
Haystack: A Multi-Purpose Mobile Vantage Point in User Space

Abbas Razaghpanah Narseo Vallina-Rodriguez Srikanth Sundaresan Christian Kreibich
Stony Brook University ICSI	 ICSI ICSI / Lastline

Phillipa Gill Mark Allman Vern Paxson
Stony Brook University

Abstract Despite our growing reliance on mobile
phones for a wide range of daily tasks, their operation
remains largely opaque. A number of previous stud­
ies have addressed elements of this problem in a par­
tial fashion, trading off analytic comprehensiveness and
deployment scale. We overcome the barriers to large-
scale deployment (e.g., requiring rooted devices) and
comprehensiveness of previous efforts by taking a novel
approach that leverages the VPN API on mobile devices
to design Haystack, an in-situ mobile measurement plat­
form that operates exclusively on the device, providing
full access to the device’s network traffic and local con­
text without requiring root access. We present the de­
sign of Haystack and its implementation in an Android
app that we deploy via standard distribution channels.
Using data collected from 450 users of the app, we ex­
emplify the advantages of Haystack over the state of the
art and demonstrate its seamless experience even under
demanding conditions. We also demonstrate its utility
to users and researchers in characterizing mobile traffic
and privacy risks.

1. INTRODUCTION
Mobile phones have become indispensable aids to ev­

eryday life by offering users capabilities that rival those
of general purpose computers. However, these systems
remain notoriously opaque, as mobile operating systems
tightly control access to system resources. While this
tight control is useful in preventing unwanted applica­
tion activity, it also imposes hurdles for understanding
the behavior of mobile devices, especially their network
activity and performance.
Despite these challenges, the research community has

made steady progress in understanding mobile apps and
mobile traffic over the past few years, by using two
broad classes of techniques. One class is lab-oriented
and uses static and dynamic analysis of app source
code [22, 56], controlled execution of apps [24, 38] and
dynamic analysis [68], even modifying the OS kernel to
track app behavior [23]. A contrasting approach lever­
ages network traces obtained from ISPs [27,62] or VPN
tunnels that forward user traffic [52] to servers in the

ICSI ICSI / UC Berkeley

cloud for observation. However, each of these previous
approaches faces a trade-off:

• Approaches based on static and dynamic analysis
do not offer access to real-world data. Thus far,
studies that have used these approaches have been
constrained to analysis of source code, which is not
always available, or artificial/controlled user inputs
which require significant human effort to train the
techniques, contextualize the results, and minimize
false positives. One exception is Taintdroid [23], a
modified Android version that can analyze app be­
havior in real-world settings. However, this technique
relies on operating system modifications, which incur
a significant engineering effort to catch up with new
OS releases, and forces participating users to install a
new firmware on their devices [65]. Consequently, the
scale of analysis and app coverage they can achieve
in the wild remains limited to tens of users.

• Approaches that leverage network traffic obtain visi­
bility into real user behavior, at the cost of the rich­
ness of context that device-centric approaches can ob­
tain. For example, while this approach can capture
and analyze mobile network data, heuristics must
infer which applications generated individual flows,
and detouring traffic through third-party middle-
boxes complicates high-fidelity performance measure­
ments due to the necessarily skewed vantage point.

In this study, we present Haystack, the first on-device
mobile measurements platform that is able to passively
monitor app behavior and network traffic under regular
usage and network conditions, without requiring users
to root the phone. The latter gives Haystack the poten­
tial for better scalability in deployment; users can sim­
ply install the app from Google’s Play Store or similar
markets. This provides us the opportunity to monitor
organic mobile network activity as generated by real
users in real networks using real mobile apps—all from
the vantage point of the device. This combination of
ease of deployability and the high-fidelity vantage point
allows Haystack to hit a sweet spot in the trade-off be­
tween scalability and richness of data.

Similar to previous approaches [52], Haystack lever­
ages Android’s standard VPN interface to capture out­
bound packets from applications. However, rather than
tunneling the packets to a remote VPN server for in­
spection, Haystack intercepts, inspects, and forwards
the user’s traffic to its intended destination. This ap­
proach gives us raw packet-level access to outbound
packets as well as flow-level access to incoming traf­
fic without modifying the network path, and without
requiring permissions beyond those needed by the VPN
interface. Haystack therefore has the ability to monitor
network activity in the proper context by operating lo­
cally on the device. For example, a TCP connection can
be associated with a specific DNS lookup and both can
be coupled with the originating application. Further,
we design Haystack to be extensible with new analy­
ses and measurements added over time (e.g., by adding
new protocol parsers and by supporting advanced mea­
surement methods such as reactive measurements [10]),
and new features to attract and educate users (e.g., ad
block, malware detection, privacy leak prevention and
network troubleshooting).
Haystack is publicly available for anyone to install

on Google Play and has been installed by 450 users to
date [40]. We discuss the design and implementation
of Haystack in §3 and §4, and evaluate its performance
and resource use in §5. Our tests show that Haystack
delivers sufficient throughput (26–55 Mbps) at low la­
tency overhead (2–3 ms) to drive high-performance and
delay-sensitive applications such as HD video streaming
and VoIP without noticeable performance degradation
for the user.
While we consider our Haystack implementation pro­

totypical in some respects (such as UI usability for non­
technical users), it has already provided interesting in­
sights into app usage in the wild: in §6 we present pre­
liminary findings about the adoption of encryption tech­
niques, report on local-network traffic interacting with
IoT devices, study app provenance and the use of third-
party tracker services, and give an outlook on potential
future applications.

2. RELATED WORK
Previous studies have leveraged a variety of tech­

niques for understanding privacy risks of mobile apps
and their behavior in the network. As noted earlier,
each approach made trade-offs between having access
to real user behavior and device context. We classify
the prior work into the following four categories.

Dynamic app analysis: This approach calls for run­
ning an app in a controlled environment such as a vir­
tual machine [68] or an instrumented OS [23, 38]. The
app is then monitored as it conducts its pre-defined set
of tasks, with the results indicating precisely how the

app and system behave during the test (e.g., whether
the app exfiltrated data). While this approach provides
useful insights, the workload (which does not represent
real-world operation) and difficulty of deploying custom
firmware on users’ phones (sacrificing scale) means that
the results do not directly speak to normal users’ ac­
tivity. To overcome the lack of user input, studies that
rely on dynamic analysis require “UI monkeys” [11, 66]
to generate synthetic user-actions.

Static app analysis: This technique involves analy­
sis of the app code, obtained by decompiling app bi­
naries, via symbolic execution [67], analysis of con­
trol flow graphs [16,22], by auditing third-party library
use [21, 55], through inspection of the Android per­
missions and their associated system calls [16, 45], and
analysis of app properties (e.g., whether apps employ
secure communications) [24, 26]. While static analy­
sis typically provides good scale with analysis of over
10K apps in several studies [24], (modulo computa­
tional resources) this strategy does not reflect the be­
havior of apps in the wild, and typically requires a good
amount of manual inspection. Furthermore, the analy­
sis may under- or over-state the importance of certain
code paths since it lacks a notion of how users interact
with the apps in practice.

Passive traffic analysis: A number of studies rely on
volunteers with rooted phones that allow their traffic to
get recorded by tcpdump [25,39,51] or iptables [17,60].
These methods are challenging to deploy at scale. To
obtain larger-scale data, other projects study the behav­
ior of mobile devices by observing their network traffic
either at a large ISP with millions of users [27,57,62] or
by forwarding traffic through a remote VPN proxy that
also modifies the network path [44, 52, 64]. As a result,
these studies contain a large variety of apps and mo­
bile platforms but they lack device context for account­
ability and accuracy (e.g., mapping flows to originating
apps). While this can be alleviated by pairing a remote
VPN proxy with client-side software to provide context
to the remote VPN server [44], the solution still alters
the network path by rerouting traffic to the VPN server,
hence providing an unrealistic view of the performance
aspects of real mobile traffic. PrivacyGuard [59] uses
a technique similar to the one used by Haystack to in­
tercept user traffic to detect simple instances of private
information leaks (e.g., device ID and location), but it
does not aim to offer the depth and versatility offered
by Haystack as a measurement platform.

