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Abstract 

Published tabular summaries of linked employer-employee data 
usually use a job frame (statutory employer linked to a specific 
employee) but include characteristics of both the individual (em­
ployee) and workplace (employer establishment). We show that 
state of the art differentially private algorithms add too much 
noise for the output to be useful. Instead, we identify the privacy 
requirements mandated by current interpretations of the relevant 
laws and formalize them with a model that simultaneously pro­
tects individuals and establishments using parameters that con­
trol the conventional differential privacy for individuals and a 
generalization that provides a similar privacy guarantee for the 
employment magnitudes associated with an employer establish­
ment. We implement our model using three alternative noise 
distributions. We illustrate the system using the LEHD Origin-
Destination Employment Statistics (LODES) database displayed 
in the U.S. Census Bureaus OnTheMap application; We present 
results for cross-sectional employment summaries for combi­
nations of employer industry, geography, and ownership; and 
employee sex and educational attainment. Empirical evaluation 
of utility for these data shows that for reasonable values of the 
privacy-loss parameter epsilon at least 1, the additive error intro­
duced by our provably private algorithms is comparable, and in 
some cases better, than the error introduced by existing statisti­
cal disclosure limitation (SDL) techniques that have no provable 
privacy guarantees. For some complex queries currently pub­
lished, however, our algorithms do not have utility comparable 
to the existing traditional SDL algorithms. Those queries are 
fodder for future research. 

Introduction 

In this paper we present a case study in applying provably 
private algorithms for publishing tabular summaries of linked 
employer-employee data; i.e., data about business establish­
ments and characteristics of their workforces. Such publica­
tions are used to compute national economic indicators includ­
ing job creation and destruction statistics. Canada, the United 
Kingdom, and most Eurostat countries have regularly published 
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data from establishment-based surveys that directly measure em­
ployee characteristics. Statistics Sweden explicitly publishes 
such tabulations based on its Business Database (a frame con­
taining lists of workplaces)combined with establishment-based 
surveys that measure employee characteristics. In the U.S., the 
Census Bureau publishes County Business Patterns and Quar­
terly Workforce Indicators using establishment frames that in­
clude characteristics of employees. 

This paper focuses on one such employer-employee dataset 
published by a national statistical agency. The dataset summa­
rizes millions of jobs by a set of employer (workplace location, 
industry sector and ownership type), employee (age, gender, 
race, ethnicity and education) and job characteristics. 

These linked employer-employee data cannot be released as 
unaltered establishment-level microdata. They are subject to le­
gal confidentiality protections that apply to both the establish­
ments and employees. In particular, statistical agencies are usu­
ally required by appropriate laws in their countries to protect 
whether or not a specific individual is employed at a workplace 
and the reported count of employees at that workplace. How­
ever, the existence of one or more employers in a location, in­
dustrial, or ownership type does not usually require privacy pro­
tection. 

The combination of detailed geography (at the resolution of 
a very fine grid on a city’s area) with characteristics of estab­
lishments and employees results in sparse tabulations for which 
many cells have only a few contributing establishments and/or 
individuals. In addition, the outcome being tabulated, employ­
ment, is highly right skewed (i.e., has many large outlying val­
ues) at the establishment level. The combined effect of this spar­
sity and skewness is the potential for re-identification attacks. 
Violating the statutory confidentiality pledge, for example by 
publishing data that permit re-identifying employees or infer­
ring exact employer characteristics, can result in fines and po­
tential imprisonment for employees of statistical agencies who 
authorize these publications. Thus, privacy must be ensured as a 
matter of criminal law. Even more important to most statistical 
agencies is the loss of reputation and concomitant degradation of 
response rates and data quality that would ensue from breaches 
of the confidentiality protection laws. With the stakes so high, 
we ask: 

•	 “Can we develop algorithms for releasing such data that 
provably uphold the privacy requirements mandated by 
law?”, and 

•	 “What is the loss of data usefulness (utility cost) when re­
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leasing summaries that provably ensure privacy?” 

Statutory requirements clearly require data publication in 
summary format while prohibiting statistical agencies from pub­
lishing the raw microdata. The laws do not, however, prescribe 
exactly how to publish the data [12]. Current publications of 
employment counts for detailed industries and geographies use a 
variety of confidentiality protection methods known collectively 
as statistical disclosure limitation (SDL) to limit potential re-
identification attacks. These SDL methods are the de facto in­
terpretations of the legally required confidentiality protections 
[11, 18]. For instance, in the data we consider, workplace 
counts are protected by an input noise infusion system that prov­
ably avoids exact disclosures of establishment-level employment 
counts but has no guarantee that informed attackers cannot infer 
actual establishment job counts to within some stated level of 
accuracy [1, 2, 16]. We present examples of such attacks in Sec­
tion 5.2. 

To overcome the aforementioned limitations of the current 
state of the art, we consider e-differential privacy [14, 13], which 
is considered the leading standard for releasing data with formal 
privacy guarantees. A data release algorithm satisfies differential 
privacy if, for all allowable input databases, its output is insen­
sitive to the presence or absence of any one sensitive record in 
the input database. This translates into privacy semantics [23] 
that an informed attacker’s odds of whether a specific record 

Ewas in or out of the database change at most by a factor of e
after seeing the output of a differentially private algorithm. e is 
called the privacy-loss parameter, with smaller values resulting 
in more privacy. However, there is no known work linking the 
privacy guaranteed by differential privacy to any explicit statu­
tory confidentiality requirements. Additionally, applying stan­
dard variants of differential privacy to protect establishment job 
counts results in output noise infusion that completely destroys 
all the signal in the data (due to the extreme right skewness in 
the data). Hence, we make the following contributions: 

•	 We review the legal regulations that national statistical 
agencies are mandated to follow when releasing employer-
employee data and identify privacy requirements implied 
by their current interpretation (Section 4). We mathemati­
cally formalize these requirements using the Pufferfish pri­
vacy framework [23, 24]. These requirements ensure that a 
strongly informed attacker cannot (a) infer whether an em­
ployee held a job, and (b) learn establishment sizes to within 
a pre-specified multiplicative factor from the output of a data 
release. 

•	 While SDL techniques in use avoid exact disclosures, we 
show that these techniques do not satisfy our privacy require­
ments using examples of unbounded inferential disclosures 
that are possible using current releases (Section 5). We also 
show that standard variants of differential privacy either do 
not satisfy the privacy requirements or result in an extreme 
loss in utility (Section 6). 

•	 We formulate novel privacy definitions that satisfy the for­
mal privacy requirements, and provably limit an informed 
attacker’s ability to make inferences about employees and 
employers (Section 7). Thus, our algorithms are able to up­
hold current interpretations of the laws governing these data. 

• We develop algorithms for releasing counts that satisfy our 

new privacy definitions. We prove analytical bounds on the 
errors for each algorithm (Sections 8 and 9). 

•	 We empirically evaluate the data quality cost of provable pri­
vacy using the production data from an employer-employee 
dataset maintained by a national statistical agency (Sec­
tion 10). For releasing tabular summaries and rankings, we 
compare the error introduced by our algorithms to the error 
produced by the existing protection scheme. We show that 
we can release tabular summaries of establishment charac­
teristics with additive error that is comparable (within a fac­
tor of 3) and in some cases smaller than the error introduced 
by the current SDL techniques (with no provable privacy 
guarantees) for reasonable values of the privacy-loss param­
eters. For counts and rankings, the relative error of our new 
algorithms is comparable to the error induced by the existing 
SDL methods. Since tabular summaries of employment by 
establishment characteristics, such as the Business Database 
statistics released in Sweden or the County Business Patterns 
released in the U.S., are important publications, it is signifi­
cant that we are able to achieve provable privacy protection 
with relatively little sacrifice in data utility as compared to 
existing methods. 

•	 For tabulations involving both establishment and employee 
characteristics, under a weaker (yet formal) privacy guaran­
tee, we are able to show competitive error for releasing sin­
gle queries and rankings. Our algorithms experience larger 
errors (within a factor of 100 compared to existing meth­
ods) for releasing tabular summaries involving multiple em­
ployee characteristics. Understanding whether the magni­
tude of this error is fundamental to provably private algo­
rithms or whether better algorithm design could lower such 
errors is an avenue for future work. 

We next introduce differential privacy in Sections 2 and the 
data we work with in Section 3. 

2 Preliminaries 

Database and Queries Let D be a table of records with 
schema (A1, . . . , Ak). The domain of each attribute Ai 

is denoted dom(Ai). For a set of attributes V = 
{Ai1 , . . . , Aim }, let dom(V ) represent the multidimensional 
domain ×A∈V dom(A). For each record t in the table, we let 
t[Ai] ∈ dom(Ai) be value of attribute Ai. Let n = |D| de­
note the size of the table; i.e., D has n records. A database with 
schema (S1, . . . , Sm) is a collection of tables (D1, . . . , Dm), 
where Di has schema Si. 

We will consider marginal queries over tables in this paper. 

Definition 2.1 (Marginal Query). Let V = {Ai1 , . . . , Aim }
denote a subset of attributes chosen from D. Let dom(V ) = 
×A∈V dom(A). The marginal query qV (D) is defined as a vec­
tor of |dom(V )| counts, one for each cell v = (v1, . . . , vm) ∈ 
dom(V ). The count corresponding to cell v, denoted by 
qV (D, v) is 

|{t ∈ D | t[Ai1 ] = v1 ∧ . . . ∧ t[Aim ] = vm}| (1) 

q∅(D) returns a single cell whose count is the size of the table. 
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The marginal query can be succinctly expressed in SQL as: 

Select Count(*) From D Group By Ai1 , . . . , Aim 

Differential Privacy A mechanism or algorithm is differentially 
private if its output is not significantly affected by presence or 
absence of a single record from the input table. Let D and D' 

be tables that differ in the presence of a single record; i.e., |(D \ 
D') ∪ (D' \ D)| = 1. We call such tables neighbors. 

Definition 2.2 ((e, δ)-Differential Privacy [15]). Let M be a 
randomized algorithm. Let the tables D and D' be neighbors 
with the same schema. Then M satisfies (e, δ)-differential pri­
vacy if for all D and D' and for all S ⊆ range(M), 

E 'Pr[M(D) ∈ S] ≤ e · Pr[M(D ) ∈ S] + δ 

δ allows for the ratio of probabilities to be unbounded with 
a small failure rate. Values of δ that are Ω(1/n) should be 
avoided, since algorithms that release more than a constant num­
ber of unperturbed records from the database satisfy such a def­
inition. When δ = 0, we refer to the condition as e-differential 
privacy. 

