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Abstract—Current mobile operating systems regulate appli­
cation permissions by prompting users on an ask-on-first-use 
basis. Prior research has shown that this method is ineffective 
because it fails to account for context: the circumstances under 
which an application first requests access to data may be vastly 
different than the circumstances under which it subsequently 
requests access. We performed a longitudinal 131-person field 
study to analyze the contextuality behind user privacy decisions 
to regulate access to sensitive resources. We built a classifier 
to make privacy decisions on the user’s behalf by detecting 
when context has changed and, when necessary, inferring privacy 
preferences based on the user’s past decisions and behavior. 
Our goal is to automatically grant appropriate resource requests 
without further user intervention, deny inappropriate requests, 
and only prompt the user when the system is uncertain of the 
user’s preferences. We show that our approach can accurately 
predict users’ privacy decisions 95.7% of the time, which is a 
four-fold reduction in error rate compared to current systems. 

I. INTRODUCTION 

One of the roles of a mobile application platform is to 
help users avoid unexpected or unwanted use of their personal 
data [9]. Mobile platforms currently use permission systems 
to regulate access to sensitive resources, relying on user 
prompts to determine whether a third-party application should 
be granted or denied access to data and resources. One critical 
caveat in this approach, however, is that mobile platforms 
seek the consent of the user the first time a given application 
attempts to access a certain data type and then enforce the 
user’s decision for all subsequent cases, regardless of the cir­
cumstances surrounding each access. For example, a user may 
grant an application access to location data because she is using 
location-based features, but by doing this, the application can 
subsequently access location data for behavioral advertising, 
which may violate the user’s preferences. 

Earlier versions of Android (5.1 and below) asked users 
to make privacy decisions during application installation as an 
all-or-nothing ultimatum (ask-on-install): either all requested 
permissions are approved or the application is not installed. 
Previous research showed that few people read the requested 
permissions at install-time and even fewer correctly understood 
them [14]. Furthermore, install-time permissions do not present 
users with the context in which those permission will be exer­
cised, which may cause users to make suboptimal decisions 
not aligned with their actual preferences. Asking users to 
make permission decisions at runtime, at the moment when the 

permission will actually be used by the application, provides 
more context (i.e., what they were doing at the time that data 
was requested) [12]. However, due to the high frequency of 
permission requests, it is not feasible to prompt the user every 
time data is accessed [33]. 

In iOS and Android M, the user is now prompted at 
runtime the first time an application attempts to access one of 
a set of “dangerous” permission types (e.g., location, contacts, 
etc.). This “ask-on-first-use” (AOFU) model is an improvement 
over ask-on-install (AOI). Prompting users the first time an 
application uses one of the designated permissions gives users 
a better sense of context: their knowledge of what they were 
doing when the application first tried to access the data should 
help them determine whether the request is appropriate. How­
ever, Wijesekera et al. showed that AOFU fails to meet user 
expectations over half the time, because it does not account 
for the varying contexts of future requests [33]. 

The notion of contextual integrity suggests that many per­
mission models fail to protect user privacy because they fail to 
account for the context surrounding data flows [27]. That is, 
privacy violations occur when sensitive resources are used in 
ways that defy users’ expectations. We posit that more effective 
permission models must focus on whether resource accesses 
are likely to defy users’ expectations in a given context—not 
simply whether the application was authorized to receive data 
the first time it asked for it. Thus, the challenge for system 
designers is to correctly infer when the context surrounding a 
data request has changed, and whether the new context is likely 
to be deemed “appropriate” or “inappropriate” for the given 
user. Dynamically regulating data access based on the context 
requires more user involvement to understand users’ contextual 
preferences. If users are asked to make privacy decisions too 
frequently, or under circumstances that are seen as low-risk, 
they may become habituated to future, more serious, privacy 
decisions. On the other hand, if users are asked to make too 
few privacy decisions, they may find that the system has acted 
against their wishes. Thus, research is needed to determine 
when and under what circumstances to present users with 
runtime prompts. 

To this end, we collected real-world Android usage data in 
order to explore whether we could infer users’ future privacy 
decisions based on their past privacy decisions, contextual 
circumstances surrounding applications’ data requests, and 
users’ behavioral traits. We conducted a field study where 
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131 participants used Android phones that were instrumented 
to gather data over an average of 32 days per participant. 
Also, their phones periodically prompted them to make privacy 
decisions when applications used sensitive permissions, and we 
logged their decisions. Overall, participants wanted to block 
60% of these requests. We found that AOFU yields 84% 
accuracy, i.e., its policy agree with participants’ responses 84% 
of the time. AOI achieves only 25% accuracy. 

We then designed new techniques that use machine learning 
to automatically predict how users would respond to prompts, 
so that we can avoid prompting them in most cases. Our 
classifier uses the user’s past decisions in related situations 
to predict their response to a particular permission prompt. 
The classifier outputs a prediction and a confidence score; if 
the classifier is sufficiently confident, we use its prediction, 
otherwise we prompt the user for their decision. We also 
incorporate information about the user’s behavior and other 
security and privacy settings: e.g., whether they have a PIN 
screen lock activated, how often they visit HTTPS websites, 
and so on. We show that our scheme achieves 95.7% accuracy 
(a 4× reduction in error rate, compared to AOFU) without too 
many prompts. 

The specific contributions of our work are the following: 

•	 We conducted the first known large-scale study on the 
effectiveness of ask-on-first-use permissions. 

•	 We show that a significant portion of the studied 
participants make contextual decisions on permissions 
using the foreground application and the visibility of 
the permission-requesting application. 

•	 We show how a machine-learned model can incorpo­
rate environmental context and better predict users’ 
privacy decisions. 

•	 To our knowledge, we are the first to use passively 
observed traits to infer future privacy decisions. 

II. RELATED WORK 

There is a large body of work demonstrating that install-
time prompts fail because users do not understand or pay 
attention to them [16], [20], [32]. When using install-time 
prompts, users often do not understand which permission types 
correspond to which sensitive resources and are surprised 
by the ability of background applications to collect informa­
tion [14], [19], [31]. Applications also transmit a large amount 
of location or other sensitive data to third parties without user 
consent [9]. When possible risks associated with these requests 
are revealed to users, their concerns range from annoyance to 
wanting to seek retribution [13]. 

To mitigate some of these problems, systems have been 
developed to track information flows across the Android 
system [9], [15], [21] or introduce finer-grained permission 
control into Android [1], [18], [29], but many of these solutions 
increase user involvement significantly, which can lead to 
habituation. Additionally, many of these proposals are useful 
only to the most-motivated or technically savvy users. For 
example, many such systems require users to configure com­
plicated control panels, which many are unlikely to do [35]. 
Other approaches involve static analysis in order to better 
understand how applications could request information [3], [7], 

[11], but these say little about how applications actually use 
information. Dynamic analysis improves upon this by allowing 
users to see how often this information is requested in real 
time [9], [30], [33], but substantial work is likely needed 
to present that information to average users in a meaningful 
way. Solutions that require runtime prompts (or other user 
interruptions) need to also minimize user intervention, in order 
to prevent habituation. 

Other researchers have developed recommendation systems 
to recommend applications based on users’ privacy prefer­
ences [36]. Systems have also been developed to predict 
what users would share on mobile social networks [6], which 
suggests that future systems could potentially infer what infor­
mation users would be willing to share with third-party appli­
cations. By requiring users to self-report privacy preferences, 
clustering algorithms have been used to define user privacy 
profiles even in the face of diverse preferences [28]. However, 
researchers have found that the order in which information is 
requested has an impact on prediction accuracy [34], which 
could mean that such systems are only likely to be accurate 
when they examine actual user behavior over time (rather than 
relying on one-time self-reports). 

Liu et al. clustered users by privacy preferences and used 
ML techniques to predict whether to allow or deny an appli­
cation’s request for sensitive user data [23]. However, their 
dataset was collected from a set of highly privacy-conscious 
individuals—those choosing to install a permission-control 
mechanism. Furthermore, the researchers removed “conflict­
ing” user decisions, in which a user chose to deny a permission 
for an application, and then later chose to allow it. However, 
these conflicting decisions happen nearly 50% of the time in 
the real world [33], and accurately reflect the nuances of user 
privacy preferences; they are not experimental mistakes, and 
therefore models need to account for them. In fact, previous 
work found that users commonly reassess privacy preferences 
after usage [2]. Liu et al. also expect users to make 10% of per­
mission decisions manually, which, based on field study results 
from Wijesekera et al., would result in being prompted every 
three minutes [33]. This is obviously impractical. Our goal is 
to design a system that can automatically make decisions on 
behalf of users, that accurately models their preferences, while 
also not over-burdening them with repeated requests. 