Active mobile network measurements: Google
Play (and, on a smaller scale, the Apple Store) con­
tains a number of tools for active mobile network mea­
surements. Examples include Ookla’s SpeedTest [34],
the FCC Speed Test [28], network scanners to build
network coverage maps [35], and comprehensive mea­

2

Approach Scale
Real-world
operation

Comprehensiveness
Local

Operation
App coverage OS compatibility

ISP traces
Remote VPN
Static analysis
Dynamic analysis

Large-scale
Crowdsourcing
Resource-bound
Resource-bound

/
/

/
/

/
/

All apps
Crowdsourcing
∼ 1000 apps
∼ 100 apps

All versions/platforms
All versions/platforms

Limited
Limited

Table 1: Comparison between different measurement approaches in the mobile environments. It should be noted that these
aspects/features are not easily comparable in a binary manner and the comparison provided here is merely qualitative.

surement tools such as My Speed Test [30], Netalyzr
for Android [32], NameHelp [31], and MobiPerf [29].
Such tools provide valuable insight into network per­
formance [41, 47] and operational aspects of ISPs such
as middlebox deployment [63] and traffic discrimina­
tion [42]. However, despite the fact that active measure­
ment techniques typically provide an accurate snapshot
of actual network conditions, they do not study network
performance of installed apps in real-world situations.
Table 1 provides a high-level comparison of each of

the measurement approaches. As we can see, none can
simultaneously observe real-world operation while pro­
viding comprehensive data at scale. This trade-off has
prevented the research community from exploring in de­
tail many aspects of the mobile ecosystem. We will re­
visit the comparison between Haystack and state of the
art techniques in §6, after we present its design, imple­
mentation, and evaluation.

3. HAYSTACK OVERVIEW
Our goal with Haystack is to help researchers avoid

the trade off between accessing device context and the
ability to measure real-world phone usage at scale. The
crux of Haystack is its ability to observe network com­
munication on the mobile device itself. Since 2011 (ver­
sion 4.0), Android has provided a VPN API that en­
ables developers to create a virtual tun interface and
direct all network traffic on the phone to the interface’s
user-space process. To enable this functionality, the
client app requests the BIND VPN SERVICE permission
from the user, which, crucially, does not require a rooted
device. The API typically drives VPN client applica­
tions that forward traffic to a remote VPN server [14].
Instead of relaying packets to a remote VPN server,
Haystack performs two high-level operations in parallel.
First, it sends a copy of the bidirectional packet stream
to a background process that analyzes the traffic off-
path. Second, it uses the packet headers to maintain
user-space network sockets to remote hosts and relays
data via these sockets.
Haystack is available in the Google Play Store [40]

and has been downloaded a total of 450 times.
A number of apps in Google Play leverage the
BIND VPN SERVICE permission for non-VPN tasks.
While we are not aware of any apps taking traffic pro­
cessing to the level we realize in Haystack, tPacketCap­
ture [37] and SSL Packet Capture [36] take advantage of
the VPN API to record approximate packet traces via a

user-space application. As with Haystack, these traces
are approximate since the app does not have access to
raw packets via Java’s socket interface. A related app,
NoRoot Firewall [33] allows mobile users to block traf­
fic generated by specific apps and generate connection
logs.

3.1 Ethical Considerations
Haystack’s ability to observe real-world user data

raises many ethical considerations [7]. We leverage the
fact that Haystack runs on the user’s device to do the
bulk of processing on the device and only send back
summary statistics (e.g., domains contacted and pro­
tocols used) and by under no-circumstances user’s raw
traffic. We aim to minimize the amount of data sent
back while maximizing it’s utility. In consultation with
the IRB at UC Berkeley, we developed a protocol that
strikes a balance and only collects data needed for the
studies at hand without uploading any personal infor­
mation. This precludes certain types of detailed or lon­
gitudinal studies, which may be possible with future
coordination with the IRB.
Additionally, we implement informed consent and

opt-in in Haystack. First, Haystack must be explic­
itly installed by the user and granted permission to
observe traffic. Second, we require users to opt-in a
second time before we analyze encrypted traffic as de­
scribed in §4.1.2. TLS interception is explained to the
user in detail before they are given the option to in­
stall the CA certificate needed to intercept encrypted
traffic. If the user chooses not to install the CA certifi­
cate, the TLS interception module is disabled until they
explicitly choose to install the CA certificate and manu­
ally enable TLS interception in the settings. Our opt-in
process aims to make the data collection as transpar­
ent as possible and provide users control over the pro­
cess. While our IRB has reviewed our current approach
and has deemed our work as not involving human sub­
jects research, we maintain an active dialogue and we
will seek their feedback before collecting any additional
piece of information.

4. SYSTEM DESIGN
To intercept and analyze traffic on resource-

constrained devices in user space, we must address sev­
eral design challenges. A key issue is that the tun in­
terface exposes raw IP packets to Haystack. A natural
way to deal with these would be to shuttle a copy to our

3

Default Gateway

raw_packet Java Sockets

Apps

flowudpflowtcp

Internet

SSLSockets

 Forwarder

tun

Traffic Analyzer (TA)
Off-path analysis

TLS Proxy

Non-encrypted Traffic
Encrypted Traffic
Off-path channels

Figure 1: The Haystack architecture, highlighting system
components and data forwarding channels. Solid lines rep­
resent the actual forwarding path for traffic generated by
mobile apps even if encrypted (which is handled by our op­
tional TLS proxy), while dashed lines represent the off-line
path used for privacy and performance analysis.

Sleep

IF sleep < IDLE_SLEEP

tun 
read

nio 
read

IF packets_read == MAX_READtun
or

nothing to read from tun

IF idle_count = MAX_IDLE_CYCLESIF sleep = IDLE_SLEEP

IF packets_read < MAX_READnio
and

nio read succeeded

IF packets_read < MAX_READtun
and

tun read succeeded

IF packets_read == MAX_READnio
or

nothing to read from nio

Figure 2: Haystack’s Forwarder state machine. It controls
read/write operations and transitions between tun interface,
Java NIO socket, and sleep states. The idle count variable
increments when both tun and NIO do not succeed, i.e.,
there is nothing to read. Each read operation from the tun
interface potentially becomes a write operation for a NIO
socket and vice versa.

analysis engine and then drop the packet on the network
via a raw socket. However, non-privileged apps do not
have access to raw sockets and therefore we must rely on
regular Java sockets to communicate with remote enti­
ties. This means that, as opposed to transparent L3 and
L4 proxies that operate at a single layer of the protocol
stack on both sides (with root privileges), Haystack has
to bridge packet-level communication on the host (tun)
side and flow-level interaction with the network side.
Operating in mobile phones in user space requires care­
ful design considerations to minimize Haystack’s impact
on device resources, battery life, app performance and
user experience. Figure 1 illustrates the Haystack ar­
chitecture, which includes two major components, the
Forwarder and the Traffic Analyzer (TA).

4.1 The Forwarder
The Forwarder performs two key functions: (i) it per­

forms transparent bridging between packets on the tun
interface and payload data on the regular socket inter­
face and (ii) it forwards traffic to the TA for analysis.

4.1.1 Flow reassembly

The Forwarder receives raw IP packets from tun. The
Forwarder therefore acts like a layer 3/layer 4 network
stack: it extracts the payload from the raw packet and
sends it to its intended destination through a regular
Java socket (implemented using non-blocking NIO sock­
ets [48]). To accomplish this, the Forwarder extracts
flow state from the packet headers (IP, as well as UDP
or TCP) for packets arriving on the tun interface and
maps it to a given Java socket (it creates new sock­
ets for new flows arriving on the tun interface). It also
maintains this state so that it can marshal data arriving
from remote hosts on the sockets back into packets for
transmission to the app via the tun interface. Haystack
has dual-stack support and its routing tables correctly
forward DNS and IPv6 traffic through the tun interface
to prevent traffic leak [49].

Handling UDP and TCP: The Forwarder needs to
maintain state for UDP and TCP flows. A simple flow-
to-socket mapping suffices for connectionless UDP, since
header reconstruction remains straightforward. Since
TCP provides connection-oriented and reliable trans­
port, we need to track the TCP state machine and main­
tain sequence and acknowledgment numbers for each
TCP flow. We segment the data stream received from
the socket and synthesize TCP headers to be able to
forward the resulting packets to the tun interface for
delivery to the app. When we read a SYN packet from
the tun interface, we create a new socket, connect to
the target and instantiate state in Haystack. After the
OS establishes the socket we return a SYN/ACK via
the tun interface. We similarly relay connection ter­
mination. We discuss Haystack’s lack of support for
non-TCP/UDP traffic in §4.3.