Queries over tables can be answered while satisfying differ­
ential privacy by adding noise that is related to the sensitivity of 
the query. 

Definition 2.3 (Sensitivity). Let I denote the set of all tables 
with a given schema. Let q : I → Rd be a query function on 
that table that outputs a vector of d real numbers. The sensitivity 
of q, denoted Δq , is 

Δq = max ||q(D) − q(D')||1. 
D,D1 neighbors 

The Laplace mechanism is a commonly used e-differentially 
private technique. 

Definition 2.4 (Laplace Mechanism [15]). Let q : I → Rd be 
a query on a table. Let η ∼ Lap(λ) denote a random vari­
able drawn from the Laplace distribution with pdf Pr[η = x] ∝ 
e−|x|/λ. The algorithm which returns q̃(D) = q(D) + ηd sat­
isfies e-differential privacy, where ηd is a vector of d indepen­
dently drawn Laplace random variables. 

Definition 2.5 (Expected Lp Error). Let q : I → Rd be a query 
over a table, and q̃(D) be the noisy answer returned by an algo­
rithm. The expected Lp error of the algorithm is: 

E (||q(D) − q̃(D)||p) (2) 

where ||x||p is the Lp norm, and expectation is over the random­
ness of the algorithm. 

We will use the expected L1 error to quantify the utility of 
algorithms. 

The privacy loss increases when multiple queries are an­
swered on the database, and we reason about this loss for dif­
ferential privacy using the following composition rule: 

Theorem 2.1 (Sequential Composition). Let M1 and M2 be 
e1- and e2-differentially private algorithms. Releasing the out­
puts of M1(D) and M2(D) on the same input D results in 
(e1 + e2)-differential privacy. 

Thus, the privacy-loss parameter is often called the privacy 
budget – the analyst is allowed to pose multiple queries as long 
as the total privacy loss from answering all queries is no greater 
than e. In other words, a privacy-loss equal to e exhausts the 
privacy budget. 

3 The Dataset 

The employer-employee data we use in this paper are produced 
by a national statistical agency by composing administrative 
records, census and survey data focused on the labor market, 
worker, and establishment statistics. These data are published as 
summaries of an annual cross-section of jobs held on a specific 
date of each year. We consider one such cross-section. 

3.1 Table and Database Structure 

The data are organized as a relation with three database tables 
– Workplace, Worker and Job. The Workplace table con­
tains one record per establishment and describes the following 
attributes – industry (denoting the industry in which the estab­
lishment operates), ownership (public/private), and geography 
(the place where the establishment is located). The Worker ta­
ble contains one record for each individual working in any estab­
lishment at that point of time. Worker attributes include age, sex, 
race, ethnicity, and education. Finally, the Job table contains 
pairs (w, i) of worker and workplace IDs denoting that worker i 
works at establishment w. We assume each worker has exactly 
one job (although the original dataset does include secondary 
jobs). We have not documented some of the attributes that do 
not feature in our queries. 

We support marginal queries that output counts of employ­
ment of the current year’s cross section of jobs over workplaces 
where those establishments have been stratified by subsets of 
the available characteristics of employers and workers. Let VI 

denote a subset of the worker attributes, and VW denote a sub­
set of workplace attributes. Let D denote the universal relation 
constructed by joining the Job table with the Worker and Work­
place tables using the worker and workplace IDs, respectively. 
We call this the WorkerFull table as it contains one record for 
every record in Worker (each worker has exactly one job). The 
records in WorkerFull contain all the worker and workplace at­
tributes. Records that share the same workplace ID represent the 
workforce of that establishment. 

Every cell (vI , vW ) in the marginal query qVI ∪VW (D) (as in 
Definition 2.1) represents the number of workers matching the 
criteria in vI who work in establishments matching the criteria 
in vW . The output is employment counts stratified by employee 
attributes in VI and workplace attributes VW . 

3.2 Usage Scenarios 

Researchers and analysts working with these data request an­
swers to one or more marginal queries and use these summary 
tabulations as inputs to further data analysis. In this paper, we 
focus on analyzing the privacy and utility tradeoffs from releas­
ing the output to one marginal query. Analyzing the privacy of 
multiple queries is a straightforward application of Theorem 2.1 
since our privacy definitions also satisfy sequential composition 
like differential privacy. Note that the examples of queries and 
protection parameters provided here are meant to illustrate our 
methods. We have made no recommendation to the national sta­
tistical agency regarding the set of queries, methods, and privacy 
parameters to use for a full implementation. 

We highlight two application scenarios that use summary ta­
bles computed from employer-employee datasets. 
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Resource Allocation: Employer-employee data are used for a 
number of planning and development purposes. These counts 
are used to decide whether or not a specific amount of funding 
can make a sufficient per capita impact in a given geographical 
area (say a county or a city), and decide which areas receive 
the funding. Errors in counts would affect whether or not an 
area received funding thus motivating our use of L1 error as a 
measure of data accuracy. Experiments in Section 10 explore 
the effect of privacy parameters on L1 error. 
Ranking: Users are often interested in comparing counts across 
a list of units. As a well-known example, magazines and news 
outlets regularly publish rank-ordered national lists of cities by 
various attributes within city-size classes. Users currently inter­
act with our employer-employee data through online tools that 
encourage them to rank job counts of a series of areas from 
largest to smallest. For example, a business might be interested 
in the ranked order of places (e.g., cities, or towns) by job count, 
within a state, for deciding where to open a new establishment. 
Exercises in Section 10 use Spearman’s rank-order correlation 
to explore the accuracy of ranked lists produced by our algo­
rithms as compared to the ordering produced by the current SDL 
scheme. 

4 Privacy Requirements 

We derive our privacy requirements from relevant national laws 
pertaining to confidential data collected for statistical purposes 
from employers or employees. We first discuss the general pri­
vacy requirements, and then mathematically formalize them us­
ing the Pufferfish framework. 

4.1 Generic Legal Environment 

Information on workers and firms is protected by laws mandat­
ing confidentiality protections for individual and business infor­
mation collected by the national statistical agency.1 Under these 
laws, the agency may not make any publication that identifies 
the data provided by any particular establishment or individual. 
The responsible committee at the national statistical agency ap­
proves the release of data that, in its view, satisfy these statutory 
confidentiality-protection requirements. 

The employer-employee data are derived from both employer 
(business-level) and job (individual-level) data, and thus, both 
legal protections apply. Over the years, the agency has in­
terpreted the statute to require the following set of protec­
tions. 

•	 The existence of a job held by a particular individual is con­
fidential and must not be disclosed. 

•	 The existence of an employer business as well as its type (or 
industry) and location is not confidential. 

•	 The data on the operations of a particular business must be 
protected. In our context, that means that characteristics of 
an establishment’s workforce (e.g., total employment and all 
disaggregations like number of female employees of age 20­
25) must be protected. 

1Precise laws are not cited due to double blind submission requirements. Many 
national statistical agencies have privacy requirements consistent with the United 
Nations’ Fundamental Principles of Official Statistics, Principle 6. 

Appendix A discusses how these statutory confidentiality re­
quirements have been interpreted over the past half a century, 
and the development of SDL techniques that uphold them. How­
ever, none of the prior interpretations or techniques have at­
tempted proving formal statements about the privacy that is 
guaranteed to individuals or businesses. In fact, we show 
(Section 5) that the SDL techniques currently used to publish 
employer-employee data may allow an informed attacker to in­
fer confidential properties like the exact total employment of an 
establishment, or whether a certain employee is employed by a 
specific employer. We next present our formalization of the pri­
vacy requirements. 

4.2 Formal Privacy Desiderata 

We propose to design algorithms for releasing counts from 
employer-employee data that can provide provable guarantees 
of the following privacy desiderata. Our discussion focuses on 
formulating privacy requirements for a one-time release by the 
statistical agency using an algorithm denoted by A. Our privacy 
notions handle multiple releases through composition rules. We 
model the requirements based on the Pufferfish privacy frame­
work [23, 24]. 
Informed Attacker: National statistical agencies are concerned 
about two kinds of attackers – uninformed and informed. Unin­
formed attackers can access the output of the algorithm A, but 
may not possess detailed background knowledge about specific 
individuals and establishments in the data. Informed attackers 
are more powerful. They possess specific knowledge about in­
dividual employees or employers, or statistics about those in the 
dataset. Examples of such attackers include a group of employ­
ees who would like to determine a private attribute of their co­
worker, or one (or more) employer(s) attempting to learn de­
tailed statistics about a competing employer. Our goal is to en­
sure the confidentiality of employer and employee characteris­
tics from such attackers. 

We assume the adversary knows the set of all establishments 
(say E), and their public attributes (location, industry code and 
ownership). The attacker also knows the universe of all workers 
U . Each worker w ∈ U has a set of private attributes A1 . . . Ak 

(like age and sex). We add another attribute with domain E ∪ ⊥ 
that represents whether w works in one of the establishments in 
E , or not. 

For each employee w, the attacker’s belief is defined as πw, 
a probability distribution over all the values in T = (E ∪ ⊥) ×v 
A1 × A2 × . . . × Ak . θ = w∈U πw represents the adversary’s 
belief about all employees in the universe U . That is, the adver­
sary possesses no knowledge correlating employees. We denote 
by Θ = {θ}, the set of all possible adversarial beliefs that as­
sume no correlations between employees and between employ­
ers. Nevertheless, Θ includes informed attackers who may know 
exact information about all but one employee, and those who 
know exact information about all but one employer. We note that 
Θ contains very strong attackers. Algorithms that can provably 
protect against such attackers while ensuring error comparable 
to current SDL techniques would underscore the possibility that 
provable privacy could be achieved at low utility cost. 

We distinguish a subset of attackers Θweak ⊂ Θ as weak at­
tackers. Weak attackers have no prior knowledge over worker 
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attributes – i.e., all workers are the same in their eyes. The weak
attacker may still have the same detailed knowledge about es-
tablishments as our general attacker. We capture a weak adver-
sary by requiring that the prior for each worker πw be a product
of π(1,e) (worker independent prior over establishments), and
π(2,w) (a uniform prior over all worker attributes). We use these
definitions to define a weaker privacy notion.
What should we protect: We now define what properties of the
data we need to protect against such adversaries.

