
Killed by Proxy:

Analyzing Client-end TLS Interception Software

Xavier de Carné de Carnavalet and Mohammad Mannan

Concordia Institute for Information Systems Engineering

Concordia University, Montreal, Canada

{ }@ciise.concordia.ca

Abstract—To filter SSL/TLS-protected traffic, some antivirus
and parental-control applications interpose a TLS proxy in the
middle of the host’s communications. We set out to analyze such
proxies as there are known problems in other (more matured)
TLS processing engines, such as browsers and common TLS
libraries. Compared to regular proxies, client-end TLS proxies
impose several unique constraints, and must be analyzed for
additional attack vectors; e.g., proxies may trust their own root
certificates for externally-delivered content and rely on a custom
trusted CA store (bypassing OS/browser stores). Covering existing
and new attack vectors, we design an integrated framework to
analyze such client-end TLS proxies. Using the framework, we
perform a thorough analysis of eight antivirus and four parental-
control applications for Windows that act as TLS proxies, along
with two additional products that only import a root certificate.
Our systematic analysis uncovered that several of these tools
severely affect TLS security on their host machines. In particular,
we found that four products are vulnerable to full server
impersonation under an active man-in-the-middle (MITM) attack
out-of-the-box, and two more if TLS filtering is enabled. Several
of these tools also mislead browsers into believing that a TLS
connection is more secure than it actually is, by e.g., artificially
upgrading a server’s TLS version at the client. Our work is
intended to highlight new risks introduced by TLS interception
tools, which are possibly used by millions of users.

I. INTRODUCTION

Several antivirus and parental control software tools an
alyze client-end traffic, including HTTPS traffic, before it
reaches browsers for reasons including: eliminating drive-
by downloads, removing unwanted advertisements, protecting
children’s online activities by blocking access to unwanted
websites, or simply hiding swear words. Such tools are pos
sibly used by millions of users (cf. [30]); sometimes they are
installed by OEMs on new computers (perhaps unbeknownst
to the user), often downloaded/purchased by users, and after
installation, remain active by default (although may not always
perform filtering).

To analyze encrypted traffic, these tools generally insert an
active man-in-the-middle (MITM) proxy to split the browser
to-web server encrypted connection into two parts: browser-to-

Permission to freely reproduce all or part of this paper for noncommercial
purposes is granted provided that copies bear this notice and the full citation
on the first page. Reproduction for commercial purposes is strictly prohibited
without the prior written consent of the Internet Society, the first-named author
(for reproduction of an entire paper only), and the author’s employer if the
paper was prepared within the scope of employment.
NDSS ’16, 21-24 February 2016, San Diego, CA, USA

proxy and proxy-to-web server. First, such a tool grants itself
signing authority over any TLS certificate by importing its
own root certificate into the client’s trusted CA stores. Then,
when a TLS connection is initiated by a client application (e.g.,
browser, email client) to a remote server, the TLS proxy forges
a certificate for that server to “impersonate” it in the protocol.
Client encryption effectively terminates at the proxy, which
dutifully forms a second TLS connection to the remote server.
The proxy inspects messages between the two connections,
and forwards, blocks or modifies traffic as deemed appropriate.
However, the use of such a proxy may weaken TLS security
in several ways.

First, if the proxy’s root certificate is pre-generated (i.e.,
fixed across different installations), users could be vulnerable
to impersonation by an active MITM network adversary,
having access to the signing key, if the proxy accepts external
site certificates issued by its own root certificate; see Fig. 1.
In Feb. 2015, the advertisement-inserting tool SuperFish [5]
was found to be vulnerable to such an attack due to its
use of the Komodia SDK, which pre-generates a single root
certificate per product. As this SDK is used by other products,
independent work tracked their root certificates and associated
private keys.1 In Nov. 2015, two Dell laptop models were
found to be shipped with the same root certificate along with
its private key [21]. The same attack is also possible, if the
private signing key of a per-installation root certificate can be
accessed by unprivileged malware in a targeted machine. Note
that, unlike advertisement-related products, removing antivirus
and parental control tools may not be feasible or desirable.

Second, as the TLS proxy itself connects to the server, it
is in charge of the certificate validation process, which may
be vulnerable to several known problems, including: accepting
any certificate (cf. Privdog [15]), failing to verify the certificate
chain, relying on an outdated list of trusted CAs, or failing
to check revocation status. Brubaker et al. [12] show that
certificate validation is a particularly error-prone task, even
for well-known and tested TLS libraries and clients.

Third, the TLS proxy introduces a new TLS client (w.r.t.
the remote server) in the end-to-end client-server connection.
Similar to browsers, these proxies must be kept updated with
the latest patches as developed against newly discovered vul
nerabilities (e.g., BEAST [20], CRIME [55], POODLE [41],
FREAK [9], and Logjam [1]). Outdated proxies may also lack
support for safe protocol versions and cipher suites, undermin
ing the significant effort spent on securing web browsers.

Fourth, the proxy may not faithfully reproduce a connection

Copyright 2016 Internet Society, ISBN 1-891562-41-X
http://dx.doi.org/10.14722/ndss.2016.23374

1https://gist.github.com/Wack0/17c56b77a90073be81d3

https://gist.github.com/Wack0/17c56b77a90073be81d3
http://dx.doi.org/10.14722/ndss.2016.23374
http:ciise.concordia.ca

Fig. 1. Illustration of a man-in-the-middle (MITM) attack against a content-control application performing TLS interception that accepts its own root certificate
as the issuer of externally-delivered certificates. In addition, TLS parameters are not transparent to browsers, and may be lowered by the proxy to an unwanted
level. All SSL/TLS versions shown are the highest ones that can be negotiated between two parties, assuming the MITM supports at most TLS 1.2.

to the browser with the same parameters as the proxy’s
connection to the server. For example, the proxy may not
match the use of extended validation (EV) certificates, and
mislead the browser to believe that the connection uses lower
or higher standards than it actually does; hence, the proxy may
trigger unnecessary security warnings or suppress the critical
ones. We refer to the capacity of a TLS proxy to reflect TLS
parameters between both ends as proxy transparency (not to
be confused with Certificate Transparency [24]).

Graham [26] shows how easy it is to retrieve the private
key for SuperFish, and consequently to eavesdrop communica
tions from clients using SuperFish in specific Lenovo laptops.
Recently, Böck [11] listed several observations about three
antiviruses, including vulnerability to CRIME and FREAK
attacks, and the use of old SSL/TLS versions. Other studies
(e.g., [16], [19]) also highlight the possible dangers of filtering
by dedicated TLS interception appliances, targeted for enter
prise environments.

In this work, we present a framework to analyze client-end
TLS proxies, and report our results on 14 well-known antivirus
and parental control tools for Windows (including two from
the same vendor, and sometimes multiple versions), tested
between March and August 2015. Analyzing these proxies
poses additional challenges compared to testing regular clients
(e.g., browsers), servers (e.g., HTTPS web servers), or stand
alone enterprise proxy appliances. Such challenges include:
the lack of Server Name Indication (SNI) support (requiring
one IP address per test) and filtering on specific ports only,
both of which limit the applicability of existing online TLS
test-suites; and difficulties to make a proxy trust our test root
certificate due to the use of custom CA trusted stores (often
encrypted/obfuscated in an undocumented manner). Following
the structure of a TLS proxy, we use the framework to analyze
client proxies from four perspectives: (a) root certificates of
proxies, and protections of corresponding private keys; (b)
certificate validation; (c) server-end TLS parameters; and (d)
client-end transparency.

We found that all the analyzed products in some way
weaken TLS security on their host. Three of the four parental
control applications we analyzed are vulnerable to server
impersonation because they either import a pre-generated cer
tificate into the OS/browser trusted stores during installation,
lack any certificate validation, or trust a root certificate “for
testing purpose only” with a factorable 512-bit RSA key.
The remaining one imports a pre-generated certificate when
filtering is enabled for the first time, and never removes it
even after uninstalling the product, leaving the host perpetually
vulnerable. One antivirus did not validate any certificate in
the first version we analyzed, then changed to prompting the

user for each and every certificate presented on email ports
(secure POP3, IMAP and SMTP), leaving users unprotected or
in charge of critical security decisions. Another antivirus fails
to verify the certificate signatures, allowing a trivial MITM
attack when filtering is enabled. A third antivirus leaves its host
vulnerable to server impersonation under a trivial MITM attack
after the product license is expired (accepts all certificates,
valid or otherwise). Due to the expired license, this product
also cannot be automatically updated to a newer version that
fixes the vulnerability. We contacted the affected companies
and report their responses.

Finally, our framework can be applied to client-end proxies
for Mac and on mobile platforms, found e.g., in Mobile Device
Management (MDM) solutions. Also, as an integrated frame
work, it can guide more comprehensive testing of other TLS
proxies, such as network appliances in business organizations
used to ensure compliance with policies, e.g., US Health
Insurance Portability and Accountability Act (HIPAA).

Contributions.

1) We design a hybrid TLS testing framework for client-
end TLS proxy applications, combining our own certificate
validation tests with tests that can be reliably performed
through existing test suites (see Section V). Using this
framework, we analyzed 14 leading antivirus and parental
control products under Windows that offer HTTPS/secure
email filtering, or at least install a root certificate in
the client’s trusted CA stores (OS/browsers) to expose
potential TLS-related weaknesses introduced by these tools
to their hosting systems.

2) We investigate whether the tools generate product-specific
root certificates dynamically, and to what extent they pro
tect the associated private keys. We perform an extensive
analysis of certain products to recover their private keys,
requiring non-trivial reverse-engineering and deobfuscation
efforts (although one-time only, for each product). When
the same key is used on all systems using the same product,
simple MITM attacks are possible (see Section III).

3) We expose flaws in the certificate validation process of the
TLS proxies, given only a small corpus of carefully-crafted
invalid certificates, which include expired and revoked
certificates along with chains of trust that are broken
for various reasons (see Section VI). While testing our
invalid certificates, we faced several challenges that are
not generally considered in existing client TLS tests (cf.
Qualys [52] and others [10], [64]; see Section IV).

4) We analyze the TLS proxies against known attacks, and
test their support for the latest and older TLS versions.
We also test whether the TLS version negotiated with the

2

server differs from what the browser sees (as supplied
by the proxy), along with various other parameters, e.g.,
certificate key size, signature hashing algorithm, EV cer
tificates. We observe that browsers (and in turn, users) are
often misled by these proxies (see Section VI).

5) We discuss implications of our findings in terms of efforts
required for launching practical attacks (see Section VII),
and outline a few preliminary suggestions for safer TLS
proxying (see Section VIII).

II. BACKGROUND AND THREAT MODEL

In this section, we provide details of our product selection,
terminologies and threat model as used in this paper.

A. Terminologies

We refer to content-control applications as CCAs, or simply
products; these include antivirus and parental control applica
tions when they perform some form of traffic filtering. Products
that support TLS filtering are termed as TLS proxies, or simply
proxies. Each product imports a root certificate in the OS
trusted CA store for the proper functioning of their proxy, and
possibly other third-party stores (primarily browser CA stores).

A proxy acts between a client application and a remote
server. Client applications include web browsers, email clients,
OS services, and any other TLS clients. We mostly discuss
the consequences of bad TLS proxies from a browser’s per
spectives, considering browsers as the most critical TLS client
application for users; however, other applications/services may
also be affected. We use the terms browsers and client appli
cations interchangeably. For browsers, we consider Microsoft
Internet Explorer (IE), Mozilla Firefox and Google Chrome.

B. Product selection

We relied on AV-comparatives.org [6], [7], Wikipedia2 and
other comparatives [65] to select well-known antivirus and
client-end parental control products under Windows. When
a vendor offers multiple versions of an antivirus or network
firewall, we review the specifications of each product to
find the simplest or cheapest one that supports TLS/HTTPS
interception; if the specifications are unclear, we try several
versions. Our preliminary test-set includes a total of 55 prod
ucts (see Table V in Appendix D): 37 antiviruses and 18
parental control applications. Fourteen of these tools import
their own root certificates in the OS/browser trusted CA stores,
and 12 of them actually proxy TLS traffic. The rest of our
analysis focuses on these 14 applications/12 proxies. Several
of these proxies have also been identified as a major source of
real-world traffic filtering (see e.g., [30], [51]).

C. Insertions in trusted stores: implications

There are several trusted stores that can be affected by
CCAs. Windows provides a trusted store that we refer to
as the OS trusted CA store, while third-party applications
may maintain their own store (e.g., Mozilla Firefox, Opera);
see Appendix A. CCAs install a root certificate in a trusted
store so that TLS applications relying on that store accept
TLS connections filtered by the proxy without any warning
or error. However, an imported CCA root certificate implies
that those TLS applications thereafter automatically trust any

2https://en.wikipedia.org/wiki/Comparison_of_antivirus_software, and
/wiki/Comparison_of_content-control_software_and_providers

web content signed by that certificate, not simply the filtered
content. When the CCA is manually disabled or uninstalled,
or the CCA stops filtering due to an expired license, the
root certificate may still remain in the trusted store. Also,
we observed that these CCA root certificates are valid for
a period of one to 20 years (11 out of 14 are valid for 10
years). As a consequence, TLS clients may be vulnerable
to impersonation attacks when the private key for the root
certificate is not suitably protected. Example scenarios include:
CCAs that simply reuse the same public/private key pair across
installations; CCAs that do not remove a root certificate from
the trusted stores and the corresponding private key becomes
compromised later (e.g., a RSA-1024 root certificate valid
for 10 years leaves plenty of time for a dedicated attacker
to factor the key). Compared to installing a new application,
inserting a root certificate in a trusted store has more security
implications that may span even beyond the product’s lifespan.
Such insertions are also mostly invisible to users, i.e., no
explicit message is displayed by the OS, CCAs, or browsers,
beyond granting generic admin privileges to the CCAs.

D. Threat model

To exploit the vulnerabilities identified in our analysis, we
primarily consider two types of attacks (see below). In both
cases, we assume an attacker can perform an active MITM
attack on the target (e.g., an ISP, a public WiFi operator), and
the goal is to impersonate a server in a TLS connection, or
at least extract authentication cookies from a TLS session.
Attackers cannot run privileged malware (e.g., rootkits) in a
target system, as such malware can easily defeat any end-to
end encryption. However, attackers can execute privileged code
in their own machines to study the target products.

