 
resulting in a shuffled linked list @. The leftmost element of the first 
random permutation C is retained outside the structure and repre­
sents the entry point. 

15

Permutation Network

I J K L M N O PA B C D E F G H Q R S T U V W X

I J K L M N O PA B C D E F G H Q R S T U V W X

A W E I U N B FL O V S K P G X Q R D T M C J H

(b) Interleaving multiple arrays to form an oblivious linked
multi-list. Multiple arrays can be concatenated and permuted to­
gether, becoming indistinguishable from one another. Individual en­
try points allow them to be independently traversable. 
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(c) Traversal of one of the interleaved lists. Each element con­
tains a reference to the next element in the sequence. After the last 
element in the original sequence, traversal cannot continue. 

Figure 2: Illustrations of the Oblivious Linked List structure. 

proposers, and in the unmatched proposer queue otherwise. Com­
plete pseudocode is given in Figure 3. 

Initialization. As input to InitializeMultilist we must provide a 
master preferences list, containing all potential pairings ordered 
first by proposer ID and then by proposer rank. Proposer rank, how­
ever, is secret, and therefore we cannot expect to be able to collect 
preferences ordered in that fashion. On the other hand, the Gale-
Shapley algorithm requires that participants must express prefer­
ences over all members of the opposite set, so it is reasonable for 
preferences to be submitted pre-sorted first by proposer ID and then 
by reviewer ID. With preference data submitted pre-sorted in this 
fashion, it is trivial to merge it into a single master preferences list, 



define SecureGaleShapley((ProposerPrefs),(ReviewerPrefs), n): define CmpSortOnRanks((a), (b)): 
(Prefs) ← ∅ return Cmp((a).(sr),(b).(sr)) 
for i from 0 to n − 1: 

for j from 0 to n − 1: 
(Prefs)i∗n+ j ←

 
(si) ← i,(ri) ← j,(sr) ← (ProposerPrefs)i∗n+ j ,(rr) ← (ReviewerPrefs)i∗n+ j

 
(Prefs)i∗n:(i+1)∗n−1 ← BatcherSort((Prefs)i∗n:(i+1)∗n−1,CmpSortOnRanks) 

for i from n2 to 2n2 − n − 1: 
(Prefs)i ← {(si) ← ∅, (ri) ← ∅, (sr) ← ∅,(rr) ← ∅}

{(multilist),(entryPointers)} ← InitializeMultilist((Prefs),{0, n,2n, ..., n2}) 
UnmatchedProposers ← new oblivious queue 
for i from 0 to n − 1: 

UnmatchedProposers ← QueuePush(UnmatchedProposers,(entryPointers)i) 
(dummy) ← (entryPointers)n 
(done) ← false 
RMatches ← new ORAM 
for i from 0 to n2 − 1: 
(if) ¬QueueIsEmpty(UnmatchedProposers): 
(p) ← QueuePop(UnmatchedProposers) 

(else): 
(p) ← (dummy)
(done) ← true 

{(ProposedPair), (p ' )} ← TraverseMultilist((multilist), (p)) 
(if) (done) = true: 
(dummy) ← (p ' )

(else): 
{(CurrentPair),(p '' )} ← OramRead(RMatches, (ProposedPair).(ri)) 
(if) (CurrentPair) = ∅ ∨ (ProposedPair).(rr) < (CurrentPair).(rr): 

RMatches ← OramWrite(RMatches,{(ProposedPair), (p ' )}, (ProposedPair).(ri)) 
(if) (CurrentPair)  = ∅: 

UnmatchedProposers ← QueuePush(UnmatchedProposers,(p '' )) 
(Result) ← ∅ 
for i from 0 to n − 1: 
{(CurrentPair), _} ← OramRead(RMatches, i) 
(Result)i ← (CurrentPair).(si)

return (Result) 

Figure 3: Secure Gale-Shapley Algorithm. SecureGaleShapley expects to ingest preferences ordered first by proposer index, then by 
reviewer index. It returns an array of proposer indices, ordered by the reviewer indices to which the proposers have been paired. 

whereupon we can apply n Batcher sorts [4], one for each proposer, 
to re-order it as necessary for InitializeMultilist. 

Early Termination. In practice, executions of the algorithm rarely 
require the worst case n2 iterations. As a heuristic, one can execute 
fewer rounds and test whether a matching has been computed. If a 
matching is not found, information about the preferences has been 
leaked, though it is difficult to understand exactly what information 
has been leaked about the participants. We leave the analysis of 
these heuristics to future work, and presume for the purposes of 
our algorithm that exactly n2 iterations must always be performed. 

Even after a stable matching is found, each iteration must re­
veal exactly one uniform unused physical index from the multi-list 
containing the preferences. This is a problem, as there is no easy 
way to select a uniform unvisited element from the entire multi-list. 
Our solution is to pad the preference list array with n2 − n dummy 
blocks, linked as a single chain and intermingled with the rest of 
the preferences array during the permutation phase. We store only 
a garbled copy of the physical index of the first padding block. The 
algorithm takes between n and n2 iterations to find a stable match­
ing, after which it follows the dummy chain. 

