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Abstract Despite our growing reliance on mobile 
phones for a wide range of daily tasks, their operation 
remains largely opaque. A number of previous stud
ies have addressed elements of this problem in a par
tial fashion, trading off analytic comprehensiveness and 
deployment scale. We overcome the barriers to large-
scale deployment (e.g., requiring rooted devices) and 
comprehensiveness of previous efforts by taking a novel 
approach that leverages the VPN API on mobile devices 
to design Haystack, an in-situ mobile measurement plat
form that operates exclusively on the device, providing 
full access to the device’s network traffic and local con
text without requiring root access. We present the de
sign of Haystack and its implementation in an Android 
app that we deploy via standard distribution channels. 
Using data collected from 450 users of the app, we ex
emplify the advantages of Haystack over the state of the 
art and demonstrate its seamless experience even under 
demanding conditions. We also demonstrate its utility 
to users and researchers in characterizing mobile traffic 
and privacy risks. 

1. INTRODUCTION
Mobile phones have become indispensable aids to ev

eryday life by offering users capabilities that rival those 
of general purpose computers. However, these systems 
remain notoriously opaque, as mobile operating systems 
tightly control access to system resources. While this 
tight control is useful in preventing unwanted applica
tion activity, it also imposes hurdles for understanding 
the behavior of mobile devices, especially their network 
activity and performance. 
Despite these challenges, the research community has 

made steady progress in understanding mobile apps and 
mobile traffic over the past few years, by using two 
broad classes of techniques. One class is lab-oriented 
and uses static and dynamic analysis of app source 
code [22, 56], controlled execution of apps [24, 38] and 
dynamic analysis [68], even modifying the OS kernel to 
track app behavior [23]. A contrasting approach lever
ages network traces obtained from ISPs [27,62] or VPN 
tunnels that forward user traffic [52] to servers in the 
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cloud for observation. However, each of these previous 
approaches faces a trade-off: 

• Approaches based on static and dynamic analysis
do not offer access to real-world data. Thus far,
studies that have used these approaches have been
constrained to analysis of source code, which is not
always available, or artificial/controlled user inputs
which require significant human effort to train the
techniques, contextualize the results, and minimize
false positives. One exception is Taintdroid [23], a
modified Android version that can analyze app be
havior in real-world settings. However, this technique
relies on operating system modifications, which incur
a significant engineering effort to catch up with new
OS releases, and forces participating users to install a
new firmware on their devices [65]. Consequently, the
scale of analysis and app coverage they can achieve
in the wild remains limited to tens of users.

• Approaches that leverage network traffic obtain visi
bility into real user behavior, at the cost of the rich
ness of context that device-centric approaches can ob
tain. For example, while this approach can capture
and analyze mobile network data, heuristics must
infer which applications generated individual flows,
and detouring traffic through third-party middle-
boxes complicates high-fidelity performance measure
ments due to the necessarily skewed vantage point.

In this study, we present Haystack, the first on-device
mobile measurements platform that is able to passively 
monitor app behavior and network traffic under regular 
usage and network conditions, without requiring users 
to root the phone. The latter gives Haystack the poten
tial for better scalability in deployment; users can sim
ply install the app from Google’s Play Store or similar 
markets. This provides us the opportunity to monitor 
organic mobile network activity as generated by real 
users in real networks using real mobile apps—all from 
the vantage point of the device. This combination of 
ease of deployability and the high-fidelity vantage point 
allows Haystack to hit a sweet spot in the trade-off be
tween scalability and richness of data. 



Similar to previous approaches [52], Haystack lever
ages Android’s standard VPN interface to capture out
bound packets from applications. However, rather than 
tunneling the packets to a remote VPN server for in
spection, Haystack intercepts, inspects, and forwards 
the user’s traffic to its intended destination. This ap
proach gives us raw packet-level access to outbound 
packets as well as flow-level access to incoming traf
fic without modifying the network path, and without 
requiring permissions beyond those needed by the VPN 
interface. Haystack therefore has the ability to monitor 
network activity in the proper context by operating lo
cally on the device. For example, a TCP connection can 
be associated with a specific DNS lookup and both can 
be coupled with the originating application. Further, 
we design Haystack to be extensible with new analy
ses and measurements added over time (e.g., by adding 
new protocol parsers and by supporting advanced mea
surement methods such as reactive measurements [10]), 
and new features to attract and educate users (e.g., ad 
block, malware detection, privacy leak prevention and 
network troubleshooting). 
Haystack is publicly available for anyone to install 

on Google Play and has been installed by 450 users to 
date [40]. We discuss the design and implementation 
of Haystack in §3 and §4, and evaluate its performance 
and resource use in §5. Our tests show that Haystack 
delivers sufficient throughput (26–55 Mbps) at low la
tency overhead (2–3 ms) to drive high-performance and 
delay-sensitive applications such as HD video streaming 
and VoIP without noticeable performance degradation 
for the user. 
While we consider our Haystack implementation pro

totypical in some respects (such as UI usability for non
technical users), it has already provided interesting in
sights into app usage in the wild: in §6 we present pre
liminary findings about the adoption of encryption tech
niques, report on local-network traffic interacting with 
IoT devices, study app provenance and the use of third-
party tracker services, and give an outlook on potential 
future applications. 

2. RELATED WORK 
Previous studies have leveraged a variety of tech

niques for understanding privacy risks of mobile apps 
and their behavior in the network. As noted earlier, 
each approach made trade-offs between having access 
to real user behavior and device context. We classify 
the prior work into the following four categories. 

Dynamic app analysis: This approach calls for run
ning an app in a controlled environment such as a vir
tual machine [68] or an instrumented OS [23, 38]. The 
app is then monitored as it conducts its pre-defined set 
of tasks, with the results indicating precisely how the 

app and system behave during the test (e.g., whether 
the app exfiltrated data). While this approach provides 
useful insights, the workload (which does not represent 
real-world operation) and difficulty of deploying custom 
firmware on users’ phones (sacrificing scale) means that 
the results do not directly speak to normal users’ ac
tivity. To overcome the lack of user input, studies that 
rely on dynamic analysis require “UI monkeys” [11, 66] 
to generate synthetic user-actions. 

Static app analysis: This technique involves analy
sis of the app code, obtained by decompiling app bi
naries, via symbolic execution [67], analysis of con
trol flow graphs [16,22], by auditing third-party library 
use [21, 55], through inspection of the Android per
missions and their associated system calls [16, 45], and 
analysis of app properties (e.g., whether apps employ 
secure communications) [24, 26]. While static analy
sis typically provides good scale with analysis of over 
10K apps in several studies [24], (modulo computa
tional resources) this strategy does not reflect the be
havior of apps in the wild, and typically requires a good 
amount of manual inspection. Furthermore, the analy
sis may under- or over-state the importance of certain 
code paths since it lacks a notion of how users interact 
with the apps in practice. 