Nissenbaum’s theory of contextual integrity suggests that 
permission models should focus on information flows that are 
likely to defy user expectations [27]. There are three main 
components involved in deciding the appropriateness of a 
flow [5]: the context in which the resource request is made, 
the role played by the agent requesting the resource (i.e., 
the role played by the application under the current context), 
and the type of resource being accessed. Neither previous nor 
currently deployed permission models take all three factors 
into account. This model could be used to improve permission 
models by automatically granting access to data when the 
system determines that it is appropriate, denying access when it 
is inappropriate, and prompting the user only when a decision 
cannot be made automatically. 

Wijesekera et al. performed a field study [33] to opera­
tionalize the notion of “context,” so that an operating system 
can differentiate between appropriate and inappropriate data 
requests by a single application for a single data type. They 
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Permission Type Activity 

ACCESS_ WIFI_ STATE View nearby SSIDs 
NFC Communicate via NFC 
READ_ HISTORY_ BOOKMARKS Read users’ browser history 
ACCESS_ FINE_ LOCATION Read GPS location 

ACCESS_ COARSE_ LOCATION 
Read network-inferred location 
(i.e., cell tower and/or WiFi) 

LOCATION_ HARDWARE Directly access GPS data 
READ_ CALL_ LOG Read call history 
ADD_ VOICEMAIL Read call history 
READ_ SMS Read sent/received/draft SMS 
SEND_ SMS Send SMS 
*INTERNET Access Internet when roaming 

*WRITE_ SYNC_ SETTINGS 
Change application sync 
settings when roaming 

TABLE I. FELT ET AL. PROPOSED GRANTING A SELECT SET OF 12 
PERMISSIONS AT RUNTIME SO THAT USERS HAVE CONTEXTUAL 

INFORMATION TO INFER WHY THE DATA MIGHT BE NEEDED [12]. OUR 

INSTRUMENTATION OMITS THE LAST TWO PERMISSION TYPES (INTERNET 

& WRITE_SYNC_SETTINGS) AND RECORDS INFORMATION ABOUT THE 

OTHER 10. 

found that users’ decisions to allow a permission request were 
significantly correlated with that application’s visibility: in 
this case, the contexts are using or not using the requesting 
application. They posit visibility of the application could be 
a strong contextual cue that influences users’ responses to 
permission prompts. They also observed that privacy decisions 
were highly nuanced, and therefore a one-size-fits-all model 
is unlikely to be sufficient; a given information flow may be 
deemed appropriate by one user and inappropriate by another 
user. They recommended applying machine learning in order 
to infer individual users’ privacy preferences. 

To achieve this, research is needed to determine what 
factors affect user privacy decisions and how to use those 
factors to make privacy decisions on the user’s behalf. While 
we cannot automatically capture everything involved in Nis­
senbaum’s notion of context, we can try for the next-best thing: 
we can try to detect when context has likely changed, by 
seeing whether the circumstances surrounding a data request 
are similar to previous requests or not. 

III. METHODOLOGY 

We collected data from 131 participants to understand what 
factors help infer whether a permission request is likely to be 
deemed appropriate by the user. 

Previous work by Felt et al. made the argument that 
certain permissions are appropriate for runtime prompts, be­
cause they protect sensitive resources—and therefore require 
user intervention—and because viewing the prompt at run­
time imparts additional contextual information about why an 
application might need the permission [12]. We collected 
information about 10 of the 12 permissions they suggest 
are best-suited for runtime prompts; we omitted INTERNET 

and WRITE_SYNC_SETTINGS, since we did not expect any 
participant to be roaming while using our instrumentation, and 
focused on the remaining 10 permission types (Table I). While 
there are many other sensitive permissions beyond this set, 

Felt et al. concluded that the others are best handled by other 
mechanisms (e.g., install-time prompts, OS-drawn widgets). 

We used the Experience Sampling Method (ESM) to collect 
ground truth data about users’ privacy preferences [17]. ESM 
involves repeatedly questioning participants in situ about a 
recently observed event; in this case, we probabilistically asked 
them about an application’s recent access to data on their 
phone, and whether they would have permitted it, if they had 
been given the choice. We treated participants’ responses to 
these ESM probes as our main dependent variable (Figure 1). 

We also instrumented participants’ smartphones to obtain 
data about their privacy-related behaviors and the frequency 
with which applications accessed protected resources. The 
instrumentation required a set of modifications to the An­
droid operating system and flashing a custom Android ver­
sion onto participants’ devices. To facilitate such experiments, 
the University of Buffalo offers academic researchers access 
to the PhoneLab panel [26], which consists of more than 
200 participants (affiliated with the university). All of these 
participants had LG Nexus 5 phones running Android 5.1.1 
and the phones were periodically updated over-the-air (OTA) 
with custom modifications to the Android operating system. 
Participants can decide when to install the OTA update, which 
marks their entry into new experiments. During our experiment 
period, different participants installed the OTA update with our 
instrumentation at different times, thus we neither have data on 
all PhoneLab participants, nor for the entire period. Our OTA 
update was available to participants for a period of six weeks, 
between February 2016 and March 2016. At the end of the 
study period, we emailed participants a link to an exit survey 
to collect demographic information. Our study was approved 
by the relevant institutional review board (IRB). 

A. Instrumentation 

The goal of our instrumentation was to collect as much 
runtime and behavioral data as could be observed from the 
Android platform, with minimal impact on performance. We 
collected three categories of data: behavioral information, 
runtime information, and user decisions. We made no modifi­
cations to any third-party application code. 

Table II contains the complete list of behavioral and 
runtime events our instrumentation recorded. The behavioral 
data fell under several categories, all chosen based on several 
hypotheses that we had about the types of behaviors that might 
correlate with privacy preferences: web browsing behavior, 
screen locking behavior, third party application usage behavior, 
audio preferences, call habits, camera usage patterns (selfie 
vs. non-selfie), and behavior related to security settings. For 
example, we hypothesized that someone who manually locks 
their device screen (as opposed to letting it time out) might 
be more privacy-conscious than someone who takes many 
speakerphone calls or selfies. 

We also collected runtime information about the context 
of each permission request, including the visibility of the 
requesting application at the time of request (i.e., whether 
it was running in the foreground or not) and what the user 
was doing when the request was made (i.e., the name of 
the foreground application). The visibility of an application 
reflects the extent to which the user was likely aware that 
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Type Event Recorded 

Changing developer options 
Opening/Closing security settings 
Changing security settings 
Enabling/Disabling NFC 
Changing location mode 
Opening/Closing location settings 
Changing screen-lock type 
Use of two factor authentication 
Log initial settings information 

Behavioral 
Instrumentation 

User locks the screen 
Screen times out 
App locks the screen 
Audio mode changed 
Enabling/Disabling speakerphone 
Connecting/Disconnecting headphones 
Muting the phone 
Taking an audio call 
Taking a picture (selfie vs. non-selfie) 
Visiting a link in chrome 
Responding to a notification 
Unlocking the phone 

Runtime An application changing the visibility 
Information Platform switches to a new activity 
Permission An app requests a sensitive permission 
Requests ESM prompt for a selected permission 

TABLE II. INSTRUMENTED EVENTS 

the application was running; if the application was in the 
foreground, the user had cues that the application was running, 
but if it was in the background, then the user was likely not 
aware that the application was running and therefore might 
find the permission request unexpected. We also collected 
information about which Android Activity was active in 
the application; depending on the design of the application, this 
might tell us only that the user was browsing with Firefox or 
might provide fine-grained information such as differentiating 
between reading a news feed vs. searching for a user’s profile 
on Facebook. We monitored processes’ memory priority levels 
to determine the visibility of all active processes. 

We recorded every time that an application used one of the 
10 permissions mentioned earlier. We also recorded the exact 
Android API invoked by a third-party application to determine 
precisely what information was requested. 

Finally, once each day we randomly selected one of these 
permission requests and prompted the user about them (Figure 
1). We used weighted reservoir sampling to select a permission 
request to prompt about. We weight permissions based on 
their frequency of occurrence seen by the instrumentation; the 
most-frequent permission request has a higher probability of 
being shown to participants using ESM. We prompted partici­
pants a maximum of three times for each unique combination 
of requesting application, permission, and visibility of the 
requesting application (i.e., background vs. foreground). We 
tuned the wording of the prompt to make it clear that the 
request had just occurred and their response would not affect 
the system (a deny response would not actually deny data). 
These responses serve as the ground truth for all the analysis 
mentioned in the remainder of the paper. 

Fig. 1. A screenshot of an ESM prompt. 

The intuition behind using a weighted-reservoir sampling 
is to focus more on the frequently occurring permission re­
quests over rare ones. Common permission requests contribute 
most to user habituation due their high frequency. Thus, it is 
more important to learn about user privacy decisions on high 
frequent permission requests over the rare ones, which might 
not risk user habituation or annoyance. 