3.3 Security 
The security of our scheme depends on established properties 

of ORAM constructions [63], oblivious queues [60], and the un­
derlying garbled circuits protocol [33]. We do not modify these 
in any way that alters their security properties, which provide the 
privacy and correctness guarantees desired for our protocol. The 
variants we use are secure only in an honest-but-curious setting, 
where “semi-honest” computation parties follow the algorithm cor­

rectly but wish to learn any sensitive information they can from 
its execution, and eavesdroppers can witness the entire protocol, 
but cannot affect it. The honest-but-curious setting is admittedly a 
very weak adversarial model, but there has been substantial work 
showing that semi-honest protocols can be adapted to resist active 
adversaries. We leave to future work the challenge of hardening our 
protocols to resist such adversaries. Many of the scenarios where 
secure stable matching might be used do involve professional or­
ganizations and government agencies as participants, who may be 
sufficiently trusted to be considered semi-honest. 

The only element used by our protocol which has not been eval­
uated elsewhere is the oblivious linked multi-list used to hold par­
ticipant preferences. Our structure reveals the index of one uniform 
untouched element from the preferences array on each access. In­
tuitively, the index revealed is not correlated with the contents of 
the target element, and no element is accessed (nor is any index re­
vealed) more than once, and thus our modification only leaks that 
the preferences list is a permutation, which is already known. It 
does not leak anything about the preferences themselves or about 
the current state of the algorithm. The permutation generation and 
inversion processes we use are secure against semi-honest adver­
saries [63]. By replacing these and using malicious-secure ORAM 
and MPC protocols, our design could be adapted to achieve security 
against malicious adversaries. 

3.4 Complexity Analysis 
The textbook Gale-Shapley algorithm performs Θ(n2) operations 

upon an Θ(n2)-length memory that holds the matrix of participant 
preferences. A naïve Secure Gale Shapley implementation based 



upon Linear Scan incurs a total complexity of Θ(n4). Square-Root √ 
ORAM has an asymptotic access complexity in Θ( n log3 n) [63], 
so a straightforward implementation based upon that construction 
has a complexity in Θ(n3 log1.5 n). 

In contrast, our Secure Gale-Shapley algorithm performs Θ(n2) 
operations upon a Θ(n)-length memory. This results in a total com­
plexity in Θ(n2.5 log1.5 n) when using a Square-Root ORAM. The 
asymptotic complexity can be further reduced to Θ(n2 log3 n) by 
using Circuit ORAM [56], which has an asymptotic access com­
plexity in Θ(log3 n). For any stable matching problem that can 
feasibly be solved today, however, Square-Root ORAM is more 
efficient in practice because of its lower concrete costs. This is 
confirmed by our experimental results in Section 5. 

4. SECURE INSTABILITY CHAINING 
In the 1940s, the job market for medical residents in the United 

States underwent a crisis [45]. Demand for residents was rapidly 
outstripping supply, leading to excessive competition among hos­
pitals and fostering applicant-hostile practices such as extremely 
time-limited employment offers. In reaction to applicant protests, 
the medical community formed a central clearinghouse, now known 
as the National Resident Matching Program (NRMP) to allocate 
graduates to residencies. As the supply of residents grew to ex­
ceed the number of available positions, it became apparent that the 
original matching algorithm, which had been designed to produce 
results favorable to hospitals, was unfair to aspiring residents. In re­
sponse, the NRMP commissioned the design of a new algorithm for 
resident-optimal matching, based upon the theory of Stable Match­
ing. Roth proposed an algorithm [46] based upon his earlier induc­
tive proof of stability with John H. Vande Vate [49]. 

Roth’s algorithm, shown in Figure 4, follows a process he called 
instability chaining: the algorithm finds stable matchings among 
subsets of proposers, starting from the empty set and adding new 
proposers one at a time, resolving any new instabilities as they are 
introduced. For problem instances that fit the requirements of the 
Gale-Shapley algorithm, Roth’s algorithm produces the same re­
sult. However, it also supports one-to-many matchings, and cases 
in which the sizes of the sets are unequal and not all participants 
are ranked. Roth and Peranson [48] described the algorithm and 
evaluated it experimentally using data from past NRMP matches. 

4.1 Secure Roth-Peranson 
Unlike Gale-Shapley, the Roth-Peranson algorithm does not man­

date that each participant rank all participants from the opposing 
set. Indeed, it is expected that the number of counterparties ranked 
by most participants will be small relative to the number of coun­
terparties available. Consequently, we establish a public bound on 
the number of rankings that each participant can input, indicated 
by q for the proposers, and r for the reviewers. In addition, we 
establish a public bound on the number of positions each reviewer 
has to fill, which we indicate as s. In many real-world instances 
the individual position quotas are public knowledge, but we do not 
require this. We use n and m to represent the numbers of proposers 
and reviewers, respectively. 

The adaptations required to create a secure version of the Roth-
Peranson matching algorithm are similar to those described for Se­
cure Gale-Shapley in Section 3. To track the tentative matches for 
each reviewer, we need an ORAM with m elements, each element 
being a list of the corresponding reviewer’s matches. As this list is 
stored within the ORAM, we have implemented it as an ordinary 
garbled array. Consequently, the reviewer-status ORAM has m el­
ements, each of size s. Pseudocode for our Secure Roth-Peranson 
algorithm is found in Figure 5. 

define RothPeranson(ProposerPrefs,ReviewerPrefs,RPosCounts,n, m): 
ProposerPrefsPosition ← ∅ 
RMatches ← ∅ 
for i from 0 to n − 1: 

ProposerPrefsPositioni ← 0 
for i from 0 to m − 1: 

RMatchesi ← ∅ 
for si from 0 to n − 1:
 

while true:
 
sr ← ProposerPrefsPositionsi 
ProposerPrefsPositionsi ← ProposerPrefsPositionsi + 1 
if sr ∈/ ProposerPrefssi : 

break 
ri ← ProposerPrefssi,sr
 

if si ∈/ ReviewerPrefsri:
 
break
 

rr ← ReviewerPrefsri,si 
if |RMatchesri| < RPosCountsri: 