Passive traffic analysis: A number of studies rely on 
volunteers with rooted phones that allow their traffic to 
get recorded by tcpdump [25,39,51] or iptables [17,60]. 
These methods are challenging to deploy at scale. To 
obtain larger-scale data, other projects study the behav
ior of mobile devices by observing their network traffic 
either at a large ISP with millions of users [27,57,62] or 
by forwarding traffic through a remote VPN proxy that 
also modifies the network path [44, 52, 64]. As a result, 
these studies contain a large variety of apps and mo
bile platforms but they lack device context for account
ability and accuracy (e.g., mapping flows to originating 
apps). While this can be alleviated by pairing a remote 
VPN proxy with client-side software to provide context 
to the remote VPN server [44], the solution still alters 
the network path by rerouting traffic to the VPN server, 
hence providing an unrealistic view of the performance 
aspects of real mobile traffic. PrivacyGuard [59] uses 
a technique similar to the one used by Haystack to in
tercept user traffic to detect simple instances of private 
information leaks (e.g., device ID and location), but it 
does not aim to offer the depth and versatility offered 
by Haystack as a measurement platform. 

Active mobile network measurements: Google 
Play (and, on a smaller scale, the Apple Store) con
tains a number of tools for active mobile network mea
surements. Examples include Ookla’s SpeedTest [34], 
the FCC Speed Test [28], network scanners to build 
network coverage maps [35], and comprehensive mea

2 



Approach Scale 
Real-world 
operation 

Comprehensiveness 
Local 

Operation 
App coverage OS compatibility 

ISP traces 
Remote VPN 
Static analysis 
Dynamic analysis 

Large-scale 
Crowdsourcing 
Resource-bound 
Resource-bound 

/ 
/ 

/ 
/ 

/ 
/ 

All apps 
Crowdsourcing 
∼ 1000 apps 
∼ 100 apps 

All versions/platforms 
All versions/platforms 

Limited 
Limited 

Table 1: Comparison between different measurement approaches in the mobile environments. It should be noted that these 
aspects/features are not easily comparable in a binary manner and the comparison provided here is merely qualitative. 

surement tools such as My Speed Test [30], Netalyzr 
for Android [32], NameHelp [31], and MobiPerf [29]. 
Such tools provide valuable insight into network per
formance [41, 47] and operational aspects of ISPs such 
as middlebox deployment [63] and traffic discrimina
tion [42]. However, despite the fact that active measure
ment techniques typically provide an accurate snapshot 
of actual network conditions, they do not study network 
performance of installed apps in real-world situations. 
Table 1 provides a high-level comparison of each of 

the measurement approaches. As we can see, none can 
simultaneously observe real-world operation while pro
viding comprehensive data at scale. This trade-off has 
prevented the research community from exploring in de
tail many aspects of the mobile ecosystem. We will re
visit the comparison between Haystack and state of the 
art techniques in §6, after we present its design, imple
mentation, and evaluation. 

3. HAYSTACK OVERVIEW 
Our goal with Haystack is to help researchers avoid 

the trade off between accessing device context and the 
ability to measure real-world phone usage at scale. The 
crux of Haystack is its ability to observe network com
munication on the mobile device itself. Since 2011 (ver
sion 4.0), Android has provided a VPN API that en
ables developers to create a virtual tun interface and 
direct all network traffic on the phone to the interface’s 
user-space process. To enable this functionality, the 
client app requests the BIND VPN SERVICE permission 
from the user, which, crucially, does not require a rooted 
device. The API typically drives VPN client applica
tions that forward traffic to a remote VPN server [14]. 
Instead of relaying packets to a remote VPN server, 
Haystack performs two high-level operations in parallel. 
First, it sends a copy of the bidirectional packet stream 
to a background process that analyzes the traffic off-
path. Second, it uses the packet headers to maintain 
user-space network sockets to remote hosts and relays 
data via these sockets. 
Haystack is available in the Google Play Store [40] 

and has been downloaded a total of 450 times. 
A number of apps in Google Play leverage the 
BIND VPN SERVICE permission for non-VPN tasks. 
While we are not aware of any apps taking traffic pro
cessing to the level we realize in Haystack, tPacketCap
ture [37] and SSL Packet Capture [36] take advantage of 
the VPN API to record approximate packet traces via a 

user-space application. As with Haystack, these traces 
are approximate since the app does not have access to 
raw packets via Java’s socket interface. A related app, 
NoRoot Firewall [33] allows mobile users to block traf
fic generated by specific apps and generate connection 
logs. 

3.1 Ethical Considerations 
Haystack’s ability to observe real-world user data 

raises many ethical considerations [7]. We leverage the 
fact that Haystack runs on the user’s device to do the 
bulk of processing on the device and only send back 
summary statistics (e.g., domains contacted and pro
tocols used) and by under no-circumstances user’s raw 
traffic. We aim to minimize the amount of data sent 
back while maximizing it’s utility. In consultation with 
the IRB at UC Berkeley, we developed a protocol that 
strikes a balance and only collects data needed for the 
studies at hand without uploading any personal infor
mation. This precludes certain types of detailed or lon
gitudinal studies, which may be possible with future 
coordination with the IRB. 
Additionally, we implement informed consent and 

opt-in in Haystack. First, Haystack must be explic
itly installed by the user and granted permission to 
observe traffic. Second, we require users to opt-in a 
second time before we analyze encrypted traffic as de
scribed in §4.1.2. TLS interception is explained to the 
user in detail before they are given the option to in
stall the CA certificate needed to intercept encrypted 
traffic. If the user chooses not to install the CA certifi
cate, the TLS interception module is disabled until they 
explicitly choose to install the CA certificate and manu
ally enable TLS interception in the settings. Our opt-in 
process aims to make the data collection as transpar
ent as possible and provide users control over the pro
cess. While our IRB has reviewed our current approach 
and has deemed our work as not involving human sub
jects research, we maintain an active dialogue and we 
will seek their feedback before collecting any additional 
piece of information. 

4. SYSTEM DESIGN 
To intercept and analyze traffic on resource-

constrained devices in user space, we must address sev
eral design challenges. A key issue is that the tun in
terface exposes raw IP packets to Haystack. A natural 
way to deal with these would be to shuttle a copy to our 
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Figure 1: The Haystack architecture, highlighting system 
components and data forwarding channels. Solid lines rep
resent the actual forwarding path for traffic generated by 
mobile apps even if encrypted (which is handled by our op
tional TLS proxy), while dashed lines represent the off-line 
path used for privacy and performance analysis. 