1. No re-identification of individuals: We would like to en-
sure that adversaries do not learn too much additional informa-
tion about any single employee in the dataset when an algorithm
A operates on the dataset D. In particular, they should not be
able to determine (i) whether or not an employee is in or out
of the dataset (⊥ versus not), (ii) whether or not an employee
works at a specific (type of) employer (E versus E − E, where
E is a set of employers), and (iii) whether or not the employee
has certain characteristics (e.g., Hispanic with age greater than
35).

We formalize this as follows. For any pair of values a, b ∈ T ,
we want the ratio of the adversary’s posterior odds (after seeing
the output A(D)) that a worker record takes the value w = a
vs w = b not to be too different from the adversary’s prior odds
that w = a vs w = b. That is, we want to bound the Bayes
factor: the ratio of the posterior odds to the prior odds.

Definition 4.1 (Employee Privacy Requirement). For random-
ized algorithm A, if for some ε ∈ (0,∞), and for every em-
ployee w ∈ U , for every adversary θ ∈ Θ, for every a, b ∈ T
such that Prθ[w = a] > 0 and Prθ[w = b] > 0, and for every
output ω ∈ range(A):

log

(
Prθ,A[w = a|A(D) = ω]

Prθ,A[w = b|A(D) = ω]

/
Prθ[w = a]

Prθ[w = b]

)
≤ ε (3)

Then the algorithm A protects employees against informed at-
tackers at privacy level ε.

Definition 4.1 bounds the logarithm of the maximum Bayes
factor an informed attacker can achieve. This implies, as a con-
sequence of the general bound on privacy-loss, that an informed
attacker can’t learn any property of a worker record with prob-
ability 1 after seeing the output of the algorithms unless the at-
tacker already knew that fact, as reflected in his prior odds.

2. No precise inference of establishment size: An informed
attacker should not infer the total employment of a single estab-
lishment to within a multiplicative factor of α. We do not re-
quire stronger privacy of the form “presence of an establishment
must not be inferred,” since (a) the existence of an employer es-
tablishment is considered public knowledge, (b) the data are an
enumeration of all employer establishments, and (c) whether or
not an establishment is big or small is well known. This require-
ment balances the legal need for protecting the operations of a
business with widespread knowledge of approximate employ-
ment sizes of establishments.

We can formalize the employer-size privacy requirement as
follows. For any establishment e, let |e| denote the random vari-
able representing the number of workers employed at e. We
define the requirement for both informed and weak adversaries.

ln
 (P

r [
|e|

 =
 x

]) 

ln x
a b

Slope: exp(e)/(1+α)

Figure 1: Pictorial representation of an attacker’s prior and pos-
terior belief about an establishment’s size (|e|) permitted by Def-
inition 4.2. The prior is uniform(a, b) (dotted line). Note the
log scale on both x and y axes.

Definition 4.2 (Employer Size Requirement). A randomized al-
gorithm A protects establishment size against an informed at-
tacker at privacy level (ε, α) if, for every informed attacker
θ ∈ Θ, for every pair of numbers x, y, and for every output
of the algorithm ω ∈ range(A),∣∣∣∣log

(
Prθ,A[|e| = x|A(D) = ω]

Prθ,A[|e| = y|A(D) = ω]

/
Prθ[|e| = x]

Prθ[|e| = y]

)∣∣∣∣ ≤ ε
(4)

whenever x ≤ y ≤ d(1 + α)xe and Prθ[w = x], P rθ[w =
y] > 0. We say that an algorithm weakly protects establishments
against an informed attacker if the condition above holds for all
θ ∈ Θweak.

As in Definition 4.1, this definition bounds the maximum
Bayes factor the informed attacker can learn within the universe
of allowable data tables. Unlike the case of individuals, Defini-
tion 4.2 does allow an adversary to learn about the gross size of
an employer establishment. Consider the example illustrated in
Figure 1. Suppose that the informed attacker has a uniform prior
for the size of an establishment within the range [a, b]. This prior
is represented as a dotted horizontal line in the figure. Defini-
tion 4.2 requires that the adversary’s posterior odds be bounded
for pairs x and y within a multiplicative factor of (1 + α). That
means, the attacker’s posterior could be a peaked distribution
(shown as a solid line in the figure). The only constraint on the
posterior beliefs is that a multiplicative increase in establishment
size of (1 + α) should result in a multiplicative increase or de-
crease in the attacker’s posterior belief of at most eε (as shown
by a slope of ε/ ln(1 + α) in Figure 1, where the axes are on a
logarithmic scale).

3. No precise inference of establishment shape: An in-
formed attacker cannot precisely infer the composition of a sin-
gle establishment’s workforce (e.g., the fraction of males who
have a bachelor’s degree or the fraction with Hispanic ethnicity).
We call the distribution of an establishment’s workforce based
on worker characteristics its shape. One can think of this re-
quirement as protecting the distribution of characteristics of the
workforce, whereas the previous requirement protected the mag-
nitude of each characteristic. We believe this shape requirement
implements the legally mandated confidentiality of an establish-
ment’s operating characteristics. In Section 5.2, we show that an
algorithm that releases the precise shape of the workforce allows
an informed attacker to learn the establishment size as well. The
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Name Does this satisfy requirement on 
Individuals Employer 

Size 
Employer 

Shape 
Input Noise Infusion 
(Sec. 5) 

No No No 

Differential Privacy 
(individuals, Sec. 6) 

Yes No No 

Differential Privacy 
(establishments, Sec. 6) 

Yes Yes Yes 

Employer-Employee-privacy 
(Sec. 7) 

Yes Yes Yes 

Weak 
Employer-Employee-privacy 
(Sec. 7) 

Yes Yes* Yes 

Table 1: Privacy definitions and the requirements they satisfy. 
* means the the privacy requirements is satisfied under weak 
adversaries. 

definition bounds the maximum Bayes factor that the informed 
adversary can learn within the set of allowable inputs. 

Definition 4.3 (Employer Shape Requirement). Let eX denote 
the subset of employees working at e who have values in X ⊂ 
A1 × . . . × Ak . A randomized algorithm A protects establish­
ment shape against an informed attacker at a privacy level of 
(e, α), if for every informed attacker θ ∈ Θ, for every property 
of a worker record X ⊂ A1 × . . . × Ak, for every pair of num­
bers 0 < p ≤ q ≤ min(1, (1 + α)p), for every output of the 
algorithm ω ∈ range(A), and for every number z, 

Prθ,A[|eX |/|e| = p, |e| = z|A(D) = ω]
log 

Prθ,A[|eX |/|e| = q, |e| = z|A(D) = ω] 

Prθ [|eX |/|e| = p, |e| = z] ≤ e (5)
Prθ[|eX |/|e| = q, |e| = z] 

whenever Prθ [|eX |/|e| = p, |e| = z], P rθ [|eX |/|e| = q, |e| = 
z] > 0. 

Table 1 summarizes whether or not certain SDL and formal 
privacy methods satisfy our privacy desiderata. The following 
sections provide definitions and analysis required to interpret 
this table. 

5 Current SDL Protection 

We first discuss how employer-employee data are protected us­
ing SDL techniques, and how they avoid exact disclosures in 
Section 5.1. However, these techniques leave the door open for 
inference attacks, a few of which are outlined in Section 5.2. 

5.1 Input Noise Infusion 

A popular technique for protecting employer-employee data is 
input noise infusion [1, 3], where the database is perturbed be­
fore answering queries. Every establishment w is assigned a 
unique distortion factor fw, bounded away from 1. The unique, 
time-invariant, confidential distortion factor fw , is within the 
union of the ranges [1 − β, 1 − α] ∪ [1 + α, 1+ β]. The param­
eters 0 < α < β are kept confidential in order to limit inference 
attacks. Zero counts are left unmodified. 

More formally, consider a table WorkplaceFull that has one 
row per workplace w, as well as a histogram h(w) of counts of 

workers employed at w cross-tabulated over all combinations of 
worker attributes. Let c denote one of the cells (combinations of 
worker attributes like males, age 16-18, Hispanic, etc.), and let 
h(w, c) denote the count for workplace w in cell c. Counts in 
h(w) are perturbed to get h*(w) as follows. 

*h (w, c) = fw · h(w, c) (6) 

To limit re-identification of individual workers, additional 
output perturbation is employed for small counts. Specifically, 
when a marginal query qV is posed to the system (say employ­
ments counts tabulated by age, sex, and place), both the true an­

*swer qV (D) as well as a noise infused answer qV (D) are com­
puted. The latter is constructed by adding up appropriate counts 
from h*(w) for the establishments that satisfy the workplace 
criteria. If for a cell v in the output, the true count qV (D, v) 

*lies within (0, S), then the noise infused answer qV (D, v) is 
replaced by a sample drawn from a posterior predictive distri­
bution that always outputs integers 1, ..., LSJ. The small cell 
limit S is set to 2.5 for our dataset. Note that zero counts are 
unperturbed. 

Privacy Properties 
•	 No Exact Disclosures about Establishments: As a direct 

consequence of the gap around 1 in the distortion factor 
fw ∈ [1 − β, 1 − α] ∪ [1 + α, 1 + β], an establishment’s 
actual employment count is never used in any computations 
that produce tabular summaries. Hence, even if some cell 
count in a marginal query contains only one establishment, 
its employment count is not exactly revealed. The statutory 
requirement not to publish exact data about establishments 
is fulfilled by using the distortion factors α and β. 

•	 No Re-identification of Employees without Background 
knowledge: Given the output of a single marginal query, 
an adversary can not re-identify the presence of a specific 
worker without additional background knowledge. This is 
ensured by replacing small counts using draws from a differ­
ent distribution. 

Nevertheless, the aforementioned scheme is vulnerable to in­
ference attacks, especially in the presence of background knowl­
edge, as discussed next. 

5.2 SDL Vulnerabilities 

The following two properties of the input noise infusion scheme 
allow inference about individuals, establishment sizes and estab­
lishment shapes: 

•	 The same distortion factor fw is used to perturb all the cells 
counts h(w) for an establishment w. 

•	 If h(w) = 0, then h*(w) = 0. 