RMatchesri ← RMatchesri ∪{si}
break 

wi ← 0
 
w ← RMatchesri,0
 
for j from 1 to RPosCountsri − 1:
 

if ReviewerPrefsri,RMatchesri, j > ReviewerPrefsri,w: 
wi ← j 
w ← RMatchesri, j 

if rr < ReviewerPrefsri,w:
 
RMatchesri,wi ← si
 
si ← w
 

return RMatches 

Figure 4: Standard Roth-Peranson Algorithm. RothPeranson 
expects to ingest proposer preferences as a dense multidimensional 
array ordered first by proposer index, then by proposer rank, and 
reviewer preferences as a sparse multidimensional array ordered 
first by reviewer index, then by proposer index. It returns an array 
of sets of proposer indices ordered by the reviewer indices to which 
the proposers have been paired. 

Initialization. Unlike Gale-Shapley, the Roth-Peranson algorithm 
expects participants to express preferences over only a subset of 
their counterparties. While this permits the combined master pref­
erence list to be much smaller than otherwise, it also prevents us 
from constructing it by simply concatenating and interleaving in­
dividual preference lists as we could in the case of Gale-Shapley. 
Instead, we specify that the algorithm takes participant preferences 
inputs in the form of two master lists: one each for the proposers 
(of size nq) and reviewers (of size mr). Both lists are sorted first 
by proposer index, then reviewer index, and only ranked pairings 
are included. Each element will contain as garbled data both the 
proposer and reviewer indices, a rank, and a bit indicating whether 
the preference belongs to a proposer or reviewer. We combine the 
two master preference lists using a Batcher merge [4]. We then it­
erate over the combined list and check each sequential pair: if a 
pair shares proposer and reviewer indices, we push their combined 
data into a queue. In this way, unrequited preferences are omitted. 
We flatten the queue into an array containing q elements for each 
of the n proposers by conditionally popping elements or inserting 
dummies as appropriate. We then sort each group of q elements ac­
cording to proposer rank, yielding the final preference array which 
is used to initialize an oblivious multi-list. 

XOR-Sharing. If preferences are to be split among the compu­
tation parties by XOR-sharing, there is an additional problem that 
must be solved. It is reasonable to expect each participant to sub­
mit their preferences sorted by counterparty ID. This means that 



( ) ( ) ( )

{( ) ( )} ← ( ) { }

 

define CmpSortOnIndices((a),(b)): 
(result) ← Cmp((a).(si),(b).(si)) 
(if) (result) = 0: (result) ← Cmp((a).(ri),(b).(ri)) 
(if) (result) = 0: (result) ← Cmp((a).(is_reviewer),(b).(is_reviewer)) 
return (result) 

define SecureRothPeranson( ProposerPrefs , ReviewerPrefs , RPositionBounds ,n, m,q, r, s): 
(CollationQueue) ← new oblivious queue of n ∗ q elements 
(MergedPrefs) ← BatcherMerge((ProposerPrefs), (ReviewerPrefs), CmpSortOnIndices) 
for i from 0 to n ∗ q + m ∗ r − 2: 
(if) (MergedPrefs)i .(si) = (MergedPrefs)i+1.(si)∧ (MergedPrefs)i.(ri) = (MergedPrefs)i+1.(ri): ( 

(si) ← (MergedPrefs)i.(si), (ri) ← (MergedPrefs)i.(ri),(CombinedPref) ← (sr) ← (MergedPrefs)i.(rank), (rr) ← (MergedPrefs)i+1 .(rank)
(CollationQueue) ← QueuePush((CollationQueue),(CombinedPref)) 

(Prefs) ← ∅ 
for i from 0 to n − 1:
 

for j from 0 to q − 1:
 
(if) QueuePeek((CollationQueue)).(si) = i:
 
(Prefs)i∗q+ j ← QueuePop((CollationQueue))
 

(else):
 
(Prefs)i∗q+ j ← {(si) ← i,(ri) ← ∅,(sr) ← ∞, (rr) ← ∅}


(Prefs)i∗q:(i+1)∗q−1 ← BatcherSort((Prefs)i∗q:(i+1)∗q−1, CmpSortOnRanks)
 
multilist , entryPointers InitializeMultilist( Prefs , 0,q, 2q, ...,n ∗ q )
 

UnmatchedProposers ← new oblivious queue of n elements
 
for i from 0 to n − 1:
 

UnmatchedProposers ← QueuePush(UnmatchedProposers,(entryPointers)i)
 
(dummy) ← (entryPointers)
n 
(done) ← false
 
RMatches ← new ORAM of m elements
 
for i from 0 to m − 1:
 

RMatches ← OramWrite(RMatches, {(s) ← (RPositionBounds)i, (matches) ← ∅}, i) 
(p) ← QueuePop(UnmatchedProposers) 
for i from 0 to n ∗ q − 1: 
{(ProposedPair),(p ')} ← TraverseMultilist((multilist),(p))
 
(if) (done) = true:
 
(p) ← (p ')


(else):
 