Efficient packet forwarding: The Forwarder must
balance application and traffic performance with power
and CPU usage on the device. This task is challenging
because the tun interface does not expose an event-
based API. We therefore implement a polling scheme
that periodically checks both the tun interface and Java
sockets for arriving data.
Figure 2 shows the state machine of the Forwarder. It

reads up to max readtun packets from the tun interface
or up to max readnio packets from the socket (NIO)1

interface before switching to the other interface, hence
preventing either operation from starving. The For­
warder immediately transitions to the other read state
if it cannot read data in the current state. Each read
from the tun interface potentially becomes a write op­
eration for a socket and vice versa, the exception being
pure TCP ACKs from the tun interface. We discard
these, as their effect gets abstracted by the socket in­

1Despite the inability to count packets from socket
read/write operations, we count the number of packets gen­
erated and sent back through the tun interface.

4

terface and therefore they do not require forwarding.
Writes to the tun interface complete quickly and socket
writes do not block, so we perform writes as soon as we
have data to send. If it cannot read data from either
interface for max idle cycles consecutive iterations, the
Forwarder will sleep for idle sleep ms. While this strat­
egy reduces power consumption during idle periods, it
also imposes higher latency on packets that arrive dur­
ing these idle periods when polling happens at coarse
intervals. We consider the tradeoff between resource
conservation and performance in depth in §5.2.

4.1.2 TLS Interception

Many mobile applications have adopted TLS as the
default cryptographic protocol for data communica­
tions. This is a double-edged sword, as it helps protect
the integrity and privacy of users’ transactions but also
allows apps to conceal their network activity. With the
user’s consent, Haystack employs a transparent man­
in-the-middle (MITM) proxy for TLS traffic [20]. At
install time Haystack requests the user allow the instal­
lation of a self-signed Haystack CA certificate in the
user CA certificate store. We customize the message
shown to users at this time to explain why Haystack
intercepts encrypted traffic.
Once equipped with a certificate, the Forwarder mon­

itors TCP streams beginning with a TLS “Client Hello”
message and forwards these flows—along with flow-level
meta-information the proxy requires in order to con­
nect to the server (e.g., IP address, port, SNI)—to the
TLS proxy. The proxy uses this information to connect
to the remote host and reports back to the Forwarder
whether the connection was successful. After success­
fully establishing a connection to the remote host, the
proxy decrypts traffic arriving on one interface (tun or
socket) and re-encrypts it for relay to the other while
providing a clear-text version to the TA for analysis.

Dealing with failed TLS connections: As in any
commercial TLS proxy, Haystack will be unable to
proxy flows when the client application (i) uses TLS ex­
tensions not supported by Haystack [19],2 (ii) bundles
its own trust store, or (iii) implements certificate pin­
ning. Likewise, failure occurs when the server expects to
see certain TLS extensions not supported by Haystack
in the “Client Hello” message or performs certificate-
based client authentication. We add connections with
failed TLS handshakes to a whitelist that bypasses the
TLS proxy for a period of five minutes. Experience
with our initial set of users indicates that apps recover
gracefully from TLS failures. After five minutes we re­
move the app from the whitelist to account for transient
failures in the handshake process. While we cannot de­
crypt such flows, we can still record which apps take

2Currently, Haystack only supports the SNI extension.

these security measures and potentially communicate
more securely for further analysis.

Security considerations: Android provides support
for third-party root certificate installation. This is
a feature required by enterprise networks to perform
legitimate TLS interception. For increased security,
Haystack generates a unique certificate and key-pair for
each new installation of the app. Additionally, Haystack
saves the private key to its private storage to prevent
other applications from accessing it. While these pre­
cautions still permit malicious applications with root
access to retrieve the key, such apps can already tap into
the user’s encrypted traffic without using Haystack’s
CA certificate (e.g., by surreptitiously injecting their
own CA certificate into the system’s trust store).

4.2 Traffic Analyzer
The Traffic Analyzer (TA) processes flow data cap­

tured by the Forwarder. The TA operates in near real-
time but off-path, i.e., outside the forwarding path of
network traffic. The TA augments flows with contextual
information gathered from the OS for further analysis.
The analyses are protocol-agnostic, and TA supports
protocol parsers to parse flow contents before they are
analyzed. We currently support TLS, HTTP, and DNS
protocol parsers to analyze the traffic and extract rel­
evant information, decompressing and decoding com­
pressed and encoded data before they are searched by
the DPI module for private information leakages. New
protocol parsers can be added to TA in case we see new
protocols getting widely adopted.

Why off-path analysis? The TA could potentially
negatively affect the user experience if done in the for­
warding path. Analysis of network traffic can range
from simple (e.g., tracking packet statistics) to quite
complex (e.g., parsing protocol content) and therefore
can consume valuable CPU cycles and if conducted as
part of traffic forwarding could increase latency. How­
ever, as we will discuss in §6, certain aspects of mobile
apps and networks must be measured in-path as in the
case of traffic performance analysis.

Secure and efficient IPC in Android: Unfortu­
nately, low-latency communication between Android
services can prove tricky to realize, especially in multi-
threaded systems. In our implementation we use Java’s
thread-safe queues for communication between the For­
warder and TA modules. This allows the modules to
communicate without exposing their data to other (ma­
licious) apps as would be the case if the file system or
localhost sockets were used [13]. In §5.4 we evaluate the
overhead of using thread-safe queues to enable commu­
nication between the Forwarder and TA.

Application and entity mapping: One of the ba­

5

sic functions the TA provides is to map TCP and UDP
flows to the corresponding apps. We do this via a two-
step process: (i) extract the PID of the process that
generated the flow from the system’s proc directory,
(ii) map the PID to an app name using Android’s Pack­
age Manager API. Compared to network-based studies
which rely on inferences—e.g., using the HTTP User-
Agent or destination IP address—to couple apps and
flows [52, 53, 62], our approach allows highly accurate
flow-to-app mappings. Since reading the PID and map­
ping applications requires file-system access, we cache
recently read results to minimize overhead.
The TA also provides the ability to analyze protocols

in depth. For example, the TA tracks DNS transac­
tions to extract names associated with IP addresses,
allowing us to map flows to target domains rather than
just IP addresses. This is especially important for non-
HTTP flows (e.g., QUIC, HTTPS) where the hostname
may not be readily available in application layer head­
ers. Mapping IPs to their hostnames gives us the op­
portunity to distinguish apps sending data to their own
backend as opposed to third-party ad/analytics services
or CDNs, even if both reside in the same cloud ser­
vice provider [18]. Further, the TA can perform traf­
fic characterization based on domain, without analyz­
ing application-layer headers (e.g., HTTP Host header).
We demonstrate how these capabilities in the TA can
enable studies like per-app protocol usage and user
tracking detection in §6.

4.3 Limitations and other considerations

Protocol support: Android limits us to only TCP
and UDP sockets via Java’s APIs, thus excluding pro­
tocols such as ICMP. As of today, this limitation only
seems to affect a small number of network troubleshoot­
ing tools. The Forwarder provides IPv6 support, except
for extended headers. We have not noticed any issues
for IPv6 flows due to this limitation.

Recovery from loss of connectivity: The VPN ser­
vice (and therefore the Forwarder) gets disrupted when
users roam between different networks such as 3G and
WiFi or different WiFi networks, or when a network dis­
connection occurs. Haystack identifies such events and
attempts to reconnect seamlessly. Similarly, phone calls
disable all data network interfaces, thus stopping the
VPN service. While currently this disables Haystack,
we are working on using Android APIs to identify when
the calls complete to transparently restart the VPN.

Vendor-custom firmware: Many device vendors
block and interfere with standard Android APIs. One
case is Samsung’s KNOX SDK—only available for
Samsung licensed partners—which prevents third-party
VPN applications from creating virtual interfaces [54].
Likewise, some vendor-locked firmwares also prevent

Haystack from intercepting TLS traffic by blocking CA
certificate installation. We have thus far primarily en­
countered this issue on Samsung phones.

DPI and arms race: Malicious agents will always
have an incentive to not being identified. Against our
best efforts to parse and extract information from popu­
lar protocols, inflate compressed streams, and intercept
conventional TLS-encrypted flows; as well as Haystack’s
ability to support newer protocol (e.g., QUIC and new
TLS extensions) as mobile apps and the mobile ecosys­
tem as a whole evolve, some apps will still be able to
exfiltrate private information through obfuscation and
encryption schemes that are not supported by Haystack.
Since Haystack would fall short of studying these in­
stances, we acknowledge that there is a possibility of an
arms race between privacy-invasive and malicious apps
and approaches like Haystack.

5. PERFORMANCE EVALUATION
We have implemented Haystack as a user-level An­

droid app per the design given above. Our implemen­
tation leverages a number of external libraries for tasks
such as efficient packet parsing [2], IP geo-location [5],
data presentation [6], and TLS interception [20]. The
Haystack codebase—excluding the external libraries
and XML GUI layouts—spans 15,000 lines of code. In
this section we evaluate to what extent we achieve our
goal of real-time monitoring without burdening the de­
vice’s resources in practice and under stress conditions.