Generic MITM: The attacker may learn (e.g., from network
access log) whether a vulnerable CCA is installed on a target
system; otherwise, a generic MITM attack can be launched
against all users in the network, with the risk of being detected
by users who are not vulnerable. Typically, CCAs that install
pre-generated certificates may enable such a powerful attack, if
the corresponding private keys can be retrieved (on an attacker
controlled machine). No malicious code needs to be executed
on the target system.

Targeted MITM: The attacker can run unprivileged code
on the target system, prior to the attack (e.g., via drive
by-downloads, social engineering). Such malicious code can
extract a dynamic, proxy-generated private key, which can then
be used to impersonate any server at that specific target system.

III. PRIVATE KEY EXTRACTION

Most CCAs implement various protection mechanisms
to safeguard their private keys on-disk. In this section, we
discuss our methodologies to identify the types of protection
as used by CCAs, and how we extract plaintext private keys
from application-protected storage. OS-protected private key
extraction requires admin privileges, excluded in our threat
model for targeted attacks (see Appendix B).

Overview. Our primary goal here is to extract private keys
from disk on a user’s machine, using only unprivileged code.
Extracting private keys from memory requires admin privi
leges, and we consider such an approach for two cases: to
extract private keys associated to pre-generated certificates,
and to understand the application process dealing with an in

3

https://en.wikipedia.org/wiki/Comparison_of_antivirus_software
https://en.wikipedia.org/wiki/Comparison_of_content-control_software_and_providers
http:tificates.We

memory private key to identify how the key is stored/protected
on disk. We discuss the protection mechanisms used by our
tested CCAs; we circumvented the two main on-disk protection
mechanisms without requiring admin privileges on the target
system. We then discuss some contextual security aspects.

A. Locating private keys in files and Windows registry

Most CCAs (optionally generate and) import their root cer
tificates into OS/browser trusted stores during installation. Us
ing Process Monitor (“procmon” from Microsoft/SysInternals),
we monitor all the application processes of a CCA during in
stallation. After installation, we manually check for any newly
added trusted CA using the Windows Certificate Manager.
If a new entry in the Windows store is inserted, searching
for the SHA1 fingerprint of that certificate in procmon’s log
identifies the exact event where the entry was created. We
can thus identify the specific application process that inserted
the new certificate, and possibly identify other affected files
and registry locations, and which may potentially contain
the associated private key. Specifically, we perform manual
analysis (e.g., searching for keywords such as “certificate”) on
file and registry operations (potentially hundreds), executed
right before and after the root certificate insertion. When a
CCA leverages the Windows CAPI/CNG, we find obvious
traces in the log; and we can then easily identify the correct
key in a protected container with a label that is often similar
to the CCA’s name.

We also explore a CCA’s installation directory for files that
appear to be certificates or keys (with extensions such as .cer,
.crt, .cert, .pem, .key; or filenames containing cert or CA). If
a private key is found, we match it to the root certificate for
confirmation. We also check whether the key file is accessible
by unprivileged code, allowing targeted MITM attacks.

If no root certificate is imported during installation, we
explore the application’s settings for the availability of TLS
filtering, and enable filtering when found. We then reboot
the system (sometimes required to activate filtering), and visit
an HTTPS website in a browser to trigger TLS interception,
forcing the proxy to access its private key. At this point, if no
root certificate is installed and no sample HTTPS connections
are filtered, we discard the application from the rest of our
analysis. In the end, we fully analyze 14 products that support
filtering and/or import a root certificate in the OS trusted store.

B. Application-protected private keys

Instead of using the OS-protected key storage, some CCAs
store their private keys protected by the application itself, using
encryption and sometimes additional obfuscation. After locat
ing the on-disk protected private keys (Section III-A), we try
to defeat such custom protections to extract the keys. Here, we
detail our methodology to bypass two main protection mech
anisms we encountered, requiring some reverse-engineering
effort (non-trivial, but one-time only for each mechanism).

1) Identify the process responsible for TLS filtering: First,
we find the application process responsible for handling a
private key, and then investigate the corresponding binary files
(DLLs) involved in this process to extract the passphrase/key
used in encrypting the private key. As the private key must
be in memory when a proxy is performing TLS filtering,
we can identify the specific process responsible for filtering
as follows: (a) Identify all the running processes of a target

CCA, by finding services with related names or identifying
new running processes following the CCA installation; (b)
Dump the process memory of each of these processes; (c)
Search the memory dumps for a private key that matches the
root certificate’s public key; and (d) Identify the process that
handles the TLS filtering, i.e., the one that holds the private
key in its memory space. As all CCAs in our study use RSA
key pairs, and those that do not rely on OS-provided key
storage use the OpenSSL library for handling keys, we use the
heartleech tool [27] to search for a private key in the memory
dumps, by specifying the corresponding root certificate.

2) Retrieving passphrases: We discuss three techniques
used to extract a passphrase or the derived encryption
key, to recover a target private key from an on-disk en
crypted/obfuscated container. When a specific method is suc
cessful against a given CCA, it yields a static “secret” that
allows for decryption of the private key using unprivileged
operations, satisfying our threat model for targeted MITM
attacks (see Section II-D).

Method 1: Extracting strings. We extract strings of printable
characters from the binaries of the TLS filtering process, and
use them as candidate passphrases. This method was used to
recover the SuperFish private key (cf. Graham [26]).

Method 2: Disassembling/Decompiling. We disassemble the
process binaries using IDA Pro, and search for selected
OpenSSL functions related to private keys; we label such
functions as passphrase consumer functions.3 Then, we follow
the source of the argument representing a passphrase, and
locate potentially hardcoded passphrases. This method is quite
effective as all tested CCAs use the OpenSSL library for
private key operations, and IDA FLIRT can reliably identify
such OpenSSL functions from process binaries.

Method 3: Execution tracing. Some CCAs may obfuscate a
hardcoded encryption passphrase/key by performing additional
computation on it, prior to calling a consumer function. These
computations may not be accurately disassembled by IDA
Pro, due to e.g., the use of ad-hoc calling conventions. In
such cases, we rely on execution tracing. However, instead of
debugging a live proxy process, we trace only selected parts
from a proxy, by executing those parts independently.4 We
first load a candidate binary containing consumer functions
into a debugger (Immunity Debugger5 in our case), and set
breakpoints on these functions. Then, we change the binary’s
entry point to a function that is two/three function calls away
from a consumer function, as we do not know the precise
location of instructions processing the passphrase/key. Using
this method, we identified all remaining runtime-generated
passphrases that could not be extracted through Methods 1
and 2. Note that if the encryption key is dynamically generated
from runtime parameters (as opposed to hardcoded), further
reverse-engineering is needed to extract the logic to generate
the correct key on a target machine. In practice, we only
encountered static encryption keys.

3Examples: SSL_CTX_use_PrivateKey, SSL_CTX_use_PrivateKey_file,
PEM_write_RSAPrivateKey, X509_check_private_key, PKCS8_decrypt.

4Debugging a live proxy is complicated by several factors: a proxy often
operates as a Windows service, requiring kernel-level debugging; services are
often started early in the boot process and may access the private key before
we can debug the execution; services may not be restarted afterwards without
rebooting; and services may use anti-debugging techniques.

5http://immunityinc.com/products/debugger/index.html

4

http://immunityinc.com/products/debugger/index.html

3) Encrypted containers: Some CCAs protect on-disk pri
vate keys using encrypted database containers such as SQL-
Cipher, an extension of SQLite with AES-256 encryption
support. While techniques from Section III-B2 are mostly
effective against SQLCipher, we develop a generic method that
can possibly be used with any encrypted SQLite variant. This
method helped us unlock an encrypted container that uses a
modified version of SQLCipher. We locate SQL queries in the
target binary that are executed immediately after the database
is opened. By modifying such a query to PRAGMA rekey=‘’,
we instruct the SQL engine to reencrypt the database with an
empty key, essentially decrypting the database containing the
intended private key. When we need to make a CCA operate
with our decrypted/modified database, we also patch the CCA’s
binary not to require a passphrase when opening the database.
This is particularly useful for CCAs relying on their own
trusted stores saved within a SQLCipher database, which we
must modify to insert our test root certificate (see Section V-C).

C. Security considerations

When the private key corresponding to a proxy’s root
certificate is retrieved, new security considerations emerge, as
discussed below; a proxy must be tested accordingly.

Time of generation. Some CCAs come with a preloaded root
certificate that they import during installation or when TLS fil
tering is activated. We label such certificates as pre-generated,
which may enable generic MITM attacks. In contrast, others
may generate a fresh root certificate unique to the local
machine; we label such certificates as install-time generated.
If the private key of an install-time generated certificate is
accessible from unprivileged code, a targeted MITM attack
becomes possible. We verify whether a certificate is generated
at install-time or pre-generated by simply installing the product
on two different machines with distinct environments (e.g.,
different hardware, x86 vs. x86-64), and compare the installed
certificates. We also search for pre-generated certificate files
and private keys in the installer.

Entropy during generation. It is possible that the entropy
used during the generation of a new public/private key pair
in install-time generated certificates is inadequate. In practice,
since most products we analyzed generate a root certificate
with RSA keys using OpenSSL, the generation process is
expected to call certain known functions, e.g., RAND_seed(),
RAND_event(), RSA_generate_key_ex(); we found
calls to the last function in many cases. However, we did not
investigate further the key generation algorithm in CCAs.

Self-acceptance. For TLS interception, there is no need for a
TLS proxy to accept proxy-signed remote certificates, as the
proxy’s root certificate is intended only to be used in the local
machine. A proxy must not accept such remote certificates;
otherwise, it becomes vulnerable to generic (for pre-generated
root certificates), or targeted (for install-time generated root
certificates) MITM attacks that use a forged certificate, signed
by the proxy’s private key.

Filtering conditions. CCAs may only filter TLS traffic under
specific conditions. For example, filtering may be activated
by default after installation, or offered as an optional fea
ture disabled by default. Filtering may be applied only for
selected categories of websites (especially for parental con
trol tools), or for all websites. Filtering could also be port-
dependent, or applied to any TCP port. Finally, only specific

browsers/applications may be filtered. Self-acceptance is only
relevant when the proxy is actively filtering. It may happen that
the proxy is not enabled by default; however its root certificate
is already imported in trusted stores.

Expired product licenses. CCAs may stop filtering traffic
when their license or trial period is expired. If a proxy’s root
certificate is still present in trusted stores, it leaves browsers
vulnerable to potential generic or targeted MITM attacks. This
is especially relevant if the TLS proxy does not accept its own
root certificate as a valid issuer for site certificates before li
cense expiration; i.e., users are not vulnerable to MITM attacks
involving a proxy-signed certificate before license expiration
but become vulnerable afterwards. Alternatively, a CCA may
decide to continue filtering traffic even in an expired state.
In this case, we test whether the proxy’s certificate validation
process is still functional (e.g., rejects invalid certificates).

Uninstallation. When a CCA is uninstalled, its root certificate
should be removed from OS/browser trusted stores. Otherwise,
it may continue to expose browsers to MITM attacks, e.g., if
the certificate is pre-generated, or the private key of an install-
time generated certificate has previously been compromised.

IV. LIMITATIONS OF EXISTING TLS TEST SUITES

Existing test suites possess certain limitations that prevent
them from being used directly to test client-end TLS proxies.
Note that such test suites have not been designed for the TLS
proxies we target. We summarize these limitations below, and
address them in our framework.

A. Certificate verification

After the Komodia incident [5], to check whether users are
affected by Komodia-based interception tools, several web-
based test sites appeared (e.g., [67], [10]). These tests are
based on loading a CSS or JavaScript file hosted on a server
with an invalid certificate (e.g., signed by the pre-generated
root certificate of a broken TLS interception tool). If the
CSS/JavaScript resource is successfully fetched, the client is
then notified about the vulnerability. To test client-end TLS
proxies, the following limitations must be addressed.

Unimplemented SNI extension. Certificate validation tests are
often served on subdomains that are hosted from the same
IP address since it is usually costly to use a unique IPv4
address per test. To distinguish multiple domain names, the
server implicitly relies on the Server Name Indication (SNI)
TLS extension to receive the hostname requested by the client
at connection time. SNI has been widely adopted in modern
browsers and TLS clients [18]. However, we encountered a
few proxies that use ad-hoc ways to relay a TLS connection
to the real server, without using the SNI extension. Test servers
are thus unable to properly identify the requested host and are
forced to deliver a default certificate, and eventually a 4xx
error. For example, while badcert-superfish.tlsfun.de delivers
a certificate signed by SuperFish’s pre-generated certificate
when the SNI extension is used, lacking SNI results in a
400 Bad Request webpage owned by the hosting company,
served under their own domain name’s certificate. Thus, the
test would report that a carefully-crafted invalid certificate was
not accepted (i.e., the proxy is not vulnerable), while the real
reason is due to the wrong domain name. As a result, the
invalid certificate is never tested against the proxy.

Caching-incompatible. A TLS proxy may cache certificates

5

https://badcert-superfish.tlsfun.de
http:filtering.It

as seen from an initial connection to a server and reuse
them upon further visits to the same website. Some suites are
apparently incompatible with caching proxies, especially when
numerous certificates must be tested (e.g., Frankencert [12]
uses 8,127,600 test certificates presented on localhost).

Undetected passthrough. Certain proxies only filter selected
connections, e.g., only specific categories of websites or sup
ported TLS versions; other connections are simply forwarded
to a browser, letting the browser to deal with untrusted
certificates or unsupported configurations. To test whether a
proxy trusts its own root certificate, we must verify that content
delivered by a web server with a proxy-signed certificate is
successfully inspected. If the proxy chooses to passthrough this
connection, the browser will simply accept the proxy-signed
certificate (as if the proxy has generated the certificate as part
of an active filtering process). We must make sure that the
proxy was trying to filter the connection, and that it detected
its own root certificate as the issuer, or simply did not find the
issuer in its trusted store, and decided to let the browser deal
with an untrusted issuer error. When successfully inspecting
the connection, the proxy re-generates a similar certificate on-
the-fly with a different key. Hence, the certificate received by
the browser must be verified, e.g., by its fingerprint.

Fragile implementations. Proxies may behave inconsistently
in specific test cases, leading to nondeterministic test results.
For example, if several simultaneous connections are attempted
to web servers with invalid certificates, a proxy may crash, or
deny all future connections. Even a simple invalid certificate
could lead to timeouts and incorrect test outcomes. Special
care must be taken to test such buggy proxies.