Sleep

IF sleep < IDLE_SLEEP

tun 
read

nio 
read

IF packets_read == MAX_READtun
or

nothing to read from tun

IF idle_count = MAX_IDLE_CYCLESIF sleep = IDLE_SLEEP

IF packets_read < MAX_READnio
and

nio read succeeded

IF packets_read < MAX_READtun
and

tun read succeeded

IF packets_read == MAX_READnio
or

nothing to read from nio

Figure 2: Haystack’s Forwarder state machine. It controls 
read/write operations and transitions between tun interface, 
Java NIO socket, and sleep states. The idle count variable 
increments when both tun and NIO do not succeed, i.e., 
there is nothing to read. Each read operation from the tun 
interface potentially becomes a write operation for a NIO 
socket and vice versa. 

analysis engine and then drop the packet on the network 
via a raw socket. However, non-privileged apps do not 
have access to raw sockets and therefore we must rely on 
regular Java sockets to communicate with remote enti
ties. This means that, as opposed to transparent L3 and 
L4 proxies that operate at a single layer of the protocol 
stack on both sides (with root privileges), Haystack has 
to bridge packet-level communication on the host (tun) 
side and flow-level interaction with the network side. 
Operating in mobile phones in user space requires care
ful design considerations to minimize Haystack’s impact 
on device resources, battery life, app performance and 
user experience. Figure 1 illustrates the Haystack ar
chitecture, which includes two major components, the 
Forwarder and the Traffic Analyzer (TA). 

4.1 The Forwarder 
The Forwarder performs two key functions: (i) it per

forms transparent bridging between packets on the tun 
interface and payload data on the regular socket inter
face and (ii) it forwards traffic to the TA for analysis. 

4.1.1 Flow reassembly 

The Forwarder receives raw IP packets from tun. The 
Forwarder therefore acts like a layer 3/layer 4 network 
stack: it extracts the payload from the raw packet and 
sends it to its intended destination through a regular 
Java socket (implemented using non-blocking NIO sock
ets [48]). To accomplish this, the Forwarder extracts 
flow state from the packet headers (IP, as well as UDP 
or TCP) for packets arriving on the tun interface and 
maps it to a given Java socket (it creates new sock
ets for new flows arriving on the tun interface). It also 
maintains this state so that it can marshal data arriving 
from remote hosts on the sockets back into packets for 
transmission to the app via the tun interface. Haystack 
has dual-stack support and its routing tables correctly 
forward DNS and IPv6 traffic through the tun interface 
to prevent traffic leak [49]. 

Handling UDP and TCP: The Forwarder needs to 
maintain state for UDP and TCP flows. A simple flow-
to-socket mapping suffices for connectionless UDP, since 
header reconstruction remains straightforward. Since 
TCP provides connection-oriented and reliable trans
port, we need to track the TCP state machine and main
tain sequence and acknowledgment numbers for each 
TCP flow. We segment the data stream received from 
the socket and synthesize TCP headers to be able to 
forward the resulting packets to the tun interface for 
delivery to the app. When we read a SYN packet from 
the tun interface, we create a new socket, connect to 
the target and instantiate state in Haystack. After the 
OS establishes the socket we return a SYN/ACK via 
the tun interface. We similarly relay connection ter
mination. We discuss Haystack’s lack of support for 
non-TCP/UDP traffic in §4.3. 

Efficient packet forwarding: The Forwarder must 
balance application and traffic performance with power 
and CPU usage on the device. This task is challenging 
because the tun interface does not expose an event-
based API. We therefore implement a polling scheme 
that periodically checks both the tun interface and Java 
sockets for arriving data. 
Figure 2 shows the state machine of the Forwarder. It 

reads up to max readtun packets from the tun interface 
or up to max readnio packets from the socket (NIO)1 

interface before switching to the other interface, hence 
preventing either operation from starving. The For
warder immediately transitions to the other read state 
if it cannot read data in the current state. Each read 
from the tun interface potentially becomes a write op
eration for a socket and vice versa, the exception being 
pure TCP ACKs from the tun interface. We discard 
these, as their effect gets abstracted by the socket in

1Despite the inability to count packets from socket 
read/write operations, we count the number of packets gen
erated and sent back through the tun interface. 
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terface and therefore they do not require forwarding. 
Writes to the tun interface complete quickly and socket 
writes do not block, so we perform writes as soon as we 
have data to send. If it cannot read data from either 
interface for max idle cycles consecutive iterations, the 
Forwarder will sleep for idle sleep ms. While this strat
egy reduces power consumption during idle periods, it 
also imposes higher latency on packets that arrive dur
ing these idle periods when polling happens at coarse 
intervals. We consider the tradeoff between resource 
conservation and performance in depth in §5.2. 

4.1.2 TLS Interception 

Many mobile applications have adopted TLS as the 
default cryptographic protocol for data communica
tions. This is a double-edged sword, as it helps protect 
the integrity and privacy of users’ transactions but also 
allows apps to conceal their network activity. With the 
user’s consent, Haystack employs a transparent man
in-the-middle (MITM) proxy for TLS traffic [20]. At 
install time Haystack requests the user allow the instal
lation of a self-signed Haystack CA certificate in the 
user CA certificate store. We customize the message 
shown to users at this time to explain why Haystack 
intercepts encrypted traffic. 
Once equipped with a certificate, the Forwarder mon

itors TCP streams beginning with a TLS “Client Hello” 
message and forwards these flows—along with flow-level 
meta-information the proxy requires in order to con
nect to the server (e.g., IP address, port, SNI)—to the 
TLS proxy. The proxy uses this information to connect 
to the remote host and reports back to the Forwarder 
whether the connection was successful. After success
fully establishing a connection to the remote host, the 
proxy decrypts traffic arriving on one interface (tun or 
socket) and re-encrypts it for relay to the other while 
providing a clear-text version to the TA for analysis. 

Dealing with failed TLS connections: As in any 
commercial TLS proxy, Haystack will be unable to 
proxy flows when the client application (i) uses TLS ex
tensions not supported by Haystack [19],2 (ii) bundles 
its own trust store, or (iii) implements certificate pin
ning. Likewise, failure occurs when the server expects to 
see certain TLS extensions not supported by Haystack 
in the “Client Hello” message or performs certificate-
based client authentication. We add connections with 
failed TLS handshakes to a whitelist that bypasses the 
TLS proxy for a period of five minutes. Experience 
with our initial set of users indicates that apps recover 
gracefully from TLS failures. After five minutes we re
move the app from the whitelist to account for transient 
failures in the handshake process. While we cannot de
crypt such flows, we can still record which apps take 

2Currently, Haystack only supports the SNI extension. 

these security measures and potentially communicate 
more securely for further analysis. 

Security considerations: Android provides support 
for third-party root certificate installation. This is 
a feature required by enterprise networks to perform 
legitimate TLS interception. For increased security, 
Haystack generates a unique certificate and key-pair for 
each new installation of the app. Additionally, Haystack 
saves the private key to its private storage to prevent 
other applications from accessing it. While these pre
cautions still permit malicious applications with root 
access to retrieve the key, such apps can already tap into 
the user’s encrypted traffic without using Haystack’s 
CA certificate (e.g., by surreptitiously injecting their 
own CA certificate into the system’s trust store). 

