
The Feasibility of Dynamically Granted Permissions:

Aligning Mobile Privacy with User Preferences

Primal Wijesekera1,2, Arjun Baokar2, Lynn Tsai2, Joel Reardon2 ,

Serge Egelman2, David Wagner2, and Konstantin Beznosov1

1University of British Columbia, Vancouver, Canada,

}@ece.ubc.ca
2University of California, Berkeley, Berkeley, USA,

{ }@berkeley.edu, { }@cs.berkeley.edu

Abstract—Current mobile operating systems regulate appli­
cation permissions by prompting users on an ask-on-first-use
basis. Prior research has shown that this method is ineffective
because it fails to account for context: the circumstances under
which an application first requests access to data may be vastly
different than the circumstances under which it subsequently
requests access. We performed a longitudinal 131-person field
study to analyze the contextuality behind user privacy decisions
to regulate access to sensitive resources. We built a classifier
to make privacy decisions on the user’s behalf by detecting
when context has changed and, when necessary, inferring privacy
preferences based on the user’s past decisions and behavior.
Our goal is to automatically grant appropriate resource requests
without further user intervention, deny inappropriate requests,
and only prompt the user when the system is uncertain of the
user’s preferences. We show that our approach can accurately
predict users’ privacy decisions 95.7% of the time, which is a
four-fold reduction in error rate compared to current systems.

I. INTRODUCTION

One of the roles of a mobile application platform is to
help users avoid unexpected or unwanted use of their personal
data [9]. Mobile platforms currently use permission systems
to regulate access to sensitive resources, relying on user
prompts to determine whether a third-party application should
be granted or denied access to data and resources. One critical
caveat in this approach, however, is that mobile platforms
seek the consent of the user the first time a given application
attempts to access a certain data type and then enforce the
user’s decision for all subsequent cases, regardless of the cir­
cumstances surrounding each access. For example, a user may
grant an application access to location data because she is using
location-based features, but by doing this, the application can
subsequently access location data for behavioral advertising,
which may violate the user’s preferences.

Earlier versions of Android (5.1 and below) asked users
to make privacy decisions during application installation as an
all-or-nothing ultimatum (ask-on-install): either all requested
permissions are approved or the application is not installed.
Previous research showed that few people read the requested
permissions at install-time and even fewer correctly understood
them [14]. Furthermore, install-time permissions do not present
users with the context in which those permission will be exer­
cised, which may cause users to make suboptimal decisions
not aligned with their actual preferences. Asking users to
make permission decisions at runtime, at the moment when the

permission will actually be used by the application, provides
more context (i.e., what they were doing at the time that data
was requested) [12]. However, due to the high frequency of
permission requests, it is not feasible to prompt the user every
time data is accessed [33].

In iOS and Android M, the user is now prompted at
runtime the first time an application attempts to access one of
a set of “dangerous” permission types (e.g., location, contacts,
etc.). This “ask-on-first-use” (AOFU) model is an improvement
over ask-on-install (AOI). Prompting users the first time an
application uses one of the designated permissions gives users
a better sense of context: their knowledge of what they were
doing when the application first tried to access the data should
help them determine whether the request is appropriate. How­
ever, Wijesekera et al. showed that AOFU fails to meet user
expectations over half the time, because it does not account
for the varying contexts of future requests [33].

The notion of contextual integrity suggests that many per­
mission models fail to protect user privacy because they fail to
account for the context surrounding data flows [27]. That is,
privacy violations occur when sensitive resources are used in
ways that defy users’ expectations. We posit that more effective
permission models must focus on whether resource accesses
are likely to defy users’ expectations in a given context—not
simply whether the application was authorized to receive data
the first time it asked for it. Thus, the challenge for system
designers is to correctly infer when the context surrounding a
data request has changed, and whether the new context is likely
to be deemed “appropriate” or “inappropriate” for the given
user. Dynamically regulating data access based on the context
requires more user involvement to understand users’ contextual
preferences. If users are asked to make privacy decisions too
frequently, or under circumstances that are seen as low-risk,
they may become habituated to future, more serious, privacy
decisions. On the other hand, if users are asked to make too
few privacy decisions, they may find that the system has acted
against their wishes. Thus, research is needed to determine
when and under what circumstances to present users with
runtime prompts.