B. Exit Survey 

At the end of our data collection period, PhoneLab staff 
emailed participants a link to our online exit survey, which 
they were incentivized to complete with a raffle for two $100 
Amazon gift cards. The survey gathered demographic informa­
tion and qualitative information on their privacy preferences. 
Of the 203 participants in our experiment, 53 fully completed 
the survey, and another 14 partially completed it. Of the 
53 participants to fully complete the survey, 21 were male, 
31 were female, and 1 undisclosed. Participants ranged from 
20 to 72 years of age (µ = 40.83, σ= 14.32). Participants 
identified themselves as 39.3% staff, 32.1% students, 19.6% 
faculty, and 9% other. Only 21% of the survey respondents 
had an academic qualification in STEM, which suggests that 
the sample is unlikely to be biased towards tech-savvy users. 

C. Summary 

We collected data from February 5 to March 17, 2016. 
PhoneLab allows any participant to opt-out of an experiment 
at any time. Thus, of the 203 participants who installed our 
custom Android build, there were 131 who used it for more 
than 20 days. During the study period, we collected 176M 
events across all participants (31K events per participant/day). 
Our dataset consists of 1,686 unique applications and 13K 
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Fig. 2. Histogram of users based on their denial rate. Defaulters tended to 
allow or deny almost all requests without regard for contextual cues, whereas 
Contextuals considered the visibility of the requesting application. 

unique activities. Participants also responded to 4,636 prompts 
during the study period. We logged 96M sensitive permission 
requests, which translates to roughly one sensitive permission 
request every 6 seconds per participant. For the remainder of 
the paper, we only consider the data from the 131 participants 
who used the system for at least 20 days, which corresponds 
to 4,224 ESM prompts. 

Of the 4,224 prompts, 55.3% were in response to ACCESS 
_WIFI_STATE, when trying to access Wifi SSID information 
that could be used to infer the location of the smartphone; 
21.0%, 17.3%, 5.08%, 0.78%, and 0.54% were from accessing 
location directly, reading SMS, sending SMS, reading call logs, 
and accessing browser history, respectively. A total of 137 
unique applications triggered prompts during the study period. 
Of the 4,224 prompts, participants wanted to deny 60.01% 
of them, and 57.65% of the prompts were shown when the 
requesting application was running in the foreground or the 
user had visual cues that the application was running (e.g., 
notifications). A Wilcoxon signed rank test with continuity 
correction revealed a statistically significant difference in par­
ticipants’ desire to allow or deny a permission request based 
on the visibility of the requesting application (p < 0.0152, 
r = 0.221), which corroborates previous findings [33]. 

IV. TYPES OF USERS 

We hypothesized that there may be different types of users 
based on their behaviors. While our study size was too small 
to effectively apply clustering techniques to generate classes 
of users, we were able to find a meaningful distinction using 
the denial rate (i.e., the percentage of prompts to which users 
wanted to deny access). We aggregated users by their denial 
rate in 10% increments. We discovered that visibility was a 
significant predictor of user decisions for users with a denial 
rate of 10–90%, but not for users with a denial rate of 0–10% 
or 90–100%. We call the former group Contextuals, as they 
care about the surrounding context (i.e., they make nuanced 
decisions), and the latter group Defaulters, because, as we 
now show, they tend to either allow application permissions 
or deny them and did not vary their decision-making based on 
circumstances. 

Policy Contextuals Defaulters Overall Prompts 

AOI 44.11% 6.00% 25.00% 0.00 
AOFU-AP 64.49% 93.33% 84.61% 12.34 

AOFU-APV 64.28% 92.85% 83.33% 15.79 
AOFU-AF PV 66.67% 98.95% 84.61% 16.91 
AOFU-VP 58.65% 94.44% 78.04% 6.43 
AOFU-VA 63.39% 93.75% 84.21% 12.24 
AOFU-A 64.27% 93.54% 83.33% 9.06 
AOFU-P 57.95% 95.45% 82.14% 3.84 
AOFU-V 52.27% 95.34% 81.48% 2.00 

TABLE III. THE ACCURACY AND NUMBER OF DIFFERENT POSSIBLE
 

ASK-ON-FIRST-USE COMBINATIONS. A: APPLICATION REQUESTING THE
 

PERMISSION, P: PERMISSION TYPE REQUESTED, V: VISIBILITY OF THE
 

APPLICATION REQUESTING THE PERMISSION, AF : APPLICATION RUNNING
 

IN THE FOREGROUND WHEN THE REQUEST IS MADE. AOFU-AP IS THE
 

POLICY USED IN ANDROID MARSHMALLOW I.E., ASKING (PROMPTING)
 
THE USER FOR EACH UNIQUE APPLICATION, PERMISSION COMBINATION.
 

THE TABLE ALSO DIFFERENTIATES POLICY NUMBERS BASED ON THE
 

SUBPOPULATION OF Contextuals, Defaulters, AND ACROSS ALL USERS.
 

Based on the prompt responses, Defaulters accounted for 
53% of 131 participants and Contextuals accounted for 47%. 
A Wilcoxon signed-rank test with continuity correction re­
vealed a statistically significant difference in Contextuals’ re­
sponses based on requesting application visibility (p < 0.013, 
r = 0.312), while for Defaulters there was no statistically 
significant difference (p = 0.227). That is, Contextuals used 
visibility as a contextual cue, when deciding whether or not 
a given permission request should be permitted, whereas De­
faulters did not vary their decisions based on this cue, and 
instead consistently chose one option for the duration of the 
experiment. Figure 2 shows the distribution of users based on 
their denial rate. Vertical lines indicate the borders between 
Contextuals (light gray) and Defaulters (dark gray). Observe 
that Defaulters appear at both ends of the denial-rate spectrum, 
while Contextuals fully occupy the space between them. 

Different permission models affect users differently based 
on their privacy preferences; performance numbers averaged 
across a user population could be misleading since different 
sub-populations might react differently to the same permission 
model. In the remainder of the paper, we use our Contextuals– 
Defaulters categorization to measure how current and proposed 
new models affect these two sub-populations, issues unique to 
these sub-populations, and ways to address these issues. 

V. ASK-ON-FIRST-USE PERMISSIONS 

Ask-on-first-use (AOFU) is the current Android permission 
model, which was first adopted in Android 6.0 (Marshmallow). 
AOFU works by prompting the user whenever an application 
requests a dangerous permission for the first time; the user’s 
response to this prompt is thereafter applied whenever the same 
application requests the same permission. As of August 2016, 
only 15.2% of Android users have Android Marshmallow [8], 
and of those, those who have upgraded from a previous ver­
sion only see runtime permission prompts for freshly-installed 
applications. 

For the remaining 95.4% of users, the system policy is 
ask-on-install (AOI), which automatically allows all runtime 
permission requests. During the study period, all of our partic­
ipants had AOI running as the default permission model. Be­
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cause all runtime permission requests are allowed in AOI, any 
of our ESM prompts that the user wanted to deny correspond 
to mispredictions under the AOI model (i.e., the AOI model 
granted access to the data against users’ actual preferences). 
Table III shows the expected median accuracy for AOI, as 
well as several other possible variants that we discuss in this 
section. The low median accuracy for Defaulters was due to 
the significant number of people who simply denied most of 
the prompts. The prompt count is zero for AOI because it 
does not prompt the user during runtime; users are only shown 
permission prompts at installation. 

More users will have AOFU in the future, as they upgrade 
to Android 6.0 and beyond. To the best of our knowledge, 
no prior work has looked into the effectiveness of AOFU 
systematically; this section presents analysis of AOFU based 
on prompt responses collected from participants and creates 
a baseline against which to measure our system’s improve­
ment. We simulate how AOFU performs through our ESM 
prompt responses. Because AOFU is deterministic, each user’s 
response to the first prompt for each application:permission 
combination tells us how the AOFU model would respond for 
subsequent requests by that same combination. For participants 
who responded to more than one prompt for each combination, 
we can quantify how often AOFU would have been correct for 
subsequent requests. Similarly, we also measure the accuracy 
for other possible policies that the platform could use to decide 
whether to prompt the user. For example, the status quo is 
for the platform to prompt the user for each new applica­
tion:permission combination, but how would accuracy (and the 
number of prompts shown) change if the policy were to prompt 
on all new combinations of application:permission:visibility? 

Table III shows the expected median accuracy1 for each 
policy based on participants’ responses. For each policy, A 
represents the application requesting the permission, P repre­
sents the requested permission, V represents the visibility of 
the requesting application, and AF represents the application 
running in the foreground when a sensitive permission request 
was made. For instance, AOFU-AP is the policy where the 
user will be prompted for each new instance of an applica­
tion:permission combination, which is the Android 6.0 model. 
The last column shows the number of runtime prompts a 
participant would see under each policy over the duration of the 
study, if that policy were to be implemented. Both AOFU-AP 
and AOFU-AF PV show about a 4.9× reduction in error rate 
compared to AOI; AOFU-AF PV would require more prompts 
over AOFU-AP, though yields a similar overall accuracy rate.2 

Moving forward, we focus our analysis only on AOFU-AP. 