4.2 Traffic Analyzer 
The Traffic Analyzer (TA) processes flow data cap

tured by the Forwarder. The TA operates in near real-
time but off-path, i.e., outside the forwarding path of 
network traffic. The TA augments flows with contextual 
information gathered from the OS for further analysis. 
The analyses are protocol-agnostic, and TA supports 
protocol parsers to parse flow contents before they are 
analyzed. We currently support TLS, HTTP, and DNS 
protocol parsers to analyze the traffic and extract rel
evant information, decompressing and decoding com
pressed and encoded data before they are searched by 
the DPI module for private information leakages. New 
protocol parsers can be added to TA in case we see new 
protocols getting widely adopted. 

Why off-path analysis? The TA could potentially 
negatively affect the user experience if done in the for
warding path. Analysis of network traffic can range 
from simple (e.g., tracking packet statistics) to quite 
complex (e.g., parsing protocol content) and therefore 
can consume valuable CPU cycles and if conducted as 
part of traffic forwarding could increase latency. How
ever, as we will discuss in §6, certain aspects of mobile 
apps and networks must be measured in-path as in the 
case of traffic performance analysis. 

Secure and efficient IPC in Android: Unfortu
nately, low-latency communication between Android 
services can prove tricky to realize, especially in multi-
threaded systems. In our implementation we use Java’s 
thread-safe queues for communication between the For
warder and TA modules. This allows the modules to 
communicate without exposing their data to other (ma
licious) apps as would be the case if the file system or 
localhost sockets were used [13]. In §5.4 we evaluate the 
overhead of using thread-safe queues to enable commu
nication between the Forwarder and TA. 

Application and entity mapping: One of the ba
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sic functions the TA provides is to map TCP and UDP 
flows to the corresponding apps. We do this via a two-
step process: (i) extract the PID of the process that 
generated the flow from the system’s proc directory, 
(ii) map the PID to an app name using Android’s Pack
age Manager API. Compared to network-based studies 
which rely on inferences—e.g., using the HTTP User-
Agent or destination IP address—to couple apps and 
flows [52, 53, 62], our approach allows highly accurate 
flow-to-app mappings. Since reading the PID and map
ping applications requires file-system access, we cache 
recently read results to minimize overhead. 
The TA also provides the ability to analyze protocols 

in depth. For example, the TA tracks DNS transac
tions to extract names associated with IP addresses, 
allowing us to map flows to target domains rather than 
just IP addresses. This is especially important for non-
HTTP flows (e.g., QUIC, HTTPS) where the hostname 
may not be readily available in application layer head
ers. Mapping IPs to their hostnames gives us the op
portunity to distinguish apps sending data to their own 
backend as opposed to third-party ad/analytics services 
or CDNs, even if both reside in the same cloud ser
vice provider [18]. Further, the TA can perform traf
fic characterization based on domain, without analyz
ing application-layer headers (e.g., HTTP Host header). 
We demonstrate how these capabilities in the TA can 
enable studies like per-app protocol usage and user 
tracking detection in §6. 

4.3 Limitations and other considerations 

Protocol support: Android limits us to only TCP 
and UDP sockets via Java’s APIs, thus excluding pro
tocols such as ICMP. As of today, this limitation only 
seems to affect a small number of network troubleshoot
ing tools. The Forwarder provides IPv6 support, except 
for extended headers. We have not noticed any issues 
for IPv6 flows due to this limitation. 

Recovery from loss of connectivity: The VPN ser
vice (and therefore the Forwarder) gets disrupted when 
users roam between different networks such as 3G and 
WiFi or different WiFi networks, or when a network dis
connection occurs. Haystack identifies such events and 
attempts to reconnect seamlessly. Similarly, phone calls 
disable all data network interfaces, thus stopping the 
VPN service. While currently this disables Haystack, 
we are working on using Android APIs to identify when 
the calls complete to transparently restart the VPN. 

Vendor-custom firmware: Many device vendors 
block and interfere with standard Android APIs. One 
case is Samsung’s KNOX SDK—only available for 
Samsung licensed partners—which prevents third-party 
VPN applications from creating virtual interfaces [54]. 
Likewise, some vendor-locked firmwares also prevent 

Haystack from intercepting TLS traffic by blocking CA 
certificate installation. We have thus far primarily en
countered this issue on Samsung phones. 

DPI and arms race: Malicious agents will always 
have an incentive to not being identified. Against our 
best efforts to parse and extract information from popu
lar protocols, inflate compressed streams, and intercept 
conventional TLS-encrypted flows; as well as Haystack’s 
ability to support newer protocol (e.g., QUIC and new 
TLS extensions) as mobile apps and the mobile ecosys
tem as a whole evolve, some apps will still be able to 
exfiltrate private information through obfuscation and 
encryption schemes that are not supported by Haystack. 
Since Haystack would fall short of studying these in
stances, we acknowledge that there is a possibility of an 
arms race between privacy-invasive and malicious apps 
and approaches like Haystack. 

5. PERFORMANCE EVALUATION 
We have implemented Haystack as a user-level An

droid app per the design given above. Our implemen
tation leverages a number of external libraries for tasks 
such as efficient packet parsing [2], IP geo-location [5], 
data presentation [6], and TLS interception [20]. The 
Haystack codebase—excluding the external libraries 
and XML GUI layouts—spans 15,000 lines of code. In 
this section we evaluate to what extent we achieve our 
goal of real-time monitoring without burdening the de
vice’s resources in practice and under stress conditions. 

5.1 Testbed and Measurement Apparatus 
To evaluate Haystack performance in a controlled set

ting, we set up a testbed with a Nexus 5 phone con
nected to a dedicated wireless access point over a 5 GHz 
802.11n link. We also connected a small server to the 
access point via a gigabit Ethernet link. We minimize 
background traffic on the phone by only including the 
minimal set of pre-installed apps and not signing into 
Google Services. We measure the latency of Haystack 
using simple UDP and TCP echo packets. For non-TLS 
throughput tests, we use a custom-built speed-test that 
opens three parallel TCP connections to the server for 
15 seconds in order to saturate the link. We test uplink 
and downlink separately. For profiling TLS establish
ment latency and downlink speed-test, we cannot use 
our speed-test, as it does not employ a TLS session. In
stead, we download 1 B and 20 MB objects over HTTPS 
from an Apache v2 web server with a self-signed x.509 
certificate. We repeat each test 25 times. 
While our testbed allows us to explore many param

eters within the design space, Android’s VPN security 
model precludes full automation of our experiments as 
it requires user interaction to enable/disable the tun 
interface. We focus on the impact of max idle cycles 
and idle sleep and fix max readtun and max readnio to 
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Figure 3: Haystack’s CPU overhead for different 
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100 packets which favors downlink traffic. 