5.1 Testbed and Measurement Apparatus
To evaluate Haystack performance in a controlled set­

ting, we set up a testbed with a Nexus 5 phone con­
nected to a dedicated wireless access point over a 5 GHz
802.11n link. We also connected a small server to the
access point via a gigabit Ethernet link. We minimize
background traffic on the phone by only including the
minimal set of pre-installed apps and not signing into
Google Services. We measure the latency of Haystack
using simple UDP and TCP echo packets. For non-TLS
throughput tests, we use a custom-built speed-test that
opens three parallel TCP connections to the server for
15 seconds in order to saturate the link. We test uplink
and downlink separately. For profiling TLS establish­
ment latency and downlink speed-test, we cannot use
our speed-test, as it does not employ a TLS session. In­
stead, we download 1 B and 20 MB objects over HTTPS
from an Apache v2 web server with a self-signed x.509
certificate. We repeat each test 25 times.
While our testbed allows us to explore many param­

eters within the design space, Android’s VPN security
model precludes full automation of our experiments as
it requires user interaction to enable/disable the tun
interface. We focus on the impact of max idle cycles
and idle sleep and fix max readtun and max readnio to

6

0

10

20

30

40

50

0 50 100 150
idle_sleep (ms)

C
P

U
 (

%
)

max_idle_cycles

1

10

100

200

Figure 3: Haystack’s CPU overhead for different
max idle cycles and idle sleep configurations. The horizon­
tal line indicates the aggregated average CPU load of all
apps running on the background for reference.

100 packets which favors downlink traffic.

5.2 CPU and Power Overhead
CPU usage impacts interactivity of foreground apps

and as a result, the user experience. We therefore
investigate the impact of how idle a device must be
before starting periodic polling (for a maximum of
max idle cycles cycles) and how often we poll for new
traffic after a device is deemed idle (idle sleep ms) on
CPU load and battery life.

CPU load: Mobile phones remain idle most of the
time [17, 61]. As a result, optimizing Haystack’s per­
formance in this scenario is essential to minimize its
impact on limited system resources, in particular on
battery life. The base CPU usage of the Nexus 5 is
2% in the absence of Haystack, when the system is
idle with its screen off and normal background activ­
ity from installed apps. Figure 3 shows the impact of
max idle cycles and idle sleep on CPU usage when en­
abling Haystack. We find that idle sleep has the most
significant effect on CPU load, which is unsurprising
as this parameter dictates how long the app sleeps and
therefore does not consume CPU. With idle sleep set to
1 ms, the CPU load varies between 45% and 55% for
different values of max idle cycles with the Forwarder
polling the interfaces at a high frequency. CPU usage
drops sharply as we increase idle sleep, to 10.5% and
4.6% with idle sleep at 10 ms and 25 ms, respectively.
In contrast to idle sleep, max idle cycles shows little in­
fluence on CPU overhead, particularly at idle sleep val­
ues greater than 10 ms. This is because we measure
max idle cycles in loop cycles (cf. Figure 2) which take
a small fraction of 1 ms each. For idle sleep of 100 ms
and max idle cycles of 10 or 100 cycles the overhead of
Haystack is negligible, with the CPU usage close to the
base CPU usage (horizontal line in Figure 3). We con­
sider an idle sleep value of 100 ms ideal for operating
during idle periods (delay-tolerant) and an idle sleep
value of 10 ms during interactive periods. In the follow­
ing subsections, we will evaluate the impact of idle sleep
in traffic performance.

Test Case Power(mW) Mean/SD Increase
Idle 1,089.6 / 125.9

+3.1%
Idle (Haystack) 1,123.8 / 150.4
YouTube 1,755.3 / 35.5

+9.1%
YouTube (Haystack) 1,914.4 / 16.1

Table 2: Power consumption of Haystack when
max idle cycles is 100 cycles and idle sleep is 1 ms in differ­
ent scenarios. The percentage indicates the increase when
running Haystack.

packet1

tproctbuff

packet2packet1

idle_cycles

tproc

Time
idle_sleep (ms)

cpu active

cpu inactive

idle_sleep (ms)

outgoing packet

incoming packet

tproc

tbuff Packet Buffering Time

Packet Processing Time

Figure 4: Latency added by idle sleep and max idle cycles
on packets arriving during periods of activity, or inactivity.

User experience during interactive periods: We
next profile Haystack’s overhead under heavy load. To
do so we run Haystack and stream a 1080p YouTube
video. This stresses packet forwarding, CPU usage, and
the TLS Proxy, since YouTube delivers the video over
TLS. Crucially, we do not observe delay, rebuffering
events, or noticeable change in resolution during the
video replay, suggesting that Haystack’s performance
can keep up with demanding applications.

Power consumption: We use the Monsoon Power
Monitor [46] to directly measure the power consumed
by Haystack on a BLU Studio X Plus phone running
Android 5.0.2. 3 We removed the battery and replaced
it with the power meter set to emulate the phone’s
standard 3.8V battery. We then record the power
consumed during various situations. Table 2 summa­
rizes the results for each scenario across 10 trials with
max idle cycles set to 100 cycles and idle sleep set to
1 ms. This configuration represents the worst-case (cf.
Figure 3) as Haystack sleeps for only 1 ms before polling
the interfaces again. Unfortunately, due to hardware
limitations, we could not measure Haystack’s power
consumption with the screen off but, for that scenario,
we can use Haystack’s CPU overhead as a proxy [61].
During idle periods with the screen active, Haystack in­
creases power consumption by 3% (similar to the CPU
increase). The overhead of Haystack increases to 9%
while streaming a YouTube video.

5.3 Latency Overhead
Haystack suspends polling during periods of inactiv­

ity to conserve battery. However, suspending polling

3We faced several instrumentation challenges that impeded
measuring Haystack’s power consumption on a Nexus 5.

7

0

50

100

150

0 50 100 150 200
idle_sleep (ms)

U
D

P
 R

T
T

 (
m

s)

max_idle_cycles 1 10 100 200

0

100

200

300

400

0 50 100 150 200
idle_sleep (ms)

T
C

P
 C

on
ne

ct
io

n
 T

im
e

(m
s)

max_idle_cycles 1 10 100 200

10

20

30

40

50

Downlink with
TA disabled

Downlink with
TA enabled

Uplink with
TA disabled

Uplink with
TA enabled

T
hr

ou
gh

pu
t (

M
bp

s)

idle_sleep

10

100

(a) UDP latency. (b) TCP connection time. (c) TCP Throughput.

Figure 5: Haystack performance (UDP latency, TCP connection time, and TCP throughput) for different idle sleep and
max idle cycles configurations. For the throughput evaluation, we fix max idle cycles to 100 cycles, also showing the impact
of enabling the TA. The maximum TCP throughput for this link is 73 and 83 Mbps uplink and downlink, respectively.

also increases latency for packets that arrive during loop
suspension, as illustrated in Figure 4. In the figure,
the packet that arrives during the first idle sleep pe­
riod endures the remainder of the idle period (tbuff),
in addition to the forwarding time (tproc), which in­
cludes looking up relevant header state and translating
between the layer 3 tun interface and layer 4 NIO sock­
ets. However, the packet that arrives when polling is
active does not experience the idle period overhead.
We now analyze the latency incurred by packets when

running Haystack. Specifically, we focus on the im­
pact of max idle cycles and idle sleep and the trade-
off between latency and CPU overhead. Figure 5(a)
shows the results of our experiments for UDP. When
max idle cycles =1 cycle the latency closely follows
idle sleep because Haystack’s aggressive sleeping ren­
ders it more likely for packets to arrive when the system
is idle, therefore delaying them for up to idle sleep ms
before being processed. With max idle cycles =100 cy­
cles and idle sleep =100 ms we find about 60 ms of
extra delay. Reducing idle sleep to 10 ms while keep­
ing max idle cycles at 100 cycles reduces latency to as
low as 3.4 ms. We find similar patterns for TCP con­
nections. In Figure 5(b) we plot connection establish­
ment times for the TCP echo client and server. As ex­
pected, high values of max idle cycles and coupled with
low idle sleep settings results in quicker connection es­
tablishment. In fact, when the RTT of the link drops
below the time it takes to reach max idle cycles cycles,
Haystack processes all packets in the TCP handshake
without the Forwarder going into idle state.
Finally, we consider the latency incurred by a packet

during processing and forwarding (tproc). To get a sense
of how the latter affects performance, we evaluate tproc

while running our speed-test app. Table 3 shows the re­
sults of our speed-test for TCP and UDP connections.
Processing times for established flows are 141 µs for
TCP and 76 µ s for UDP, indicating that the packet for­
warding is not a bottleneck for Haystack’s performance.
The processing times for new connections prove larger,
especially for TCP, because of the overhead of initiating
state for the connection.