(if) (ProposedPair).(ri) = ∅: 
(ProposedReviewer) ← OramRead(RMatches,(ProposedPair).(ri)) 
for j from 0 to s − 1: 
(if) j ≤ (ProposedReviewer).(s): 
{(tentativeMatch),(p '')} ← (ProposedReviewer).(matches) j 
(if) (tentativeMatch) = ∅ ∨(tentativeMatch).(rr) > (ProposedPair).(rr): 
(ProposedReviewer).(matches) j ← {(ProposedPair), (p ')} 
{(ProposedPair),(p ')} ← {(tentativeMatch), (p '')} 

(if) (ProposedPair).(ri) = ∅: 
(if) QueueEmpty(UnmatchedProposers): 
(p) ← (dummy)
(done) ← true
 

(else):
 
(p) ← QueuePop(UnmatchedProposers)
 

(else):
 
(p) ← (p ')


(Result) ← ∅
 
for i from 0 to n − 1: 
(Result)i ← OramRead(RMatches, i).(matches)


return (Result)
 

Figure 5: Secure Roth-Peranson Algorithm. SecureRothPeranson expects to ingest preferences ordered first by proposer index, then by 
reviewer index. It returns an array of sets of proposer indices, ordered by the reviewer indices to which the proposers have been paired. 
Highlighting indicates each of the phases of the main algorithm as laid out in Section 4.4: setup , permutation , and proposal/rejection . 

the proposers will submit preference lists sorted by reviewer ID, 
and the master proposer preference list can be created by concate­
nation. The reviewer master preference list, however, must also 
be sorted first by proposer ID, then reviewer ID. Because indi­
vidual reviewer preference lists will be sparse, this ordering can­
not be achieved by blind interleaving, and because the counter-
party IDs will be hidden, it cannot be achieved outside of the pro­
tocol. Therefore, we must create the master reviewer preference 
list inside of the protocol by way of repeated Batcher merges: we 
merge pairs of individual preference lists, yielding half as many 
lists, each of twice the original length. We repeat the process until 

a single, correctly ordered master reviewer preference list remains. 
The cost for this process is Θ(∑

log m mr log2ir), which reduces to i=1 
Θ(mr log2 m + mr log m log r). This is better than the Θ(mr log2 mr) 
cost that would be incurred by re-sorting all of the elements. 

4.2 Improving ORAM Access 
Although most ORAM schemes are compatible with our con­

struction, we use Square-Root ORAM [63], and take advantage of 
function application to reduce the number of ORAM accesses re­
quired. An ordinary ORAM access will perform some number of 
conditional oblivious copies between its data and an external lo­



cation, after which the desired element will have been retrieved. 
To store the element back after modification, another sequence of 
copies must be performed. Instead, we apply a conditional obliv­
ious function to each element that would have been copied, obvi­
ating the second set of copies. This works well when the function 
to be applied is simple, but the design of Zahur et al. [63] requires 
Θ(T ) copies per access, and therefore Θ(T ) function applications, 
where T is the ORAM refresh period. For a function such as the 
one we use, which has a complexity in Θ(s) (incurred by linearly 
scanning the tentative matches stored within each ORAM element), 
the number of extra gates is significant. To avoid this inefficiency, 
we modify the ORAM access protocol to allow function application 
with only a single execution of the function circuit. 

ORAM Background and Notation. Square-Root ORAM stores 
its data in Oram.(Shuffle), shuffled according to some secret per­
mutation. Each data element retains a copy of its logical index; 
the logical index of the element with physical index i can be ac­
cessed via Oram.(Shuffle)i.(index). The ORAM uses a recursive 
position map structure, Oram.Posmap, to relate physical indices in 
Oram.(Shuffle) to logical indices, so that elements can be accessed 
without scanning. As each element is accessed, the ORAM moves 
it from Oram.(Shuffle) to Oram.(Stash), where it will be linearly 
scanned on subsequent accesses. The ORAM tracks which physical 
indices in Oram.(Shuffle) have been accessed using a set of pub­
lic Booleans, Oram.Used. After Oram.T accesses, the ORAM is 
refreshed and the process starts again from the beginning; progress 
toward the refresh period is tracked via Oram.t. Φ indicates the 
function to be applied. 

Construction. We designate Oram.(Stash)0 to be the active ele­
ment location: whichever ORAM element will be accessed must 
be moved into this slot, and the function Φ is applied to it at the 
end. The last active element remains in this slot between accesses. 
On the next access it must be mixed back into the (Stash). This ar­
rangement has the additional advantage, unused by our algorithm, 
of allowing the most-recently accessed block to be accessed repeat­
edly at no additional expense (so long as it can be publicly revealed 
that accesses are repeated). 

An access proceeds as follows. If Oram.t is zero, then we know 
that the element we need cannot be in Oram.(Stash). Otherwise, 
we scan the stash and use a conditional oblivious swap circuit [29] 
to exchange each element with the element in Oram.(Stash)0, con­
ditioned on the currently-scanned element having the target logical 
index. If the target element was not found during the stash scan, 
it will be retrieved from Oram.(Shuffle), but before that can hap­
pen we must provide a blank space for it by moving the element in 
Oram.(Stash)0 to an empty slot at the end of the (Stash). 

Next, regardless of whether the target element has been found 
thus far, we query Oram.Posmap for its position in Oram.(Shuffle). 
If the target element has already been found, the position map will 
return the physical index of a random unvisited element, which is 
moved to an empty slot at the end of Oram.(Stash). If the target 
element has not been found so far, then the index returned from the 
position map will locate it, and we can move it to Oram.(Stash)0. 
Finally, we apply Φ to the element located in Oram.(Stash)0, which 
will be the target element. Pseudocode for our access function is 
shown in Figure 7, with Zahur et al.’s original access function in 
Figure 6 for comparison. 