5.2 CPU and Power Overhead 
CPU usage impacts interactivity of foreground apps 

and as a result, the user experience. We therefore 
investigate the impact of how idle a device must be 
before starting periodic polling (for a maximum of 
max idle cycles cycles) and how often we poll for new 
traffic after a device is deemed idle (idle sleep ms) on 
CPU load and battery life. 

CPU load: Mobile phones remain idle most of the 
time [17, 61]. As a result, optimizing Haystack’s per
formance in this scenario is essential to minimize its 
impact on limited system resources, in particular on 
battery life. The base CPU usage of the Nexus 5 is 
2% in the absence of Haystack, when the system is 
idle with its screen off and normal background activ
ity from installed apps. Figure 3 shows the impact of 
max idle cycles and idle sleep on CPU usage when en
abling Haystack. We find that idle sleep has the most 
significant effect on CPU load, which is unsurprising 
as this parameter dictates how long the app sleeps and 
therefore does not consume CPU. With idle sleep set to 
1 ms, the CPU load varies between 45% and 55% for 
different values of max idle cycles with the Forwarder 
polling the interfaces at a high frequency. CPU usage 
drops sharply as we increase idle sleep, to 10.5% and 
4.6% with idle sleep at 10 ms and 25 ms, respectively. 
In contrast to idle sleep, max idle cycles shows little in
fluence on CPU overhead, particularly at idle sleep val
ues greater than 10 ms. This is because we measure 
max idle cycles in loop cycles (cf. Figure 2) which take 
a small fraction of 1 ms each. For idle sleep of 100 ms 
and max idle cycles of 10 or 100 cycles the overhead of 
Haystack is negligible, with the CPU usage close to the 
base CPU usage (horizontal line in Figure 3). We con
sider an idle sleep value of 100 ms ideal for operating 
during idle periods (delay-tolerant) and an idle sleep 
value of 10 ms during interactive periods. In the follow
ing subsections, we will evaluate the impact of idle sleep 
in traffic performance. 

Test Case Power(mW) Mean/SD Increase 
Idle 1,089.6 / 125.9 

+3.1% 
Idle (Haystack) 1,123.8 / 150.4 
YouTube 1,755.3 / 35.5 

+9.1% 
YouTube (Haystack) 1,914.4 / 16.1 

Table 2: Power consumption of Haystack when 
max idle cycles is 100 cycles and idle sleep is 1 ms in differ
ent scenarios. The percentage indicates the increase when 
running Haystack. 

packet1

tproctbuff

packet2packet1

idle_cycles

tproc

Time
idle_sleep (ms)

cpu active 

cpu inactive 

idle_sleep (ms)

outgoing packet 

incoming packet 

tproc

tbuff Packet Buffering Time 

Packet Processing Time 

Figure 4: Latency added by idle sleep and max idle cycles 
on packets arriving during periods of activity, or inactivity. 

User experience during interactive periods: We 
next profile Haystack’s overhead under heavy load. To 
do so we run Haystack and stream a 1080p YouTube 
video. This stresses packet forwarding, CPU usage, and 
the TLS Proxy, since YouTube delivers the video over 
TLS. Crucially, we do not observe delay, rebuffering 
events, or noticeable change in resolution during the 
video replay, suggesting that Haystack’s performance 
can keep up with demanding applications. 

Power consumption: We use the Monsoon Power 
Monitor [46] to directly measure the power consumed 
by Haystack on a BLU Studio X Plus phone running 
Android 5.0.2. 3 We removed the battery and replaced 
it with the power meter set to emulate the phone’s 
standard 3.8V battery. We then record the power 
consumed during various situations. Table 2 summa
rizes the results for each scenario across 10 trials with 
max idle cycles set to 100 cycles and idle sleep set to 
1 ms. This configuration represents the worst-case (cf. 
Figure 3) as Haystack sleeps for only 1 ms before polling 
the interfaces again. Unfortunately, due to hardware 
limitations, we could not measure Haystack’s power 
consumption with the screen off but, for that scenario, 
we can use Haystack’s CPU overhead as a proxy [61]. 
During idle periods with the screen active, Haystack in
creases power consumption by 3% (similar to the CPU 
increase). The overhead of Haystack increases to 9% 
while streaming a YouTube video. 

5.3 Latency Overhead 
Haystack suspends polling during periods of inactiv

ity to conserve battery. However, suspending polling 

3We faced several instrumentation challenges that impeded 
measuring Haystack’s power consumption on a Nexus 5. 
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Figure 5: Haystack performance (UDP latency, TCP connection time, and TCP throughput) for different idle sleep and 
max idle cycles configurations. For the throughput evaluation, we fix max idle cycles to 100 cycles, also showing the impact 
of enabling the TA. The maximum TCP throughput for this link is 73 and 83 Mbps uplink and downlink, respectively. 

also increases latency for packets that arrive during loop 
suspension, as illustrated in Figure 4. In the figure, 
the packet that arrives during the first idle sleep pe
riod endures the remainder of the idle period (tbuff ), 
in addition to the forwarding time (tproc), which in
cludes looking up relevant header state and translating 
between the layer 3 tun interface and layer 4 NIO sock
ets. However, the packet that arrives when polling is 
active does not experience the idle period overhead. 
We now analyze the latency incurred by packets when 

running Haystack. Specifically, we focus on the im
pact of max idle cycles and idle sleep and the trade-
off between latency and CPU overhead. Figure 5(a) 
shows the results of our experiments for UDP. When 
max idle cycles =1 cycle the latency closely follows 
idle sleep because Haystack’s aggressive sleeping ren
ders it more likely for packets to arrive when the system 
is idle, therefore delaying them for up to idle sleep ms 
before being processed. With max idle cycles =100 cy
cles and idle sleep =100 ms we find about 60 ms of 
extra delay. Reducing idle sleep to 10 ms while keep
ing max idle cycles at 100 cycles reduces latency to as 
low as 3.4 ms. We find similar patterns for TCP con
nections. In Figure 5(b) we plot connection establish
ment times for the TCP echo client and server. As ex
pected, high values of max idle cycles and coupled with 
low idle sleep settings results in quicker connection es
tablishment. In fact, when the RTT of the link drops 
below the time it takes to reach max idle cycles cycles, 
Haystack processes all packets in the TCP handshake 
without the Forwarder going into idle state. 
Finally, we consider the latency incurred by a packet 

during processing and forwarding (tproc). To get a sense 
of how the latter affects performance, we evaluate tproc 

while running our speed-test app. Table 3 shows the re
sults of our speed-test for TCP and UDP connections. 
Processing times for established flows are 141 µs for 
TCP and 76 µ s for UDP, indicating that the packet for
warding is not a bottleneck for Haystack’s performance. 
The processing times for new connections prove larger, 
especially for TCP, because of the overhead of initiating 
state for the connection. 

Downlink Uplink New Flow 
TCP tproc (µ s) 141.6±0.5 275.6±3.5 5,647.8±998.5 
UDP tproc (µ s) 76.6±2.2 230.8±4.8 2,980.8±224.9 

Table 3: Mean processing time (tproc) and standard error of 
mean (SEM) for Haystack’s forwarding operations for TCP 
and UDP flows under stress conditions. The first packet of 
a new flow requires a higher processing time. 