Instances where the user wants to deny a permission and 
the policy instead allows it (false positives) are privacy viola-
tions, because they expose more information to the application 
than the user desires. Instances where the user wants to allow a 
permission, but the policy denies it (false negatives) are func­
tionality losses. This is because the application is likely to lose 
some functionality that the user desired when it is incorrectly 
denied a permission. Privacy violations and functionality losses 

were approximately evenly split between the two categories for 
AOFU-AP: median privacy violations and median functionality 
losses were 6.6% and 5.0%, respectively. 

The AOFU policy works well for Defaulters, because— 
by definition—they tend to be consistent after their initial 
responses for each combination, which increases the accuracy 
of AOFU. In contrast, the decisions of Contextuals vary due to 
other factors beyond just the application requesting the permis­
sion and the requested permission type. Hence, the accuracy of 
AOFU for Contextuals is significantly lower than the accuracy 
for Defaulters. This distinction shows that learning privacy 
preferences for a significant portion of users requires a deeper 
understanding of other factors affecting their decisions, such 
as behavioral tendencies and contextual cues. As Table III 
suggests, superficially adding more contextual variables (such 
as visibility of the requesting application) does not necessarily 
help to increase the accuracy of the AOFU policy. 

Our estimated accuracy numbers for AOFU may be inflated 
because AOFU in deployment does not filter out permission 
requests that do not reveal any sensitive information. For exam­
ple, an application can request the ACCESS_FINE_LOCATION 

permission to check whether the phone has a specific location 
provider, which does not leak sensitive information. Our AOFU 
simulation uses the invoked function to determine if sensitive 
data was actually accessed, and only prompts in those cases 
(in the interest of limiting the number of ESM prompts par­
ticipants viewed during the study). Currently deployed AOFU 
in Marshmallow does not make this distinction. For example, 
Android users will see a permission request prompt when 
the application examines the list of location providers, and 
if the permission is granted, the user will not subsequently 
see prompts when location data is actually captured. Previous 
work showed that 79% of first-time permission requests do 
not reveal any sensitive information [33], and nearly 33.9% of 
applications that request these sensitive permission types do 
not access sensitive data at all. The majority of AOFU prompts 
in Marshmallow are therefore effectively false positives, which 
incorrectly serve as the basis for future decisions. Given this, 
the average accuracy for AOFU is likely less than the numbers 
presented in Table III. We therefore consider our estimates of 
AOFU to be upper bounds. 

VI. LEARNING PRIVACY PREFERENCES 

Table III shows that a significant portion of users (the 47% 
classified as Contextuals) make privacy decisions that depend 
on factors other than the application requesting the permission, 
the permission requested, and the visibility of the requesting 
application. To make decisions on behalf of the user, we must 
understand what other factors affect their privacy decisions. 
We built a machine learning model trained and tested on our 
labeled dataset of 4,224 prompts collected from 131 users over 
the period of 42 days. This approach is equivalent to training a 
model based on runtime prompts from hundreds of users and 
using it to predict those users’ future decisions. 

1The presented numbers—except for average prompt count, which was nor­
mally distributed—are median values, because the distributions were skewed. 

2While AOFU-AF PV has greater median accuracy when examining De­
faulters and Contextuals separately, because the distributions are skewed, the 
median overall accuracy is identical to AOFU-AP when combining the groups. 

We focus the scope of this work by making the following 
assumptions. We assume that the platform, i.e., the Android 
OS, is trusted to manage and enforce permissions for applica­
tions. We assume that applications must go through the plat­
form’s permission system to gain access to protected resources. 
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Feature 

Group 
Feature Type 

Number of times a website is loaded to 
the Chrome browser. 

Numerical 

Out of all visited websites, the proportion 
of HTTPS-secured websites. 

Numerical 

Behavioral The number of downloads through Chrome. Numerical 
Features Proportion of websites requested location 

Numerical 
(B)	 through Chrome. 

Number of times PIN/Password was used to 
Numerical 

unlock the screen.
 
Amount of time spent unlocking the screen. Numerical
 

Numerical 
Proportion of time spent on silent mode. Numerical 

Proportion of times screen was timed out 
instead of pressing the lock button. 

Numerical 

Frequency of audio calls. Numerical 
Amount of time spent on audio calls. 

Runtime 
Features 
(R1) 

Application visibility (True/False) 

Time of day of permission request 

Categorical 
Categorical 
Categorical 
Numerical 

Aggregated 
Features 

Average denial rate for (A1) 
application:permission:visibility 
Average denial rate for (A2) 
applicationF :permission:visibility 

Numerical 

Numerical 

Permission type 
User ID 

TABLE IV. THE COMPLETE LIST OF FEATURES USED IN THE ML
 
MODEL EVALUATION. ALL THE NUMERICAL VALUES UNDER BEHAVIORAL
 

GROUP ARE NORMALIZED PER DAY. WE USE ONE-HOT ENCODING FOR
 

CATEGORICAL VARIABLES. WE NORMALIZED NUMERICAL VARIABLES BY
 

MAKING EACH ONE A Z-SCORE RELATIVE TO ITS OWN AVERAGE.
 

We assume that we are in a non-adversarial machine-learning 
setting wherein the adversary does not attempt to circumvent 
the machine-learned classifier by exploiting knowledge of its 
decision-making process—though we do present a discussion 
of this problem and potential solutions in Section IX. 

A. Feature Selection 

Using the behavioral, contextual, and aggregate features 
shown in Table II, we constructed 16K candidate features, 
formed by combinations of specific applications and actions. 
Then, we selected 20 features by measuring Gini importance 
through random forests [24], significance testing for correla­
tions, and singular value decomposition (SVD). SVD was par­
ticularly helpful to address the sparsity and high dimensionality 
issues caused by features generated based on application and 
activity usage. Table IV lists the 20 features used in the rest 
of this work. 

The behavioral features (B) that proved predictive relate 
to browsing habits, audio/call traits, and locking behavior. All 
behavioral features were normalized per day/user and were 
scaled in the actual model. Features relating to browsing 
habits included the number of websites visited, the proportion 
of HTTPS-secured links visited, the number of downloads, 
and proportion of sites visited that requested location access. 
Features relating to locking behavior included whether users 
employed a passcode/PIN/pattern, the frequency of screen 
unlocking, the proportion of times they allowed the screen to 
timeout instead of pressing the lock button, and the average 
amount of time spent unlocking the screen. Features under the 
audio and call category were the frequency of audio calls, the 
amount of time they spend on audio calls, and the proportion 
of time they spent on silent mode. 

Our runtime features (R1/R2) include the requesting appli­
cation’s visibility, the permission requested, and the time of 

Feature Set Contextuals Defaulters Overall 

B 67.48% 96.00% 83.21% 
R1 69.30% 95.80% 83.71% 
R2 + B 69.48% 95.92% 83.93% 
R2 + A1 86.41% 96.91% 91.87% 
R2 + A2 89.02% 98.08% 93.89% 
R2 + A1 + A2 92.45% 98.34% 95.73% 

TABLE V. THE ACCURACY OF THE MACHINE LEARNING MODEL FOR 

DIFFERENT FEATURE GROUPS ACROSS DIFFERENT USER GROUPS. 

day a permission request occurred. Initially, we included the 
user ID to account for user-to-user variance, but as we discuss 
below, we subsequently removed this feature. Surprisingly, 
the name of the application requesting the permission did not 
come out as a predictive feature. Other features based on the 
requesting application, such as application popularity, similarly 
failed to be predictive. 

Different users may have different ways of perceiving pri­
vacy threats posed by the same permission request. To account 
for this, the learning algorithm should be able to determine how 
each user treats permission requests in order to accurately pre­
dict their future decisions. To quantify the difference between 
users in how they perceive the threat posed by the same set of 
permission requests, we introduced a set of aggregate features 
that could be measured at runtime and that might partly capture 
users’ privacy stance. We compute the average denial rate for 
each unique combination of application:permission:visibility 
(A1) and of permission:applicationF 

3:visibility (A2). These 
aggregate features indicate how the user responded to previous 
prompts associated with that combination. As expected, after 
we introduced the aggregate features, the relative importance 
of the user ID variable diminished and so we removed it (i.e., 
users no longer needed to be uniquely identified). We define 
R2 as R1 without the user ID. 

B. Inference Based on Behavior 

One of our main hypotheses is that passively observing 
users’ behaviors could help infer their future privacy decisions. 
To this end, we instrumented Android to collect a wide array of 
behavioral data, listed in Table II. We categorize our behavioral 
instrumentation into interaction with Android privacy/security 
settings, locking behavior, audio settings and call habits, web 
browsing habits, and application usage habits. After the fea­
ture selection process (§VI-A), we found that only locking 
behavior, audio habits, and web browsing habits correlated 
with privacy behaviors. 

We trained an SVM model with an RBF kernel on only the 
behavioral and runtime features listed in Table IV, excluding 
user ID. The 5-fold cross validation accuracy (with random 
splitting) was 83% across all users. This first setup assumes we 
have prior knowledge of previous privacy decisions to a certain 
extent from each user before inferring their future privacy 
decisions, so it is primarily relevant after the user has been 
using their phone for a while. However, the biggest advantage 

3The application running in the foreground when the permission is requested 
by another application. 
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of using behavioral data is that it can be observed passively 
without any active user involvement. 