4.3 Security 
With the exception of the modified ORAM access method de­

scribed in Section 4.2, our Secure Roth-Peranson protocol uses the 
same oblivious data structures and underlying protocols as our Se-

define Access (Oram,(i),Φ) 
( f ound) ← false 
for j from 0 to Oram.t: 
(if) Oram.(Stash) j .(index) = (i): 
( f ound) ← true 
Φ(Oram.(Stash) j ) 

p ← GetPos(Oram.Posmap, (i), ( f ound)) 
(if) not ( f ound): 

Φ(Oram.(Shuffle) )p

Oram.(Stash)t ← Oram.(Shuffle)p 

Oram.Used ← Oram.Used ∪{p}

Oram.t ← Oram.t + 1
 
if Oram.t = Oram.T :
 

for j from 0 to Oram.T − 1: 
p ' ← Oram.Used j 
Oram.(Shuffle)p ' ← Oram.(Stash) j 

Oram ← Initialize(Oram.(Shuffle)) 

Figure 6: Zahur et al.’s ORAM access method [63]. 

define Access (Oram,(i),Φ) 
( f ound) ← false 
if Oram.t > 0: 
(if) Oram.(Stash)0.(index) = (i): 
( f ound) ← true 

for j from 1 to Oram.t: 
(if) Oram.(Stash) j .(index) = (i): 
( f ound) ← true 
Swap(Oram.(Stash) j ,Oram.(Stash)0) 

(if) not ( f ound): 
Oram.(Stash)t ← Oram.(Stash)0 

p ← GetPos(Oram.Posmap, (i), ( f ound))
 
(if) not ( f ound):
 

Oram.(Stash)0 ← Oram.(Shuffle)p
 

(else):
 
Oram.(Stash)t ← Oram.(Shuffle)
p 

Oram.Used ← Oram.Used ∪{p}

Oram.t ← Oram.t + 1
 
Φ(Oram.(Stash)0)
 
if Oram.t = Oram.T :
 

for j from 0 to Oram.T − 1:
 
p ' ← Oram.Used j 
Oram.(Shuffle) ← Oram.(Stash) jp ' 

Oram ← Initialize(Oram.(Shuffle)) 

Figure 7: Our improved ORAM access method. 

cure Gale-Shapley protocol. The assumptions and security argu­
ment from Section 3.3 apply to these elements. 

The security property an ORAM access method must establish 
is that any two same-length access sequences exhibit observable 
memory patterns that are indistinguishable. This property holds 
for our new access method, as it does for the original. In the 
first stage of an access, the original algorithm scans Oram.(Stash)
and applies a function to any element matching the desired in­
dex. Our access method performs a similar process, applying a 
swap circuit with Oram.(Stash)0 as its second input in place of 
an arbitrary function. After the stash scan, it either moves an el­
ement from Oram.(Stash)0 to Oram.(Stash)t and copies an el­
ement from Oram.(Shuffle) to Oram.(Stash)0, or copies an el-p 
ement from Oram.(Stash) to Oram.(Stash)t . These operations p
are performed within an oblivious conditional, so both code paths 
appear to execute regardless of which takes effect. Finally, the 
function Φ is applied to a single block at a fixed physical index. 
The observable memory behavior of this algorithm depends only 



on public values (i.e., Oram.t); thus it retains the necessary trace 
indistinguishability ORAM property. 

4.4 Complexity Analysis 
Unlike Secure Gale-Shapley, the execution time of Secure Roth-

Peranson is not obviously dominated by a single stage of the algo­
rithm. Instead, there are multiple phases, and the cost incurred by 
each depends on the bounds of the input: 

1.	 Sharing. This stage is necessary only if reviewer preferences 
are XOR-shared between the two computation parties. The 
preference lists for the individual reviewers are combined 
into a master preference list by repeated Batcher merging. 
The cost of this process is Θ(mr log2 m + mr logm logr). 

2.	 Setup. The master preference lists for the proposers and 
reviewers are combined into a single array using a Batcher 
merge and an oblivious queue, such that pairings that are not 
ranked by both a proposer and a reviewer are omitted. The 
asymptotic cost of this process is Θ((nq+mr) log(nq + mr)). 
The combined master preference array is then sorted accord­
ing to the proposers’ indices and rankings using n Batcher 
sorts over lists of length q, at a total cost of Θ(nq log2 q). 

3.	 Permutation. The preference array is shuffled using a Waks­
man network, incurring a cost of Θ(nq log nq). 

4.	 Proposal/rejection. The algorithm adds proposers one by 
one and iterates through the proposers’ preference lists in a 
manner similar to Gale-Shapley. It must iterate exactly as 
many times as there are potential proposer-rankings (i.e. nq). 
For each iteration, the algorithm performs one access to an 
ORAM containing the reviewers’ tentative matches (m ele­
ments of size s). Using Square-Root ORAM, the cost of the √ 
proposal-rejection phase is in Θ(nqs m log3 m). 

Thus, the total cost of our Secure Roth-Peranson algorithm is √ 
Θ((nq+mr) log(nq + mr)+nq log2 q+nq lognq+nqs m log3 m). 
XOR-sharing incurs an added cost of Θ(mr log2 m+mr logm logr). 

Reducing bounds by distributing positions. For many applica­
tions, including the medical residency match, the number of avail­
able positions is not constant among reviewers. In such cases, the 
cost of the proposal/rejection phase can be reduced by setting the 
parameter s to be smaller than the maximum, and distributing the 
positions of reviewers who exceed the bound among sub-reviewers. 
A potentially significant decrease in s may lead to only a small in­
crease in m and q. The optimum balance depends upon the input 
parameters and implementation details, but this splitting should re­
duce overall cost significantly in some cases. 