5.4 Throughput of Haystack 
We now investigate the maximum throughput the 

system can achieve. We use our speed-test app to mea
sure the throughput for non-TLS TCP and UDP flows 
with idle sleep ={10 ms, 100 ms} and max idle cycles 
=100 cycles. This setting provides us with a good com
promise between CPU usage and latency. 
Figure 5(c) shows the maximum throughput achieved 

by Haystack’s Forwarder. We find that Haystack can 
provide up to 17.2 and 54.9 Mbps uplink and downlink 
throughput, respectively. As expected, when idle sleep 
increases the throughput decreases, as more packets ar
rive with the Forwarder in idle state, thus incurring 
tbuffer (cf. Figure 4). Haystack also has a bias to
wards downstream traffic, which stems from two factors. 
First, as we discuss in §4.1, the NIO read operation 
may potentially return multiple packets whereas the 
tun interface reads only a single packet at a time. Sec
ond, the operations required for upstream packets tproc 

are more computationally expensive (see Table 3). We 
plan to investigate how we can adapt the max readnio 

and max readtun parameters to achieve more balanced 
throughput in future work. We note that the perfor
mance we report is still in excess of what is required for 
modern mobile apps. 
Although the TA operates off-path, the use of thread-

safe queues to enable communication between the For
warder and the TA and its CPU intensive operations 
can inflict significant overhead on traffic throughput. 
As an example analysis task we consider string match
ing using the Aho-Corasick algorithm [9] on the traf
fic to detect tracking. Figure 5(c) shows TA’s impact 
on throughput when performing CPU-intensive string 
matching on each flow. In the worst case, Haystack pro
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Figure 6: Session establishment and throughput for TLS 
with Haystack for different idle sleep configurations, also 
showing the impact of enabling both the TLS proxy and 
the TA. We fix max idle cycles to 100 cycles. 

vides 23.3 Mbps downstream and 10.5 Mbps upstream 
throughput. Even when stress-testing Haystack with 
our speed-test, the maximum queuing time endured by 
packets before the string parsing engine processes them 
does not exceed 650 ms. This worst-case scenario arises 
when the queues contain a backlog of at least 1,000 
packets. Even under such circumstances, the total pro
cessing time remains low enough to provide feedback 
to users about their traffic in less than a second (e.g., 
exfiltrated private information). 
There remains significant potential for improving the 

overhead imposed by the TA. In particular, we plan to 
investigate better means of communicating between the 
Forwarder and the TA (e.g., via Android’s IPC [12]) to 
make it more efficient than the thread-safe queue we 
currently employ. 

5.5 TLS Performance in Haystack 
We next turn to the overhead of dealing with en

crypted communication. Figure 6 summarizes the over
head of the TLS proxy for different configurations. We 
first consider the baseline overhead of Haystack without 
the TLS proxy enabled on TLS connection establish
ment times, as shown in Figure 6(a). With an idle sleep 
of 10 ms the TLS connection establishment time is 
218 ms. Increasing idle sleep to 100 ms has a large 
effect, doubling the TLS establishment time (466 ms). 
Using the TLS proxy further increases establishment 
time to 653 ms with idle sleep at 10 ms, and 503 ms 
with idle sleep at 100 ms. 

We next assess the overhead of the TLS proxy on 
throughput, as shown in Figure 6(b). Compared to not 
running Haystack at all, the overhead of the TLS proxy 
is 26% and 29% for idle sleep = 10 ms and 100 ms, re
spectively. Despite the decrease in throughput, overall 
throughput with the TLS proxy is still 26 Mbps, which 
(as discussed in §5.2) allows playing a 1080p YouTube 
video without affecting the user experience. We find 
idle sleep has little impact on throughput since subse
quent packets bring the Forwarder out of the idle state, 
thus avoiding tbuffer for the bulk of the transfer. The 
fact that the TLS proxy reassembles the streams for the 
idle sleep also helps reduce the overhead. 

5.6 Using Haystack to Measure Performance 
Haystack’s Forwarder parameters can affect 

Haystack’s ability to accurately measure network 
performance. This section compares Haystack’s ability 
to assess traffic and network performance with tcpdump 
packet-level timestamps on a rooted phone. For these 
experiments, we instrument a rooted mobile device 
with an Android app that performs 500 UDP-based 
DNS queries to 8.8.8.8 for [nonce].stonybrook.edu. 
The nonce ensures that all queries bypass any in
termediate cache. We perform the DNS lookups in 
two different settings: (i) when the DNS traffic goes 
directly through the default gateway, and (ii) when 
Haystack forwards the DNS traffic. This allows us to 
calibrate Haystack by comparing actual performance 
as seen by user-space apps with passive measurements 
as seen by Haystack. 
We use idle sleep =0 ms and max idle cycles =200 cy

cles so that we can minimize packet wait time and 
to prevent blocking on a given interface at the ex
penses of increasing the CPU load. We send the 
queries sequentially and with random inter-query de
lays of 250 ms + rand(0, 400) ms, over a stable, well-
provisioned WiFi link. The random delay ensures that 
packets are not queued and that we are sampling the 
times in different polling states of Haystack (recall Fig
ure 4). We factor out transient effects in the network by 
computing the difference between measurements made 
by Haystack, those made by the Android app, and those 
obtained via tcpdump. Figure 7 shows the difference 
between our user-level measurements and the reference 
tcpdump measurements. Table 4 summarizes these dif
ferences. The difference between Haystack’s observa
tion of DNS latency and the Android app is small, with 
mean and median values differing by less than 50 µs. We 
find similar results over a cellular link, which we expect 
because the measured overheads stem from the Java 
virtual machine and Haystack, not from varying net
work conditions. The magnitude of the differences we 
observe remains orders of magnitude smaller than typ
ical mobile network delays, making Haystack suitable 
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Figure 7: Difference between DNS lookup times as mea
sured by a Java-based application (red line) and by Haystack 
(blue line), both compared to tcpdump. The cross between 
the red line and the blue line is likely due to instabilities 
in measuring from the application that is introduced by the 
Java VM on Android. The analysis confirms Haystack as a 
valid user space performance measurement platform. 

Mean Median StDev 
Haystack-tcpdump 1, 261µs 1, 254µs 303µs 

App-tcpdump 1, 250µs 1, 211µs 658µs 

Table 4: Detail statistics of the distribution shown in Fig
ure 7. 

for fine-grained network performance measurements. 

5.7 Haystack Adaptability 
Above we demonstrate the tradeoffs between re

source usage and performance of Haystack as controlled 
by varying max idle cycles and idle sleep parameters. 
While we find no sweet spot that is ideal in all circum
stances, our observations point to three possible ways to 
adapt Haystack’s operation to the current device state. 