Client-dependent filtering. Proxies may filter or accept only
specific clients; e.g., while common browsers are filtered, we
found that the OpenSSL toolkit launched from the command
line was not filtered by half of the proxies. Sometimes,
only selected browsers are filtered. This restriction is im
plemented simply by checking process names, or through a
more involving mechanism (e.g., using non-obvious program
characteristics). Thus, a proxy-testing client application must
make sure that its connections are processed by the proxy.

B. TLS security parameters

Existing test suites, e.g., Qualys [52] and howsmyssl.com,
perform an extensive test of TLS parameters (and relevant
features), including: protocol versions, cipher suites, TLS
compression, and secure renegotiation. Various sites also eval
uate high-impact vulnerabilities; e.g., freakattack.com for the
FREAK attack and weakdh.org for Logjam. As TLS param
eters are generally tied to a server rather than a domain,
online test suites resort to serving these tests on several TCP
ports (e.g., [52], [64]). However, this solution is inadequate,
as CCAs generally filter only specific ports (e.g., 80 and 443),
sometimes non-configurable. We also found an antivirus that
only analyzes encrypted emails on ports 465, 993 and 995.
Thus, existing sites cannot properly test these TLS proxies.

V. OUR TLS PROXY TESTING FRAMEWORK

We design a hybrid solution combining our own certificate
validation tests with tests that can be reliably performed
through existing test suites. We discuss our methodology
for testing certificate validation engines of the proxies, TLS
parameters as apparent to browsers and remote servers, and

known TLS attacks against each proxy.

A. Test environment

We setup a target TLS proxy in a virtual machine running
Windows 7 SP1, and a test web server in the host OS. To
address the lack of SNI support in proxies, we assign multiple
IP addresses to a single network interface to map various test
domain names to different IP addresses. We also instrument
a DNS server on the host to serve predefined IP addresses in
response to a query for our test domain names. For example,
we map wrong-cn.local.test to 192.168.80.10, assign this IP to
the network interface, and configure the web server to serve the
corresponding certificate with a wrong CN field for requests
made to that IP address. While private IPv4 address spaces
can assign up to 16,387,064 individual addresses (far enough to
map all our tests), a few CCAs do not to filter traffic from these
address spaces. Thus, we also configure our test environment
to use Internet-addressable IPs from a randomly picked range.

If all ports are filtered by the target TLS proxy (or ports are
configurable), we simply leverage existing online testing suites
to analyze the proxy for security-sensitive TLS parameters.
Otherwise, we use a TCP proxy on the host to forward traffic
addressed to these test suites from a proxy filtered port to the
real server port. In this setup, we must preserve the correct
domain names to avoid HTTP 300 redirections. While testing
the TLS proxy on multiple server ports, we effectively need
to serve several tests through the same test IP and port of
our TCP proxy. To avoid caching issues, we restart the VM
(with the TLS proxy) after each test. Our testing environment
is made to conduct all tests within a single physical machine,
requiring the CCA to be installed within a VM. Alternatively,
two physical machines could also be used.

B. Certificate validation testing

We generate test certificates signed by the private key
corresponding to our root certificate; we also make the proxies
to trust our root certificate (see Section V-C). We visit test
web pages using a browser filtered by the proxy under test
(preferably Chrome, since it relies on the OS trusted store and
provides details about the main connection). We use a couple
of valid, control certificates to verify that a TLS proxy accepts
our root certificate, or does not perform any filtering in a given
setting (e.g., an unfiltered IP range, domain name or TLS ver
sion). When filtering is active, we test each TLS proxy with 9
certificates with a broken chain of trust, including: self-signed
certificate, signature mismatch, non-trusted authority with the
same name as a valid authority, wrong domain name, unknown
issuer, non-CA intermediate authority, X.509v1, revoked and
expired certificates; see Appendix C.

We also examine whether the proxies accept certificates
with deprecated algorithms (e.g., RSA-512 and MD5), or
algorithms that are being gradually phased out (e.g., RSA
1024, SHA1).6 Regarding proxy transparency of a certificate’s
extensions and parameters, we examine how the proxy deals
with Extended-Validation (EV) certificates, and whether the
key length and hashing algorithm in a proxy-signed certificate
are identical to the original server certificate.

6Firefox 42.0 and Chrome 47.0 still accept RSA-1024 keys in leaf certifi
cates (as of December 2015); however, the trust in CAs using 1024-bit keys is
being progressively revoked [45]. The use of MD5 for certificate signature has
also been banned by modern browsers during 2011 (e.g., [42]) due to obvious
forgery attacks [60]. SHA1 is also gradually being phased out (e.g., [25]).

6

https://howsmyssl.com
https://freakattack.com
https://weakdh.org
http:192.168.80.10
http:successfullyinspected.If

Our small corpus of 15 certificates is intended to identify
the most obvious validation errors. More comprehensive anal
ysis (cf. [12]) can be performed by identifying the TLS library
and version used by a CCA, and running more tailored tests
against the library. In practice, we observed that most CCAs
rely on OpenSSL or Microsoft Secure Channel (Schannel);
however, more reverse-engineering is needed to accurately
report which library is effectively used as the TLS stack by
a given CCA. Additional certificates can also be generated to
test whether the proxies interfere with recent enhancements to
TLS (e.g., key pinning, HSTS). Note that in Chrome 47 (the
latest version, as of December 2015), key pinning is overridden
when a local TLS proxy filters connections.7

C. Proxy-embedded trusted stores

To validate server certificates, proxies may rely on the
OS trusted store, or on a custom embedded store. Below we
discuss testing considerations related to such custom stores.

Trusting our own root certificate. A valid issuer is re
quired for signing several of our test certificates (e.g., expired,
wrong CN, weak keys, or testing TLS support); we sign such
certificates with a well-formed X.509v3 root certificate we
generated (with RSA-2048). We make the proxies trust our root
certificate, when possible. Note that a valid wildcard certificate
(issued by a real CA) is insufficient for our purpose. Rather,
we require a certificate that can be used to issue additional
certificates (i.e., similar to an intermediate CA certificate); at
the end, we did not obtain such certificates from a real CA
as we do not meet the eligibility requirements (e.g., being a
middle/large organization with a substantial net worth).

Usually, it is sufficient to import our root certificate into
the OS/browser trusted stores. However, several CCAs rely on
their own embedded stores (sometimes obfuscated), effectively
introducing a new independent trusted CA store without any
documented policy (cf. Mozilla [43]). We tried to insert our
certificate in the proxy-trusted stores (see Section III-B3).

If we cannot make a proxy trust our root certificate, we
generate relevant test certificates using the proxy’s root certifi
cate (with its retrieved private key). However, not all proxies
trust their own root certificates to sign arbitrary certificates (as
expected). In such cases, we search for external web servers
with similar certificates, and visit them to test the proxy. Since
we do not control external test websites, there is a possibility
that our local tests yield different results than the online ones.
We still provide both methods as the local tests can be made
more comprehensive while online tests can serve as a backup
solution to test at least certain available cases.

For example, an expired certificate can be tested at ex
pired.badssl.com, if the proxy supports SNI. A wrong CN
can be tested thanks to misconfigured DNS entries (e.g.,
tv.eurosport.com pointing to Akamai’s CDN servers, delivering
a certificate for the CDN’s domain name). For weak RSA
keys and deprecated signature algorithms, we were unable
to find online tests. This is an expected limitation, as valid
CAs currently do not issue such certificates. Hence, these tests
cannot be performed when the proxy does not trust its own root
certificate or the root certificate we generate; we had one such
proxy among our tested products.

Store analysis. We try to determine the provenance of proxy

7https://www.chromium.org/Home/chromium-security/security-faq

embedded stores (if readable), and check for issues such as
globally distrusted CAs (e.g., DigiNotar), expired CAs, and
CAs with weak keys (below RSA 1024 bits). When we find
expired CAs, we verify that the proxy correctly checks the
period of validity of its trusted store by (a) importing our own
expired root certificate into the store, (b) attempting to connect
to a test page serving a valid certificate signed by that expired
CA. If the page loads, the proxy introduces vulnerabilities
through its custom store.

D. TLS versions and known attacks

We test support for SSL 3.0, TLS 1.0, 1.1 and 1.2. We
rely on Qualys to perform the version check, when a proxy’s
filtering is not port-specific. Otherwise, if we can generate a
valid certificate for the proxy, using our own or the proxy’s
root certificate, we run an instance of the OpenSSL tool as
a TLS server, configured to accept only specific versions of
SSL/TLS on desired ports. Finally, if we cannot provide a valid
certificate, we simply proxy traffic from a proxy-filtered port to
the Qualys server’s real port. Following this methodology, we
can detect vulnerabilities to POODLE, CRIME and insecure
renegotiation. We also check how TLS versions are mapped
between a browser and the proxy, and the proxy and the remote
server (cf. Fig. 1). Any discrepancy in mapping would mislead
the browser into believing that the visited website offered
better/worse security than it actually does. This problem is par
ticularly important when SSL 3.0 connections are masqueraded
as higher versions of TLS.

Browsers support an out-of-specification downgrade mech
anism for compatibility with old/incompatible server imple
mentations [41], [13]. When a browser attempts a connection
and advertises a TLS version unsupported by the server
(e.g., TLS 1.2 in the ClientHello message), a broken server
implementation may simply close the connection. The browser
may then iterate the process by presenting a lower TLS
version (e.g., TLS 1.1). This mechanism can be abused by
an active MITM attacker to downgrade the protocol version
used in a TLS communication, while both parties actually
support a higher version. Abusing this mechanism is at the
core of the POODLE attack. We verified whether proxies also
implement this behavior by simulating such a broken server
implementation (by simply closing the connection after receiv
ing ClientHello, and inspecting further ClientHello messages).

We then analyze the list of ciphers presented by the proxy
to the remote server using Qualys and howsmyssl.com. Weak,
export-grade and anonymous Diffie-Hellman (DH) ciphers can
be detected by these tests. When supporting TLS 1.0 (or lower)
and CBC-mode ciphers without implementing mitigations (cf.
record splitting [61]), proxies are vulnerable to the BEAST
attack [20]. howsmyssl.com allows to test this scenario only
when a proxy does not support TLS 1.1 or 1.2. We patched
howsmyssl [28] and deployed it locally to test for the remain
ing cases. If the TLS version is not made transparent by the
proxy, the cipher suites cannot be transparent either. Finally,
we verify the proxy’s vulnerability to FREAK and Logjam
attacks using freakattack.com and weakdh.org.

VI. RESULTS ANALYSIS

In this section, we provide the results of our analysis of
the CCAs we considered, using our framework. We uncover
several flaws that can significantly undermine a host’s TLS
security; we discuss practical attacks in Section VII.

7

https://expired.badssl.com
https://www.chromium.org/Home/chromium-security/security-faq
https://howsmyssl.com
https://howsmyssl.com
https://freakattack.com
https://weakdh.org
http:pired.badssl.com
http:generated(withRSA-2048).We

A. Root certificates

We discuss the results of 14 products (out of the 55 initially
analyzed) that install a root certificate in the OS/browser
trusted CA stores; see Table IV in Appendix for a summary.

1) Certificate generation: CYBERsitter and PC Pandora
use pre-generated certificates; the remaining 12 CCAs use
install-time generated certificates, two of which do not perform
any TLS-filtering (BullGuard AntiVirus (AV) and ZoneAlarm).
For ZoneAlarm, we could not find any option to enable
TLS interception in its settings. Since its antivirus engine
is based on the Kaspersky SDK, we could find a file tree
structure similar to Kaspersky Antivirus. In particular, the files
storing the root certificate along with its plaintext private key
reside in similar locations in both cases. For ZoneAlarm, the
certificate file is named after what seems to be an undefined
variable name, “(fake)%PersonalRootCertificateName%.cer”.
Apparently, ZoneAlarm developers were unaware that the SDK
generates and installs this root certificate (or chose to ignore
it), readable from unprivileged processes.

Additionally, when activating ZoneAlarm’s parental control
feature, a rebranded version of Net Nanny is installed. We
also separately analyze the original version of Net Nanny (an
independent parental control application). In turn, this bundled
Net Nanny installs a second (pre-generated) root certificate;
however, we were unable to trigger TLS filtering.

2) Third-party trusted stores: Among third-party trusted
stores, we only verify and report our results for Mozilla
Firefox; other applications such as Opera (and Mozilla Thun
derbird when CCAs also target emails) may have also been
affected. Eight of the 14 CCAs import their root certificates in
the Firefox trusted store.

3) Self-acceptance: From the 12 products that support
filtering, BullGuard Internet Security (IS) and AVG do not
accept certificates signed by its own root certificate. However,
AVG lets browsers continue the communication without any
filtering. The browser is then left to accept site certificates
signed by the proxy’s root certificate as if they were issued by
the local proxy. Others happily trust any site certificate issued
by their root certificates.

We searched all the certificates from a ZMap [22] scan on
July 21, 20158 to find certificates issued by any of the 14 root
certificates from our CCAs. Finding such certificates would
indicate exploitation of proxies supporting self-acceptance. We
found only one such certificate at a Russian hosting site (signed
by the “Kaspersky Antivirus Personal Root Certificate”).

4) Filtering conditions: Eight CCAs activate TLS filtering
upon installation, four provide an option, and the two others
perform no filtering. Six CCAs only filter traffic from/to
specific browsers. PC Pandora disallows browsers other than
IE by aborting connections. KinderGate only filters specific
categories of websites by default (related to, e.g., advertise
ment, dating, forums, nudity, social networking). Finally, the
March 2015 version of Kaspersky lacks certificate validation
for at least a minute after Windows is started up.

5) Expired product licenses: The version of Kaspersky we
analyzed in March 2015 continues to act as a TLS proxy when
a 30-day trial period is expired; however, after the license
expiration, it accepts all certificates, including the invalid
ones. The August 2015 version corrected both issues; however,

8https://scans.io/series/443-https-tls-full_ipv4

TABLE I. PROTECTIONS FOR A ROOT CERTIFICATE’S PRIVATE KEY

Location Protection Access

Avast CAPI Exportable key Admin

AVG Config file Obfuscation Unknown

BitDefender DER file Hardcoded passphrase User

BullGuard AV DER reg key Hardcoded passphrase User

BullGuard IS DER reg key Hardcoded passphrase User

CYBERsitter CER file Plaintext User

Dr. Web CAPI-cert1 Exportable key Admin

ESET CAPI Non-exportable key Admin

G DATA Registry Obfuscated encryption User

Kaspersky DER file Plaintext User

KinderGate CER file Plaintext User

Net Nanny Database Modified SQLCipher User

PC Pandora CAPI-cert Non-exportable key Admin

ZoneAlarm DER file Plaintext User

1 CAPI-cert means that the private key is associated with the certificate

customers who installed the vulnerable product version and did
not uninstall it, remain vulnerable to a generic MITM attack
as they do not benefit from automatic updates that could solve
the issues (since their license has expired). Other CCAs either
disable their proxy after expiration, or continue filtering with
similar validation capabilities as before.