To measure the extent to which we can infer user privacy 
decisions with absolutely no user involvement (and without 
any prior data on a user), we utilized leave-one-out cross 
validation. In this second setup, when a new user starts using a 
smartphone, we assume there is a ML model which is already 
trained with behavioral data and privacy decisions collected 
from a selected set of other users. We then measured the 
efficacy of such a model to predict the privacy decisions of a 
new user, purely based on passively observed behavior, without 
prompting that new user at all. This is an even stricter lower 
bound on user involvement, which essentially mandates that 
a user has to make no effort to indicate privacy preferences, 
something that no system currently does. 

We performed leave-one-out cross validation for each of 
our 131 participants, meaning we predicted a single user’s 
privacy decisions using a model trained using the data from 
the other 130 users’ privacy decisions and behavioral data. 
The only input for each test user was the passively observed 
behavioral data and runtime data surrounding each request. 
The model yielded a median accuracy of 75%, which is a 3X 
improvement over AOI. Furthermore, AOI requires users to 
make active decisions during the installation of an application, 
which our second model does not require. 

Examining only behavioral data with leave-one-group­
out cross validation yielded a median accuracy of 55% for 
Contextuals, while for Defaulters it was 93.01%. Although, 
prediction using solely behavioral data fell short of AOFU­
AP for Contextuals, it yielded a similar median accuracy for 
Defaulters; AOFU-AP required 12 prompts to reach this level 
of accuracy, whereas our model would not have resulted in any 
prompts. This relative success presents the significant observa­
tion that behavioral features, observed passively without user 
involvement, are useful in learning user privacy preferences. 
This provides the potential to open entirely new avenues of 
user learning and reduce the risk of habituation. 

C. Inference Based on Context 

Our SVM model with a RBF kernel produced the best 
accuracy. The results in the remainder of the section are trained 
and tested with five-fold cross validation with random splitting 
for a SVM model with a RBF kernel using the ksvm library in 
R. In all instances, the training set was bootstrapped with an 
equal number of allow and deny data points to avoid training 
a biased model. For each feature group, all hyperparameters 
were tuned through grid search to achieve highest accuracy. 
All the numerical values under the behavioral group are 
normalized per day. We use one-hot encoding for categorical 
variables. We normalized numerical variables by making each 
one a z-score relative to its own average. Table V shows how 
the accuracy changes with different sets of feature groups. 
As a minor note, the addition of the mentioned behavioral 
features to runtime features performed only marginally better; 
this could be due to the fact that those two groups do not 
complement each other in predictions. In this setup, we assume 
that there is a single model across all the users of Android. 

By incorporating user involvement in the form of prompts, 
we can use our aggregate features to dramatically in­

crease the accuracy for Contextuals, slightly less so for 
Defaulters. The aggregate features primarily capture how 
consistent users are for particular combinations (i.e., ap­
plication:permission:visibility, application:permission, appli­
cationF :permission:visibility), which greatly affects accuracy 
for Contextuals. Defaulters have high accuracy with just run­
time features (R1), as they are likely to stick with a default 
allow or deny policy regardless of the context surrounding a 
permission. Thus, even without any aggregate features (which 
do not impart any new information about this type of user), 
the model can predict privacy preferences of Defaulters with 
a high degree of accuracy. On the other hand, Contextuals 
are more likely to vary their decision for a given permis­
sion request. However, as the accuracy numbers in Table V 
suggest, their variance in decisions is correlated with some 
contextual cues that they observed. The high predictive power 
of aggregate features indicates that they may be capturing the 
contextual cues used by Contextuals to make decisions. 

Of the aggregate features, A2 caused the highest accuracy 
gain. The fact that applicationF :permission:visibility is highly 
predictive indicates that user responses for this combination are 
more consistent than other combinations. The high consistency 
could relate to the notion that the foreground application 
(applicationF ) is also a strong contextual cue people use 
to make their privacy decisions (i.e., even when this is not 
the same application that is requesting the data); the only 
previously studied contextual cue was the visibility of the 
application requesting the sensitive data [33]. We offer a 
hypothesis for why foreground application could be signifi­
cant: the sensitivity of the foreground application (i.e., high­
sensitivity applications like banking, low-sensitivity applica­
tions like games) might impact how users perceive threats 
posed by requests. Irrespective of the application requesting 
the data, users may be likely to deny the request because of 
the elevated sense of risk. We discuss this further in §IX. 

The model trained on feature sets R2, A1 and A2 had the 
best accuracy (and fewest privacy violations). For the remain­
der of the paper, we will refer to this model unless otherwise 
noted. We now compare AOFU-AP (the status quo as of 
Android 6.0, presented in Table III) and our model (Table V). 
Across all users, our model reduces the error rate from 15.38% 
to 4.27%, which is nearly a four-fold improvement. While 
both approaches perform relatively well for Defaulters, the ML 
model has a 4.72% lower error rate. For Contextuals, the ML 
model’s improvements are much more dramatic, increasing 
accuracy from 64.49% to 92.45%. This gain is largely due 
to the contextual cues that the model takes into account (i.e., 
aggregate features). This shows that users do make contextual 
decisions rather than just basing their decision on application 
and permission, contrary to what AOFU assumes. That is, the 
aggregate features capture a notion of context, and these users’ 
decisions are consistent across these notions of context. 

Mispredictions (errors) in the ML model were approxi­
mately evenly split between privacy violations and function­
ality losses (54% and 46%). Deciding which error type is 
more acceptable is subjective and depends on factors like the 
usability issues surrounding functionality losses and gravity 
of privacy violations. However, the (approximately) even split 
between the two error types shows that the ML is not biased to­
wards one particular decision (denying vs. allowing a request). 
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Furthermore, the area under the ROC curve (AUC), a metric 
used to measure the fairness of a classifier, is also significantly 
better in the ML model (0.956 as opposed to 0.796 for 
AOFU). This indicates that the ML model is equally good at 
predicting when to both allow and deny a permission request, 
while the AOFU tends to lean more towards one decision. 
In particular, with the AOFU policy, users would experience 
privacy violations for 10.01% of decisions, compared to just 
2.32% with the ML model. Privacy violations tend to be more 
costly to the user than functionality loss, as denied data can 
always be granted at a later time, but disclosed data usually 
cannot be taken back. 

While increasing the number of prompts improves classifier 
accuracy, it plateaus after reaching its maximum accuracy, at 
a point we call the steady state. For some users, the classifier 
might not be able to infer their privacy preference effectively, 
regardless of the number of prompts. As a metric to measure 
the effectiveness of the ML model, we measure the confidence 
of the model in the decisions it makes, based on prediction 
class probabilities.4 In cases where the confidence of the model 
is below a certain threshold, the system should use a runtime 
prompt to ask the user to make an explicit decision. Thus, 
we looked into the prevalence of low-confidence predictions 
among the current predictions. With a 95% confidence inter­
val, on average across five folds, low-confidence predictions 
accounted for less than 10% of all predictions. The remaining 
high-confidence predictions (90% of all predictions) had an 
average accuracy of 99.2%, whereas predictions with low 
confidence were only predicted with an average accuracy of 
72%. §VII-B goes into this aspect in detail and estimates the 
rate at which users will see prompts in steady state. 

The caveat in our ML model is that AOFU-AP only 
resulted in 12 prompts on average per user during the study, 
while our model averaged 32. The increased prompting stems 
from multiple prompts for the same combination of appli­
cation:permission:visibility, whereas in AOFU, prompts are 
shown only once for each application:permission combination. 
During the study period, users on average saw 2.28 prompts per 
unique combination. While multiple prompts per combination 
help the ML model to predict future decisions more accurately, 
it risks habituation, which may eventually reduce the reliability 
of the labeled data. The next section presents an in-depth 
analysis on possible ways to reduce the number of prompts 
needed to train the ML model. 

VII. SIMULATION 

To better understand how to reduce prompting, while main­
taining model accuracy over the status quo, we first examine 
how prompts affect model accuracy. This section presents an 
analysis of how the ML model’s accuracy changes as prompts 
increase. Since a fully trained model requires twice as many 
prompts as AOFU, it is necessary to understand how the ML 
model behaves with fewer prompts. Once the model reaches 
adequate training, we can use model decision confidence to 
analyze how the ML model performs for different users and 
examine the tradeoff between user involvement and accuracy. 
We also utilize the model’s confidence on decisions to present 

4To calculate the class probabilities, we used the KSVM library in R. It 
employs a technique proposed by Platt et al. [22] to produce a numerical 
value for each class’s probability. 
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Fig. 3. How the median accuracy varies with the number of seen prompts 

a strategy that can further reduce model error through selective 
permission prompting. 

A. Bootstrapping 

The bootstrapping phase occurs when the ML model is 
presented with a new user about whom the model has no 
prior information. In this section, we analyze how the accuracy 
improves as we prompt the user. Since the model presented 
in §VI is a single model trained with data from all users, the 
ML model can still predict a new user’s privacy decisions by 
leveraging the data collected on other users’ preferences. 