Adapting parameters: Our first technique for re
ducing Haystack’s overhead is adapting the parame
ters to different usage scenarios to strike a balance 
for the current device state. We consider two scenar
ios: (i) when the user interacts with the device or 
in the presence of latency-sensitive background traf
fic (e.g., streaming audio), and (ii) when the phone 
is idle with minimal network activity (e.g., push no
tifications), a critical scenario as phones remain idle 
the majority of time [17, 61]. In the first case, min
imizing latency and guaranteeing the best user expe
rience is critical (“performance” mode), whereas in 
the second case, traffic is delay tolerant (“low-power” 
mode) [17]. Based on our results we determine that 
idle sleep = 10 ms and max idle cycles = 100 cycles 
gives the best tradeoff of performance and resource us
age for delay-sensitive usage and idle sleep = 100 ms 
and max idle cycles = 100 cycles gives the best tradeoff 
during delay-insensitive usage. Table 5 summarizes the 
overheads and performance for each of these settings. 

Sampling: A second way to reduce the overhead of 
Haystack is to sample a fraction of the connections or 
application sessions to fully analyze. This has the usual 
costs and benefits of sampling: lower resource usage 

(e.g., by not requiring the TA to do as much work) on 
the one hand and less coverage on the other hand. We 
believe that users likely care most about the apps and 
networks they use regularly and therefore while sam
pling may take longer to uncover issues, these issues 
will in fact be uncovered due to high usage. 

Targeting: A final technique to reduce the overhead 
of Haystack is to allow users to instruct Haystack to 
only consider certain apps. For instance, this may be 
useful when the user installs a new app and wants to 
understand what information it may leak. 

6. ADVANTAGES OF HAYSTACK 
As we illustrate in §2, the research community has 

focused much attention on understanding mobile de
vices and networks. These previous efforts have pro
duced many significant insights. We now turn to dis
cussing Haystack’s advantages—for both researchers 
and users—relative to the state-of-the-art in mobile 
measurement and app profiling. We describe Haystack 
capabilities, as well as early results culled from data col
lected by the 450 users who have installed Haystack to 
date. We summarize our initial dataset in Table 6. We 
stress that these are not full-fledged measurement stud
ies and are presented for illustrative purposes. Finally, 
we note that while we discuss Haystack’s capabilities 
in isolation they can often be used together to an even 
greater effect. 

Unprecedented View of Encrypted Traffic: 
Haystack’s TLS proxy allows analysis—with the user’s 
permission—of encrypted communication. This infor
mation remains opaque to other methodologies (e.g., 
ISP network traces) or requires trusting a third-party 
middleman to decrypt and correctly re-encrypt traf
fic while protecting the clear-text version (e.g., remote 
VPN endpoints). This visibility is significant as we find 
that in our dataset 22% of the flows are encrypted and 
less than 20% of apps send all their traffic in the clear. 
Therefore, gaining an understanding of the information 
flow within the mobile ecosystem critically depends on 
being able to cope with encrypted traffic. 

Unprecedented View of Local Traffic: Haystack 
can naturally observe local network traffic that never 
traverses the wide-area network. This traffic does not 
appear in ISP network traces [27,62] and methodologies 
that rely on remote VPN tunnels [52]. This capability 
will only increase in importance given the emergence 
of Internet-Of-Things (IoT) devices in the household, 
typically using mobile devices for control. Our dataset 
includes 40 apps that generate local traffic, ranging from 
baby monitors to media servers to smart TV remote 
control apps. 

Representative View of Apps: When trying to un
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Mode idle sleep max idle cycles 
Mean UDP 
RTT (ms) 

Mean TCP 
Conn. Time 

(ms) 

Mean TLS 
Conn. Time 

(ms) 

Max. Throughput 
[Up/Down] (Mbps) 

Mean 
CPU (%) 

Performance 10 100 5.4 24.8 313.1 17.2/54.9 11.2 
Low-power 100 100 60.8 65.3 505.3 16.7/48.2 2.7 

Table 5: Summary of Haystack’s performance for each operational mode in a 5 GHz WiFi link with 3 ms RTT. 

Users Apps Total Flows Domains 
450 1,340 942,836 8,710 

Table 6: Summary and scale of our user study. 

derstand app behavior a natural first question concerns 
finding a set of apps to study. Haystack answers this 
question quite simply by considering the natural set of 
apps each user executes. For other methodologies— 
such as static and dynamic analysis—the set of apps 
considered often results from a crawl of the Google Play 
store. However, this neglects built-in apps and apps 
from non-standard or alternative app stores [23], as well 
as behavioral changes caused by new app updates. Fur
ther, such studies frequently exclude non-free apps or 
code paths that stem from an in-app purchase [23, 24]. 
Haystack includes all of these aspects naturally. 
Our initial data suggests analyzing these apps is im

portant. We find 15% of the apps we observe did not 
come from the Google Play store and include (i) apps 
developed by large and small device vendors and mobile 
carriers, (ii) pre-installed third-party apps (e.g., Kineto, 
a Wifi calling app [4]) and (iii) apps downloaded from 
alternate or regional app stores [50]. These apps create 
22% of the traffic we observe. Further, we find that 
3.7% of the apps in Google Play are not free and 29% 
of the apps include in-app purchases. Both of these 
represent code paths often skipped when studying app 
behavior, but which Haystack considers as a matter of 
course. Finally, we find that apps not originating from 
the Google Play store do in fact leak personal informa
tion and unique identifiers (e.g., to third-party tracking 
services such as Crashlytics). 

Representative Code Paths: Related to the last 
point is that Haystack naturally deals with common and 
esoteric code paths. Dynamic analysis requires manual 
navigation within apps, oftentimes synthetically gener
ated via UI Monkeys [66]. The results in turn prove 
sensitive to details of this test navigation. Haystack 
does not suffer from this problem because the interac
tions observed reflect the natural way that the user in
teracts with the app. Therefore, even though Haystack 
will never know that some unused code path is nefari
ous, it does not matter to that user because that user 
never invokes the problematic case. On the contrary, 
a dynamic analysis test case might miss some buried 
feature that gets exercised by real users—in which case 
Haystack will catch networking activity resulting from 
that code path. 

User Involvement: Haystack’s position on user de

vices provides the capability to engage users in novel 
ways that benefit both research into the mobile ecosys
tem, but also the users themselves. For instance, 
users could be given the option to opt-in to assist
ing researchers assessing Quality-of-Experience (QoE) 
of their normal traffic. Combining qualitative user 
feedback with quantitative measurements of the traf
fic could be a powerful combination that brings many 
insights to this space. Another case where direct in
teraction helps the user is in understanding the leakage 
of personal information from the phone. By exposing 
this information to users they can make more informed 
decisions about what apps to use or what permissions 
to grant to specific apps. 