In order for both parties to split the reviewers in an identical way, 
it must be publicly known which reviewers are to be split, and how 
many sub-reviewers they are to be split into, which leaks informa­
tion about the number of positions offered by each reviewer. This is 
acceptable in many applications (such as resident-hospital match­
ing), as the position quotas are already public knowledge. If such a 
leak is unacceptable, the bound s cannot be lowered. 

All that remains is to specify that the splitting of reviewers be 
done in such a way that the result of the algorithm is unchanged. 
This will be the case if we require that all sub-reviewers share iden­
tical preference lists, that proposers rank all sub-reviewers for each 
reviewer they would have originally ranked, and that those sub-
reviewers be ranked contiguously. These properties will ensure that 
any proposer who is rejected by one sub-reviewer will immediately 

propose to and be considered by the next sub-reviewer. At any iter­
ation, all tentative matches should be equivalent to those that would 
have been made without a reviewer split. 

As we assume an honest-but-curious model, we can trust that the 
split will be performed correctly. For any implementation where 
XOR-sharing is used to hide the preferences from the computation 
parties, reviewer splitting must be performed by the members of 
the matching sets before they submit their preferences. In cases 
where the data is partitioned among the computation parties rather 
than being XOR-shared, we suggest that the computation parties be 
responsible for performing the split. 

5. RESULTS 
We implemented and benchmarked our secure stable matching 

protocols using the Obliv-C [61] multi-party computation frame­
work, which executes Yao’s Garbled Circuits protocol [59] with 
various optimizations [5, 25, 62]. Our code was compiled using 
gcc version 4.8.4 under Amazon’s distribution of Ubuntu 14.04 
(64 bit), with the -O3 flag enabled. 

We ran each benchmark on a pair of Amazon EC2 C4.2xlarge 
nodes, located within the same datacenter. These nodes are provi­
sioned with 15GiB of DDR4 memory and four physical cores par­
titioned from an Intel Xeon E5-2666 v3 running at 2.9GHz, each 
core being capable of executing two simultaneous threads. The 
inter-node bandwidth was measured to be 2.58 Gbps, and inter-
node network latency to be roughly 150 µs. 

5.1 Gale-Shapley 
In addition to our oblivious linked multi-list, we used other spe­

cialized oblivious data structures in our secure Gale-Shapley imple­
mentation where doing so provides us with the best performance. 
We used the fastest available implementations of Square-Root and 
Circuit ORAM, from Zahur et al.. We also used Zahur et al.’s obliv­
ious queue construction [60], modified to avoid dynamic allocation 
of new layers by including a constant, public size bound. 

As a point of comparison, we implemented and benchmarked 
a “textbook” version of Secure Gale Shapley, which omitted our 
oblivious linked multi-list construction in favor of storing the pref­
erences array in a single ORAM of size Θ(n2). The textbook ver­
sion still uses the other oblivious data structures including the obliv­
ious queue. It is equivalent to the version of Secure Gale-Shapley 
described by Zahur et al. [63], which is the best previously-published 
secure stable matching result. For both the textbook and improved 
versions of Secure Gale-Shapley, we benchmarked variants using 
Square-Root ORAM, Circuit ORAM, and Linear Scan. 

Figure 8 and Table 1 present our findings, which are consistent 
with our analytical results and confirm that Square-Root ORAM 
outperforms both Circuit ORAM and Linear Scan for all tested pa­
rameters. At 512 × 512 members, we achieve more than 40× im­
provement relative to the previous best technique, completing the 
benchmark in under 48 minutes, compared to over 33 hours. In ad­
dition to the results presented in our figures, we tested our improved 
algorithm with Square-Root ORAM at 1024 × 1024 members, and 
found that it required 228 minutes to complete. 

5.2 Roth-Peranson 
We implemented Secure Roth-Peranson using the constructions 

described in Sections 3.1 and 4.2, and tested it on synthesized data 
across a range of parameters, as well as data chosen to simulate the 
full national medical residency match. 
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Figure 8: Secure Gale-Shapley Execution Time vs Pair Count. 
Values are mean wall-clock times in seconds for full protocol exe­
cution including initialization. For benchmarks of 4–64 pairs, we 
collected 30 samples; for 128–256 pairs we collected three sam­
ples; and for 512 pairs we collected one sample. 

Linear Scan Circuit ORAM Square-RootPairs 
Textbook Improved Textbook Improved Textbook Improved 

64 3.05 0.12 5.97 0.39 0.49 0.06 
128 48.21 0.80 27.82 1.72 5.00 0.33 
256 771.69 5.62 157.49 8.43 44.84 1.73 
512 – 41.23 858.36 55.65 440.31 9.41 

1024 – 207.65 – 240.54 – 42.33 

Table 1: Secure Gale-Shapley Gate Count vs Pair Count. Val­
ues represent billions of non-free gates required for full protocol 
execution including initialization. 

5.2.1 Parametric benchmarks 
We benchmarked our implementation using synthetic data and 

varying each of the bounds (n,m,q,r,s) independently in order to 
demonstrate their effect on the execution time. We recorded statis­
tics individually for each of the phases described in Section 4.4. 
The results of this experiment are summarized in Figure 9. Exe­
cution cost increases linearly with all five parameters, consistent 
with our analytical results. We also collected the total number of 
non-free gates executed for each sample, observing a consistent ex­
ecution speed of around 3.7M gates/second across the experiments. 