We first note that the privacy requirement on establishment 
shape (Definition 4.3) is not satisfied. Consider a marginal query 
qVI ∪VW , where VI are attributes of the employee and VW are 
attributes of the establishment. Suppose there is one combina­
tion vW ∈ dom(VW ) such that exactly one workplace w fits 
that criterion.2 Thus, counts output by the marginal query for 

2The number of establishments in a cell are not published for the dataset we 
consider in this paper. However, there are combinations of VW that contain only 
one workplace, and an adversary could know this. 
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all cells (vW , c), for all c ∈ dom(VI ) would represent employ­
ment counts for a single workplace. Whenever all these cell 
counts are greater than the small cell limit S, they are precisely 
the true count multiplied by the same (but unknown) noise factor 
fw. This reveals the shape exactly. 

Next, let us consider the privacy requirement on establishment 
size (Definition 4.2). Again consider the case when there is one 
combination vW ∈ dom(VW ) such that exactly one workplace 
w fits that criterion. Additionally, suppose the attacker knows 
one of the cell counts (vW , c) truthfully (say, the attacker knows 
there are a 100 males, age 20-25). If this count is greater than the 
small cell limit S, then adversary can reconstruct the noise factor 
fw. This coupled with the fact the shape is revealed exactly, the 
attacker can reconstruct the counts in all other cells as well as 
the total size of the establishment’s workforce. 

The existence of this attack is understood by the agencies that 
use input noise distortion as a method of SDL. The attack is not 
currently considered a violation of the relevant data protection 
statutes because exact disclosure occurs only when one of the 
counts h(w, c) are known exactly for some cell c. The agencies 
assume that the only users who possess exact information on 
c are employees of a business that reported the data. If those 
employees are obligated to keep such information confidential, 
then it is the employer’s duty to prevent the attack or prosecute 
the attacker. If they are not, then the data item itself is no longer 
confidential, and statutory protection doesn’t apply because the 
employer released the value. 

Next, we show that individual employees could be re-
identified by informed attackers (thus violating privacy require­
ment in Definition 4.1). Suppose again a marginal query 
qVI ∪VW with one combination vW ∈ dom(VW ) that fits ex­
actly one workplace w. Additionally, suppose an adversary 
knows that there is only one employee in w with a college de­
gree. If VW contains the education attribute, then the only cells 
that correspond to having a college degree in h(w, c) with pos­
itive counts are those that correspond to the true values of the 
other attributes for that employee. Since zero counts are pre­
served in the algorithm described in the previous section, the 
attacker can infer the other true attributes for this employee 
looking at the published counts. Current publications of the 
employer-employee data we consider are vulnerable to this at­
tack. Such attacks will be thwarted by the algorithms we pro­
pose. 

Applying Differential Privacy 

In this section we consider directly applying differential privacy 
to our problem. One can think of the entities in our problem 
(employers and employees) as nodes in a bipartite graph con­
nected by edges that represent jobs. There is extensive work on 
applying differential privacy to graphs, which can be brought to 
bear on our problem [8, 10, 21, 20]. 

Two standard variants of differential privacy considered in the 
context of graphs are edge and node differential privacy. Edge 
differential privacy considers neighboring graphs that differ in 
the presence of a single edge. In our context that corresponds to 
adding or removing a single worker (or a job) from our database. 
We can show that this definition is sufficient to satisfy the em­
ployee privacy requirement (Definition 4.1). However, edge dif-
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Figure 2: Employment counts from a single establishment 

ferential privacy does not ensure privacy of establishments (Def­
initions 4.2 and 4.3) (see appendix for proofs). For instance, 
under this definition an adversary is allowed to compute the 
number of workers at a single establishment satisfying any prop­
erty by perturbing the true count with additive noise drawn from 
Lap(1/e). We can show that the noise added is at most log(1/p) 

E 
with probability 1 − p (i.e., at most 5 for e = 1 and p = 0.01). 
Knowing that the total employment in an establishment is 10,000 
±5 is as good as knowing the true count. 

Node differential privacy considers neighboring graphs that 
differ in the presence of an single node and all the edges incident 
to it. In our context that corresponds to removing or adding a 
single employer along with all the workers who are employed 
at this employer. Node differential privacy is much stronger, 
and in the context of our problem will satisfy the employee and 
employer privacy requirements (Definitions 4.1, 4.2 and 4.3). 
However, this comes at a huge cost to utility. 

There are two classes of techniques for answering aggregate 
queries on graphs – adding noise to true counts, and projection. 
The first class of techniques [20] adds noise to an aggregate 
count (e.g., number of employees in New York) with scale that 
is at least the size of the largest establishment that contributes to 
that count (this is sometimes called the down sensitivity, and is a 
weak lower bound on the noise scale required to ensure privacy). 
Thus the minimum relative error in such a count is at least the 
fraction of the aggregate contributed by a single establishment. 
For instance, we computed the tabular summary of counts by 
place, industry and ownership, where each cell represents the 
total employment in a specific place, for establishments with a 
specific industry code and ownership type. We also computed 
for each cell the fraction of the count contributed by a single es­
tablishment (or the ratio between the down sensitivity and the 
cell count). Figure 2 shows the CDF of these fractions. We can 
see that at least 50% of the cells have a single establishment con­
tributing to more than 65% of the count, and would incur at least 
that much relative error if perturbed using noise scaled even by 
down sensitivity. 

The projection techniques [8, 10, 21] modify the graph by 
adding or deleting edges and nodes until the maximum degree 
of a node is bounded by a small number θ. Queries on this 
bounded degree graph have bounded sensitivity (of θ) and hence 
can be answered by adding noise from Laplace(θ/e). How­
ever, such a procedure would severely distort the characteristics 
of employers with large sizes. Preserving properties of these 
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establishments is important for economic studies. For instance, 
the truncation method [21] projects the graph by removing nodes 
until all nodes have degree less than θ. Using this technique on 
our data with θ = 1000 in the context of employer-employee 
data results in removing all establishments with size at least a 
1000; between 740 and 815 establishments would be removed.3 

Moreover, in a tabular summary of counts by place, industry and 
ownership, over 93% of the counts have a total count less than 
a 1000. Adding Laplace noise with sensitivity of a 1000 (even 
with e = 1) would result in expected noise greater than the cell 
counts. Thus, projection techniques would destroy utility. 

7 Formal Privacy Definition 

We present two privacy definitions that ensure protection against 
informed and weak adversaries, respectively, as we have defined 
them. Our new definitions are in Section 7.1; their privacy se­
mantics are in Section 7.2. Our formal privacy definitions ensure 
that the requirements in Section 4 are satisfied. 

7.1 Privacy for Employee-Employer Data 

We denote the set of establishments as E and the universe of 
workers as U . 

Definition 7.1 (Strong α-Neighbors). Let D and D ' be two 
employer-employee tables such that they differ in the employ­
ment attribute of exactly one record (say corresponding to es­
tablishment e). Let E denote the set of workers employed at e 
in D, and E ' denote the set of workers employed at e in D ' . 
Then D and D ' are neighbors if E ⊆ E ', and |E| ≤ |E ' | ≤ 
max(1 + α)|E|, |E| + 1) 

We define our privacy definition using this notion of neigh­
bors: 

Definition 7.2 ((α, e)-Employee-Employer Privacy). A ran­
domized algorithm M is said to satisfy (α, e)-Employee-
Employer Privacy, if for every set of outputs S ⊆ range(M), 
and every pair of strong α-Neighbors D and D ', we have 

Pr[M(D) ∈ S] ≤ e EPr[M(D ' ) ∈ S] 

First, note that every pair of neighboring employer-employee 
tables must differ in the presence or absence of at least one 
worker. Next, note that neighboring tables do not differ in ei­
ther the number of establishments or the values of their public 
attributes. Definition 7.1 bounds changes in a subset of the work­
force of an establishment by α times the total workforce. 

Theorem 7.1. Let M be an algorithm satisfying (α, e)­
employer-employee privacy. Then, M satisfies the individual 
privacy requirement at privacy level e, and the establishment 
size and shape requirements at privacy level (e, α). 

When releasing counts over both establishment and worker 
attributes, this privacy notion proves too strong to provide usable 
results. For this purpose, we also give a weaker privacy notion. 
We start by defining neighbors. 

3The number of establishments with size > 1000 is a sensitive count. This 
count was computed using node differential privacy with E = 0.1. The reported 
range is the 95% confidence interval based on the fact that the Laplace mechanism 
results in a noise of at most 1 δ� ln 1 with probability 1 − δ. 

Definition 7.3 (Weak α-Neighbors). Let D and D ' be two 
employer-employee tables such that they differ in the employ­
ment attribute of exactly one record (say corresponding to es­
tablishment e). Let φ : U → {0, 1} be any property of a worker p 
record, and for any E ⊂ U , let φ(E) = r∈E φ(r). Let E 
denote the set of workers employed at e in D, and E ' denote the 
set of workers employed at e in D ' . D and D ' are called weak 
α-neighbors if for every φ 

φ(E) ≤ φ(E ' ) ≤ max((1 + α)φ(E), 1) (7) 

Note that any property of the workforce can be represented 
using the function φ. The total employment count can be rep­
resented by the constant function that always outputs 1 for any 
record. The property “females with a college degree” can be 
represented by a φ that returns 1 for the records satisfying that 
property. Definition 7.3 bounds changes in every subset of the 
workforce corresponding to some of attribute values proportion­
ally, by a factor of (1 + α). This neighboring definition can be 
used to give a weaker privacy notion. 

Definition 7.4 (Weak (α, e)-Employee-Employer Privacy). A 
randomized algorithm M is said to satisfy weak (α, e)­
Employee-Employer Privacy, if for every set of outputs S ⊆ 
range(M), and every pair of weak α-Neighbors D and D ' , we 
have 

Pr[M(D) ∈ S] ≤ e EPr[M(D ' ) ∈ S] 

Theorem 7.2. Let A be an algorithm satisfying weak (α, e)­
employer-employee privacy. Then, A satisfies the individual pri­
vacy requirement at privacy level e and the establishment shape 
requirement at level (e, α). A satisfies the establishment size 
requirement at level (e, α) for weak adversaries. 

The difference between the strong and weak variants of the 
requirement is the following. Suppose the attacker knows there 
are at least Δ 19 year-old employees in an establishment, and 
knows the exact counts of employees by age for all other ages 
(totaling to x−Δ). Thus, the attacker’s only uncertainty is about 
the number of 19 year-olds. Then, Definition 7.2 requires that 
the attacker should not be able to distinguish between whether 
the number of 19 year-old employees is Δ or Δ ' for all Δ ≤ 
Δ ' ≤ Δ+ α · x. While one might expect few 19 year-olds in an 
establishment, algorithms satisfying Definition 7.2 will not be 
able to release that fact unless α is very small. 