Downlink Uplink New Flow
TCP tproc (µ s) 141.6±0.5 275.6±3.5 5,647.8±998.5
UDP tproc (µ s) 76.6±2.2 230.8±4.8 2,980.8±224.9

Table 3: Mean processing time (tproc) and standard error of
mean (SEM) for Haystack’s forwarding operations for TCP
and UDP flows under stress conditions. The first packet of
a new flow requires a higher processing time.

5.4 Throughput of Haystack
We now investigate the maximum throughput the

system can achieve. We use our speed-test app to mea­
sure the throughput for non-TLS TCP and UDP flows
with idle sleep ={10 ms, 100 ms} and max idle cycles
=100 cycles. This setting provides us with a good com­
promise between CPU usage and latency.
Figure 5(c) shows the maximum throughput achieved

by Haystack’s Forwarder. We find that Haystack can
provide up to 17.2 and 54.9 Mbps uplink and downlink
throughput, respectively. As expected, when idle sleep
increases the throughput decreases, as more packets ar­
rive with the Forwarder in idle state, thus incurring
tbuffer (cf. Figure 4). Haystack also has a bias to­
wards downstream traffic, which stems from two factors.
First, as we discuss in §4.1, the NIO read operation
may potentially return multiple packets whereas the
tun interface reads only a single packet at a time. Sec­
ond, the operations required for upstream packets tproc

are more computationally expensive (see Table 3). We
plan to investigate how we can adapt the max readnio

and max readtun parameters to achieve more balanced
throughput in future work. We note that the perfor­
mance we report is still in excess of what is required for
modern mobile apps.
Although the TA operates off-path, the use of thread-

safe queues to enable communication between the For­
warder and the TA and its CPU intensive operations
can inflict significant overhead on traffic throughput.
As an example analysis task we consider string match­
ing using the Aho-Corasick algorithm [9] on the traf­
fic to detect tracking. Figure 5(c) shows TA’s impact
on throughput when performing CPU-intensive string
matching on each flow. In the worst case, Haystack pro­

8

100

200

300

400

500

Haystack Disabled Haystack with TA and
 TLS disabled

Haystack with TA and
TLS enabled

T
LS

 E
st

ab
lis

hm
en

t
T

im
e

(m
s)

idle_sleep 10 100 n/a

(a) TLS session establishment time.

10

20

30

40

Haystack Disabled Haystack with TA and
TLS disabled

Haystack with TA and
 TLS enabled

T
LS

 D
ow

nl
in

k
T

hr
ou

gh
pu

t (
M

bp
s)

(b) TLS download speeds.

Figure 6: Session establishment and throughput for TLS
with Haystack for different idle sleep configurations, also
showing the impact of enabling both the TLS proxy and
the TA. We fix max idle cycles to 100 cycles.

vides 23.3 Mbps downstream and 10.5 Mbps upstream
throughput. Even when stress-testing Haystack with
our speed-test, the maximum queuing time endured by
packets before the string parsing engine processes them
does not exceed 650 ms. This worst-case scenario arises
when the queues contain a backlog of at least 1,000
packets. Even under such circumstances, the total pro­
cessing time remains low enough to provide feedback
to users about their traffic in less than a second (e.g.,
exfiltrated private information).
There remains significant potential for improving the

overhead imposed by the TA. In particular, we plan to
investigate better means of communicating between the
Forwarder and the TA (e.g., via Android’s IPC [12]) to
make it more efficient than the thread-safe queue we
currently employ.

5.5 TLS Performance in Haystack
We next turn to the overhead of dealing with en­

crypted communication. Figure 6 summarizes the over­
head of the TLS proxy for different configurations. We
first consider the baseline overhead of Haystack without
the TLS proxy enabled on TLS connection establish­
ment times, as shown in Figure 6(a). With an idle sleep
of 10 ms the TLS connection establishment time is
218 ms. Increasing idle sleep to 100 ms has a large
effect, doubling the TLS establishment time (466 ms).
Using the TLS proxy further increases establishment
time to 653 ms with idle sleep at 10 ms, and 503 ms
with idle sleep at 100 ms.

We next assess the overhead of the TLS proxy on
throughput, as shown in Figure 6(b). Compared to not
running Haystack at all, the overhead of the TLS proxy
is 26% and 29% for idle sleep = 10 ms and 100 ms, re­
spectively. Despite the decrease in throughput, overall
throughput with the TLS proxy is still 26 Mbps, which
(as discussed in §5.2) allows playing a 1080p YouTube
video without affecting the user experience. We find
idle sleep has little impact on throughput since subse­
quent packets bring the Forwarder out of the idle state,
thus avoiding tbuffer for the bulk of the transfer. The
fact that the TLS proxy reassembles the streams for the
idle sleep also helps reduce the overhead.

5.6 Using Haystack to Measure Performance
Haystack’s Forwarder parameters can affect

Haystack’s ability to accurately measure network
performance. This section compares Haystack’s ability
to assess traffic and network performance with tcpdump
packet-level timestamps on a rooted phone. For these
experiments, we instrument a rooted mobile device
with an Android app that performs 500 UDP-based
DNS queries to 8.8.8.8 for [nonce].stonybrook.edu.
The nonce ensures that all queries bypass any in­
termediate cache. We perform the DNS lookups in
two different settings: (i) when the DNS traffic goes
directly through the default gateway, and (ii) when
Haystack forwards the DNS traffic. This allows us to
calibrate Haystack by comparing actual performance
as seen by user-space apps with passive measurements
as seen by Haystack.
We use idle sleep =0 ms and max idle cycles =200 cy­

cles so that we can minimize packet wait time and
to prevent blocking on a given interface at the ex­
penses of increasing the CPU load. We send the
queries sequentially and with random inter-query de­
lays of 250 ms + rand(0, 400) ms, over a stable, well-
provisioned WiFi link. The random delay ensures that
packets are not queued and that we are sampling the
times in different polling states of Haystack (recall Fig­
ure 4). We factor out transient effects in the network by
computing the difference between measurements made
by Haystack, those made by the Android app, and those
obtained via tcpdump. Figure 7 shows the difference
between our user-level measurements and the reference
tcpdump measurements. Table 4 summarizes these dif­
ferences. The difference between Haystack’s observa­
tion of DNS latency and the Android app is small, with
mean and median values differing by less than 50 µs. We
find similar results over a cellular link, which we expect
because the measured overheads stem from the Java
virtual machine and Haystack, not from varying net­
work conditions. The magnitude of the differences we
observe remains orders of magnitude smaller than typ­
ical mobile network delays, making Haystack suitable

9

http:nonce].stonybrook.edu

500 1000 2000 5000 10000

0.00

0.25

0.50

0.75

1.00

App − tcpdump
Haystack − tcpdump

Time (microseconds)

C
D

F

Figure 7: Difference between DNS lookup times as mea­
sured by a Java-based application (red line) and by Haystack
(blue line), both compared to tcpdump. The cross between
the red line and the blue line is likely due to instabilities
in measuring from the application that is introduced by the
Java VM on Android. The analysis confirms Haystack as a
valid user space performance measurement platform.

Mean Median StDev
Haystack-tcpdump 1, 261µs 1, 254µs 303µs

App-tcpdump 1, 250µs 1, 211µs 658µs

Table 4: Detail statistics of the distribution shown in Fig­
ure 7.

for fine-grained network performance measurements.

5.7 Haystack Adaptability
Above we demonstrate the tradeoffs between re­

source usage and performance of Haystack as controlled
by varying max idle cycles and idle sleep parameters.
While we find no sweet spot that is ideal in all circum­
stances, our observations point to three possible ways to
adapt Haystack’s operation to the current device state.

Adapting parameters: Our first technique for re­
ducing Haystack’s overhead is adapting the parame­
ters to different usage scenarios to strike a balance
for the current device state. We consider two scenar­
ios: (i) when the user interacts with the device or
in the presence of latency-sensitive background traf­
fic (e.g., streaming audio), and (ii) when the phone
is idle with minimal network activity (e.g., push no­
tifications), a critical scenario as phones remain idle
the majority of time [17, 61]. In the first case, min­
imizing latency and guaranteeing the best user expe­
rience is critical (“performance” mode), whereas in
the second case, traffic is delay tolerant (“low-power”
mode) [17]. Based on our results we determine that
idle sleep = 10 ms and max idle cycles = 100 cycles
gives the best tradeoff of performance and resource us­
age for delay-sensitive usage and idle sleep = 100 ms
and max idle cycles = 100 cycles gives the best tradeoff
during delay-insensitive usage. Table 5 summarizes the
overheads and performance for each of these settings.