5.2.2 National Medical Residency Match 
To assess the performance of our Secure Roth-Peranson algo­

rithm in a realistic context, we used it to compute matches for 
a dataset designed to model the 2016 national medical residency 
match. The NRMP does not release raw preference data, even in 
de-identified form [31]. They do, however, release comprehensive 
statistical information about each year’s match [41]. We used this 
to construct a synthetic dataset with similar properties. 

The primary NRMP match for 2016 involved 4,836 residency 
programs having a total of 30,750 available positions, and 35,476 
aspiring residents who collectively submitted 406,173 rankings. A 
subset of the participants were subject to the match variations de­
scribed at the end of this section; however, as our algorithm does 

(a) Proposer Count. For this benchmark we 
varied n between 29 and 213, and set m = 64, 
q = 4, r = 64, s = 16 
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(b) Reviewer Count. For this 
benchmark we varied m between 
26 and 210, and set n = 29, q = 4, 
r = 64, and s = 16 
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(d) Reviewer Preference Bound. 
For this benchmark we varied r be­
tween 24 and 28, and set n = 29, 
m = 64, q = 4, and s = 16 
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(c) Proposer Preference Bound. 
For this benchmark we varied q be­
tween 4 and 64, and set n = 29 ,m = 
64,r = 64,s = 16 
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(e) Reviewer Positions Bound. 
For this benchmark we varied s be­
tween 4 and 64, and set n = 29, 
m = 64, q = 4, and r = 64 

Figure 9: Secure Roth-Peranson Parametric Benchmark Re­
sults. 

proposal/rejection

We show the impact of the five major parameters (
sharing , setup , permutation , 

n, m, q, 
r, s). Times spent during the 
and phases are recorded individually. Y-axis 
values represent average wall-clock times from 30 samples. 

not handle variations, we consider all of them to be unique indi­
viduals participating in accordance with the basic scheme. Thus, 
for our benchmark, n = 35476 and m = 4836. The average number 
of positions per program was 6.35; we chose s = 12. The average 
number of ranked applicants per position varied according to pro­
gram category. We chose to limit programs to 10 ranked candidates 



Algorithm Phase Time (hours) Billions of Non-Free Gates 

Sharing 1.07 18.14 
Setup 1.60 29.65 

Permutation 0.56 6.56 
Proposal/Rejection 15.01 172.52 

Total 18.22 226.87 

Table 2: Secure Roth-Peranson NRMP Benchmark Results. For 
this benchmark we set n = 35476, m = 4836, q = 15, r = 120, and 
s = 12. These parameters are intended to be representative of the 
match performed by the National Residency Matching Program. 

per position, giving us r = 120 (programs with fewer than 12 posi­
tions are still permitted to rank up to 120 candidates). It should be 
noted that no program category exceeds an average of 8.4 ranked 
applicants per position except for anaesthesiology PGY-2, which 
is a significant outlier with an average of 19.4. However, anaes­
thesiology PGY-2 programs have 6.24 positions each on average, 
so an average-sized anaesthesiology PGY-2 program may still rank 
19 candidates per position. Finally, the average aspiring resident 
ranked 11.45 programs. We chose q = 15. 

We believe these parameters to be accommodating to the vast 
majority of participants in the NRMP match, but recognize that a 
few outliers must accept limitations. Programs with an unusually 
large number of positions can be accommodated by splitting as de­
scribed in Section 4.4. However, we lack data to determine how 
many programs would be required to split; as such we have omit­
ted this step. Therefore, our results should be considered primarily 
a demonstration of the feasibility of calculating an NRMP-scale 
match securely, rather than a report of the precise cost of doing so. 

The preferences of each resident (proposer) are chosen randomly 
from the available programs (reviewers), and vice versa. This is 
unrealistic, but cannot impact performance results, since our algo­
rithm is data-oblivious by nature. 

We collected only three samples for this benchmark due to its 
long execution time. Gate count and average execution time are 
reported in Table 2. It required just over eighteen hours (or 225 bil­
lion gates) to complete. This seems efficient enough to be of practi­
cal use in cases such as the NRMP, where the computational cost is 
insignificant (less than $16 total at current AWS prices) compared 
to the administrative costs already incurred by existing methods. 

Complexities of the Actual NRMP Match. Roth and Peranson 
designed several extensions to their basic algorithm to accommo­
date properties of the NRMP match, including couples matching 
and contingent programs, which cannot be handled by our version. 

Couples matching allows residents with romantic partners to syn­
chronize their rankings such that their proposals are accepted or 
rejected together, and breaking a tentative match containing one 
member of a couple causes the other member’s tentative match to 
break as well. Contingent programs require residents to also match 
with prerequisite programs. The process for matching such pro­
grams is effectively identical to couples’ matching, except that one 
proposer submits two linked ranking lists and proposes to multiple 
reviewers simultaneously. Contingent programs can combine with 
couples’ matching to create four-way dependency structures. 

Roth and Peranson’s match variation extensions function by al­
lowing those proposers and reviewers who were displaced by cou­
ples or contingent matches which were themselves subsequently 
displaced to rewind their preferences and propose again from the 
beginning. The instability chaining algorithm is naturally amenable 
to this process, and it is performed at the end of each round, be­

fore new proposers are added. Roth and Peranson also specify that 
a loop detector is necessary. These match variations remove the 
guarantee that a stable matching exists, and they make the problem 
of finding a stable match (if one exists) NP-complete [44]. 