Under Definition 7.3 the attacker should not be able to distin­
guish between whether the number of 19 year-old employees is 
Δ or Δ ' for all Δ ≤ Δ ' ≤ (1 + α)Δ. 

Keeping α fixed, larger e values results in less privacy pro­
tection, since adversaries can better distinguish neighboring 
databases. On the other hand, when keeping e fixed, larger α 
values result in more privacy protection. 

7.2 Privacy Semantics 

The bounds on an adversary’s Bayes factor for the change in 
beliefs about the sensitive information follow from Section 4. 

When α = 0, neighboring tables differ exactly in the presence 
or absence of one individual worker. Thus, presence of a spe­
cific worker in the dataset is protected under (α, e)-Employee-
Employer Privacy, for all values of α. However, we need α to 
be a positive constant to ensure any privacy for establishments. 
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When α →∞, databases are neighbors only when either Ew 

or E ' is empty. This has a similar (but not identical) effect as w 

neighbors that differ in the presence or absence of an establish­
ment (like node differential privacy). 

Next, we can also bound the extent to which an adversary can 
infer properties of employees and establishments beyond just 
neighboring databases. Both neighboring definitions, 7.1 and 
7.3, induce a metric d(·) over possible databases. 

We can use this metric to reason about what inferences an 
adversary can make. In general, we can show the following. For 
mechanism M satisfying one of our privacy definitions, 

E·d(D,D1) ' Pr[M(D) ∈ S] ≤ e · Pr[M(D ) ∈ S]. (8) 

In particular, there are two things to note. First, the distance be­
tween databases that differ in workplace attributes is infinite (we 
can disclose this information because the workplace attributes 
are public). Next, suppose D and D ' are neighbors with dif­
ferent employment sets Ew and E ' for establishment w, and w 

|Ew w| = x and |E ' | = (1 + α)k · x. Then, an adversary can’t 
distinguish between D and D ' based on an output with log-odds 
greater than e · k; that is, e · k bounds the adversary’s Bayes 
factor. 

7.3 Composition 

Algorithms satisfying both privacy definitions compose sequen­
tially. 

Theorem 7.3. Let M1 and M2 be (α, e1)- and (α, e2)­
employer-employee private algorithms. Releasing the outputs of 
M1(D) and M2(D) results in (α, e1 +e2)-employer-employee 
privacy. The same holds for weak (α, e)-employer-employee 
privacy. 

Differentially private algorithms also satisfy parallel compo­
sition, which means that releasing the result of e-differentially 
private algorithms on disjoint sets of records D1 and D2 also 
results in e-differential privacy. The same is true for both Defi­
nitions 7.2 and 7.4 if the records in D1 and D2 pertain to distinct 
establishments. 

Theorem 7.4. Let D1 and D2 represent subsets of records from 
the employer-employee dataset that pertain to distinct sets of es­
tablishments. Let M1 and M2 be (α, e)- and (α, e)-employer­
employee private algorithms. Releasing the outputs of M1(D1) 
and M2(D2) results in (α, e)-employer-employee privacy. The 
same holds for weak (α, e)-employer-employee privacy. 

Parallel composition is nuanced when D1 and D2 could per­
tain to distinct sets of workers from the same sets of establish­
ments (e.g., males in New York and females in New York). 

Theorem 7.5. Let D1 and D2 represent subsets of records from 
the employer-employee dataset that pertain to distinct workers, 
but have records that arise from the same establishment. Let 
M1 and M2 be (α, e)- and (α, e)-employer-employee private 
algorithms. Releasing the outputs of M1(D1) and M2(D2) 
results in (α, e)-employer-employee privacy. The same does not 
hold for weak (α, e)-employer-employee privacy. 

8 Algorithms 

We next present algorithms for answering queries under both 
(α, e)-Employer-Employee privacy and weak (α, e)-Employer-
Employee privacy. Our algorithms describe how to answer a sin­
gle count query (e.g., number of workers in the age 25-35 with 
a college degree who are employed in publicly-owned establish­
ments in New York). This would correspond to a single cell in 
a marginal query (e.g., {place, ownership, age, education}). We 
denote these single counting queries as qv , where v ∈ dom(V ) 
and qV is the marginal query. These algorithms can be used 
to release all the counts in the marginal using the composition 
properties described in Section 7.3. Specifically, algorithms for 
releasing single counts can be parallel-composed under (α, e)­
Employer-Employee privacy for all marginals. However, algo­
rithms for releasing single counts can be parallel-composed un­
der weak (α, e)-Employer-Employee privacy for marginals con­
taining only establishment attributes, since such cells aggregate 
over distinct subsets of employers. Using algorithms for releas­
ing a single count under weak (α, e)-Employer-Employee pri­
vacy to release a marginal containing worker attributes would 
result in an effective privacy-loss parameter of d · e, where d is 
the domain size of the worker attributes in the marginal query. 

8.1 Log-Laplace Algorithm 

The global sensitivity of a count query under Definitions 7.2 and 
7.4 is unbounded; if the count is x, the sensitivity can be as large 
as αx. However, the logarithm of the count has a low global 
sensitivity of ln(1 + α). Thus the Log-Laplace mechanism (see 
Algorithm 1) adds Laplace noise to the log of the count. 

Algorithm 1 Log-Laplace Mechanism 
Require: : n : the sum of employment counts for a set of cells, α, e: 

privacy parameters 
Ensure: : ñ: the noisy employment count 

Set γ ← 1/α 
i ← ln(n + γ) 
Sample η ∼ Laplace(2 ln(1 + α)/e) 
ñ← e£+η − γ 

Theorem 8.1. Suppose qv is a query over only establishment 
attributes. Then, releasing qv using Algorithm 1 satisfies (α, e)­
employer-employee privacy. 

Suppose qv is a query over both establishment attributes and 
employee attributes. Then, releasing qv using Algorithm 1 satis­
fies weak (α, e)-employer-employee privacy. 

All proofs are deferred to the Appendix. While the original 
Laplace mechanism is unbiased (the expectation of the noisy 
sum equals the true sum), the Log-Laplace mechanism is not. 
In particular we can show: 

Lemma 8.2. Let x denote a real number, and x̃ the random 
variable denoting the output of the Log-Laplace mechanism. Let 
λ = 2 ln(α+1)/e. Then, when λ < 1, E[x̃]+γ = (x+γ)/(1− 
λ2). When λ ≥ 1, E[x̃] is unbounded. 

Theorem 8.3. The expected squared relative error of the Log-
Laplace mechanism for qv is bounded when λ = 2 ln(α + 1)/e 
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  is less than 1, and is given by: 

|qv (D) −M(D)|Erel(qv ) = max
D qv (D) 

(9)
2λ2 + 4λ4 

≤ (1 + γ)2 

(1 − 4λ2)(1 − λ/2) 

8.2 Smooth Sensitivity-based Algorithms 

We next derive a mechanism using the smooth sensitivity frame­
work [26]. The smooth sensitivity framework adds noise based 
on local sensitivity of the input database rather than global sen­
sitivity across all databases. While local sensitivity can be much 
smaller than global sensitivity, adding noise proportional to local 
sensitivity does not ensure differential privacy, and hence, local 
sensitivity must be “smoothed.” 

Definition 8.1 (Local Sensitivity). Let q be a query, and I be a 
domain of datasets. The local sensitivity of query q for a dataset 
x ∈ I is 

LSq (x) = max lq(x) − q(y)l1 
y:y∈nbrs(x) 

Note that the global sensitivity is the maximum local sensi­
tivity over all databases. Nissim et al[26] show that it is suffi­
cient to add noise proportional to any smooth function that upper 
bounds local sensitivity. The smallest such upper bound is called 
the smooth sensitivity. 

Definition 8.2. Let q be a query and b a smoothing parameter. 
Let I denote the universe of all datasets. The b-smooth sensitiv­
ity of query q with respect to database x is defined as 

∗ −jb (j)Sq,b(x) = max e A (x), 
j 

where A(j)(x) = max LSq (y), 
y∈I:d(x,y)≤j 

and d(x, y) is the smaller integer e such that there exist 
databases x = x0, x1, . . . , x£ = y, such that for all i, xi−1 

and xi are neighbors according to either Definition 7.1 or 7.3. 

Definition 8.3 ([26]). A probability distribution h is (a, b)­
admissible, where a and b are functions of e and δ, if ∀λ ∈ 
R, Δ ∈ Rd with |λ| ≤ b and lΔl1 ≤ a, and ∀S ⊆ Rd , 

δ 
Pr [Z ∈ S] ≤ eE/2 Pr [Z ∈ S + Δ] + , and (10)
Z∼h Z∼h 2   

E/2 λPr [Z ∈ S] ≤ e Pr Z ∈ S · e + 
δ
. (11)

Z∼h Z∼h 2 

We can now adapt Lemma 2.6 from [26] to show that adding 
noise from admissible distributions, scaled by the smooth sensi­
tivity, generates provably private algorithms. 

Theorem 8.4. Suppose h is an (a, b)-admissible probability dis­
tribution with δ = 0, and Z ∼ h. For query q, let S(x) be a 
b-smooth upper bound on the local sensitivity of q. Then, the 
algorithm M(x) = q(x) + S(

a
x) · Z satisfies (α, e)-Employer-

Employee privacy. 

We now compute the b-smooth sensitivity of our queries and 
describe an admissible distribution. For our problem, the local 
sensitivity itself is the smooth sensitivity. 

Lemma 8.5. Let qv be a query on x. Let xv be the maxi­
mum number of workers belonging to a single workplace and 
matching the conditions in v. Then, the b-smooth sensitivity of 

(1+|z|γ
for γ > 0 (δ = 0). 

x, S ∗ 
v,b(x), is  
Sv,b(x) =

∗ max(xv · α, 1) 
unbounded 

if e b ≥ (1 + α), 

otherwise. 
(12) 

Lemma 8.6 ([26]). h(z) ∝ 1 
) is (e/4γ, e/γ)-admissible 

Combining Theorem 8.4 and Lemmas 8.5 and 8.6 gives us the 
following algorithm. We use γ = 4 to ensure that the mean and 
variance of the noise distribution are bounded. Note that privacy 
is guaranteed only when α + 1 ≤ eE/4 . 