6) Uninstallation: Eight CCAs do not remove their root
certificates from the OS/browser trusted stores after uninstal
lation, leaving the system exposed to potential attacks.

B. Private key protections

We provide below the results of our analysis on retrieving
protected private keys; see Table I for a summary. We also
explain how we retrieved four passphrase-protected private
keys and a key stored in a custom encrypted SQLCipher
database; our mechanisms illustrate why such protections are
unreliable (although require non-trivial effort to defeat).

Summary. CCAs store private keys as follows: plain-
text (CYBERsitter, Kaspersky, KinderGate and ZoneAlarm);
CAPI/CNG encrypted (Avast, Dr. Web, ESET and PC Pan
dora); and application encrypted (six applications). Out of the
six application-encrypted private keys, we are able to decrypt
five with our methodology from Section III-B2. AVG appears
to store its private key in a custom configuration file with an
obfuscated structure. The types of protection we encountered
are static, i.e., the secret used to protect a private key is fixed
across all installations, requiring only a one-time effort. The
results here are reported for the latest versions of the CCAs
(August 2015); some results are for March 2015 versions
(explicitly stated).

1) Passphrase-protected private keys: BitDefender stores
its private key protected by a simple hardcoded passphrase
typically found in cracking dictionaries; we retrieved the
passphrase using Method 1. G DATA also protects its private
key stored in registry using a custom format and a random-
looking hardcoded passphrase (Method 1). Using Method 2,
we found that BullGuard AV/IS generate the final passphrase
at runtime based on a hardcoded string, as a form of simple
obfuscation. In all cases, the passphrases are fixed across
installations, and the protected private keys are readable by
unprivileged processes, enabling targeted MITM attacks as
defined in Section II-D. We do not report the plaintext
passphrases to avoid obvious misuse.

2) Encrypted containers: Net Nanny relies on a modified
SQLCipher encrypted database to protect its settings (scattered
in multiple database files), including its private key. We provide
details on Net Nanny to highlight the challenges posed by cus

8

https://scans.io/series/443-https-tls-full_ipv4
http:self-acceptance.We

tom obfuscation techniques, which can be defeated with some
effort (i.e., achieve less protection than OS-protected keys).

We noticed that one of Net Nanny’s DLLs (db.dll) exports
a few functions with meaningful names, apparently relating to
SQLite. Following some differences in the functions names
with the official sqlite3 project, we realized that the DLL

9actually uses IcuSqlite3. A quick search revealed that the
IcuSqlite3 developer apparently works for ContentWatch, the
company developing Net Nanny. From this connection, we as
sumed that IcuSqlite3 was used in Net Nanny, which benefited
us by complementing the disassembly of db.dll by IDA Pro.

We were able to extract Net Nanny’s passphrase using
Method 3, which contained the name of the developing
company. We failed however to simply leverage SQLCipher
to open the encrypted databases.10 Using the method from
Section III-B3, we could successfully decrypt the first two
databases before the program crashed. We rotated the database
files until all were decrypted, and then found Net Nanny’s
root certificate and private key in a database. In the March
2015 version, we found that the proxy was using a pre
generated certificate, which made it vulnerable to a generic
MITM attack in its default configuration. In the August 2015
version, the private key is install-time generated. A targeted
MITM attack is still possible (the databases are readable
from unprivileged processes). Furthermore, the private key
is passphrase-protected by a long random string, also stored
in the database. We also made Net Nanny to trust our root
certificate by inserting it in Net Nanny’s custom root CA list,
stored in the encrypted databases.

C. Certificate validation and trusted stores

Our certificate validation analysis reveals various flaws in
nine out of 12 proxies.

1) Invalid chain of trust: We use nine test certificates
with various errors in their chain of trust; see Table II. We
highlight the dangerous behaviors in the table (“Accept” and
“Changed”). If a proxy can detect a certificate error, it may
react as follows: send the browser a certificate issued by an un
trusted CA (“u-CA” in the table), typically named “untrusted”
along with the proxy’s name; send a self-signed certificate (“S
S”); ask confirmation from the user by delivering a warning
webpage or an alert dialog (“Ask”); or, terminate the connec
tion altogether (“Block”). For expired certificates, the period
of validity may be passed as-is to the client (“Mapped”), or
updated to reflect a working period (“Changed”); in the latter
case, the browser cannot detect if the original certificate has
expired. For certificates issued for the wrong domain name,
the CN field may be passed as-is to the browser, or may be
changed to the domain name expected by the browser. Finally,
proxies may entirely fail to detect invalid certificates, exposing
browsers to generic MITM attacks (“Accept”).

Only Kaspersky and Net Nanny successfully detected all
our invalid certificates; however, when detected, the user is
asked to handle the error. In contrast, most browsers now make
it significantly difficult to bypass such errors (e.g., complex

9An sqlite3 derivative: https://github.com/NuSkooler/ICUSQLite3.
10Note that, such databases can be encrypted using various ciphers, and the

encryption key could be derived from the passphrase by an arbitrary number
of iterations of SHA1 using PBKDF2; these parameters are unavailable to us.
We failed to decipher the databases using the extracted passphrase with several
common ciphers, and the number of iterations from 1 to half a million.

overriding procedure), or simply refuse to connect. AVG also
detected the 6 invalid certificates we tested. We could not
perform the remaining tests on AVG, as it is immune to self-
acceptance, and we could not make it trust our own root
certificate; online tests were also inapplicable.

In contrast, CYBERsitter, KinderGate and PC Pandora
accepted nearly all invalid certificates we presented. The March
2015 version of G DATA also accepted all certificates, while
the August version requires user confirmation (via an alert
window) for all certificates, including valid ones signed by
legitimate CAs. BullGuard IS fails to validate the signature
of a certificate, and accepts our signature mismatch and fake
GeoTrust certificates. Apparently, BullGuard IS verifies the
chain of trust only by the subject name, allowing trivial generic
MITM attacks. Finally, we found that 9 proxies do not check
for the revocation status of a certificate.

Proxy transparency. Validation errors such as wrong CN, self-
signed, expired certificate, and unknown issuer, may cause
modern browsers to notify users (and allow the connection
when confirmed via complex UI); most proxies modify these
errors, causing browsers to react differently. For example,
BitDefender turns a wrong CN into a certificate signed by
an unknown issuer, and CYBERsitter changes the CN field
to make the certificate valid. Most other proxies relay the
CN field as-is, or ask for user confirmation. Avast, AVG,
BitDefender and Dr. Web change self-signed certificates to
certificates issued by an untrusted CA. Conversely, BullGuard
IS turns certificates signed by an unknown issuer into self-
signed. The behavior for unknown CA, non-CA intermediate
and X.509v1 intermediate is always identical for a given proxy,
with the exception of Avast that blocks connections for the
last two cases. Finally, we observed that all proxies but Avast
filter HTTPS communications when the servers offer an EV
certificate and present it as a DV certificate to browsers.

2) Weak and deprecated encryption/signing algorithms:
We tested proxies against certificates using MD5 or SHA1 as
the signature hashing algorithm, combined with weak (RSA
512) or soon-to-be-deprecated keys (RSA-1024). Nine out of
12 proxies accept MD5 and SHA1, implying that if an attacker
can obtain a valid certificate using MD5 signed by any proxy-
trusted CA, she can forge new certificates for any website
(generic MITM). Seven proxies also accept RSA-512 keys
in the leaf certificate. An attacker in possession of a valid
certificate using a 512-bit RSA key for a website could recover
the private key “at most in weeks” [9] and impersonate the
website to the proxy. We could not test the behavior of AVG
due to limitations explained in Section V-C.

Browser-trusted CAs are known to have stopped issuing
RSA-512 certificates (some have even been sanctioned and
distrusted for doing so, see e.g., [23]), and certificates using
MD5 were not issued past 2008 [49]. Recently, Malhotra et
al. [36] showed that attacks on the Network Time Protocol can
trick a client system to revert its clock back in time by several
years. Such attacks may revive expired certificates with weak
RSA keys (easily broken), and weak hashing algorithms (i.e.,
re-enabling any certificate colliding with a previously-valid
certificate, e.g., the colliding CA certificate forged in [60]).

3) Proxy-embedded trusted store: AVG, BitDefender, Bull-
Guard IS, and Net Nanny solely rely on their own trusted
stores. For Net Nanny, we managed to insert our root certificate
in its encrypted database (see Section VI-B2). BullGuard IS

9

https://github.com/NuSkooler/ICUSQLite3
http:error.In

TABLE II. RESULTS OF THE CERTIFICATE VALIDATION PROCESS AGAINST 9 INVALID CERTIFICATES. FOR LEGENDS, SEE

SECTION VI-C1; “N/A” MEANS NOT TESTED.

Invalid certificate tests

Trusted

store

Self-

signed

Signature

mismatch

Fake

GeoTrust

Wrong

CN

Unknown CA /

Non-CA / v1 inter.
Revoked Expired

Avast OS u-CA Block u-CA Pass u-CA / Block / Block Accept Mapped

AVG Own u-CA N/A N/A Pass u-CA / N/A / N/A Unfiltered Mapped

BitDefender Own u-CA u-CA u-CA u-CA u-CA Accept u-CA

BullGuard IS Own S-S Accept Accept Pass S-S Accept Mapped

CYBERsitter None Accept Accept Accept Change Accept Accept Mapped

Dr. Web OS u-CA u-CA u-CA Pass u-CA Accept u-CA

ESET OS Ask Ask Ask Pass Ask Accept Ask

G DATA (old) None Accept Accept Accept Change Accept Accept Change

G DATA (new) None Ask Ask Ask Ask Ask Ask Ask

Kaspersky OS Ask Ask Ask Ask Ask Ask Ask

KinderGate None Accept Accept Accept Pass Accept Accept Change

Net Nanny Own Ask Ask Ask Ask Ask Ask Ask

PC Pandora None Accept Accept Accept Pass Accept Accept Change

prevents modifications to its list of trusted CAs. If modified, it
triggers an update to restore the original version. An option in
its configuration allowed us to stop this protection. BitDefender
adopts a similar mechanism, with no option to disable it; we
bypassed this protection and changed the trusted store file by
booting Windows in safe-mode (without BitDefender being
started). Finally, more reverse-engineering is needed to make
AVG accept our root certificate.

Except for AVG, we were able to retrieve all proxy-trusted
CAs. BitDefender’s trusted store contains 161 CA certificates,
41 with a 1024-bit key (most are now deprecated by browsers).
As a comparison, Mozilla Firefox trusted store contains 180
certificates, including 13 RSA-1024 as of August 2015. Ten
of BitDefender’s trusted CA certificates have already expired
as of August 2015; however, BitDefender does not accept
certificates issued by an expired trusted root certificate. Most
importantly, BitDefender’s trusted store includes the DigiNotar
certificate, distrusted by major browsers since August 2011,
due to a security breach. It also includes the CNNIC certificate
that was at the center of another breach in March 2015,
subsequently distrusted by Firefox and Chrome.11

BullGuard IS trusted store was apparently generated in
May 2009, from Mozilla’s list of trusted CAs; as expected,
this 6 year-old store has been outdated long ago. Among its
140 CAs, there is a CA with a 1000-bit key and 43 CAs
with a 1024-bit key. Similar to BitDefender, BullGuard IS also
includes the distrusted DigiNotar root certificate. It also fails at
verifying the expiration dates of its root CAs during certificate
validation, leaving the 13 expired root certificates in its store
still active.

Net Nanny’s trusted store contains 173 certificates; one CA
with 512-bit key (named “Root Agency”), and 27 CAs with
a 1024-bit key. Thus, Net Nanny is vulnerable to a generic
MITM attacker, who can recover the private key for the 512
bit certificate (requires only trivial effort [9]). In addition, 16
CAs are expired, but Net Nanny effectively does not trust such
root certificates when validating a site certificate.

D. TLS parameters

In this section, we provide the results of our analysis of
TLS parameters; see Table III.

1) SSL/TLS versions: At the end of 2014, following the
POODLE attack, major browsers dropped support for SSL 3.0

11https://blog.mozilla.org/security/2015/03/23/revoking-trust-in-one-cnnic
intermediate-certificate/

by default [53], [46], [59]. However, as of August 2015, we
found half of the 12 proxies still support SSL 3.0.

Only Avast and Kaspersky support TLS 1.0, 1.1, 1.2, and
map them appropriately; other proxies upgrade the SSL/TLS
versions for the proxy-browser connection, and/or do not
support recent versions. AVG, BitDefender and CYBERsitter
upgrade all versions to TLS 1.2. G DATA also upgrades TLS
1.0, 1.1 and 1.2 to TLS 1.2. Net Nanny, which supports only
SSL 3.0 and TLS 1.0 to connect to a server, communicates with
TLS 1.2 with the browser. Similarly, BullGuard IS supports
only TLS 1.0 but maps it to TLS 1.2 for browsers. Finally, Dr.
Web, ESET, KinderGate and PC Pandora support only TLS
1.0, along with SSL 3.0 for the former two. The fictitious
upgrade of TLS versions as done by a majority of these
proxies mislead browsers to believe that the server provides
stronger/weaker security than it actually does.

We test whether protocol downgrade attacks as seen against
certain browser implementations are possible, and we found
that no proxies in our test implement such a version downgrad
ing. These proxies are thus not vulnerable to POODLE [41] via
a downgrade attack. However, when connecting to servers that
only support SSL 3.0 or lower, and offer CBC-mode ciphers,
the practical padding oracle attack proposed in POODLE
still applies to proxies with SSL 3.0. Six proxies accepted
connections to such servers (disallowed by modern browsers)
and presented the connections as TLS 1.0 or above to browsers.