Sampling: A second way to reduce the overhead of
Haystack is to sample a fraction of the connections or
application sessions to fully analyze. This has the usual
costs and benefits of sampling: lower resource usage

(e.g., by not requiring the TA to do as much work) on
the one hand and less coverage on the other hand. We
believe that users likely care most about the apps and
networks they use regularly and therefore while sam­
pling may take longer to uncover issues, these issues
will in fact be uncovered due to high usage.

Targeting: A final technique to reduce the overhead
of Haystack is to allow users to instruct Haystack to
only consider certain apps. For instance, this may be
useful when the user installs a new app and wants to
understand what information it may leak.

6. ADVANTAGES OF HAYSTACK
As we illustrate in §2, the research community has

focused much attention on understanding mobile de­
vices and networks. These previous efforts have pro­
duced many significant insights. We now turn to dis­
cussing Haystack’s advantages—for both researchers
and users—relative to the state-of-the-art in mobile
measurement and app profiling. We describe Haystack
capabilities, as well as early results culled from data col­
lected by the 450 users who have installed Haystack to
date. We summarize our initial dataset in Table 6. We
stress that these are not full-fledged measurement stud­
ies and are presented for illustrative purposes. Finally,
we note that while we discuss Haystack’s capabilities
in isolation they can often be used together to an even
greater effect.

Unprecedented View of Encrypted Traffic:
Haystack’s TLS proxy allows analysis—with the user’s
permission—of encrypted communication. This infor­
mation remains opaque to other methodologies (e.g.,
ISP network traces) or requires trusting a third-party
middleman to decrypt and correctly re-encrypt traf­
fic while protecting the clear-text version (e.g., remote
VPN endpoints). This visibility is significant as we find
that in our dataset 22% of the flows are encrypted and
less than 20% of apps send all their traffic in the clear.
Therefore, gaining an understanding of the information
flow within the mobile ecosystem critically depends on
being able to cope with encrypted traffic.

Unprecedented View of Local Traffic: Haystack
can naturally observe local network traffic that never
traverses the wide-area network. This traffic does not
appear in ISP network traces [27,62] and methodologies
that rely on remote VPN tunnels [52]. This capability
will only increase in importance given the emergence
of Internet-Of-Things (IoT) devices in the household,
typically using mobile devices for control. Our dataset
includes 40 apps that generate local traffic, ranging from
baby monitors to media servers to smart TV remote
control apps.

Representative View of Apps: When trying to un­

10

Mode idle sleep max idle cycles
Mean UDP
RTT (ms)

Mean TCP
Conn. Time

(ms)

Mean TLS
Conn. Time

(ms)

Max. Throughput
[Up/Down] (Mbps)

Mean
CPU (%)

Performance 10 100 5.4 24.8 313.1 17.2/54.9 11.2
Low-power 100 100 60.8 65.3 505.3 16.7/48.2 2.7

Table 5: Summary of Haystack’s performance for each operational mode in a 5 GHz WiFi link with 3 ms RTT.

Users Apps Total Flows Domains
450 1,340 942,836 8,710

Table 6: Summary and scale of our user study.

derstand app behavior a natural first question concerns
finding a set of apps to study. Haystack answers this
question quite simply by considering the natural set of
apps each user executes. For other methodologies—
such as static and dynamic analysis—the set of apps
considered often results from a crawl of the Google Play
store. However, this neglects built-in apps and apps
from non-standard or alternative app stores [23], as well
as behavioral changes caused by new app updates. Fur­
ther, such studies frequently exclude non-free apps or
code paths that stem from an in-app purchase [23, 24].
Haystack includes all of these aspects naturally.
Our initial data suggests analyzing these apps is im­

portant. We find 15% of the apps we observe did not
come from the Google Play store and include (i) apps
developed by large and small device vendors and mobile
carriers, (ii) pre-installed third-party apps (e.g., Kineto,
a Wifi calling app [4]) and (iii) apps downloaded from
alternate or regional app stores [50]. These apps create
22% of the traffic we observe. Further, we find that
3.7% of the apps in Google Play are not free and 29%
of the apps include in-app purchases. Both of these
represent code paths often skipped when studying app
behavior, but which Haystack considers as a matter of
course. Finally, we find that apps not originating from
the Google Play store do in fact leak personal informa­
tion and unique identifiers (e.g., to third-party tracking
services such as Crashlytics).

Representative Code Paths: Related to the last
point is that Haystack naturally deals with common and
esoteric code paths. Dynamic analysis requires manual
navigation within apps, oftentimes synthetically gener­
ated via UI Monkeys [66]. The results in turn prove
sensitive to details of this test navigation. Haystack
does not suffer from this problem because the interac­
tions observed reflect the natural way that the user in­
teracts with the app. Therefore, even though Haystack
will never know that some unused code path is nefari­
ous, it does not matter to that user because that user
never invokes the problematic case. On the contrary,
a dynamic analysis test case might miss some buried
feature that gets exercised by real users—in which case
Haystack will catch networking activity resulting from
that code path.

User Involvement: Haystack’s position on user de­

vices provides the capability to engage users in novel
ways that benefit both research into the mobile ecosys­
tem, but also the users themselves. For instance,
users could be given the option to opt-in to assist­
ing researchers assessing Quality-of-Experience (QoE)
of their normal traffic. Combining qualitative user
feedback with quantitative measurements of the traf­
fic could be a powerful combination that brings many
insights to this space. Another case where direct in­
teraction helps the user is in understanding the leakage
of personal information from the phone. By exposing
this information to users they can make more informed
decisions about what apps to use or what permissions
to grant to specific apps.

Novel Policy Enforcement: Haystack’s position be­
tween apps and the network provides for a unique abil­
ity to implement policy before traffic leaves the mo­
bile device. While Haystack can certainly enforce tra­
ditional network policies—e.g., blocking access to spe­
cific IP addresses or hostnames, or rate-limiting certain
traffic—the insight into app content means the policies
can be more semantically rich (e.g., blocking based on
attempted leaking of a specific piece of information like
the IMEI to an untrusted online service). Further, poli­
cies can be richer than simple blocking decisions. For
instance, specific traffic could be sent through a VPN
tunnel or an anonymization network. Or, particular
sensitive elements of the contents could be obfuscated
(e.g., providing a random IMEI to each app to hinder
cross-app tracking).

Enabling Reactive Measurement: Haystack is
not beholden to naturally occurring traffic, but
can trigger its own active measurements as needed.
These measurements—taken from the device’s natural
perspective—could be proactive in an attempt to bet­
ter understand the current network context. Alterna­
tively, active measurements could be taken reactively
[10] based on some observation—e.g., to diagnose slow
transfers or delay spikes. Finally, active measurements
could explore “what if” sorts of analysis that could in
turn be used to tune the device’s operation for bet­
ter performance. For instance, Haystack could explore
whether an alternate DNS resolver would yield faster or
better answers compared with the standard resolver.

Explicitness Leading To Precision: Many of the
problems in measuring the mobile ecosystem stem from
the need to infer or estimate various aspects of the com­
munication. Haystack gets around many of these prob­

11

0.00

0.25

0.50

0.75

1.00

0 10 20
3rd party services per app

C
C

D
F

Service type
Ad network
All
Analytic service
Other

Figure 8: Distribution of the number of third-party ser­
vices per app across our dataset.

lems because it operates within explicit context from
the mobile operating system. For instance, instead of
inferring a device’s phone number, Haystack has a di­
rect understanding of the value and therefore can di­
rectly hunt for it in the traffic instead of searching for
something that “looks like” a phone number and then
trying to determine if that is in fact the device’s phone
number or not.
As another example, Haystack is able to directly at­

tribute traffic flows to apps rather than using heuristics
or inferences. Within our dataset we use this ability
to detect apps that use third-party services—for myr­
iad reasons, including ad delivery, analytics, alternative
push notifications [3]—at the network level. While a
simple app-agnostic count of accesses to specific ser­
vices provides some understanding of popular services,
this method leaves ambiguous whether the popularity
stems from broad use across apps or simply use by pop­
ular apps. Haystack can directly answer this question.
Figure 8 shows the distribution of the number of third-
party services used per app across our dataset. By rank­
ing the online services by the number of apps connecting
to them, we can see that Crashlytics and Flurry are the
most common third-party services across our corpus of
mobile apps.