Algorithm 2 Smooth Gamma 

Require: : n : true count, α, e: privacy parameters, α + 1 ≤ 
E/4 e

Ensure: : ñ: noisy count 
Sample η ∼ 1 

(1+|z|4)
 
S ∗ (x)
 

ñ← n + v,�/4 η,
E/16 

Lemma 8.7. Suppose qv is a query over only establishment at­
tributes. Then releasing qv using Algorithm 2 satisfies (α, e)­
Employer-Employee privacy. 

Suppose qv is a query over both establishment and individual 
attributes. Then releasing qv using Algorithm 2 satisfies weak 
(α, e)-Employer-Employee privacy. 

Lemma 8.8. Algorithm 2 is unbiased and has expected L1 error 
of O( xv 

E 
·α + 1). 

9 Approximating Privacy 

A standard relaxation of differential privacy is to allow for a 
small failure probability of δ that the attacker can distinguish 
neighboring datasets based on an output. We can similarly define 
(α, e, δ)-Employer-Employee privacy. 

Definition 9.1 ((α, e)-Employee-Employer Privacy). A ran­
domized algorithm M is said to satisfy (α, e, δ)-Employee-
Employer Privacy, if for every set of outputs S ⊆ range(M), 
and every pair of strong α-Neighbors D and D ', we have 

Pr[M(D) ∈ S] ≤ e EPr[M(D ' ) ∈ S] + δ 

Weak (α, e, δ)-employer employee privacy is defined analo­
gously. 

Exact records may be released when δ = 1/O(n) (where n 
is the number of records). δ is the probability that a mechanism 
gives no privacy guarantee. Therefore if δ > 1/n, a mechansim 
which releases the exact values for a δ fraction of the records 
(and 0 for all other records) satisfies this privacy definition. 

δ increases rapidly with database distance. We would like 
to show an analogue to Equation 8 to show how δ decays with 
distance. That is, suppose M is a mechanism which satis­
fies (α, e, δ)-Employer-Employee privacy, and suppose for two 
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δ α e δ α e 
.05 
.05 
.05 

.01 

.10 

.20 

.105 
1.01 

1.932 

5 × 10−4 

5 × 10−4 

5 × 10−4 

.01 

.10 

.20 

.15 
1.45 
2.13 

Table 2: Minimum values of e given α and δ 

databases D and D ' , d(D, D ' ) = d. Then, we can only guaran­
tee for all outputs S of M, 

Ed ' (d−1)EPr[M(D) ∈ S] ≤ e ·Pr[M(D ) ∈ S]+Ω(δe ). (13) 

Note that for a high enough distance, the term Ω(δe(d−1)E) 
may become greater than one. This means that for database D ' 

at least this far from D, we may allow an adversary to rule out 
without a doubt D '. This never happens under non-approximate 
privacy. An adversary must always have some amount of uncer­
tainty between a pair of databases no matter how far apart. 

Despite these drawbacks, allowing a small probability of fail­
ure can greatly increase the utility of an algorithm while still 
providing a provable guarantee. We use the framework devel­
oped in Section 8.2 to give an approximate algorithm. 

−|z|Lemma 9.1 ([26]). The Laplace distribution, h(z) ∝ 1
2 · e , 

is (e/2, E )-admissible. 
2 ln(1/δ) 

Using Theorem 8.4 and Lemma 8.5, we obtain Algorithm 3. 

Algorithm 3 Smooth Laplace 

Require: : n : true count, α, e: privacy parameters, α+1 ≤ e 2 ln(1/δ) . 
Ensure: : ñ: noisy count 

Sample η ∼ Laplace(1) 
S ∗ (x)
v, 

2 ln(1/δ)ñ← n + η,
E/2 

Lemma 9.2. Suppose qv is a query over only establishment at­
tributes. Then releasing qv using Algorithm 3 satisfies (α, e, δ)­
employer employee privacy. 

Suppose qv is a query over both establishment and individual 
attributes. Then releasing qv using Algorithm 3 satisfies weak 
(α, e, δ)-employer employee privacy. 

Lemma 9.3. Algorithm 3 is unbiased and expected L1 error is 
O( xv ·α 

E + 1). 

Note that the error of Algorithm 3 does not depend on δ. 
Therefore, the optimal δ for a fixed α and e is the one which 
solves the inequality in Algorithm 3 with equality. In Table 2, 
we show some values of δ, e, and α that work. 

10 Empirical Evaluation 

Dataset: The data used for these experiments were a geographic 
subset of the employer-employee data processed by the agency. 
Standard production edits and imputations had already been ap­
plied. The sample was taken from a recent snapshot for jobs 
held at a reference date. To be included, jobs had to qual­
ify as “beginning-of-quarter” jobs, which means that the job 
(employee-employer relationship) has positive earnings in the 

reference quarter as well as the previous quarter. Then, the as­
sumption is that the person was employed in the job on the first 
day of the reference quarter. The count of jobs in the sample was 
10.9 million jobs from about 527,000 establishments. 

Queries and Quality Measures: We use three types of query 
workloads to evaluate our algorithms. 

•	 Workload 1 A marginal over all establishment characteris­
tics: industry sector, ownership, and location at the resolu­
tion of places (e.g., cities and towns). 

•	 Workload 2 Single queries over all establishment attributes, 
and over the worker attributes of sex and education. 

•	 Workload 3 The marginal over all establishment attributes, 
and sex and education. 

First, we evaluate average L1 error incurred by our algorithms 
for answering the above query workloads and compared it to the 
L1 error incurred by the current protection system on the same 
workloads. We report the cost of provable privacy as a ratio 
between the two (error of provably private algorithms divided 
by the error of current SDL algorithm). Since our algorithms are 
randomized, error is averaged over 20 independent trials. 

In addition to reporting the overall error ratio, we also com­
pute the error ratio stratified by place-size ranges. The strata 
we consider are cells in the marginals with a population of 0­
100, 100-10k, 10k-100k, and 100k+, respectively. We should 
not expect to do well in the first stratum, since one would expect 
a small number of small establishments in those places. Our 
results for Workload 3 are discussed here, but appear in the Ap­
pendix. 

Next we evaluate the cost of formal privacy in ranking tasks. 
We ask two ranking queries: 

•	 Ranking 1 Rank all the cells in the marginal over industry 
sector, ownership, and location by total count in descending 
order. 

•	 Ranking 2 Rank all the cells in the marginal over indus­
try sector, ownership, and location by number of employees 
who are female with a college degree in each cell in descend­
ing order. The results of this experiment are discussed here, 
and the plots appear in the appendix. 

We measure error as the Spearman rank-order correlation be­
tween the ordering based on noisy counts returned by our algo­
rithm to the ordering based on the counts output by the current 
SDL algorithm. As in the L1 error case, we also report error 
stratified by place size. 

Algorithms: We compare the Log-Laplace, Smooth Gamma 
and Smooth Laplace algorithms. We present results for e ∈ 
{0.25, 0.5, 0.67, 1.0, 2.0, 4.0} and for α ∈ {0.01, 0.05, 0.1, 
0.15, 0.2}. Recall that for α = .1, for example, an adver­
sary should not be able to tell the difference in employments 
within 10% of each other. We do not plot errors for the Log-
Laplace mechanism when the expectation of the noisy count is 
unbounded, that is when 2 ln(α + 1) < e (see Lemma 8.2). 

We do not vary δ for the Smooth Laplace algorithm as part of 
our evaluation, since δ does not affect the amount of noise added 
(and consequently does not impact the accuracy). Nevertheless, 
as discussed in Section 9 and Table 2, for a given α, δ imposes 
a lower bound on e and eliminates possible choices for (α, e) 
pairs. In our figures, we report results for pairs of (α, e) that 
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Figure 3: Average L1 error of releasing place by industry sector by ownership marginal compared to the current system. 
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Figure 4: Spearman correlation between tested model and input noise infusion on the count of total workers ranked by place by 
industry section by ownership. 
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Figure 5: Average L1 error of releasing single queries in the place by industry sector by ownership by sex by education marginal, 
compared to the current system. 
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are possible for a high failure probability of δ = 0.05. The 
performance for smaller δ values can be read off the plots by 
checking whether the (α, e) values are allowed for that δ. 

10.1 Findings 

Finding 1: For releasing marginals over only establishment at­
tributes, our algorithms perform comparably or better than the 
current protection system while satisfying the strong privacy no­
tion given in Definition 7.2. We use e = 2 and α = .1 as a base­
line. As can be seen in Figure 3, the average error of the Log-
Laplace and Smooth Gamma algorithms is within a factor of 3 of 
the error of the current protection system. The Smooth Laplace 
algorithm performs better than the current protection system at 
e = 2 and α = .1. Ranking results for establishment-attribute 
queries are shown in Figure 4. Overall, the Smooth Laplace al­
gorithm has a correlation close to 1 when e is at least 2, and 
the other two algorithms are close to 1 for e ≥ 4. For rankings 
involving only larger population sizes, Smooth Laplace is close 
to 1 for all values of e tested, and the Log-Laplace algorithm is 
close to 1 for e at least 1. 

We also observe that our algorithms have relative error com­
parable to that of the current protection system for a majority 
of the cells. For Log-Laplace, the relative L1 is within 10 per­
centage points of the relative error of current system for 65% of 
the counts at α = .1 and e = 2. Smooth Laplace and Smooth 
Gamma are within 10 percentage points for 75% and 29% of the 
counts, respectively. 

Finding 2: For releasing individual queries over establishment 
and worker attributes, our algorithms perform comparably or 
better than the current protection system while satisfying the 
weaker privacy notion given in Definition 7.4. As shown in Fig­
ure 5, the average error of the Log-Laplace algorithm is within 
a factor of 3 of the error of the current protection system. The 
Smooth Laplace algorithm has nearly the same average error as 
the current protection system. At e = 4, the Smooth Laplace 
algorithm outperforms the current protection system for all val­
ues of α that we tested. Ranking results are shown in Figure 7. 
For the overall ranking, only the Smooth Laplace algorithm ap­
proaches relative error of 1 for e at least 4. Restricted to larger 
population sizes, both Log-Laplace and Smooth Laplace per­
form well for all tested values of e. 

Finding 3: For releasing marginal queries over establishment 
and worker attributes, our algorithms perform worse than the 
current protection system, but can have acceptable performance 
at high values of e and low values of α. As shown in Figure 6, 
when α ≤ .05 and e ≥ 4, the Log-Laplace algorithm has av­
erage L1 error within a factor of 10 of the current protection 
system. The Smooth Laplace algorithm is within a factor 10 for 
all tested values of α at e = 4. At the lowest tested value of α 
(α = .01), the Smooth Laplace algorithm is within a factor of 3 
of the error of the current system. 