We did not test whether the TLS proxies support SSL 2.0;
note that, proxies that support SSL 2.0 (if any), may pose
additional risks against servers that also support this version.
For completeness, such testing may also be incorporated.

2) Certificate security parameters: All proxies, except
Avast and PC Pandora, generate certificates with fixed RSA
keys to communicate with browsers. Six use RSA-1024 and the
remaining four use RSA-2048. While RSA-1024 still does not
pose an immediate security risk, proxies may need to remove
RSA-1024 to avoid warning/blocking by browsers (cf. [45]).
Regarding the hashing algorithm used for the certificate sig
nature, 7 proxies replace the original certificate’s signing
algorithm with SHA1, triggering security warnings in Chrome
when the certificate expiration date is past December 31, 2015.
BitDefender, ESET and Kaspersky use SHA256, effectively
suppressing potential warnings for server certificates with
SHA1 or MD5. Other proxies map hash algorithms properly.

3) Cipher suites: SSL 3.0 and TLS 1.0 support ciphers
that are vulnerable to various attacks. For example, CBC-mode
ciphers are vulnerable to the Lucky-13 and BEAST attacks;

10

https://blog.mozilla.org/security/2015/03/23/revoking-trust-in-one-cnnic-intermediate-certificate/
https://blog.mozilla.org/security/2015/03/23/revoking-trust-in-one-cnnic-intermediate-certificate/
http:certificate.It

TABLE III. RESULTS FOR TLS PARAMETERS, PROXY TRANSPARENCY AND KNOWN ATTACKS. UNDER “PROTOCOL MAPPING” WE LIST THE TLS

VERSIONS AS OBSERVED BY BROWSERS WHEN A TLS PROXY CONNECTS TO A SERVER USING TLS 1.2, 1.1, 1.0, SSL 3.0 (“—” MEANS

UNSUPPORTED). FOR “CIPHER SUITE PROBLEMS”, WE USE: “W” FOR WEAK (ACCORDING TO QUALYS); “E” FOR EXPORT-GRADE CIPHERS; “A” FOR

ANONYMOUS DIFFIE-HELLMAN. “×” REPRESENTS VULNERABILITY TO THE LISTED ATTACKS; “*” INDICATES THAT THE VULNERABILITY TO BEAST

OR FREAK COULD BE DUE TO THE UNPATCHED SCHANNEL LIBRARY USED IN OUR TESTING.

Avast

AVG

BitDefender

BullGuard IS

CYBERsitter

Dr. Web

ESET

G DATA

Kaspersky

KinderGate

Net Nanny

PC Pandora

Filtered

ports

Specific

Specific

Specific

Specific

Specific

All

Specific

Specific

All

Specific

All

All

Protocol mapping

TLS

1.2

TLS

1.1

TLS

1.0

SSL

3.0

1.2 1.1 1.0 —

1.2 1.2 1.2 1.2

1.2 1.2 1.2 1.2

— — 1.2 —

1.2 1.2 1.2 1.2

— — 1.0 1.0

— — 1.0 1.0

1.2 1.2 1.2 —

1.2 1.1 1.0 —

— — 1.0 —

— — 1.2 1.2

— — 1.0 —

Certificate mapping

Key

size

Hash

algorithm
EV cert.

Mapped Mapped Unfiltered

2048 Mapped DV

2048 SHA256 DV

1024 SHA1 DV

1024 SHA1 DV

1024 SHA1 DV

2048 SHA256 DV

1024 SHA1 DV

2048 SHA256 DV

1024 SHA1 DV

1024 SHA1 DV

Mapped SHA1 DV

Cipher

suite

problems

W

W

W

W, E

W

W

A

W

W

W

Insecure

renego

tiation

×

Vulnerabilities

BEAST CRIME

×
×
×
×*

×*

×

×
×

FREAK

×
×*

×*

×

×

Logjam

×

×

×

and RC4 is known to have statistical biases [3]. To mitigate
BEAST from the server-side, the preferred ciphers for SSL
3.0/TLS 1.0 were based on RC4. However, as modern browsers
now mitigate this attack by using record splitting [61], servers
continue to use CBC-mode ciphers in TLS 1.0 to avoid
RC4 [54] (considering recent practical attacks against RC4
used in a TLS setting [68]).

We test TLS proxies for their supported cipher suites by
using a browser that does not support any weak ciphers. When
the Qualys test reports that weak ciphers are presented to the
server, this indicates that the proxy negotiated its own cipher
suite with problematic ciphers. Weak ciphers as ranked by the
Qualys test include the ones relying on RC4, as presented by
most proxies. Other used weak cipher suites include: export-
grade ciphers with 40 bits of entropy (CYBERsitter); 56-bit
DES (BullGuard IS and CYBERsitter); ciphers relying on
anonymous Diffie-Hellman, which lacks authentication and
may enable a generic MITM attack (G DATA). PC Pandora
only supports three ciphers, two of which are based on RC4.

4) Known attacks: All proxies, except Avast, BitDefender
(March 2015 version) and Kaspersky, are vulnerable to at least
one of the following attacks: insecure renegotiation, BEAST,
CRIME, FREAK, or Logjam.

BullGuard IS, CYBERsitter, Dr. Web, ESET, G DATA and
Net Nanny are vulnerable to FREAK and/or Logjam against
vulnerable servers. When the browser connects to a vulnerable
server, an active MITM attacker could force the use of export
grade DH or RSA keys to access plaintext traffic. As of August
2015, 8.4% of servers from the Alexa Top 1 million domains
are vulnerable to Logjam [1], and 8.5% to FREAK.12 While
Logjam and FREAK attacks are relatively recent (less than
a year old at the time of our tests in August 2015), other
attacks are known for several years. Kaspersky is vulnerable to
CRIME; and PC Pandora to insecure renegotiation. In the latter
case, an active MITM attacker could request server resources
using the client’s authentication cookies.

Although BEAST requires bypassing the Same-Origin
Policy (SOP) and the support for Java applets, the main
mitigation relies on Java’s TLS stack implementation [54].
These mitigations are however canceled by five proxies that
support TLS 1.0 at most (BullGuard IS, Dr. Web, ESET, Net

12https://freakattack.com/

Nanny and PC Pandora), since they do not implement proper
mitigations with CBC (record splitting) or do not individually
proxy each TLS record from the browser/Java client.

BullGuard IS, Dr. Web, ESET, Kaspersky, Net Nanny and
PC Pandora may allow MITM attackers to decrypt partial
traffic (typically authentication cookies, leading to session
hijacking) because of their vulnerability to BEAST, CRIME,
or insecure renegotiation.

VII. PRACTICAL ATTACKS

In this section, we summarize how an attacker may exploit
the reported vulnerabilities, and turn them into practical attacks
against a target running Windows 7 SP1. For example, even
if a CCA relies on a pre-generated root certificate, it may not
become instantly vulnerable to a generic MITM attack. Other
factors must also be considered, e.g., whether the certificate
is imported in the OS/browser stores during installation, or
later when the filtering option is enabled; whether the proxy
is enabled after installation by default and in this case, if
it accepts its own root certificate. We discuss such nuances
when considering what attackers can realistically gain from the
flaws we uncovered, and give a preliminary ranking of CCAs
according to the level of effort required for launching practical
attacks. We contacted the 12 affected companies; only four of
them provided a detailed feedback, sometimes demonstrating
a poor understanding of TLS security; see Appendix D.

An attacker who can launch a generic MITM attack can
impersonate any server with very little or no effort to hosts that
have any of the following four CCAs installed. (a) PC Pandora,
as it imports a pre-generated root certificate in the Windows
store during installation, and does not filter TLS traffic by
default (i.e., allowing external site certificates signed by the PC
Pandora private key to be directly validated by clients relying
on the OS store, e.g., IE). It also remains vulnerable when
filtering is enabled, as it accepts external certificates signed by
its own root certificate. (b) KinderGate, for selected categories
of websites, due to its lack of any certificate validation. (c) G
DATA (for emails only), as the March version does not perform
certificate validation, and both March/August versions support
anonymous DH ciphers. (d) Net Nanny, as its March version
uses a pre-generated certificate, and both March/August ver
sions trust a root certificate with a factorable RSA-512 key
(only one factorization is required to impersonate any server).

11

https://freakattack.com/
http:renegotiation.In

The following three CCAs become vulnerable to full server
impersonation when filtering is manually activated (disabled
by default), or when the product’s trial period is over. The
attacker simply needs to wait for these attack opportunities, and
requires no additional effort. (a) Kaspersky’s March version,
as it does not perform any validation after the product license
is expired. Also, no automatic update of the product is possible
(requires a valid license), thus leaving customers with the
March version vulnerable until they manually upgrade or
uninstall the product. (b) BullGuard IS, if the parental control
feature is enabled, due to its lack of certificate signature
validation. (c) CYBERsitter, when its TLS filtering option is
enabled as it does not perform any certificate validation.

By exploiting the CRIME vulnerability, with limited effort
(see e.g., [55]), attackers can retrieve authentication cookies
under a generic MITM attack from hosts where Kaspersky
is installed (both March/August versions). However, only the
servers that still support TLS compression can be exploited.
According to the SSL Pulse project [66], 4.4% of the TLS
servers surveyed remain vulnerable, as of August 2015.

If attackers can launch the BEAST attack, they can retrieve
authentication cookies from hosts with Dr. Web (out-of-the
box), ESET (when filtering is enabled) and BitDefender (both
versions, for servers supporting at most TLS 1.0). As esti
mated [62], a PayPal cookie can be extracted using BEAST in
about 10 minutes. According to SSL Pulse [66], 86.8% of TLS
servers present CBC-mode ciphers in SSL 3.0/TLS 1.0, as of
August 2015 (mostly due to mitigations being implemented in
recent browsers, see e.g., [54]).

Attackers can exploit the FREAK attack against BitDe
fender’s March version against servers that support TLS 1.1
or above (other FREAK-vulnerable CCAs can be exploited
with simpler attacks). It will allow server impersonation for
all websites served from a vulnerable web server. Note that
8.5% of Alexa’s top 1 million domain names are reported to
be vulnerable to FREAK, as of August 2015 [9].

If the attacker can execute unprivileged code on a target
machine to retrieve private keys (not protected by the OS), she
can further impersonate any server to seven CCAs (including
BullGuard AV, BitDefender (August version) and ZoneAlarm).
BullGuard IS and Kaspersky (March versions) could already
be targeted by an opportunistic attack mentioned above, or the
CRIME attack; however, a targeted attack requires no waiting
and does not depend on server compatibility. BitDefender
(March version), Kaspersky (August version) and Dr. Web
can already be exploited for selected vulnerable websites,
now it extends the attacker’s ability to target any website.
Finally, KinderGate also facilitates this attack, even after
uninstallation (recall that KinderGate is already vulnerable to
server impersonation under a generic MITM attack).

A more powerful attacker could further exploit RC4 weak
nesses against systems with AVG installed (for selected web
sites only). More than 55% of servers surveyed by SSL Pulse
in August 2015 present a cipher suite that includes RC4. The
attack however is costly; it is reported by Vanhoef et al. [68]
to require 75 hours to recover a single cookie.

For Avast, the only way to impersonate a server is to
trick/compromise a CA to issue valid certificates for targeted
websites. Even if the breach is later discovered and the
certificates are revoked, Avast would continue to accept them.

VIII.	 RECOMMENDATIONS FOR SAFER TLS PROXYING

Encryption as provided by TLS is by design end-to-end,
and insertion of any filtering MITM proxy is bound to interfere
with TLS security guarantees. In this section, we discuss a
few recommendations that may reduce negative interference
of proxies/filtering. We also briefly discuss how browsers can
help make proxying safer.

We first discuss the use of a special SSL key logging
feature provided by recent browsers that would avoid the
need for TLS proxies in CCAs, while allowing filtering to
some extent. If proxies are still used (e.g., for clients without
SSL key logging support), we then discuss how they may
be designed to function safely. We believe following these
guidelines may significantly improve CCAs in general, but
we want to stress that more careful scrutiny is required to
assess security, functionality and performance impacts. Note
that, some TLS security features will be affected, no matter
how the proxies are designed. For example, EV certificates
cannot be served to browsers, if a proxy is used for filtering
traffic from websites with EV certificates.

TLS key-logging. Recent Firefox and Chrome browsers sup
port saving TLS parameters in a file to recreate a TLS session
key that can be used to decrypt/analyze TLS traffic (e.g., via
Wireshark); the key file is referenced by the SSLKEYLOG
FILE environment variable [44]. TLS proxies can offload all
TLS validation checks to browsers, by configuring the key
file and using the session key to decrypt the TLS encrypted
traffic originating from supporting browsers. Thus, proxies
can passively intercept the traffic, and perform filtering as
usual, without interfering with TLS security. This mechanism
should be sufficient for antiviruses to protect browsers from
active exploits, and parental control applications to block
access to restricted content. We found no CCAs leveraging
this functionality.

If TLS key logging is used, modification of the traffic
may not be possible (e.g., censor swear words, remove ads).
Also, browsers and other TLS applications (e.g., Microsoft IE,
Safari, email clients) that currently do not support TLS key
logging, cannot be filtered; note that, most CCAs filter traffic
from selected applications only (see Table IV).

Private keys. Most CCAs attempt to manage their private keys
independently (i.e., without relying on OS-protected storage),
making the keys accessible to unprivileged code. Several keys
are stored in plaintext, and others are protected by application-
specific encryption/obfuscation techniques, which can be de
feated with a one-time moderate effort. Instead, proxies can
simply use the OS-provided API (CNG) to securely store
private keys, which would then require an attacker to run
admin-privileged code to access the keys. Of course, OS APIs
should be used properly for effective protections (e.g., non-
exportable key). Also, proxies must generate a separate root
certificate for each installation, i.e., must never use a pre
generated certificate to avoid generic MITM attacks.

Certificate validation. To perform filtering, proxies must use
dynamically generated server certificates for the proxy-browser
TLS communication channel. Thus, proxies cannot transpar
ently forward a server certificate to the browser. However, they
must properly validate the received server certificates, with no
less rigor than popular browsers, and relay certificate errors to
browsers, as closely as possible. These are no easy tasks, but

12

must not be sidestepped by proxies, as they become the effec
tive Internet-facing TLS engine for the filtered applications.

Validation: Proxies that perform validation checks (albeit
incomplete), apparently rely on the validation mechanisms
offered by their respective TLS library. Such mechanisms as
provided by, e.g., OpenSSL, may require additional support to
ensure the chain of trust, and revocation status, and to enforce
supplementary policies.13 The revocation status of certificates
(via CRL or OCSP) should also be checked (e.g., through the
OpenSSL ocsp interface).