To this end, we collected real-world Android usage data in
order to explore whether we could infer users’ future privacy
decisions based on their past privacy decisions, contextual
circumstances surrounding applications’ data requests, and
users’ behavioral traits. We conducted a field study where

http:cs.berkeley.edu
http:berkeley.edu
http:ece.ubc.ca

131 participants used Android phones that were instrumented
to gather data over an average of 32 days per participant.
Also, their phones periodically prompted them to make privacy
decisions when applications used sensitive permissions, and we
logged their decisions. Overall, participants wanted to block
60% of these requests. We found that AOFU yields 84%
accuracy, i.e., its policy agree with participants’ responses 84%
of the time. AOI achieves only 25% accuracy.

We then designed new techniques that use machine learning
to automatically predict how users would respond to prompts,
so that we can avoid prompting them in most cases. Our
classifier uses the user’s past decisions in related situations
to predict their response to a particular permission prompt.
The classifier outputs a prediction and a confidence score; if
the classifier is sufficiently confident, we use its prediction,
otherwise we prompt the user for their decision. We also
incorporate information about the user’s behavior and other
security and privacy settings: e.g., whether they have a PIN
screen lock activated, how often they visit HTTPS websites,
and so on. We show that our scheme achieves 95.7% accuracy
(a 4× reduction in error rate, compared to AOFU) without too
many prompts.

The specific contributions of our work are the following:

•	 We conducted the first known large-scale study on the
effectiveness of ask-on-first-use permissions.

•	 We show that a significant portion of the studied
participants make contextual decisions on permissions
using the foreground application and the visibility of
the permission-requesting application.

•	 We show how a machine-learned model can incorpo­
rate environmental context and better predict users’
privacy decisions.

•	 To our knowledge, we are the first to use passively
observed traits to infer future privacy decisions.

II. RELATED WORK

There is a large body of work demonstrating that install-
time prompts fail because users do not understand or pay
attention to them [16], [20], [32]. When using install-time
prompts, users often do not understand which permission types
correspond to which sensitive resources and are surprised
by the ability of background applications to collect informa­
tion [14], [19], [31]. Applications also transmit a large amount
of location or other sensitive data to third parties without user
consent [9]. When possible risks associated with these requests
are revealed to users, their concerns range from annoyance to
wanting to seek retribution [13].

To mitigate some of these problems, systems have been
developed to track information flows across the Android
system [9], [15], [21] or introduce finer-grained permission
control into Android [1], [18], [29], but many of these solutions
increase user involvement significantly, which can lead to
habituation. Additionally, many of these proposals are useful
only to the most-motivated or technically savvy users. For
example, many such systems require users to configure com­
plicated control panels, which many are unlikely to do [35].
Other approaches involve static analysis in order to better
understand how applications could request information [3], [7],

[11], but these say little about how applications actually use
information. Dynamic analysis improves upon this by allowing
users to see how often this information is requested in real
time [9], [30], [33], but substantial work is likely needed
to present that information to average users in a meaningful
way. Solutions that require runtime prompts (or other user
interruptions) need to also minimize user intervention, in order
to prevent habituation.

Other researchers have developed recommendation systems
to recommend applications based on users’ privacy prefer­
ences [36]. Systems have also been developed to predict
what users would share on mobile social networks [6], which
suggests that future systems could potentially infer what infor­
mation users would be willing to share with third-party appli­
cations. By requiring users to self-report privacy preferences,
clustering algorithms have been used to define user privacy
profiles even in the face of diverse preferences [28]. However,
researchers have found that the order in which information is
requested has an impact on prediction accuracy [34], which
could mean that such systems are only likely to be accurate
when they examine actual user behavior over time (rather than
relying on one-time self-reports).

Liu et al. clustered users by privacy preferences and used
ML techniques to predict whether to allow or deny an appli­
cation’s request for sensitive user data [23]. However, their
dataset was collected from a set of highly privacy-conscious
individuals—those choosing to install a permission-control
mechanism. Furthermore, the researchers removed “conflict­
ing” user decisions, in which a user chose to deny a permission
for an application, and then later chose to allow it. However,
these conflicting decisions happen nearly 50% of the time in
the real world [33], and accurately reflect the nuances of user
privacy preferences; they are not experimental mistakes, and
therefore models need to account for them. In fact, previous
work found that users commonly reassess privacy preferences
after usage [2]. Liu et al. also expect users to make 10% of per­
mission decisions manually, which, based on field study results
from Wijesekera et al., would result in being prompted every
three minutes [33]. This is obviously impractical. Our goal is
to design a system that can automatically make decisions on
behalf of users, that accurately models their preferences, while
also not over-burdening them with repeated requests.