Finding 4: All three of our algorithms perform better as popula­
tion size grows. This can be seen in both results that measure L1 

error (Figures 3, 6, and 5) as well as those that measure ranking 
(Figures 7 and 4). In the results that measure L1 error, the al­
gorithms have lower error with respect to the current protection 
system as the population size grows. In the ranking results, the 

rank order of our algorithms is more similar to the ranking order 
of the current protection system as the population size grows. 
In all cases, the improvement from the small population range 
(0-100) to the next smallest (100-10k) results in the largest in­
crease in performance. Further increases in population size have 
a smaller effect. 

Finding 5: Our Smooth Laplace algorithm performs the best of 
the three, and the Log-Laplace and Smooth Gamma algorithms 
perform similarly. Smooth Laplace performs best in all exper­
iments, and this is not surprising since it satisfies a weaker no­
tion of privacy. However, the ordering of the performance of 
the other two algorithms is not consistent. For example, in Fig­
ure 6 at lower values of e, the Log-Laplace algorithm performs 
much worse than the Smooth Gamma algorithm. In other ex­
periments, the Log-Laplace algorithm performs slightly better 
across the board. In Figure 6, the e budget is divided by 10 
to accommodate the lack of parallel composition in answering 
queries on sets of individuals belonging to the same establish­
ment. This suggested that for smaller values of e Log-Laplace 
does not perform as well as Smooth Gamma, but improves more 
rapidly as e increases to eventually outperform Smooth Gamma. 

Summary: Our empirical results suggest that there are a number 
of settings of (α, e) that allow for publishing cell counts with lit­
tle or no additional cost to accuracy in return for better and prov­
able privacy protection. For marginals over only establishment 
attributes, all algorithms perform well at e = 2 and α = .1. For 
individual queries of worker and establishment attributes, our al­
gorithms perform well at e = 2 and α = .1. For marginals over 
worker and establishment attributes, the Smooth Laplace algo­
rithm performs well when e ≥ 4. All algorithms perform better 
when the queries are over places with greater population size. 
Allowing for a small failure probability results in a significant 
reduction in error as seen with the Smooth Laplace algorithm. 
Counts output by our algorithms can also be used for ranking 
with high accuracy for e ≥ 1. 

11 Conclusions 

We considered the problem of releasing employer-employee 
data with provable privacy guarantees and measured the utility 
cost of this privacy protection. We identified privacy require­
ments based on current interpretation of laws pertaining to the 
release of these data and mathematically formalized them using 
the Pufferfish framework. We showed that current SDL tech­
niques do not satisfy these strong privacy requirements. Direct 
adaptations of e-differential privacy either do not satisfy the pri­
vacy requirements, or output data with very limited utility. We 
develop novel privacy definitions that provably satisfy our pri­
vacy requirements. For the task of releasing marginals over 
establishment attributes, releasing single counts over marginals 
that include worker attributes, and ranking queries, our algo­
rithms incur error that is comparable and in some cases less 
than the error incurred by current SDL algorithms for reason­
able privacy parameters. Our results suggest that these data can 
be released using provably private algorithms with a low utility 
cost. 

13 



References 
[1] J. M. Abowd, R. K. Gittings, K. L. McKinney, B. E. Stephens, 

L. Vilhuber, and S. Woodcock. Dynamically consistent noise infu­
sion and partially synthetic data as confidentiality protection mea­
sures for related time-series. In Federal Committee on Statistical 
Methodology Research Conference, 2012. 

[2] J. M. Abowd and I. Schmutte. Economic analysis and statistical 
disclosure limitation. Brookings Papers on Econoimcs Activity, 
Spring 2015. 

[3] J. M. Abowd, B. E. Stephens, and L. Vilhuber. Confidentiality pro­
tection in the census bureaus quarterly workforce indicators. Tech­
nical Report TP-2006-02, U.S. Census Bureau, LEHD Program, 
December 2006. 

[4] M. Anderson and W. Seltzer.	 Challenges to the confidentiality 
of US federal statistics, 1910-1965. Journal of Official Statistics, 
23(1):1–34, 2007. 

[5] M. Anderson and W. Seltzer. Federal statisitcal confidentiality and 
business data: Twentieth century challenges and continuing issues. 
Journal of Privacy and Confidentiality, 1(1):7–52, 2009. 

[6] M. E. es, N. E. Bordenabe, K. Chatzikokolakis, andAndr´
C. Palamidessi. Geo-indistinguishability: differential privacy for 
location-based systems. In ACM CCS, 2013. 

[7] K. Chatzikokolakis, M. E. Andrés, N. E. Bordenabe, and 
C. Palamidessi. Broadening the scope of differential privacy us­
ing metrics. In PETS, 2013. 

[8] S. Chen and S. Zhou. Recursive mechanism: Towards node differ­
ential privacy and unrestricted joins. In ACM SIGMOD, 2014. 

[9] T. Dalenius. Towards a methodology for statistical disclosure con­
trol. Statistik Tidskrift, 15:429–444, 1977. 

[10] W.-Y. Day, N. Li, and M. Lyu. Publishing graph degree distribution 
with node differential privacy. In ACM SIGMOD, 2016. 

[11] G. T. Duncan, M. Elliot, and J.-J. Salazar-González. Statistical 
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A	 Related Work 

Prior work on interpreting privacy requirements: 
As reviews like [4] and the similar review for business data 

in [5] make clear, the privacy provisions in the statutes were de­
signed to protect individuals and businesses from uses of the data 
that specifically identified them and, moreover, harmed them by 
subjecting them to punishment or competitive disadvantage in 
ways that could not be accomplished as easily without the confi­
dential data. For protecting individuals, [17] formalized these 
requirements as ensuring that no exact disclosure of records 
in the underlying data. Fellegi derived the necessary and suf­
ficient conditions for a set of published tables to be fully re­
sistant to a subtraction attack that could expose one or more 
records. Thus, the primary goal of existing SDL techniques 
designed by national statistical agencies has been to prevent 
exact re-identification. For instance, a method called primary 
and complementary suppression [18] implements Fellegi’s con­
ditions [17], and has long been considered by statistical agencies 
around the world as compliant with confidentiality protection 
laws [11]. 

With regards to business data, protecting the characteristics 
of an establishment has been interpreted and implemented as 
described in Section 5 as ensuring that (a) the true counts of 
the workforce characteristics are never released or used to com­
pute aggregates, and (b) employment counts of a workplace are 
perturbed by a confidential multiplicative factor unique to that 
workplace. 

Despite avoiding exact disclosures, data publications might 
violate individual or business privacy by allowing too precise 
an inference about the true values, given the published values. 
This idea was first formulated in the SDL literature [9] as well 
as rediscovered and popularized in the computer science litera­
ture (e.g., [25, 23, 13]). We show in Section 5.2 examples of 
such inferences that can be made by an adversary, especially 
in the presence of background knowledge. Our goal is to pro­
tect employer-employee data as per the aforementioned require­
ments while ensuring a formal privacy notion that can limit both 
inferential and exact disclosures. 
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Customizing differential privacy: Kifer and Machanava­
jjhala [22] prove a no-free-lunch theorem for privacy that states 
that one cannot achieve privacy and utility simultaneously with­
out making assumptions on the attacker’s prior knowledge. This 
means that no single privacy notion (including differential pri­
vacy) ensures sufficient privacy protection for all applications 
and data types. Hence, recent work has focused on generaliza­
tions, both strengthening and relaxing parts of the differential 
privacy framework. The Pufferfish framework [23, 24], which 
we use in this paper, generalizes differential privacy by speci­
fying what information should be kept secret, and the attacker’s 
prior knowledge. He et al. [19] propose the Blowfish frame­
work, which also generalizes differential privacy and is inspired 
by Pufferfish. Our privacy requirements are an instantiation of 
Pufferfish, and our privacy definitions can be thought of as in­
stantiations of Blowfish. Chatzikokolakis et al [7] investigate 
notions of privacy that can be defined as metrics over the set of 
databases. These have led to the design of application specific 
privacy notions (e.g., [6, 27]). 

Differential Privacy for complex entities: Section 6 shows 
that our problem can be considered as one of differential privacy 
on graphs, but the use of existing techniques either does not sat­
isfy our privacy requirements or results in a complete loss of 
utility. 

B Proofs 

Claim B.1. Differential privacy on establishments satisfies all 
three privacy requirements given in Section 4. Differential pri­
vacy on individuals does not satisfy all requirements. 

Proof. The proof that differential privacy on establishments sat­
isfies the three privacy requirements is essentially the same as 
the proof of Theorem 7.1. 

Differential privacy on individuals, however, does not satisfy 
the requirements. For D and D ' differing in d individuals, the 
following holds for all outputs S: 

Pr[A(D) ∈ S] ≤ e dE Pr A(D ' ) ∈ S. (14) 

When an establishment e with size |e| changes in size by a factor 
of α, the change in the number of individuals is α|e|. As |e|
goes to infinity, the change in the number of individuals becomes 
arbitrarily large, and therefore de is not a constant. 

of Theorem 7.1. Requirement 1: We will denote Pr[M(D) = 
w] as Pr[w] to make the math cleaner. We have that for some 
individual r, 

Pr[w | r ∈ D]
log ≤ e. (15)

Pr[w | r /∈ D] 

Then, the individual privacy requirement of Definition 4.1 fol­
lows from Bayes’ theorem. 

Requirement 2: Let x and y be two numbers such that x ≤ 
y ≤ (1 + α)x. Then for all establishments e (where |e| denotes 
the number of employees at e), we want to show that 

Pr[w | |e| = x]
log ≤ e. (16)

Pr[w | |e| = y] 

Additionally,  
Pr[w | |e| = x] = Pr[w | e = E] Pr[e = E | |e| = x], 

E⊂U 

(17) 
and 

Pr[w | |e| = y] (18)  
= Pr[w | e = E ' ] Pr[e = E ' | |e| = y] (19) 

E1⊂U   
= Pr[w | e = E ' ] Pr[e = E ' | |e| = y] 

E⊂U :|E|=x E1⊃E 

(20)    
≥ min Pr[w | e = E ' ] Pr[e = E ' | |e| = y]

E1⊃E
 
E⊂U :|E|=x E1⊃E
 

(21)   
= min Pr[w | e = E ' ] Pr[e = E | |e| = x] . (22) 

E1⊃E 
E⊂U

Then, p
Pr[w | e = E] Pr[e = E | |e| = x] p E⊂U (23)

[minE1⊃E Pr[w | e = E'] Pr[e = E | |e| = x]]E⊂U 

Pr[w | e = E] Pr[e = E | |e| = x]≤ max (24)
E⊂U minE1⊃E Pr[w | e = E ' ] Pr[e = E | |e| = x]
 

Pr[w | e = E] E
 = max ≤ e . (25)
E⊂U minE1⊃E Pr[w | e = E ' ] 

Requirement 3: Requirement 3 follows from requirement 2 
for a adversary. For some p, q, and z, let y be (q − p)|e|. 