Errors: Communicating non-critical validation errors such
as expired certificate or wrong CN should be done in a way
that users still have a choice to accept or reject them, similar
to common browsers. Other invalid scenarios, e.g., non-CA
and X.509v1 intermediate, could also be replicated; however,
simply refusing such certificates might also be acceptable
(reflecting how browsers deal with such error cases).

Transparency. For the browser-proxy connection, proxies
should not use a fixed-size key or a fixed hashing algo
rithm, which we observed for most products. When certificate
attributes are not properly mapped, browsers may remain
unaware of the true TLS security level of an intended server.
Achieving transparency of certificate attributes includes at least
the replication of the same signature hashing algorithm and key
type/size. Regarding the TLS version and other parameters
such as the cipher suite, a transparent TLS handshake is
possible that satisfies constraints from both the browser and
server. Below, we outline a simple protocol to achieve this
goal; see also Fig. 2.

C P S

Vc, Cc
min(Vc, Vp), Cc ∩ Cp

min(Vc, Vp, Vs), c ∈ Cc ∩ Cp ∩ Cs

Fig. 2. Optimal handshake for TLS ClientHello and ServerHello when
proxying a connection

In this three-party TLS handshake, the client (C) sends
a ClientHello message with its supported TLS version (Vc)
and cipher suite (C c). The proxy (P) intercepts the message
and attempts a connection with the remote server (S) using
the best version that both the client and the proxy support,
i.e., min(V c, Vp), along with a cipher suite that is compat
ible with both the client and proxy (Cc ∩ Cp). Finally, the
server naturally chooses a TLS version and a cipher (c) that
would transparently satisfy both the proxy and the client, i.e.,
min(Vc, Vp, Vs) and c ∈ Cc ∩ Cp ∩ Cs respectively (Vs is
the best version supported by the server and Cs is the server’s
cipher suite). The proxy simply relays the ServerHello message
to the client, and continues the two handshakes (client- and
server-end) separately.

The proxy achieves complete transparency, if its supported
cipher suite is a superset of the client’s (C p ⊇ C c), and if it
supports at least a TLS version as high as the client (V p ≥ V c).
Such a handshake requires the proxy to be at par with the latest
TLS standards. This requirement is also necessary to help deter
newly discovered attacks (e.g., Heartbleed,14 FREAK).

13https://www.openssl.org/docs/apps/ocsp.html, /docs/apps/verify.html
14http://heartbleed.com/

Recommendations for browser manufacturers. As TLS
filtering obviously breaks end-to-end security, we recommend
a few additional active roles for browsers, specifically, to
reduce harm from broken proxies. For example, browsers can
warn users when a root certificate is inserted to a browser
specific trusted store (e.g., the Firefox store), or when filtering
is active (e.g., via a warning page, once in each browsing
session); connections via proxies may also be contingent
upon user confirmation. Such warnings may be undesirable
for parental-control applications, which may be mitigated by
having the warning feature as an option, turned on by default.
At least, browsers should make active filtering apparent to
users through security indicators. Note that browsers can easily
detect the presence of proxies, e.g., from the received proxy-
signed certificate, and recent browsers already accommodate
several UI indicators, to show varying levels of trust in a given
TLS connection.15 Some users may ignore such indicators,
but others may indeed be benefited (cf. [2]). Recently, Ruoti
et al. [56] surveyed user attitudes toward traffic inspection,
and reported that users are generally concerned about TLS
proxies (in organizations, public places, or operated by the
government); 90.7% of participants expected to be notified
when such proxying occurs.

As the most used interface to web, browser manufacturers
in the recent years have taken a more pro-active role in
improving online security than simply faithfully implementing
the TLS specifications, e.g., deploying optional/experimental
extensions to TLS, such as HSTS and key pinning; blocking
malware and phishing sites; and restricting misbehaving CAs,
such as CNNIC [4] and TURKTRUST [48]. We thus expect
browser manufacturers to force companies behind the most
offending CCAs to fix obvious vulnerabilities, by blocking
connections when a known, broken proxy is involved.

IX. RELATED WORK

Most testing suites related to our framework are presented
in Section IV. Here we briefly report additional studies on TLS
interception, proxying, and TLS security in general.

Dell SecureWorks Counter Threat Unit [16] propose a
framework for testing dedicated, network-based TLS inter
ception appliances as used in enterprise environment; several
security flaws were also reported. CERT [19] lists a few
common vulnerabilities in TLS proxies, and identifies possibly
affected products (mostly for enterprises). In the past, such
devices used to receive certificate signing authority from an
existing client-trusted CA to avoid user configuration; however,
many OS/browser vendors disallow this practice, and have
removed/sanctioned the issuing CA when discovered, e.g.,
Trustwave [63], TURKTRUST [48], ANSSI [47] and CN
NIC [4]. Such enterprise proxies require users/administrators
to independently install the proxy’s root certificate into their
clients. Our work is focused on client-end interception proxies,
which poses additional challenges, and are installed and used
by everyday users. Also, Dell’s framework is mostly oriented
towards certificate validation, while we extend the focus to
TLS versions and various recent attacks.

Frankencert [12] generates artificial certificates that are
composed of a combination of existing extensions and con

15See e.g., Chrome: https://support.google.com/chrome/answer/95617;
and Firefox: https://support.mozilla.org/en-US/kb/how-do-i-tell-if-my
connection-is-secure.

13

https://www.openssl.org/docs/apps/ocsp.html
https://www.openssl.org/docs/apps/verify.html
http://heartbleed.com/
https://support.google.com/chrome/answer/95617
https://support.mozilla.org/en-US/kb/how-do-i-tell-if-my-connection-is-secure
https://support.mozilla.org/en-US/kb/how-do-i-tell-if-my-connection-is-secure

straints, randomly chosen from a large corpus of input cer
tificates. The generated certificates are then tested against
TLS clients. Errors are uncovered through differential testing
between at least two implementations. Frankencert has been
tested mainly on open-source TLS libraries (not much testing
on browsers), and uncovered several high-impact validation
flaws. The authors use a script to instrument browsers and
TLS libraries to generate a web request and log the status
of the reply (i.e., to check certificate rejection errors). We
provide a simple mechanism to make Frankencert compatible
with client-end TLS proxies; however, we do not use/modify
Frankencert as obvious validation errors are already apparent
from simple tests.

In a preliminary work, Böck [11] analyzes three antiviruses,
and reports that they are vulnerable to CRIME and FREAK
attacks, and support only old SSL/TLS versions. Böck also
tracks commercial products that leverage the Netfilter SDK16

to intercept HTTPS traffic using pre-generated certificates. Our
work is more comprehensive in terms of the number of tested
products, and tests we perform in our framework.

Huang et al. [30] study TLS traffic filtering by investigating
Facebook’s server certificate as seen from browsers. They
found that 0.2% of the 3 million TLS connections they mea
sured were tampered with interception tools, mostly antiviruses
and enterprise CCAs, but also parental control tools and mal
ware. O’Neill et al. [51] leverage a Google AdWords campaign
to study connections to their own server and several popular
websites. They found that 0.41% of 15 million connections
were proxied, by similar types of intercepting tools.

Various proposals introduce extensions to TLS and new
encryption schemes that enable transparent inspection of en
crypted traffic, see e.g., [58], [50]. Liang et al. [35] show the
architectural difficulties faced by CDNs to deploy HTTPS, as
they are automatically placed in a man-in-the-middle position.

Meyer and Schwenk [37] survey theoretical and practical
cryptographic attacks against SSL/TLS, along with problems
with the PKI infrastructure. They gather lessons learned from
these attacks, e.g., the need for reliable cryptographic primi
tives and awareness for side-channel attack origins. In parallel,
Clark and van Oorschot [13] survey issues related to SSL/TLS
from a cryptographic point of view in the context of HTTPS,
as well as general issues related to current PKI and trust
model proposals. Recent proposals, e.g., key pinning and
HSTS variants, OCSP stapling and short-lived certificates, have
also been evaluated against known issues. Authors note a shift
from cryptographic attacks against TLS to attacks on the trust
model, where valid certificates can be issued by attackers.

HTTP Strict Transport Security (HSTS [31]) is a simple
mechanism to protect against SSL stripping attacks. Kranch
and Bonneau [34] studied how HSTS and key pinning are de
ployed in practice, and found that even such simple proposals
to enhance the HTTPS security are challenging to implement.
We note that key pinning is overridden by Chrome 47.0 when
the server certificate is signed by an imported root certificate.

Huang et al. [29] study the deployment of forward secrecy
(FS) compatible ciphers from the server perspective, and found
that despite their wide-scale adoption, weak parameters (weak
keys) are still often negotiated. We did not test whether TLS
proxies interfere with such FS-ciphers.

16http://netfiltersdk.com/

X. CONCLUSION

We propose a framework for the evaluation of client-end
TLS proxies, by addressing limitations of regular TLS test
suites, and adding more tests specifically relevant to such
proxies. We use the framework to comprehensively analyze
14 antiviruses and parental control applications, specifically
their TLS proxies. While these applications may require
TLS interception capabilities for their functionality, they must
avoid introducing new weaknesses into the already fragile
browser/SSL ecosystem. However, we found that not a single
TLS proxy implementation is secure with respect to all of our
tests, sometimes leading to trivial server impersonation under
an active man-in-the-middle attack, as soon as the product is
installed on a system. Our analysis calls the purpose of such
proxies into question, especially in the case of antiviruses,
which are tasked to enhance host security. Indeed, these prod
ucts in general, appear to significantly undermine the benefits
of recent security fixes and improvements as deployed in the
browser/SSL ecosystem. We suggest preliminary guidelines for
safer implementations of TLS proxies based on our findings.
However, due to the foreseeable implementation complex
ities of our proposed guidelines, we suggest the adoption
of interfaces that would let client-end TLS proxies monitor
encrypted traffic originating from browsers in a more secure
way, e.g., using the SSL key log file feature. Our work is
intended to highlight weaknesses in current TLS proxies, and
to motivate better proposals for safe filtering. Finally, our
findings also call into question the so-called security best-
practice of using antiviruses on client systems, as commonly
advised by IT professionals, and even required by some online
banking websites.

ACKNOWLEDGMENTS

For comments and suggestions, we are grateful to anony
mous CCS2015 and NDSS2016 reviewers, Paul Van Oorschot,
Jeremy Clark, Tao Wan, our shepherd Joseph Bonneau, and
the members of Concordia’s Madiba Security Research Group.
The first author is supported in part by a Vanier Canada Gradu
ate Scholarship (CGS). The second author is supported in part
by an NSERC Discovery Grant and an OPC Contributions
Program (Office of the Privacy Commissioner of Canada).

REFERENCES

[1] D. Adrian, K. Bhargavan, Z. Durumeric, P. Gaudry, M. Green, J. A.
Halderman, N. Heninger, D. Springall, E. Thomé, L. Valenta, B. Van
derSloot, E. Wustrow, S. Zanella-Béguelink, and P. Zimmermann,
“Imperfect forward secrecy: How Diffie-Hellman fails in practice,” in
CCS’15, 2015.

[2] D. Akhawe and A. P. Felt, “Alice in warningland: A large-scale field
study of browser security warning effectiveness,” in USENIX Security

Symposium, 2013.
[3] N. J. AlFardan, D. J. Bernstein, K. G. Paterson, B. Poettering, and

J. C. Schuldt, “On the security of RC4 in TLS,” in USENIX Security

Symposium, 2013.
[4] ArsTechnica.com, “Google Chrome will banish Chinese certificate

authority for breach of trust,” news article (Apr. 1, 2015). http://
arstechnica.com/security/2015/04/google-chrome-will-banish-chinese
certificate-authority-for-breach-of-trust/.

[5]	 ——, “Lenovo PCs ship with man-in-the-middle adware that breaks
HTTPS connections,” news article (Feb. 19, 2015).

[6] AV-comparatives.org, “Independent tests of anti-virus software - sum
mary reports,” http://www.av-comparatives.org/summary-reports/.

[7]	 ——, “Parental control reviews,” http://www.av-comparatives.org/
parental-control/.

[8] M. Benham, “IE SSL vulnerability,” Bugtraq mailing list (Aug. 5, 2002).
http://seclists.org/bugtraq/2002/Aug/111.

14

http://netfiltersdk.com/
http://arstechnica.com/security/2015/04/google-chrome-will-banish-chinese-certificate-authority-for-breach-of-trust/
http://arstechnica.com/security/2015/04/google-chrome-will-banish-chinese-certificate-authority-for-breach-of-trust/
http://arstechnica.com/security/2015/04/google-chrome-will-banish-chinese-certificate-authority-for-breach-of-trust/
http://www.av-comparatives.org/summary-reports/
http://www.av-comparatives.org/parental-control/
http://www.av-comparatives.org/parental-control/
http://seclists.org/bugtraq/2002/Aug/111
http:AV-comparatives.org
http:ArsTechnica.com
http:ecosystem.We

[9] B. Beurdouche, K. Bhargavan, A. Delignat-Lavaud, C. Fournet,
M. Kohlweiss, A. Pironti, P.-Y. Strub, and J. K. Zinzindohoue, “A messy
state of the union: Taming the composite state machines of TLS,” in
IEEE S&P, 2015.

[10] H. Böck, “Check for bad certs from Komodia/Superfish,” https://
superfish.tlsfun.de/.

[11]	 ——, “How Kaspersky makes you vulnerable to the FREAK attack and
other ways antivirus software lowers your HTTPS security,” https://
blog.hboeck.de/archives/869-How-Kaspersky-makes-you-vulnerable
to-the-FREAK-attack-and-other-ways-Antivirus-software-lowers
your-HTTPS-security.html.

[12] C. Brubaker, S. Jana, B. Ray, S. Khurshid, and V. Shmatikov, “Using
frankencerts for automated adversarial testing of certificate validation
in SSL/TLS implementations,” in IEEE S&P, 2014.

[13] J. Clark and P. C. van Oorschot, “SSL and HTTPS: Revisiting past
challenges and evaluating certificate trust model enhancements,” in
IEEE S&P, 2013.

[14] Comodo.com, “Comodo SSL affiliate the recent RA compromise,” blog
article (Mar. 23, 2011). https://blog.comodo.com/other/the-recent-ra
compromise/.