Novel Policy Enforcement: Haystack’s position be
tween apps and the network provides for a unique abil
ity to implement policy before traffic leaves the mo
bile device. While Haystack can certainly enforce tra
ditional network policies—e.g., blocking access to spe
cific IP addresses or hostnames, or rate-limiting certain 
traffic—the insight into app content means the policies 
can be more semantically rich (e.g., blocking based on 
attempted leaking of a specific piece of information like 
the IMEI to an untrusted online service). Further, poli
cies can be richer than simple blocking decisions. For 
instance, specific traffic could be sent through a VPN 
tunnel or an anonymization network. Or, particular 
sensitive elements of the contents could be obfuscated 
(e.g., providing a random IMEI to each app to hinder 
cross-app tracking). 

Enabling Reactive Measurement: Haystack is 
not beholden to naturally occurring traffic, but 
can trigger its own active measurements as needed. 
These measurements—taken from the device’s natural 
perspective—could be proactive in an attempt to bet
ter understand the current network context. Alterna
tively, active measurements could be taken reactively 
[10] based on some observation—e.g., to diagnose slow 
transfers or delay spikes. Finally, active measurements 
could explore “what if” sorts of analysis that could in 
turn be used to tune the device’s operation for bet
ter performance. For instance, Haystack could explore 
whether an alternate DNS resolver would yield faster or 
better answers compared with the standard resolver. 

Explicitness Leading To Precision: Many of the 
problems in measuring the mobile ecosystem stem from 
the need to infer or estimate various aspects of the com
munication. Haystack gets around many of these prob
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Figure 8: Distribution of the number of third-party ser
vices per app across our dataset. 

lems because it operates within explicit context from 
the mobile operating system. For instance, instead of 
inferring a device’s phone number, Haystack has a di
rect understanding of the value and therefore can di
rectly hunt for it in the traffic instead of searching for 
something that “looks like” a phone number and then 
trying to determine if that is in fact the device’s phone 
number or not. 
As another example, Haystack is able to directly at

tribute traffic flows to apps rather than using heuristics 
or inferences. Within our dataset we use this ability 
to detect apps that use third-party services—for myr
iad reasons, including ad delivery, analytics, alternative 
push notifications [3]—at the network level. While a 
simple app-agnostic count of accesses to specific ser
vices provides some understanding of popular services, 
this method leaves ambiguous whether the popularity 
stems from broad use across apps or simply use by pop
ular apps. Haystack can directly answer this question. 
Figure 8 shows the distribution of the number of third-
party services used per app across our dataset. By rank
ing the online services by the number of apps connecting 
to them, we can see that Crashlytics and Flurry are the 
most common third-party services across our corpus of 
mobile apps. 

Large-Scale Deployment: Haystack’s operation as 
a normal user-level app that does not require rooting 
a device or a custom firmware version means the bar
rier to entry for using Haystack is low. This is useful 
for research purposes as we can coax more users to the 
platform than a more cumbersome tool would require. 
Further, the platform gives us a direct path to moving 
beyond research and to actually helping normal users 
understand the operation of their devices that simply 
would not be possible if users had to jump through sig
nificant hoops to install and use Haystack. These two 
aspects feed a virtuous circle: more users provide more 
data that we can leverage to increase users’ understand
ing, which in turn provides a larger incentive to entice 
additional users. 
While each of the above are advantages in their own 

right, they become even more powerful when combined. 
For instance, Haystack has the power to understand 
that a specific app is trying to leak their phone number 

to some IoT device in their house within an encrypted 
connection. Further, this understanding could be com
municated to the user, as well as serving as fodder for 
a policy that thwarts such activity in the future. Each 
aspect of this example is either impossible with current 
techniques or at least requires inference and heuristics. 

7. DISCUSSION AND FUTURE WORK 
In §6 we have discussed how Haystack’s features pro

vide an unprecedented window into the mobile ecosys
tem. Haystack shares traits of other network monitor
ing/measurement platforms we maintain [8,43], increas
ing our confidence that Haystack’s architecture provides 
a solid basis for future exploration. Since many enter
prise and mobile device management solutions rely on 
the VPN permission, we also expect that Android will 
continue to support it. 
While Haystack’s implementation runs on the An

droid, support on other platforms proves feasible: re
cent iOS releases offer underlying API primitives simi
lar to those enabling Haystack on Android [15]. In fact, 
given iOS’s tighter technical constraints to app devel
opment (e.g., preventing Taintdroid-like approaches), 
Haystack’s approach provides a promising avenue for 
investigating the iOS ecosystem. 
We stress that the applications of Haystack sketched 

in this paper serve to exemplify its abilities as a traffic 
inspection platform, not as a step in the network se
curity arms race. For example, we do not advocate 
Haystack as a full-blown TLS inspector—rather, we 
demonstrate that the platform supports development 
in this direction to a point that can readily provide in
teresting results. 
We are currently exploring ways to open up Haystack 

to the research and app developer communities. By 
further separating the Forwarder and Traffic Analyzer 
components we can establish access to the device’s traf
fic streams for other apps, effectively providing a proxy 
to the absent “packet capture” permission on Android.4 

In doing so, we can overcome an additional constraint 
of Android’s security model, namely that only a single 
VPN app can run at any given time. 
We acknowledge that opening up Haystack’s capabil

ities to third-party apps would raise grave security con
cerns, as malicious apps may abuse Haystack’s capabil
ities for nefarious purposes. We defer full treatment to 
future work and here only mention that Android’s cus
tom permissions model [58] provides avenues for making 
access to these new capabilities controllable by the user. 
We are planning to open-source the Haystack code-

base, and will make anonymized data collected by 
Haystack available online via a web-based query inter
4Personal communication with the Google Android team 
suggests that this option remains unlikely to ever materialize 
directly in the Android OS. 

12 



face similar to ReCon [53] or Censys.io [1]. 

8.	 SUMMARY 
We have presented the design, implementation, and 

evaluation of Haystack, a multi-purpose mobile vantage 
point for Android devices built on top of Android’s VPN 
permission. As Haystack runs completely in user-space, 
it enables large-scale measurements of real-world mobile 
network traffic from end-user devices, with organic user 
and network input. 
Through extensive evaluation, we have demonstrated 

that Haystack realizes a flexible mobile measurement 
platform that can deliver sufficient performance with 
modest resource overhead and minimal impact on user 
activity when compared to state-of-the-art methods 
that rely on static and dynamic analysis. 
Haystack opens a new horizon in mobile research 

by achieving an architectural sweet-spot that makes it 
easy to install on regular user phones (thus enabling 
large-scale deployment and benefiting from user’s in
put) while enabling in-depth visibility into device ac
tivity and traffic (thus providing installation incentives 
to the user). Using a deployment to 450 users who in
stalled the Haystack app from Google’s Play Store, we 
demonstrated Haystack’s ability to provide meaningful 
insights about protocol usage, its ability to identify se
curity and privacy concerns of mobile apps, and to char
acterize mobile traffic performance. 
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