Large-Scale Deployment: Haystack’s operation as
a normal user-level app that does not require rooting
a device or a custom firmware version means the bar­
rier to entry for using Haystack is low. This is useful
for research purposes as we can coax more users to the
platform than a more cumbersome tool would require.
Further, the platform gives us a direct path to moving
beyond research and to actually helping normal users
understand the operation of their devices that simply
would not be possible if users had to jump through sig­
nificant hoops to install and use Haystack. These two
aspects feed a virtuous circle: more users provide more
data that we can leverage to increase users’ understand­
ing, which in turn provides a larger incentive to entice
additional users.
While each of the above are advantages in their own

right, they become even more powerful when combined.
For instance, Haystack has the power to understand
that a specific app is trying to leak their phone number

to some IoT device in their house within an encrypted
connection. Further, this understanding could be com­
municated to the user, as well as serving as fodder for
a policy that thwarts such activity in the future. Each
aspect of this example is either impossible with current
techniques or at least requires inference and heuristics.

7. DISCUSSION AND FUTURE WORK
In §6 we have discussed how Haystack’s features pro­

vide an unprecedented window into the mobile ecosys­
tem. Haystack shares traits of other network monitor­
ing/measurement platforms we maintain [8,43], increas­
ing our confidence that Haystack’s architecture provides
a solid basis for future exploration. Since many enter­
prise and mobile device management solutions rely on
the VPN permission, we also expect that Android will
continue to support it.
While Haystack’s implementation runs on the An­

droid, support on other platforms proves feasible: re­
cent iOS releases offer underlying API primitives simi­
lar to those enabling Haystack on Android [15]. In fact,
given iOS’s tighter technical constraints to app devel­
opment (e.g., preventing Taintdroid-like approaches),
Haystack’s approach provides a promising avenue for
investigating the iOS ecosystem.
We stress that the applications of Haystack sketched

in this paper serve to exemplify its abilities as a traffic
inspection platform, not as a step in the network se­
curity arms race. For example, we do not advocate
Haystack as a full-blown TLS inspector—rather, we
demonstrate that the platform supports development
in this direction to a point that can readily provide in­
teresting results.
We are currently exploring ways to open up Haystack

to the research and app developer communities. By
further separating the Forwarder and Traffic Analyzer
components we can establish access to the device’s traf­
fic streams for other apps, effectively providing a proxy
to the absent “packet capture” permission on Android.4

In doing so, we can overcome an additional constraint
of Android’s security model, namely that only a single
VPN app can run at any given time.
We acknowledge that opening up Haystack’s capabil­

ities to third-party apps would raise grave security con­
cerns, as malicious apps may abuse Haystack’s capabil­
ities for nefarious purposes. We defer full treatment to
future work and here only mention that Android’s cus­
tom permissions model [58] provides avenues for making
access to these new capabilities controllable by the user.
We are planning to open-source the Haystack code-

base, and will make anonymized data collected by
Haystack available online via a web-based query inter­
4Personal communication with the Google Android team
suggests that this option remains unlikely to ever materialize
directly in the Android OS.

12

face similar to ReCon [53] or Censys.io [1].

8.	 SUMMARY
We have presented the design, implementation, and

evaluation of Haystack, a multi-purpose mobile vantage
point for Android devices built on top of Android’s VPN
permission. As Haystack runs completely in user-space,
it enables large-scale measurements of real-world mobile
network traffic from end-user devices, with organic user
and network input.
Through extensive evaluation, we have demonstrated

that Haystack realizes a flexible mobile measurement
platform that can deliver sufficient performance with
modest resource overhead and minimal impact on user
activity when compared to state-of-the-art methods
that rely on static and dynamic analysis.
Haystack opens a new horizon in mobile research

by achieving an architectural sweet-spot that makes it
easy to install on regular user phones (thus enabling
large-scale deployment and benefiting from user’s in­
put) while enabling in-depth visibility into device ac­
tivity and traffic (thus providing installation incentives
to the user). Using a deployment to 450 users who in­
stalled the Haystack app from Google’s Play Store, we
demonstrated Haystack’s ability to provide meaningful
insights about protocol usage, its ability to identify se­
curity and privacy concerns of mobile apps, and to char­
acterize mobile traffic performance.

9.	 REFERENCES
[1] Censys. https://censys.io/.
[2] jpcap. A network packet capture library for Java.

http://jpcap.sourceforge.net/.

[3] JPush. http://www.jpush.cn.
[4] Kineto. http://kineto.com.
[5] Maxmind. Geo-IP Java API.

https://github.com/maxmind/geoip-api-java.

[6] MPAndroidChart.

https://github.com/PhilJay/MPAndroidChart.

[7] Networked system ethics.

http://www.networkedsystemsethics.net.

[8] The Bro Network Security Monitor.

http://www.bro.org/.

[9]	 Aho, A., and Corasick, M. Efficient string

matching: an aid to bibliographic search.

Communications of the ACM (1975).

[10]	 Allman, M., and Paxson, V. A reactive
measurement framework. In PAM (2008).

[11] Anand, S., Naik, M., Harrold, M. J., and Yang,
H. Automated concolic testing of smartphone apps. In
ACM SIGSOFT (2012).

[12]	 Android Developer’s Documentation. Binder
IPC. http://developer.android.com/reference/
android/os/Binder.html.

[13]	 Android Developer’s Documentation. Security
tips. using interprocess communications.
http://developer.android.com/training/
articles/security-tips.html#IPC.

[14]	 Android Developer’s Documentation. VPN
Service. http://developer.android.com/reference/
android/net/VpnService.html.

[15]	 Apple Developer’s Documentation. What’s new
in the network extensions and VPN. https://
developer.apple.com/videos/play/wwdc2015/717/.

[16] Au, K. W. Y., Zhou, Y. F., Huang, Z., and Lie,
D. PScout: Analyzing Android permission

specification. In ACM CCS (2012).

[17]	 Aucinas, A., Vallina-Rodriguez, N.,
Grunenberger, Y., Erramilli, V., Papagiannaki,
K., Crowcroft, J., and Wetherall, D. Staying
online while mobile: The hidden costs. In ACM
CoNEXT (2013).

[18] Bermudez, I. N., Mellia, M., Munafò, M. M.,
Keralapura, R., and Nucci, A. DNS to the rescue:
discerning content and services in a tangled web. In
ACM IMC (2012).

[19]	 Blake-Wilson, S., Nystrom, M., Hopwood, D.,
Mikkelsen, J., and Wright, T. Transport layer
security (tls) extensions. Tech. rep., 2006.

[20]	 Boneh, D., Inguva, S., and Baker, I. SSL Man in
the Middle Proxy.
https://crypto.stanford.edu/ssl-mitm/.

[21] Chen, T., Ullah, I., Kaafar, M. A., and Boreli,
R. Information leakage through mobile analytics
services. In ACM HotMobile (2014).

[22] Egele, M., Kruegel, C., Kirda, E., and Vigna,
G. PiOS: Detecting privacy leaks in iOS applications.
In NDSS (2011).

[23]	 Enck, W., Gilbert, P., Chun, B., Cox, L., Jung,
J., McDaniel, P., and Sheth, A. TaintDroid: An
Information-Flow Tracking System for Realtime
Privacy Monitoring on Smartphones. In USENIX
OSDI (2010).

[24]	 Fahl, S., Harbach, M., Muders, T., Smith, M.,
Baumgärtner, L., and Freisleben, B. Why Eve

13

https://crypto.stanford.edu/ssl-mitm
http://developer.android.com/reference
http://developer.android.com/training
http://developer.android.com/reference
http:http://www.bro.org
http://www.networkedsystemsethics.net
https://github.com/PhilJay/MPAndroidChart
https://github.com/maxmind/geoip-api-java
http:http://kineto.com
http:http://www.jpush.cn
http:http://jpcap.sourceforge.net
http:https://censys.io
http:Censys.io

and Mallory love Android: An analysis of Android
SSL (in) security. In ACM CCS (2012).

[25]	 Falaki, H., Lymberopoulos, D., Mahajan, R.,
Kandula, S., and Estrin, D. A first look at traffic
on smartphones. In ACM IMC (2010).

[26]	 Georgiev, M., Iyengar, S., Jana, S., Anubhai,
R., Boneh, D., and Shmatikov, V. The most
dangerous code in the world: Validating ssl certificates
in non-browser software. In ACM CCS (2012).