[15] ComputerWeekly.com, “PrivDog SSL compromise potentially worse
than Superfish,” news article (Apr. 24, 2015).

[16] Dell.com, “SSL/TLS interception proxies and transitive trust,” http://
secureworks.com/cyber-threat-intelligence/threats/transitive-trust/.

[17] B. Delpy, “mimikatz,” http://blog.gentilkiwi.com/.

[18] DigiCert.com, “Apache SNI browser support,” https://www.digicert.
com/ssl-support/apache-secure-multiple-sites-sni.htm.

[19] W. Dormann, “The risks of SSL inspection,” online article (Mar. 13,
2015). https://www.cert.org/blogs/certcc/post.cfm?EntryID=221.

[20] T. Duong and J. Rizzo, “Here come the ⊕ ninjas,” technical report (May
2011). http://www.hpcc.ecs.soton.ac.uk/~dan/talks/bullrun/Beast.pdf.

[21] DuoSecurity.com, “Dude, you got Dell’d,” technical report (Nov. 24,
2015). https://duosecurity.com/static/pdf/Dude,_You_Got_Dell_d.pdf.

[22] Z. Durumeric, E. Wustrow, and J. A. Halderman, “ZMap: Fast internet
wide scanning and its security applications.” in USENIX Security

Symposium, 2013.

[23] D. Fisher, “Malaysian CA Digicert revokes certs with weak keys,
Mozilla moves to revoke trust,” news article (Nov. 3, 2011).
https://threatpost.com/malaysian-ca-digicert-revokes-certs-weak-keys
mozilla-moves-revoke-trust-110311/75847.

[24] Google, “Certificate transparency,” http://certificate-transparency.org.

[25]	 ——, “Gradually sunsetting SHA-1,” blog article (Sept. 5, 2014).
http://googleonlinesecurity.blogspot.ca/2014/09/gradually-sunsetting
sha-1.html.

[26] R. D. Graham, “Extracting the SuperFish certificate,” http://blog.
erratasec.com/2015/02/extracting-superfish-certificate.html.

[27]	 ——, “Heartleech,” https://github.com/robertdavidgraham/heartleech.

[28] J. Hodges, “howsmyssl,” https://github.com/jmhodges/howsmyssl.

[29] L. S. Huang, S. Adhikarla, D. Boneh, and C. Jackson, “An experimental
study of TLS forward secrecy deployments,” Internet Computing, IEEE,
vol. 18, no. 6, pp. 43–51, 2014.

[30] L. S. Huang, A. Rice, E. Ellingsen, and C. Jackson, “Analyzing forged
SSL certificates in the wild,” in IEEE S&P, 2014.

[31] IETF, “Internet-Draft: HTTP strict transport security (HSTS),” 2012,
RFC 6797 (Standards Track).

[32] A. Junestam, C. Clark, and J. Copenhaver, “Jailbreak 4.0,” https://
github.com/iSECPartners/jailbreak.

[33] G. Kopf and P. Kehrer, “CVE-2011-0228 – iOS certificate chain
validation issue in handling of X.509 certificates.”

[34] M. Kranch and J. Bonneau, “Upgrading HTTPS in mid-air: An empir
ical study of strict transport security and key pinning,” in NDSS’15.

[35] J. Liang, J. Jiang, H. Duan, K. Li, T. Wan, and J. Wu, “When HTTPS
meets CDN: A case of authentication in delegated service,” in USENIX

Security Symposium, 2014.

[36] A. Malhotra, I. E. Cohen, E. Brakke, and S. Goldberg, “Attacking the
Network Time Protocol,” in NDSS’16, 2016.

[37] C. Meyer and J. Schwenk, “SoK: Lessons learned from SSL/TLS
attacks,” in Information Security Applications (WISA’13), 2013.

[38] Microsoft, “CA certificates tools and settings,” https://technet.microsoft.
com/en-us/library/cc783813%28v=ws.10%29.aspx.

[39]	 ——, “Key storage and retrieval,” https://msdn.microsoft.com/en-us/
library/windows/desktop/bb204778%28v=vs.85%29.aspx.

[40]	 ——, “System store locations,” https://msdn.microsoft.com/en-us/
library/windows/desktop/aa388136%28v=vs.85%29.aspx.

[41] B. Moeller, T. Duong, and K. Kotowicz, “This POODLE bites: Exploit
ing the SSL 3.0 fallback,” technical report (Sept. 2014). https://www.
openssl.org/~bodo/ssl-poodle.pdf.

[42] Mozilla, “Dates for phasing out MD5-based signatures and 1024
bit moduli,” wiki article (Oct. 3, 2013). https://wiki.mozilla.org/CA:
MD5and1024.

[43]	 ——, “Mozilla CA certificate policy,” https://www.mozilla.org/en-US/
about/governance/policies/security-group/certs/policy/.

[44]	 ——, “NSS key log format,” https://developer.mozilla.org/en-US/docs/
Mozilla/Projects/NSS/Key_Log_Format.

[45]	 ——, “Phasing out certificates with 1024-bit RSA keys,” blog article
(Sept. 8, 2014). https://blog.mozilla.org/security/2014/09/08/phasing
out-certificates-with-1024-bit-rsa-keys/.

[46]	 ——, “The POODLE attack and the end of SSL 3.0,” blog arti
cle (Oct. 14, 2014). https://blog.mozilla.org/security/2014/10/14/the
poodle-attack-and-the-end-of-ssl-3-0/.

[47]	 ——, “Revoking trust in one ANSSI certificate,” blog article (Dec.
13, 2013). https://blog.mozilla.org/security/2013/12/09/revoking-trust
in-one-anssi-certificate/.

[48]	 ——, “Revoking trust in two TurkTrust certificates,” blog article
(Jan. 3, 2013). https://blog.mozilla.org/security/2013/01/03/revoking
trust-in-two-turktrust-certficates/.

[49] P. Mutton, “Governments and banks still using weak MD5-signed SSL
certificates,” news article (Aug. 31, 2012). http://news.netcraft.com/
archives/2012/08/31/governments-and-banks-still-using-weak-md5
signed-ssl-certificates.html.

[50] D. Naylor, K. Schomp, M. Varvello, I. Leontiadis, J. Blackburn, D. R.
López, K. Papagiannaki, P. Rodriguez Rodriguez, and P. Steenkiste,
“Multi-Context TLS (mcTLS): Enabling secure in-network functionality
in TLS,” in SIGCOMM’15, 2015.

[51] M. O’Neill, S. Ruoti, K. Seamons, and D. Zappala, “TLS proxies:
Friend or foe?” http://arxiv.org/abs/1407.7146v3.

[52] Qualys, Inc., “SSL/TLS capabilities of your browser,” https://ssllabs.
com/ssltest/viewMyClient.html.

[53] M. Qureshi, “April 2015 security updates for Internet Explorer,” blog
article (Apr. 14, 2015).

[54] I. Ristic, ´ “Is BEAST still a threat?” blog article (Sept. 10,
2013). https://community.qualys.com/blogs/securitylabs/2013/09/10/is
beast-still-a-threat.

[55] J. Rizzo and T. Duong, “The crime attack,” in Ekoparty, 2012, http://
netifera.com/research/crime/CRIME_ekoparty2012.pdf.

[56] S. Ruoti, M. O’Neil, D. Zappala, and K. Seamons, “At least tell me:
User attitudes toward the inspection of encrypted traffic,” https://isrl.
byu.edu/pubs/ruoti2016at.pdf.

[57] M. Russinovich, “Inside Windows 7 User Account Control,” 2009,
magazine article. https://technet.microsoft.com/en-us/magazine/2009.
07.uac.aspx?rss_fdn=TNTopNewInfo.

[58] J. Sherry, C. Lan, R. A. Popa, and S. Ratnasamy, “BlindBox: Deep
packet inspection over encrypted traffic,” in SIGCOMM’15, 2015.

[59] Softpedia.com, “Chrome 39 disables SSLv3 fallback,” news article
(Nov. 19, 2014).

[60] A. Sotirov, M. Stevens, J. Appelbaum, A. Lenstra, D. Molnar, D. A.
Osvik, and B. de Weger, “MD5 considered harmful today,” blog article
(Dec. 30, 2008). https://www.win.tue.nl/hashclash/rogue-ca/.

[61] X. Su, “(CVE-2011-3389) Rizzo/Duong chosen plaintext attack
(BEAST) on SSL/TLS 1.0 (facilitated by websockets -76),” https://
bugzilla.mozilla.org/show_bug.cgi?id=665814#c59.

[62] TheRegister.co.uk, “Hackers break SSL encryption used by millions of
sites,” news article (Sept. 19, 2011). http://www.theregister.co.uk/2011/
09/19/beast_exploits_paypal_ssl/.

[63]	 ——, “Revoking trust in two TurkTrust certificates,” news article (Feb.
14, 2012). http://www.theregister.co.uk/2012/02/14/trustwave_analysis/.

[64] TLS-O-Matic.com, “Self testing for web and application developers,”
https://www.tls-o-matic.com/.

[65] TopTenReviews.com,	 “Parental software review,” http://parental
software-review.toptenreviews.com/.

[66] Trustworthy Internet Movement, “SSL Pulse,” survey (retrieved on Aug.
3, 2015). https://www.trustworthyinternet.org/ssl-pulse/.

[67] F. Valsorda, “Superfish, Komodia, PrivDog vulnerability test,” https://
filippo.io/Badfish/.

[68] M. Vanhoef and F. Piessens, “All your biases belong to us: Breaking
RC4 in WPA-TKIP and TLS,” in USENIX Security Symposium, 2015.

15

https://superfish.tlsfun.de/
https://superfish.tlsfun.de/
https://blog.hboeck.de/archives/869-How-Kaspersky-makes-you-vulnerable-to-the-FREAK-attack-and-other-ways-Antivirus-software-lowers-your-HTTPS-security.html
https://blog.hboeck.de/archives/869-How-Kaspersky-makes-you-vulnerable-to-the-FREAK-attack-and-other-ways-Antivirus-software-lowers-your-HTTPS-security.html
https://blog.hboeck.de/archives/869-How-Kaspersky-makes-you-vulnerable-to-the-FREAK-attack-and-other-ways-Antivirus-software-lowers-your-HTTPS-security.html
https://blog.hboeck.de/archives/869-How-Kaspersky-makes-you-vulnerable-to-the-FREAK-attack-and-other-ways-Antivirus-software-lowers-your-HTTPS-security.html
https://blog.comodo.com/other/the-recent-ra-compromise/
https://blog.comodo.com/other/the-recent-ra-compromise/
http://secureworks.com/cyber-threat-intelligence/threats/transitive-trust/
http://secureworks.com/cyber-threat-intelligence/threats/transitive-trust/
http://blog.gentilkiwi.com/
https://www.digicert.com/ssl-support/apache-secure-multiple-sites-sni.htm
https://www.digicert.com/ssl-support/apache-secure-multiple-sites-sni.htm
https://www.cert.org/blogs/certcc/post.cfm?EntryID=221
http://www.hpcc.ecs.soton.ac.uk/~dan/talks/bullrun/Beast.pdf
https://duosecurity.com/static/pdf/Dude,_You_Got_Dell_d.pdf
https://threatpost.com/malaysian-ca-digicert-revokes-certs-weak-keys-mozilla-moves-revoke-trust-110311/75847
https://threatpost.com/malaysian-ca-digicert-revokes-certs-weak-keys-mozilla-moves-revoke-trust-110311/75847
http://certificate-transparency.org
http://googleonlinesecurity.blogspot.ca/2014/09/gradually-sunsetting-sha-1.html
http://googleonlinesecurity.blogspot.ca/2014/09/gradually-sunsetting-sha-1.html
http://blog.erratasec.com/2015/02/extracting-superfish-certificate.html
http://blog.erratasec.com/2015/02/extracting-superfish-certificate.html
https://github.com/robertdavidgraham/heartleech
https://github.com/jmhodges/howsmyssl
https://github.com/iSECPartners/jailbreak
https://github.com/iSECPartners/jailbreak
https://technet.microsoft.com/en-us/library/cc783813%28v=ws.10%29.aspx
https://technet.microsoft.com/en-us/library/cc783813%28v=ws.10%29.aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/bb204778%28v=vs.85%29.aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/bb204778%28v=vs.85%29.aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/aa388136%28v=vs.85%29.aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/aa388136%28v=vs.85%29.aspx
https://www.openssl.org/~bodo/ssl-poodle.pdf
https://www.openssl.org/~bodo/ssl-poodle.pdf
https://wiki.mozilla.org/CA:MD5and1024
https://wiki.mozilla.org/CA:MD5and1024
https://www.mozilla.org/en-US/about/governance/policies/security-group/certs/policy/
https://www.mozilla.org/en-US/about/governance/policies/security-group/certs/policy/
https://developer.mozilla.org/en-US/docs/Mozilla/Projects/NSS/Key_Log_Format
https://developer.mozilla.org/en-US/docs/Mozilla/Projects/NSS/Key_Log_Format
https://blog.mozilla.org/security/2014/09/08/phasing-out-certificates-with-1024-bit-rsa-keys/
https://blog.mozilla.org/security/2014/09/08/phasing-out-certificates-with-1024-bit-rsa-keys/
https://blog.mozilla.org/security/2014/10/14/the-poodle-attack-and-the-end-of-ssl-3-0/
https://blog.mozilla.org/security/2014/10/14/the-poodle-attack-and-the-end-of-ssl-3-0/
https://blog.mozilla.org/security/2013/12/09/revoking-trust-in-one-anssi-certificate/
https://blog.mozilla.org/security/2013/12/09/revoking-trust-in-one-anssi-certificate/
https://blog.mozilla.org/security/2013/01/03/revoking-trust-in-two-turktrust-certficates/
https://blog.mozilla.org/security/2013/01/03/revoking-trust-in-two-turktrust-certficates/
http://news.netcraft.com/archives/2012/08/31/governments-and-banks-still-using-weak-md5-signed-ssl-certificates.html
http://news.netcraft.com/archives/2012/08/31/governments-and-banks-still-using-weak-md5-signed-ssl-certificates.html
http://news.netcraft.com/archives/2012/08/31/governments-and-banks-still-using-weak-md5-signed-ssl-certificates.html
http://arxiv.org/abs/1407.7146v3
https://ssllabs.com/ssltest/viewMyClient.html
https://ssllabs.com/ssltest/viewMyClient.html
https://community.qualys.com/blogs/securitylabs/2013/09/10/is-beast-still-a-threat
https://community.qualys.com/blogs/securitylabs/2013/09/10/is-beast-still-a-threat
http://netifera.com/research/crime/CRIME_ekoparty2012.pdf
http://netifera.com/research/crime/CRIME_ekoparty2012.pdf
https://isrl.byu.edu/pubs/ruoti2016at.pdf
https://isrl.byu.edu/pubs/ruoti2016at.pdf
https://technet.microsoft.com/en-us/magazine/2009.07.uac.aspx?rss_fdn=TNTopNewInfo
https://technet.microsoft.com/en-us/magazine/2009.07.uac.aspx?rss_fdn=TNTopNewInfo
https://www.win.tue.nl/hashclash/rogue-ca/
https://bugzilla.mozilla.org/show_bug.cgi?id=665814#c59
https://bugzilla.mozilla.org/show_bug.cgi?id=665814#c59
http://www.theregister.co.uk/2011/09/19/beast_exploits_paypal_ssl/
http://www.theregister.co.uk/2011/09/19/beast_exploits_paypal_ssl/
http://www.theregister.co.uk/2012/02/14/trustwave_analysis/
https://www.tls-o-matic.com/
http://parental-software-review.toptenreviews.com/
http://parental-software-review.toptenreviews.com/
https://www.trustworthyinternet.org/ssl-pulse/
https://filippo.io/Badfish/
https://filippo.io/Badfish/
http:TopTenReviews.com
http:TLS-O-Matic.com
http:TheRegister.co.uk
http:Softpedia.com
http:DuoSecurity.com
http:DigiCert.com
http:Dell.com
http:ComputerWeekly.com
http:Comodo.com