We measured the accuracy of the ML model as if it had 
to predict each user’s prompt responses using a model trained 
using other users’ data. Formally, this is called leave-one-out 
cross-validation, where we remove all the prompt responses 
from a single user. The training set contains all the prompt re­
sponses from 130 users and the test set is the prompt responses 
collected from the single remaining user. The model had a 
median accuracy of 66.6% (56.2% for Contextuals, 86.4% 
for Defaulters). Although this approach does not prompt new 
users, it falls short of AOFU. This no-prompt model behaves 
close to random guessing for Contextuals and significantly 
better for Defaulters. Furthermore, Wijesekera et al. found 
that individuals’ privacy preferences varied a lot from each 
other [33], suggesting that utilizing other users’ decisions to 
predict decisions for a new user has limited effectiveness, es­
pecially for Contextuals; some level of prompting is necessary. 

There are a few interesting avenues to explore when 
determining the optimal way to prompt the user in the 
learning phase. One option would be to follow the same 
weighted-reservoir sampling algorithm mentioned in §III-A. 
The algorithm is weighted by the frequency of each appli­
cation:permission:visibility combination. The most frequent 
combination will have the highest probability of creating a 
permission prompt and after the given combination reaches 
a maximum of three prompts, the algorithm will no longer 
consider that combination for prompting, giving the second 
most frequent combination the new highest probability. Due 
to frequency-weighting and multiple prompts per combina­
tion, the weighted-reservoir sampling approach requires more 
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prompts to cover a broader set of combinations. However, 
AOFU prompts only once per combination without frequency­
weighting. This may be a useful strategy initially for a new user 
since it allows the platform to learn about the users’ privacy 
preferences for a wide array of combinations with minimal 
user interaction. 

To simulate such an approach, we extend the aforemen­
tioned no-prompt model (leave-one-out validation). In the no-
prompt model, there was no overlap of users in the train and 
test set. In the new approach, the training set includes the 
data from other users as well as the new user’s responses to 
the first occurrence of each unique combination of applica­
tion:permission:visibility. The first occurrence of each unique 
combination simulates the AOFU policy. That is, this model is 
bootstrapped using data from other users and then adopts the 
AOFU policy to further learn the current user’s preferences. 
The experiment was conducted using the same set of features 
mentioned in §VI-A (R2 + A1 + A2 and an SVM with a RBF 
kernel). 

Figure 3 shows how accuracy changes with the varying 
number of AOFU prompts for Contextuals and Defaulters. 
For each of the 131 users, we ran the experiment varying 
the AOFU prompts from 1 to 16. We chose this upper bound 
because, on average, a participant saw 16 different unique ap­
plication:permission:visibility combinations during the study 
period. During the study period, if the AOFU policy was in 
place with application:permission:visibility, a user would have 
seen a minimum of 16 prompts, because AOFU cannot predict 
a response to a combination it has not seen. Thus, AOFU 
needs to prompt at least 16 times before it can even make 
a prediction for all decisions. On the other hand, our hybrid 
approach does not have to prompt 16 times to predict privacy 
decisions across all the different combinations; this is because 
the model is already trained using other users’ data. Hence, 
the hybrid approach can reach similar to or greater accuracy 
than AOFU with fewer prompts. 

We trained a single model for all users, and analyze its 
performance for Defaulters and Contextuals separately, finding 
that it improves accuracy while reducing user involvement in 
both cases, compared to the status quo. We first examine how 
our model performs for Defaulters, 53% of our sample. Figure 
3 shows that our model trained with AOFU permission-prompt 
responses outperforms AOFU with as few as 2 prompts. After 
2 permission prompts, the model’s accuracy steadies at the 
96.6% mark (before it reaches close to 100% after 11 prompts), 
handily exceeding AOFU’s 93.33%. This is a 83.3% reduction 
in permission prompts compared to AOFU-AP (the status quo). 
Even with such a significant reduction in user involvement, the 
new approach cuts the prediction error rate in half. 

Contextuals needed more prompts to outperform the AOFU 
policy; the hybrid approach matches AOFU-AP with just 7 
prompts, a 42% reduction in prompts. With 11 permission 
prompts, one less than needed for AOFU-AP, the new approach 
had a 16% accuracy gain over AOFU-AP. The number of 
prompts needed to reach this level of accuracy in the new 
approach is 31.25% less than what is needed for AOFU-APV. 
We also observed that as the number of prompts increased, the 
AUC of our predictions also similarly increased. 

Our new hybrid approach of using AOFU-style permission 

prompts in the bootstrapping phase to train our model can 
achieve much higher accuracy than AOFU, with significantly 
fewer prompts. Contextuals have a higher need for user in­
volvement than Defaulters, primarily because it is easy to 
learn about Defaulters, as they are more likely to be consistent 
with early decisions. On the other hand, Contextuals vary their 
decision based on different contextual cues and require more 
user involvement for the model to learn the cues for each user. 
Thus, it is important to find a way to differentiate between 
Defaulters and Contextuals early in the bootstrapping phase to 
determine which users require fewer prompts. The analysis of 
our hybrid approach addresses the concern of a high number 
of permission prompts initially for an ML approach. Over 
time, accuracy can always be improved with more permission 
prompts. 

B. Decision Confidence 

In the previous section, we looked into how we can 
optimize the learning phase by merging AOFU and the ML 
model to reach higher accuracy with minimal user prompts. 
However, for a small set of users, more permission prompts 
will not increase accuracy, regardless of user involvement in 
the bootstrapping phase. This could be due to the fact that a 
portion of users in our dataset are making random decisions, 
or that the features that our ML model takes into account are 
not predictive of those users’ decision processes. While we do 
not have the data to support either explanation, we examine 
how we can measure whether the ML model will perform 
well for a particular user and quantify how often it does not. 
We present a method to identify difficult users and reduce 
permission prompting for those users. 

While running the experiment in §VII-A, we also measured 
how confident the ML model was for each decision it made. To 
measure the ML model’s confidence, we record the probability 
for each decision; since it is a binary classification (deny or 
allow), the closer the probability is to 0.5, the less confident 
it is. We then chose a class probability threshold above which 
a decision would be considered a high-confidence decision. In 
our analysis, we choose a class probability threshold of 0.6, 
since this value resulted in >99% accuracy for our fully-trained 
model (≈25 prompts per user) for high-confidence decisions, 
but this is a tunable threshold. Thus, in the remainder of our 
analysis, decisions that the ML model made with a probability 
of >0.60 were labeled as high-confidence decisions, while 
those made with a probability of <0.60 were labeled as low-
confidence decisions. 

Since the most accurate version of AOFU uses 12 prompts, 
we also evaluate the confidence of our model after 12 AOFU-
style prompts. This setup is identical to the bootstrapping 
approach; the model we evaluate here is trained on responses 
from other users and the first 12 prompts chosen by AOFU. 
With this scheme, we found that 24 users (18.32% of 131 
users) had at least one decision predicted with low confidence. 
The remaining 81.68% of users had all privacy decisions 
predicted with high confidence. Among those users whose 
decisions were predicted with low confidence, the proportion 
of low-confidence decisions on average accounted for 12.45% 
(median = 8.69%) out of all their predicted decisions. With 
a sensitive permission request once every 15 seconds [33], 
prompting even for 12.45% of predictions is not practical. 
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Users who had low-confidence predictions had a median ac­
curacy of 70.29%, compared to 93.33% accuracy for the four­
fifths of users with only high-confidence predictions. Out of 
the 24 users who had low-confidence predictions, there was 
only one Defaulter. This further supports the observation in 
Figure 3 that Defaulters require a shorter learning period. 

In a real-world scenario, after the platform (ML model) 
prompts the user for the first 12 AOFU prompts, the platform 
can measure the confidence of predicting unlabeled data (sensi­
tive permission requests for which the platform did not prompt 
the user). If the proportion of low-confidence predictions is be­
low some low threshold, the ML model can be deemed to have 
successfully learned user privacy preferences and the platform 
should keep on using the regular permission-prompting strat­
egy. Otherwise, the platform may choose to limit prompts (i.e., 
two per unique application:permission:visibility combination). 
It should also be noted that rather than having a fixed number 
of prompts (e.g., 12) to measure the low-confidence proportion, 
the platform can keep track of the low-confidence proportion 
as it prompts the users according to any heuristic (i.e., unique 
combinations). If the proportion does not decrease with the 
number of prompts, we can infer that the ML model is not 
learning user preferences effectively or the user is making ran­
dom decisions, indicating that limiting prompts and accepting 
lower efficacy could be a better option for that specific user 
to avoid excessive prompting. However, depending on which 
group the user is in (Contextual or Defaulter), the point at 
which the platform could make the decision to continue or 
limit prompting could change. In general, the platform should 
be able to reach this deciding point relatively quickly for 
Defaulters. 