Unfortunately, our linked multi-list construction is fundamen­
tally incompatible with these extensions, due to the fact that it per­
mits each potential pairing to be accessed only once. Before each 
rewinding, it would be necessarily to completely reshuffle or regen­
erate the preferences array. Reshuffling after each iteration would 
add a term of Ω(n3q lognq) to our asymptotic complexity, causing 
it to become impractical for large inputs. Moreover, Roth and Per­
anson’s extensions do not guarantee that the algorithm completes 
in a fixed number of rounds; thus any straightforward secure im­
plementation would leak the number of rounds required. Although 
our method does not support the additional extensions used in the 
NMRP match, we note that many other important matchings (such 
as public school assignments) do not require these extensions. 

6. PRIOR WORK 
Gale-Shapley is the first problem presented in Kleinberg and Tar-

dos’ introductory algorithms textbook [28], and there is a vast lit­
erature on stable matching. Gusfield and Irving provide a book-
length technical survey [21] and Alvin Roth published a general-
audience book [47]. Here, we focus only on related work on privacy-
preserving stable matching. 

Golle [19] developed a privacy-preserving version of the classic 
Gale-Shapley algorithm in a setting where the matching protocol 
is performed by a group of matching authorities. Privacy and cor­
rectness are guaranteed when a majority of the matching authorities 
are honest. Golle argued that generic multi-party computation pro­
tocols were too impractical to implement an algorithm as complex 
as Gale-Shapley, and developed a protocol using threshold Pallier 
encryption and re-encryption mixnets. Golle’s protocol requires 
O(n5) asymmetric cryptographic operations. Although he claimed 
it was “practical”, it has never been implemented. 

Franklin et al. [13] identified cases where Golle’s protocol would 
not work correctly, and developed two new protocols using a simi­
lar approach. Their first protocol was based on an XOR secret shar­
ing scheme and used private information retrieval to process bids. 
It required running an encryption mixnet on O(n) ciphertexts for 
each of n2 rounds, requiring in total O(n4) public key operations 
and Õ(n2) communication rounds. Their second protocol was not 
based on Golle’s, but instead used garbled circuits in combination 
with Naor-Nissim’s protocol for secure function evaluation [39]. 
This resulted in a two-party protocol with O(n4) computation com­
plexity and Õ(n2) communication rounds. As with Golle’s, it does 
not appear to be practical and has never been implemented. 

Teruya and Sakuma presented a secure stable matching protocol, 
also building on Golle’s protocol, but using additive homomorphic 
encryption to simplify the bidding process [52]. This reduced the 
number of communication rounds needed to O(n2) and resulted in 
a protocol practical enough to implement. They implemented their 
protocol as a client-server system, using mobile devices running on 
a LAN. The largest benchmark they report is for n = 4, which took 
over 8 minutes to complete. 

Terner [51] built garbled-circuit implementations of variants of 
the Gale-Shapley algorithm, reporting execution times of over 12 
hours for experiments with 100 × 100 participants. 

Keller and Scholl [27] were the first to consider using RAM-
based secure computation to implement stable matching. They 
designed a secure version of Gale-Shapley using an ORAM, and 
implemented their protocol using Path ORAM [50] and the SPDZ 
MPC protocol [10]. They report an experiment that matched 128 × 



128 participants in roughly 2.5 hours, but it also required an es­
timated 1000 processor-days of offline compute time (i.e., work 
independent of the input) which they did not include. In all cases, 
the algorithm and secure computation techniques together limit the 
applicability of the entire scheme to toy instances. 

The best previous results reported for implementing secure stable 
matching are Zahur et al.’s results using Square-Root ORAM [63], 
which are the baseline comparison we use in Section 5.1. They im­
plemented a textbook version of Gale-Shapley, and reported com­
pleting a match involving 512 × 512 participants in just over 33 
hours (over 40 times longer than our approach takes for the same 
benchmark running on an identical testbed). 

Blanton et al. [6] made an observation about read-once data ac­
cess patterns in the structure of Breadth First Search, and pro­
posed a Θ(V 2) secure version based upon permuting the rows and 
columns of an adjacency matrix. Though their observation is sim­
ilar to our own, the underlying differences between Gale-Shapley 
and BFS preclude adapting their solution. In particular, BFS per­
mits the algorithm to iterate over an entire column at once, whereas 
both Gale-Shapley and Roth-Peranson must shift between proposers 
as they become matched and unmatched, and resume iteration when 
revisiting. This necessitates a far more complex construction. 

7. CONCLUSION 
Our results confirm that with appropriately adapted algorithms 

and data structures it is now possible to execute complex algo­
rithms with data-dependent memory accesses as scalable secure 
two-party computations. The NRMP matching pool is one of the 
largest of its type in the world. Similar or identical algorithms are 
used for many other problems including matching residents to resi­
dency programs in other countries [9]; placing applicants for phar­
macy, optometry, psychology, dentistry and other residencies [40]; 
matching rushees to sororities [37]; and assigning students to pub­
lic schools in Boston and New York City [54]. Most of these are 
significantly smaller than the scale demonstrated by our simulated 
NRMP match, and we judge the cost of executing an NRMP-scale 
match as an MPC to be well within reasonable bounds for such use 
cases. We are optimistic that private stable matching protocols can 
be applied to important matching processes in practice. 

Availability 
All of our code is available under the BSD 2-Clause Open Source 
license from https://www.oblivc.org/matching. 
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