[27]	 Gill, P., Erramilli, V., Chaintreau, A.,
Krishnamurthy, B., Papagiannaki, K., and
Rodriguez, P. Follow the money: Understanding
economics of online aggregation and advertising. In
ACM IMC (2013).

[28]	 Google Play. FCC SpeedTest.
https://play.google.com/store/apps/details?id=
com.samknows.fcc.

[29]	 Google Play. MobiPerf. https://play.google.
com/store/apps/details?id=com.mobiperf.

[30]	 Google Play. My Speed Test. https://play.
google.com/store/apps/details?id=com.num.

[31]	 Google Play. NameHelp.
https://play.google.com/store/apps/details?id=
edu.northwestern.aqualab.namehelp.

[32]	 Google Play. Netalyzr.
https://play.google.com/store/apps/details?id=
edu.berkeley.icsi.netalyzr.android.

[33]	 Google Play. Noroot firewall.
https://play.google.com/store/apps/details?id=
app.greyshirts.firewall&hl=en.

[34]	 Google Play. Ookla SpeedTest.
https://play.google.com/store/apps/details?id=
org.zwanoo.android.speedtest.

[35]	 Google Play. OpenSignal Maps.
https://play.google.com/store/apps/details?id=
com.staircase3.opensignal.

[36]	 Google Play. Packet Capture.
https://play.google.com/store/apps/details?id=
app.greyshirts.sslcapture.

[37]	 Google Play. tPacketCapture.
https://play.google.com/store/apps/details?id=
jp.co.taosoftware.android.packetcapture.

[38]	 Hornyack, P., Han, S., Jung, J., Schechter, S.,
and Wetherall, D. These aren’t the droids you’re
looking for: Retrofitting android to protect data from
imperious applications. In ACM CCS (2011).

[39]	 Huang, J., Qian, F., Mao, Z. M., Sen, S., and
Spatscheck, O. Screen-off traffic characterization
and optimization in 3G/4G networks. In ACM IMC
(2012).

[40]	 ICSI - Google Play. Haystack app.
https://play.google.com/apps/testing/edu.
berkeley.icsi.haystack.

[41]	 J. Sommers and Paul Barford. Cell vs. WiFi: on
the performance of metro area mobile connections. In
ACM IMC (2012).

[42]	 Kakhki, A. M., Razaghpanah, A., Li, A., Koo,
H., Golani, R., Choffnes, D., Gill, P., and
Mislove, A. Identifying Traffic Differentiation in
Mobile Networks. ACM IMC (2015).

[43]	 Kreibich, C., Weaver, N., Nechaev, B., and
Paxson, V. Netalyzr: Illuminating the edge network.
In Proceedings of the ACM Internet Measurement
Conference (IMC) (Melbourne, Australia, November
2010), pp. 246–259.

[44] Le, A., Varmarken, J., Langhoff, S., Shuba, A.,

Gjoka, M., and Markopolou, A. AntMonitor: A
System for Monitoring from Mobile Devices. In ACM
C2B1D (2015).

[45]	 Leontiadis, I., Efstratiou, C., Picone, M., and
Mascolo, C. Don’t kill my ads!: balancing privacy in
an ad-supported mobile application market. In ACM
HotMobile (2012).

[46] Monsoon Power Monitor. http:
//www.msoon.com/LabEquipment/PowerMonitor/.

[47]	 Nikravesh, A., Yao, H., Xu, S., Choffnes, D.,
and Mao, Z. M. Mobilyzer: An open platform for
controllable mobile network measurements. In ACM
MobiSys (2015).

[48]	 Oracle. New i/o apis. http://docs.oracle.com/
javase/1.5.0/docs/guide/nio/index.html.

[49]	 Perta, V. C., Barbera, M. V., Tyson, G.,
Haddadi, H., and Mei, A. A glance through the vpn
looking glass: Ipv6 leakage and dns hijacking in
commercial vpn clients. PETS (2015).

[50]	 Petsas, T., Papadogiannakis, A.,
Polychronakis, M., Markatos, E., and
Karagiannis, T. Rise of the planet of the apps: A
systematic study of the mobile app ecosystem. In
Proceedings of ACM IMC (2013).

[51]	 Qian, F., Wang, Z., Gerber, A., Mao, Z., Sen, S.,
and Spatscheck, O. Profiling resource usage for
mobile applications: a cross-layer approach. In ACM
MobiSys (2011).

[52]	 Rao, A., Sherry, J., Legout, A.,
Krishnamurthy, A., Dabbous, W., and
Choffnes, D. Meddle: Middleboxes for Increased
Transparency and Control of Mobile Traffic. In ACM
CoNEXT Student Workshop (2012).

[53]	 Ren, J., Rao, A., Lindorfer, M., Legout, A.,
and Choffnes, D. ReCon: Revealing and
Controlling PII Leaks in Mobile Network Traffic . In
ACM MobiSys (2016).

[54]	 Samsung. KNOX VPN SDK.
https://seap.samsung.com/sdk/knox-vpn-android.

[55]	 Seneviratne, S., Kolamunna, H., and
Seneviratne, A. A measurement study of tracking in
paid mobile applications. In ACM WiSec (2015).

[56]	 Seneviratne, S., Seneviratne, A., Kaafar, M.,
Mahanti, A., and Mohapatra, P. Early detection
of spam mobile apps. In WWW (2015).

[57]	 Shafiq, Z., Ji, L., Liu, A., Pang, J.,
Venkataraman, S., and Wang, J. A first look at
cellular network performance during crowded events.
In ACM SIGMETRICS (2013).

[58]	 Six, J. An in-detph introduction to the android
permission model.
https://www.owasp.org/images/c/ca/ASDC12­
An_InDepth_Introduction_to_the_Android_
Permissions_Modeland_How_to_Secure_
MultiComponent_Applications.pdf.

[59]	 Song, Y., and Hengartner, U. Privacyguard: A
vpn-based platform to detect information leakage on
android devices. In Proceedings of the 5th Annual
ACM CCS Workshop on Security and Privacy in
Smartphones and Mobile Devices (2015).

[60]	 Vallina-Rodriguez, N., Aucinas, A., Almeida,
M., Grunenberger, Y., Papagiannaki, K., and
Crowcroft, J. RILAnalyzer: a comprehensive 3G
monitor on your phone. In ACM IMC (2013).

[61]	 Vallina-Rodriguez, N., and Crowcroft, J.
Energy management techniques in modern mobile

14

https://www.owasp.org/images/c/ca/ASDC12
https://seap.samsung.com/sdk/knox-vpn-android
http:http://docs.oracle.com
www.msoon.com/LabEquipment/PowerMonitor
https://play.google.com/apps/testing/edu
https://play.google.com/store/apps/details?id
https://play.google.com/store/apps/details?id
https://play.google.com/store/apps/details?id
https://play.google.com/store/apps/details?id
https://play.google.com/store/apps/details?id
https://play.google.com/store/apps/details?id
https://play.google.com/store/apps/details?id
https://play
https://play.google
https://play.google.com/store/apps/details?id

handsets. IEEE Communications Surveys & Tutorials
(2012).

[62]	 Vallina-Rodriguez, N., Shah, J., Finamore, A.,
Grunenberger, Y., Papagiannaki, K., Haddadi,
H., and Crowcroft, J. Breaking for commercials:
characterizing mobile advertising. In ACM IMC
(2012).

[63]	 Vallina-Rodriguez, N., Sundaresan, S.,
Kreibich, C., Weaver, N., and Paxson, V.
Beyond the radio: Illuminating the higher layers of
mobile networks. In ACM MobiSys (2015).

[64]	 Vigneri, L., Chandrashekar, J., Pefkianakis, I.,
and Heen, O. Taming the Android AppStore:
Lightweight Characterization of Android Applications.
ArXiv e-prints (2015).

[65]	 Wijesekera, P., Baokar, A., Hosseini, A.,
Egelman, S., Wagner, D., and Beznosov, K.
Android permissions remystified: a field study on
contextual integrity. In USENIX Security (2015).

[66]	 Wong, M. Y., and Lie, D. Intellidroid: A targeted
input generator for the dynamic analysis of android
malware.

[67]	 Yang, Z., Yang, M., Zhang, Y., Gu, G., Ning, P.,
and Wang, X. AppIntent: analyzing sensitive data
transmission in android for privacy leakage detection.
In ACM CCS (2013).

[68]	 Zhang, Y., Yang, M., Xu, B., Yang, Z., Gu, G.,
Ning, P., Wang, X., and Zang, B. Vetting
Undesirable Behaviors in Android Apps with
Permission Use Analysis. In ACM CCS (2013).

15