Among the participants with no low-confidence predic­
tions, we had a median error rate of 6.65% (using the new 
hybrid approach after just 12 AOFU prompts); for the same 
set of users AOFU reached a median error rate of 12.00%. 
However, using AOFU, a user in that set would have needed 
an average of 15.11 prompts to reach that accuracy. Using the 
ML model, a user would need just 6.23 prompts on average 
(Defaulters require far fewer prompts, dropping the average); 
the model only requires 41.23% of the prompts that AOFU 
requires. Even with significantly fewer prompts in the learning 
phase, the ML model achieves a 45.42% reduction in error rate 
as compared to AOFU. 

While our model may not perform well for all users, it does 
seem to work quite well for the majority of users (81.68% of 
our sample). We provide a way of quickly identifying users for 
whom our system does not perform well, and propose limiting 
prompts to avoid excessive user burden for those users, at the 
cost of reduced efficacy. In the worst case, we could simply 
employ the AOFU model for users our system does not work 
well for, resulting in a multifaceted approach that is at least 
as good as the status quo for all users. 

C. Online Model 

Our proposed system relies on training models on a trusted 
server, sending it to client phones (i.e., as a weight vector), 
and having phones make classifications. By utilizing an online 
learning model, we can train models incrementally as users 
respond to prompts over time. There are two key advantages 

to this: (i) this model adapts to changing user preferences over 
time; (ii) training models on multiple users’ data allows more 
labeled data points for training. 

Our scheme requires two components: a feature extraction 
and storage mechanism on the phone (a small extension to our 
existing instrumentation) and a machine learning pipeline on 
a trusted server. The phone sends feature vectors to the server 
every few prompts, and the server responds with a weight 
vector representing the newly trained classifier. To bootstrap 
the process, the server’s models can be initialized with a model 
trained on a few hundred users, such as our single model across 
all users. Since each user contributes data points over time, 
the online model adapts to changing privacy preferences even 
if they conflict with previous data. When using this scheme, 
each model takes less than 10 KiB to store. With our current 
model, each feature and weight vector are at most 3 KiB each, 
resulting in at most 6 KiB of data transfer per day. 

To evaluate the accuracy of our online model, we trained 
a classifier using stochastic gradient descent (SGD) with five­
fold cross validation on our 4,224-point data set. This served 
as the bootstrapping phase. We then simulated receiving the 
remaining data one-at-a-time in timestamp order. Any features 
that changed with time (e.g., running averages for aggregate 
features, event counts) were computed with each incoming data 
point, creating a snapshot of features as the phone would see it. 
We then tested accuracy on the chronologically last 20% of our 
dataset. Our SGD classifier had 93.8% accuracy (AUC=0.929). 
We attribute the drop in accuracy (compared to our offline 
model) to the fact that running averages take multiple data 
points to reach steady-state, causing some earlier predictions 
to be incorrect. 

A natural concern with a trusted server is compromise. 
To address this concern, we do not send any personally-
identifiable data to the server. Furthermore, features sent to 
the server have been scaled; they are reported in standard 
deviations from the mean, not in raw values. 

VIII. CONTEXTUAL INTEGRITY 

Contextual integrity is a conceptual framework that helps 
explain why most permission models fail to protect user 
privacy—they often do not take the context surrounding pri­
vacy decisions into account. In addressing this issue, we pro­
pose an ML model that infers when context has changed. That 
is, if the system knows that a user is comfortable sharing data 
with a particular application under one set of circumstances, 
it should not bother her with a permission request when the 
same application requests access to the same data under similar 
circumstances in the future. However, it should behave dif­
ferently when those circumstances have changed. We believe 
that this is an important first step towards operationalizing the 
notion of contextual integrity. In this section, we explain the 
observations that we made in §VI-C within the context of the 
contextual integrity framework proposed in [5]. 

Contextual integrity provides a conceptual framework to 
better understand how users make privacy decisions; we use 
Barth et al.’s formalized model [5] as a framework in which to 
view the Android permission models. Barth et al. model parties 
as communicating agents (P ) knowing information represented 
as attributes (T ). A knowledge state κ is defined as a subset of 
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P × P × T . We use κ = (p, q, t) to mean that agent p knows 
attribute t of agent q. Agents play roles (R) in contexts (C). 

For example, an agent can be a game application, and 
have the role of a game provider in an entertainment context. 
Knowledge transfer happens when information is communi­
cated between agents; all communications can be represented 
through a series of traces (κ, (p, r), a), which is a combination 
of a knowledge state κ, a role state (p, r), and a communication 
action a (information sent). The role an agent plays in a 
given context helps determine whether an information flow is 
acceptable for a user. Communications can only occur when 
they follow the norms of context; the relationship between the 
agent sending the information and the role of the agent ((p, r)) 
receiving it must follow these norms, too. 

With the Android permission model, the same framework 
can be applied. Both the user and the third-party applica­
tion are communicating agents, and the information to be 
transferred is the sensitive data requested by the application. 
When a third-party application requests permission to access 
a guarded resource (e.g., location information), knowledge 
of the guarded resource is transferred from the one agent 
(i.e., the user/platform) to another agent (i.e., the third-party 
application). The extent to which a user expects a given 
request depends not on the agent (the application requesting 
the permission), but on the role that agent is playing in that 
context. This explains why the application as a feature itself 
(i.e., application name) was not predictive in our models: this 
feature does not represent the role when determining whether it 
is unexpected. While it is hard, from the platform, to determine 
the exact role an application is playing, the visibility of the 
application hints at its role. For instance, when the user is using 
Google Maps to navigate, it is playing a different role from 
when Google Maps is running in the background without the 
user’s knowledge. We believe that this is the reason why the 
visibility of the requesting application is significant: it helps 
the user to infer the role played by the application requesting 
the permission. 

The user expects applications in certain roles to access 
resources depending on the context in which the request is 
made. We believe that the foreground application sets this 
context. Thus a combination of the role and the context decides 
whether an information flow is expected to occur or not. 
Automatically inferring the exact context of a request (e.g., 
how data will be used, whether it will be shared with any 
other parties, etc.) is likely an intractable problem. However, 
for our purposes, it is possible that we need to only infer when 
context has changed, or rather, when data is being requested in 
a context that is no longer acceptable to the user. Based on our 
data, we believe that features based on foreground application 
and visibility are our most useful. 

We now combine all of this into a concrete example within 
the contextual integrity framework: If a user is using Google 
Maps to reach a destination, the application can play the 
role of a navigator in a geolocation context, whereby the 
user feels comfortable sharing her location. In contrast, if the 
same application requests location while running as a service 
invisible to the user, the user may not want to give this service 
the same information. Background applications play the role 
of “passive listeners” in most contexts; this role as perceived 
by the user may be why background applications are likelier 

to violate privacy expectations and consequently be denied 
information by users. 

AOFU primarily focuses on controlling access through 
rules for application:permission combinations. Thus, AOFU 
neglects the role played by the application (visibility) and 
relies purely on the agent (the application) and the information 
subject (permission type). This explains why AOFU is wrong 
in nearly one-fifth of cases. Based on Table III, both AOFU­
VA (possibly identifying the role played by the application) 
and AOFU-AF PV (possibly identifying the current context 
because of the current foreground application-AF ) have higher 
accuracy than the other AOFU combinations. However, as 
the framework of contextual integrity suggests, the permission 
model has to take both the role and the current context 
into account before making an accurate decision. AOFU only 
makes it possible to consider a single aspect, a limitation that 
does not apply to our model. 

While the data presented in this work suggest the impor­
tance of capturing context to protect user privacy efficiently, 
more work is needed along these lines to fully understand 
how people use context to make decisions and what defines all 
factors that compose context in the Android permission model. 
Nevertheless, we believe we contribute a significant ground 
work toward future operationalization of contextual integrity. 

IX. DISCUSSION 

The primary goal of this research was to improve the 
accuracy of the Android permission system so that it more 
correctly aligns with user privacy preferences. We began with 
four hypotheses: (i) that the currently deployed AOFU policy 
frequently violates user privacy; (ii) that the contextual infor­
mation it ignores is useful; (iii) that a ML-based classifier can 
account for this contextual information and thus improve on 
the status quo; and (iv) passively observable behavioral traits 
can be used to infer privacy preferences. 

To test these hypotheses, we performed the first large-
scale study on the effectiveness of AOFU permission systems 
in the wild, which showed that hypotheses (i) and (ii) hold. 
We further built an ML classifier that took user permission 
decisions along with observations of user behaviors and the 
context surrounding those decisions to show that (iii) and (iv) 
hold. Our results show that existing systems have significant 
room for improvement, and other permission-granting systems 
may benefit from applying our results. 

A. Limitations of Permission Models 

Our field study confirms that users care about their privacy 
and are wary of permission requests that violate their expec­
tations. Our experiments show that 95% of participants chose 
to block at least one permission request; in fact, the average 
denial rate was 60%—a staggering amount given Android’s 
earlier AOI model permits all permission requests once an 
application is installed. This denial rate implies that AOI 
correctly regulates permission requests only two in five times. 