Pr[w | |eX |/|e| = p, |e| = z] E≤ e . (26)
Pr[w | |eX |/|e| = p, |e| = z − y] 

Additionally, 

Pr[w | |eX |/|e| = q, |e| = z] E≤ e . (27)
Pr[w | |eX |/|e| = p, |e| = z − y] 

Both of these hold because the difference in the sizes of is is at 
most α|e|. Therefore, 

Pr[w | |eX |/|e| = q, |e| = z] ≤ e E . (28)
Pr[w | |eX |/|e| = p, |e| = z] 

of Theorem 7.2. A proof of requirement 1 is the same is in the 
proof of Theorem 7.1. For weak adversaries, proof of require­
ment 2 is also the same as Theorem 7.1. Requirement 3 follows 
for weak adversaries. 

We can also prove requirement 3, even for strong adversaries. 
We want to show 

Pr[w | |eX |/|e| = q, |e| = z] ≤ e E . (29)
Pr[w | |eX |/|e| = p, |e| = z] 

for all χ, and for 0 < p ≤ q ≤ min((1 + α)p, 1). Let x = |e|p 
and y = |e|q. Then we have 

Pr[w | |eX |/|e| = q, |e| = z] Pr[w | |eX | = y] 
= . (30)

Pr[w | |eX |/|e| = p, |e| = z] Pr[w | |eX | = x] 
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But 
Pr[w | |eX | = y] E≤ e , (31)
Pr[w | |eX | = x] 

for all X when x ≤ y ≤ (1 + α)x by a similar argument to the 
proof of Requirement 2 of Theorem 7.1. 

of Theorems 7.3, 7.4, and 7.5. The proof of sequential compo­
sition follows from Pufferfish (Theorem 9.1 of [24]) 

To satisfy parallel composition, we need the following: Let 
D1 and D2 be disjoint parts of the domain. Then for all 
databases A there exists a B such that 

d(A ∩ D1, B ∩ D1) + d(A ∩ D2, B ∩ D2) ≤ d(A, B), (32) 

where d(·) is the distance metric induced by our neighboring 
definition. In particular, we should show that if A ∩ D1, B ∩ 
D1 are neighbors, and A ∩ D2, B ∩ D2 are neighbors, then 
A, B are not neighbors. This is clearly the case when D1 and 
D2 are over different sets of establishments, since neighbors can 
only differ in a single establishment regardless of whether we 
are considering strong or weak privacy. 

Next, consider some pair D1 and D2 over workers with 
shared establishments, and let e be the largest such shared estab­
lishment. Suppose in A ∩ D1, e has E workers, and in B ∩ D1, 
e has (1 + α)E workers. Similarly, in A ∩ D2, e has E workers, 
and in B ∩ D2, e has (1 + α)E workers. Then A and B differ in 
2αE workers, and are therefore not neighbors under out strong 
definition. 

The same does not hold under the weak definition. 

of Theorem 8.1. Consider two neighboring datasets that differ 
in one establishment e. S ' and S be the two sets of employees 
of e in the two databases. Let n− denote the sum of all other 
counts. We just consider the case where S ⊆ S ' . Let x = |S|
and y = |S ' |. We need to ensure privacy for two cases: (i) 
x = α · y, and (ii) x = y + 1. In case (i), 

P (M(D1) = o)	 P (M(x + n−) = o) 
= 

P (M(D2) = o)	 P (M(y + n−) = o) 

P (η = ln(o + γ) − ln(x + n− + γ) 
= 

P (η = ln(o + γ) − ln(y + n− + γ) 

e α · y + n− + γ ≤ exp ln 
ln α y + n− + γ   e ≤ exp · ln(α)	 = e E 

ln α 

In case (ii), 

P (M(D1) = o) P (M(n−) = o) 
= 

P (M(D2) = o) P (M(1 + n−) = o)
 

e 1 + n− + γ
 ≤ exp ln 
ln α n− + γ   e ≤ exp ln(α) = e E 

ln α 

of Theorem 8.2. 

E[x̃] = −γ + (x + γ) · E[e η ] 

where η ∼ Laplace(λ). E[e η ] corresponds to the value of the 
moment generating function Mη (1). 

∞ 

Mη (1) = E[e η] = 1 + E[ηn]/n! 
n=1 

Since Laplace(λ) is an even distribution, for all odd i, E[η] = 
0. Moreover, E[η2n] = 2n!λ2n. Therefore, when λ < 1 

∞ 

E[x̃] = −γ + (x + γ) · λ2n 

n=1 

= −γ + (x + γ)/(1 − λ2) 

When λ is not bounded by 1, then the expected value is not 
bounded. Thus this mechanism is good only when λ < 1. 

of Theorem 8.3. Let y denote x + γ, where qv (D) = x is the 
true sum. Similarly, let ỹ denote x̃+ γ, where x̃ is the output of 
the multiplicative laplace mechanism. We will show that 

y − ỹ 2λ2 + 4λ4 

E(( )2) = 
y (1 − 4λ2)(1 − λ/2) 

The result in the theorem directly follows. 

E((y − ỹ)2/y2) = E(ỹ 2)/y2 − 2E(ỹ)/y + 1 

= E(ỹ 2)/y2 − 2/(1 − λ2) + 1 

E(ỹ 2)/y2 = E[e 2·η ], where η ∼ Laplace(λ). E[e 2·η ] corre­
sponds to the value of the moment generating function Mη (2). 

∞ 
2 2 2·ηE(ỹ )/y = E[e ] = Mη (2) = 1 + 2nE[ηn]/n! 

n=1 

∞ 

= 1 + (2λ)2n 

n=1 

= 1/(1 − 4λ2) when λ < 1/2 

Therefore, we have: 

E((y − ỹ)2/y2) = 1/(1 − 4λ2) − 2/(1 − λ2) + 1 

2λ2 + 4λ4 

= 
(1 − 4λ2)(1 − λ/2) 

of Theorem 8.4. For y ∈ nbrs(x), we must show that 

Pr [M(x) ∈ S] ≤ e E · Pr [M(y) ∈ S] . (33) 

We have 

Pr [M(x) ∈ S] = Pr 
Z∼h 

Z ∈ 
S − q(x) 
S(x)/α 

(34) 

≤ Pr 
Z∼h 

Z ∈ 
S − q(y) 
S(x)/α 

· eE/2 + 
δ 
2 

(35) 

≤ Pr 
Z∼h 

Z ∈ 
S − q(y) 
S(y)/α 

· e E + δ (36) 

≤ Pr [M(y) ∈ S] · e E + δ. (37) 

(35) holds by the first property of Definition 8.3. (36) holds by 
the second property of Definition 8.3. 
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of Lemma 8.5. First, we show the following general claim: For 
all x, let N1(x) and N2(x) be sets of neighbors of x such that 
N1(x) ∪ N2(x) = N(x). Then, let LS1(x) be the local sen­
sitivity of x over N1(x) and let LS2(x) be the local sensitivity 
over N2(x). Then, LS = max(LS1, LS2). Let S1 and S2 

be smooth upper bounds on LS1 and LS2. We claim that the 
function S = max(S1, S2) is a smooth upper bound on LS. 

1. First, we know that S is an upper bound on both LS1 and 
LS2. 

2.	 S is smooth because for any neighboring pair x and y, the 
difference between S(x) and S(y) is at most the difference 
between S1(x) and S1(y) and likewise for S2. 

We apply this to our problem by letting N1(x) be the set of 
neighbors of x that differ in size by exactly 1, and N2 be the set 
of neighbors such that the size of an establishment’s employment 
differs by a factor of at most e. For N1, the global and local 
sensitivity is 1, which is smooth. For N2, we must give a bound 
on the smooth sensitivity to complete the proof. 

The local sensitivity of qv with respect to x and N2 is the 
maximum amount by which any firm’s (matching the criteria in 
v) count of employees (matching the criteria in v) can change. 
Note that xv is the largest such count, and therefore 

LSqv (x) = xv · (1 + α) − xv = xv · α (38) 

Then, we have 

(j)A (x) = max yv · α. 
y∈D:d(x,y)≤j 

This value is maximized by maximizing yv . The maximum 
value for yv is xv (1 + α)j . Therefore, 

(j)	 jA (x) = xv · α(1 + α) . 

Our smooth sensitivity is therefore 

1 + α 
Sv,b

∗ (x) = max( )j xvα. 
j eb 

Our databases do not have a fixed size, so j can be any positive 
integer, and therefore the smooth sensitivity is not necessarily 
bounded. When e b < (1 + α), 

1 + α 1 + α∗	 k jSv,b(x) = max( 
b 

) xv α = lim ( 
b 

) xv α, 
j e j→∞ e

which is unbounded. When e b ≥ (1 + α), this limit is bounded, 
and in this case 

∗ Sv,b(x) = xv · α. 

of Lemmas 8.8 and 9.3. It is well known that the Laplace mech­
anism is unbiased with Laplace(λ) having mean squared error 
of λ2 . We prove here that h(z) ∝ 1 is unbiased with 

(1+|z|γ ) 

bounded error for γ = 4. h(z) is unbiased since  
zE [h(z)] = dz = 0. 

1 + |z|4 

The variance of h(z) is given by 
z 2 π 

dz = √ ≈ 2.2. 
1 + |z|4 2 

The error mean squared error is therefore (2.2)2 . 
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C Additional Figures
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Figure 6: Average L1 error of releasing place by industry sector by ownership by sex by education marginal compared to the 
current system. 
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Figure 7: Spearman correlation between tested model and input noise infusion on the count of female workers who have a bachelors 
degree or higher, ranked by place by industry section by ownership. 
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