TABLE IV. SECURITY ASPECTS RELATED TO ROOT CERTIFICATES INSERTION/REMOVAL, AND FILTERING

Certificate gener

ation time

Filtering en

rollment

Reject own root

certificate

Insertion in Firefox

trusted store

Removal during

uninstallation
Filtered clients

Avast Installation Mandatory , , Internet Explorer, Chrome, Firefox

AVG Installation Mandatory ,1 , Internet Explorer, Chrome

BitDefender Installation Mandatory , , Internet Explorer, Chrome, Firefox

BullGuard AV Installation Unsupported — , —

BullGuard IS Installation Opt-in , , All

CYBERsitter Pre-generated2,3 Opt-in , All

Dr. Web Installation Mandatory All

ESET Installation3 Opt-in , All

G DATA Installation Mandatory , All

Kaspersky Installation Mandatory , Internet Explorer, Chrome, Firefox

KinderGate Installation Mandatory All

Net Nanny Installation Mandatory , , Internet Explorer, Chrome, Firefox

PC Pandora Pre-generated Opt-in , Internet Explorer

ZoneAlarm Installation Unsupported — —

1 The product does not filter connections with a proxy-signed certificate, leaving clients to accept the certificate
2 A pre-generated public key is wrapped in a new certificate during its creation
3 A root certificate is installed when the relevant option is activated (and removed when deactivated for ESET)

APPENDIX

A. Trusted root CA stores

System CA store. All versions of Windows starting from
Windows 2000 [38], provide a Trusted Root Certification
Authorities certificate store that comes preloaded with a list
of trusted CAs, meeting the requirements of the Microsoft
Root Certificate Program.17 Updates to this list are generally
provided by Microsoft, but applications and users can add
additional certificates (only via specific Windows APIs or the
Windows Certificate Manager). We refer to this store as the
OS trusted (CA) store, which can either be user-dependent,
service-dependent or machine-wide. The machine-wide trusted
store is located in Windows registry as (key, value) pairs [40]: a
key (Certificates) hosting each trusted certificate as a subkey,
labeled with the certificate’s SHA1 fingerprint; and a value
(Blob) hosting the certificate in the ASN.1 DER format. CCAs
import their root certificates in the machine-wide store, making
those certificates trusted by the OS and all applications relying
on the OS trusted store. Importing a root certificate into the
machine-wide store requires admin privileges, in which case
Windows does not warn users about the security implications
of such a certificate. Importing a root certificate to the current
user’s trusted store by a userland application however triggers
a detailed warning, and requires explicit user acceptance. As
CCAs obtain admin privileges during installation (e.g., via a
UAC prompt), the insertion of a root certificate into the OS
trusted store remains transparent to the user.

Third-party CA stores. TLS applications may choose to use
their own CA store, instead of relying on the OS-provided
store (possibly due to not fully trusting the validation process
as used by Microsoft to accept a root certificate). For example,
Firefox uses an independent root CA list, populated according
to the Mozilla CA Certificate Policy [43]. In addition to the
OS store, several CCAs also insert their root certificates into
the application stores to filter traffic to/from those applications.
CCAs may check for such applications during installation, and
automatically insert their root certificates into selected third-
party stores (transparently to users), or simply instruct users
to manually add root certificates to application stores.
Table IV summarizes which CCA (from the list of tested prod
ucts in Table V) imports its root certificate in Firefox trusted
store, along with various details discussed in Section VI-A.

17https://technet.microsoft.com/en-ca/library/cc751157.aspx

B. OS-provided APIs for key storage

The legacy Microsoft CryptoAPI (CAPI) and the new
Cryptography API: Next Generation (CNG) provide spe
cialized functions to store, retrieve, and use cryptographic
keys [39]. Cryptographic Service Providers (CSP) such as the
Strong Cryptographic Provider in the previous CAPI, and the
CNG Key Storage Provider (KSP) offer such features. For TLS
filtering, CCAs must store their private keys (corresponding to
their root certificates) in the host system to sign site certificates
for browsers on-the-fly. If a CCA uses CSP/KSP to securely
store its private key, Windows encrypts the private key using a
master key only available to the OS, and stores the ciphertext in
%ProgramData%\Microsoft\Crypto\RSA\MachineKeys in the
case of machine-wide RSA private keys. For CCAs using
CSP/KSP, we check whether a key is marked as exportable
(by the CCA). Machine-wide keys are exportable only with
admin privileges. If a key is marked non-exportable, it is not
supposed to be exported even with admin privileges. However,
tools requiring admin/system privileges are available to bypass
this restriction, e.g., Jailbreak [32] and Mimikatz [17] as we
tested on Windows 7 SP1. Non-exportable keys can be used by
the CAPI or CNG to directly encrypt or decrypt data without
letting the application access the key. Such a method should
be preferred by CCAs; however our results show otherwise
(see Section VI). In this paper, we consider that exporting
OS-protected private keys requires admin privileges. Note that,
an unprivileged application running under an admin account,
can open the Windows Certificate Manager (run with admin
privileges), and then instrument the UI to access an exportable
private key; such an attempt will not trigger the Windows UAC
prompt under default UAC settings (under Windows 7, 8.1
and 10 as we tested), which allow auto-elevating whitelisted
Microsoft tools [57].

C. Test certificates with a broken chain of trust

1) Self-signed: A simple self-signed certificate. If accepted,
trivial generic MITM attacks are possible.

2) Signature mismatch: The signature of a valid certificate is
altered. If accepted, the proxy lacks signature verification,
and may allow simple certificate forgery.

3) Fake GeoTrust CA: A certificate signed by an untrusted
root certificate that has the same subject name as the
GeoTrust root CA (any OS/browser trusted CA can be
used). We also include this fake CA certificate in the

16

https://technet.microsoft.com/en-ca/library/cc751157.aspx

certificate chain. The leaf certificate does not specify an
Authority Key Identifier (AKI), limiting the identification
of the issuer certificate to only its subject name. The
goal is to check if the proxy refers to the correct root
certificate.

4) Wrong CN: Incorrect Common Name (CN) not matching
the domain where it is served from. If accepted, a valid
certificate for any website could be used to impersonate
any server.

5) Unknown CA: A certificate signed by an untrusted root
certificate (e.g., generated by us).

6) Non-CA intermediate: A valid leaf certificate is used as
an intermediate CA to sign a new certificate. If accepted,
a valid certificate for any website could be used to issue
valid certificates for any other websites (cf. early versions
of IE [8] and iPhone [33]).

7) X.509v1 intermediate: An X.509 version 1 certificate
acting as an intermediate CA certificate. X.509v1 does
not support setting a basicConstraints parameter to limit a
certificate to be a leaf. If accepted, any valid v1 certificate
could be used to issue any other certificates.

8) Revoked: We rely on https://revoked.grc.com to test the
revocation support. This website delivers a revoked certifi
cate with the necessary extensions to refer to the signing
CA’s CRL list and OCSP server (both would report the
certificate as revoked). Revocation is particularly useful
in cases where legitimate certificates are issued after a
security breach at a CA, e.g., Comodo [14].

9) Expired: A certificate with a past “valid-before” date.

D. Company responses

The companies behind the products that we tested are listed
in Table V. We contacted all affected companies except Avast
(as its lack of revocation checking is not serious enough).
Among the 12 emails we sent, we received an acknowledgment
from seven companies (beyond a simple automatic reply), and
received a detailed reply in four cases. Among these four
replies, two antivirus companies were already aware of the
bugs we reported and had fixed them in more recent releases of
their software. One reply from a parental control software com
pany highlighted several discrepancies and misconceptions.
For example, our tests on the latest version of the product
on Windows 7 SP1 with patches for Schannel against BEAST
and FREAK reveal that it supports at most TLS 1.0 when
connecting to remote websites. However, the company states
that “In fact, Net Nanny supports up to TLS v1.2.”, and further
adds that the “*real* server connection is established with
the highest settings we can use without being rejected.” Also,
while the FREAK attack is an implementation flaw in some
TLS libraries that allows an attacker to force both parties
to agree on export-grade ciphers, the company states that
“FREAK and logjam are again, due to having to support old
browsers/servers.” The last parental control software company
simply downplayed the risks as their software does not filter
sensitive websites by default (but can be configured to do so).
They wrote: “That’s why our users are not affected by any

vulnerability or MITM-attack.” Finally, the companies behind
the most offending products did not reply after four months,
even after a reminder.

TABLE V. LIST OF PRODUCTS TESTED. HIGHLIGHTED ENTRIES ARE

PRODUCTS THAT MAY INSTALL A ROOT CERTIFICATE AND PROXY TLS

CONNECTIONS; WE ANALYZED ALL SUCH PRODUCTS.

Company Product Version

Antiviruses

Agnitum

AhnLab

Avast

AVG

Baidu

BitDefender

BullGuard

Checkpoint

Comodo

CMC

Dr. Web

Emsisoft

eScan

ESET

F-Secure

G DATA

K7 Computing

Kaspersky

Kingsoft

McAfee

Norman

Output

Panda Security

Qihoo

Quick Heal

Sophos

TGSoft

Total Defense

TrendMicro

TrustPort

VIPRE

Webroot

Outpost Security Suite Pro

V3 Internet Security

Internet Security

Internet Security

Antivirus

Antivirus Plus

Antivirus

Internet Security

ZoneAlarm Security Suite

Antivirus Advanced

Internet Security

Internet Security

Security Space

Anti-Malware

Internet Security Suite

Smart Security

SAFE

Antivirus

K7 Internet Security

K7 Total Security Pro

Antivirus

Antivirus

Internet Security

Security Suite

Total Security

Antivirus Pro

Internet Security

360 Internet Security

360 Total Security

Internet Security

Endpoint Security

VirIT

Internet Security Suite

Internet Security

Total Security

Internet Security

Internet Security

SecureAnywhere

9.1

8.0

2015 10.2.2218

10.3.2225

2015.0.?

2015.0.6122

2015 5.0.3

2015 v8

15.0.297

15.1.302

15.1.307.2

2015 13.4.261

8.1

8.1

2012

10

9.0

14.0

8.0.312.0

8.0.319.0

2.15 build 364

2015 25.0.0.2

25.1.0.3

14.2.0.249

14.2.0.249

15.0.2.361

16.0.0.614

2010

12.8

11

1.1.4304.0

2015

2015

5.0.0.5104

6.0.0.1140

16.00 (9.0.0.20)

10.3

Lite 7.8.51.0

9.0.0.141

8.0

2014 14.0.5.5273

2015 15.0.3.5432

2015 8.2.1.16

8.0.7.33

Parental control applications

Awareness Tech

BlueCoat

ContentWatch

Solid Oak Software

Cybits Ag

Fortinet

Entensys

KinderServer AG

LavaSoft

McAfee

Norton

Pandora Corp

Profil

Salfeld

SpyTech

TuEagles

Verify

Witigo

WebWatcher

K9 Web Protection

Net Nanny

CYBERsitter

JuSProg

FortiClient

KinderGate Parental Control

KinderServer

Ad-Aware Total Security

SafeEyes

Family

PC Pandora

Parental Filter

Child Control

SpyAgent

AntiPorn

Parental Control

Parental Filter

8.2.30.1147

4.4.276

7.2.4.2

7.2.6.0

11

6.1.0.106

5.2

3.1.10058.0.1

1.1

11

6.2.119.1

3.2.1

7.0.22

2

2014 14.644

8

2.15

1.15

?

17

https://revoked.grc.com

	Introduction
	Background and threat model
	Terminologies
	Product selection
	Insertions in trusted stores: implications
	Threat model

	Private key extraction
	Locating private keys in files and Windows registry
	Application-protected private keys
	Identify the process responsible for TLS filtering
	Retrieving passphrases
	Encrypted containers

	Security considerations

	Limitations of existing TLS test suites
	Certificate verification
	TLS security parameters

	Our TLS proxy testing framework
	Test environment
	Certificate validation testing
	Proxy-embedded trusted stores
	TLS versions and known attacks

	Results analysis
	Root certificates
	Certificate generation
	Third-party trusted stores
	Self-acceptance
	Filtering conditions
	Expired product licenses
	Uninstallation

	Private key protections
	Passphrase-protected private keys
	Encrypted containers

	Certificate validation and trusted stores
	Invalid chain of trust
	Weak and deprecated encryption/signing algorithms
	Proxy-embedded trusted store

	TLS parameters
	SSL/TLS versions
	Certificate security parameters
	Cipher suites
	Known attacks

	Practical attacks
	Recommendations for safer TLS proxying
	Related work
	Conclusion
	References
	Appendix
	Trusted root CA stores
	OS-provided APIs for key storage
	Test certificates with a broken chain of trust
	Company responses