While AOFU improves over the AOI model, it still violates 
user privacy one in five times as users deviate from their initial 
response to a permission request about 16% of the time. This 
amount is significant because of the high frequency of sensitive 
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permission requests: a 16% error rate translates to thousands 
of privacy violations for a single user per day. It further shows 
that AOFU’s correctness assumption—that users make binary 
decisions based on the application:permission combination 
alone—is incorrect. Users take a richer space of information 
into account when making decisions about permission requests. 

B. Our ML-Based Model 

Our results show that ML techniques are effective at 
learning from both the user’s previous decisions and the 
current environmental context in order to predict whether to 
grant permissions on the user’s behalf. In fact, our techniques 
achieve better results than the methods currently deployed on 
millions of phones worldwide—while imposing significantly 
less user burden. 

Our work incorporates elements of the environmental con­
text into a machine-learning model. This better approximates 
user decisions by finding factors relevant for users that are 
not encapsulated by the AOFU model. In fact, our ML model 
reduces the errors made by the AOFU model by 75%. Our 
ML model’s 96% accuracy is a substantial improvement over 
AOFU’s 84% and AOI’s 25%; the latter two of which comprise 
the status quo in the Android ecosystem. 

Our research show that many users make neither random 
nor fixed decisions: the environmental context plays a signifi­
cant role in user decision-making. Automatically detecting the 
precise context surrounding a request for sensitive data is an 
incredibly difficult problem (e.g., inferring how data will be 
used), and is potentially intractable. However, to better support 
user privacy, that problem does not need to be solved; instead, 
we show that systems can be improved by using environmental 
data to infer when context has changed. We found that the most 
predictive factors in the environmental context were whether 
the application requesting the permission is visible, and if not, 
what foreground application actually was visible. These are 
both strong contextual cues used by users, insofar as they 
allowed us to better predict changes in context. Our results 
show that ML techniques have great potential in improving 
user privacy, by allowing us to infer when context has changed, 
and therefore when users would want data requests to be 
brought to their attention. 

C. Reducing the User Burden 

Our work is also novel in using passively observable 
data to infer privacy decisions: we show that we can predict 
a user’s preferences without any permission prompts. Our 
model trained solely on behavioral traits yields a three-fold 
improvement over AOI; for Defaulters—who account for 53% 
of our sample—it was as accurate as AOFU-AP. These results 
demonstrate that we can match the status quo without any 
active user involvement (i.e., the need for obtrusive prompts). 
These results imply that learning privacy preferences may be 
done entirely passively, which, to our knowledge, has not 
yet been attempted in this domain. Our behavioral feature 
set provides a promising new direction to guide research in 
creating permission models that minimize user burden. 

The ML model trained with contextual data and past 
decisions also significantly reduced the user burden while 
achieving higher accuracy than AOFU. The model yielded 

a 45% reduction in prediction errors while reducing user 
involvement by 59%. The significance of this observation is 
that by reducing the risk of habituation, it increases reliability 
when user input is needed. 

D. User- and Permission-Tailored Models 

Our ML-based model incorporates data from all users into 
a single predictive model. It may be the case, however, that 
a collection of models tailored to particular types of users 
outperforms our general-purpose model—provided that the 
correct model is used for the particular user and permission. 
To determine if this is true, we clustered users into groups 
based first on their behavioral features, and then their denial 
rate, to see if we could build superior cluster-tailored ML 
models. Having data for only 131 users, however, resulted 
in clusters too small to carry out an effective analysis. We 
note that we also created a separate model for each sensitive 
permission type, using data only for that permission. Our 
experiments determined, however, that these models were no 
better (and often worse) than our general model. It is possible 
that such tailored models may be more useful when our system 
is implemented at scale. 

E. Attacking the ML Model 

Attacking the ML model to get access to users’ data with­
out prompting is a legitimate concern [4]. There are multiple 
ways an adversary can influence the proposed permission 
model: (i) imposing an adversarial ML environment [25]; (ii) 
polluting the training set to bias the model to accept permis­
sions; and (iii) manipulating input features in order to get 
access without user notification. We assume in this work that 
the platform is not compromised; a compromised platform will 
degrade any permission model’s ability to protect resources. 

A thorough analysis on this topic is outside of our scope. 
Despite that, we looked at the possibility of manipulating 
features to get access to resources without user consent. None 
of the behavioral features used in the model can be influ­
enced, since that would require compromising the platform. 
An adversary can control the runtime features for a given 
permission request by specifically choosing when to request 
the permission. We generated feature vectors that encompassed 
every adversary-controlled value and combination from our 
dataset, and tested them on our model. We did not find any 
conclusive evidence that the adversary can exploit the ML 
model by manipulating the input features to get access to 
resources without user consent. 

As this is not a comprehensive analysis on attack vectors, 
it is possible that there exists a scenario where the adversary 
is able to access sensitive resources without prompting the 
user first. Our preliminary analysis suggests that they may 
be non-trivial, but more work is needed to study and prevent 
such attacks. In particular, to protect against adversarial ML 
techniques and formally examining feature brittleness. 

F. Experimental Caveat 

We repeat a caveat about our experimental data: users were 
free to deny permissions without any consequences: denying 
a legitimately-needed permission did not result in loss of 
functionality. We explicitly informed participants in our study 
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that their decisions to deny permission requests would have 
no impact on the actual behavior of their applications. This 
is important to note because if an application is denied a 
permission, it may exhibit undefined behavior or lose important 
functionality. If these consequences are imposed on users, 
they may decide that the functionality is more important than 
their privacy decision. Similarly, the loss of functionality may 
demonstrate the necessity of allowing certain permissions that 
are otherwise unclear. 

If we actually denied permissions, users’ decisions may 
skew towards a decreased denial rate. The denial rates in 
our experiments therefore represent the preferences of users 
and their expectations of reasonable application behavior— 
not the result of choosing between application functionality 
and privacy preferences. It is possible, for instance, that those 
categorized as Defaulters are an artifact of our experiment, as 
denying all permissions had no consequences. Yet, limiting our 
analysis to Contextuals does not limit our claims. 

We leave as future work the replication of this experiment 
with consequences for denied application permissions. Note 
that the instrumentation of the Android platform to seamlessly 
provide this is non-trivial because many applications are not 
programmed to correctly handle denied permissions. This is 
despite modern Android already empowering users to deny 
permissions on their first use. In fact, researchers have noted 
that many applications crash when permissions are denied [10]. 
Consequently, we must develop a mock environment where 
permissions appear—to the application—to be allowed, but in 
reality only spurious or artificial data is provided. Such an 
experiment should provide the most accurate user permission 
data ever collected, and we expect that a significant portion 
of the default-deny contingent would become more contextual 
with their observed behaviors. 

G. Types of Users 

We presented a categorization of users based on the sig­
nificance that the application’s visibility played towards their 
individual privacy decisions. We believe that in an actual 
permission denial setting, the distribution will be different from 
what was observed in our study. Our categorization’s signifi­
cance, however, motivates a deeper analysis on understanding 
the factors that divide Contextuals and Defaulters. We believe 
that visibility is an important factor in this division but there 
may be others that are more significant. More work needs to 
be done to explore how Contextuals make decisions and which 
behaviors correlate with their decisions. 

H. User Interface Panel 

Any model that predicts user decisions has the risk of 
making incorrect predictions. Making predictions on a user’s 
behalf, however, is necessary because permissions are re­
quested by applications with too high a frequency for manual 
processing. Thus, platforms need to make these predictions 
and should strive to be as accurate as possible. While we do 
not expect any system to be able to obtain perfect accuracy, 
we do expect that our 96% accuracy can be improved upon. 

One plausible way of improving the accuracy of the per­
mission model is to empower the user to review and make 
changes on how the ML model makes decisions through a user 

feedback panel. A major benefit is that users would be able 
to go back and review the decisions made by the ML model. 
It would also allow users to adjust these decisions according 
to their preferences, thereby correcting errors. This gives users 
recourse to correct undesirable decision. The UI panel could 
also be used to reduce the usability issues and functionality 
loss stemming from permission denial. The panel should help 
the user figure out which rule incurred the functionality loss 
and change it accordingly. A user may also use this to adjust 
their privacy preferences as they evolve over time. 

I. Conclusions 

We have shown a number of important results. Users 
care about their privacy: they deny a significant number of 
requests to access sensitive data. Existing permission models 
for Android phones still result in significant privacy violations. 
User may allow permissions some times, while denying them 
at others, which means that there are more factors that go 
into the decision-making process than simply the application 
name and the permission type. We collected real-world data 
from 131 users and found that application visibility and the 
current foreground application were important factors in user 
decisions. We used the data we collected to build a machine-
learning model to make automatic permission decisions. One 
of our models matched the errors made by AOFU without any 
user prompting, and another of our models reduced the number 
of errors by 75% with the same amount of prompting. 
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