Nissenbaum’s theory of contextual integrity suggests that
permission models should focus on information flows that are
likely to defy user expectations [27]. There are three main
components involved in deciding the appropriateness of a
flow [5]: the context in which the resource request is made,
the role played by the agent requesting the resource (i.e.,
the role played by the application under the current context),
and the type of resource being accessed. Neither previous nor
currently deployed permission models take all three factors
into account. This model could be used to improve permission
models by automatically granting access to data when the
system determines that it is appropriate, denying access when it
is inappropriate, and prompting the user only when a decision
cannot be made automatically.

Wijesekera et al. performed a field study [33] to opera­
tionalize the notion of “context,” so that an operating system
can differentiate between appropriate and inappropriate data
requests by a single application for a single data type. They

2

Permission Type Activity

ACCESS_ WIFI_ STATE View nearby SSIDs
NFC Communicate via NFC
READ_ HISTORY_ BOOKMARKS Read users’ browser history
ACCESS_ FINE_ LOCATION Read GPS location

ACCESS_ COARSE_ LOCATION
Read network-inferred location
(i.e., cell tower and/or WiFi)

LOCATION_ HARDWARE Directly access GPS data
READ_ CALL_ LOG Read call history
ADD_ VOICEMAIL Read call history
READ_ SMS Read sent/received/draft SMS
SEND_ SMS Send SMS
*INTERNET Access Internet when roaming

*WRITE_ SYNC_ SETTINGS
Change application sync
settings when roaming

TABLE I. FELT ET AL. PROPOSED GRANTING A SELECT SET OF 12
PERMISSIONS AT RUNTIME SO THAT USERS HAVE CONTEXTUAL

INFORMATION TO INFER WHY THE DATA MIGHT BE NEEDED [12]. OUR

INSTRUMENTATION OMITS THE LAST TWO PERMISSION TYPES (INTERNET

& WRITE_SYNC_SETTINGS) AND RECORDS INFORMATION ABOUT THE

OTHER 10.

found that users’ decisions to allow a permission request were
significantly correlated with that application’s visibility: in
this case, the contexts are using or not using the requesting
application. They posit visibility of the application could be
a strong contextual cue that influences users’ responses to
permission prompts. They also observed that privacy decisions
were highly nuanced, and therefore a one-size-fits-all model
is unlikely to be sufficient; a given information flow may be
deemed appropriate by one user and inappropriate by another
user. They recommended applying machine learning in order
to infer individual users’ privacy preferences.

To achieve this, research is needed to determine what
factors affect user privacy decisions and how to use those
factors to make privacy decisions on the user’s behalf. While
we cannot automatically capture everything involved in Nis­
senbaum’s notion of context, we can try for the next-best thing:
we can try to detect when context has likely changed, by
seeing whether the circumstances surrounding a data request
are similar to previous requests or not.

III. METHODOLOGY

We collected data from 131 participants to understand what
factors help infer whether a permission request is likely to be
deemed appropriate by the user.

Previous work by Felt et al. made the argument that
certain permissions are appropriate for runtime prompts, be­
cause they protect sensitive resources—and therefore require
user intervention—and because viewing the prompt at run­
time imparts additional contextual information about why an
application might need the permission [12]. We collected
information about 10 of the 12 permissions they suggest
are best-suited for runtime prompts; we omitted INTERNET

and WRITE_SYNC_SETTINGS, since we did not expect any
participant to be roaming while using our instrumentation, and
focused on the remaining 10 permission types (Table I). While
there are many other sensitive permissions beyond this set,

Felt et al. concluded that the others are best handled by other
mechanisms (e.g., install-time prompts, OS-drawn widgets).

We used the Experience Sampling Method (ESM) to collect
ground truth data about users’ privacy preferences [17]. ESM
involves repeatedly questioning participants in situ about a
recently observed event; in this case, we probabilistically asked
them about an application’s recent access to data on their
phone, and whether they would have permitted it, if they had
been given the choice. We treated participants’ responses to
these ESM probes as our main dependent variable (Figure 1).

We also instrumented participants’ smartphones to obtain
data about their privacy-related behaviors and the frequency
with which applications accessed protected resources. The
instrumentation required a set of modifications to the An­
droid operating system and flashing a custom Android ver­
sion onto participants’ devices. To facilitate such experiments,
the University of Buffalo offers academic researchers access
to the PhoneLab panel [26], which consists of more than
200 participants (affiliated with the university). All of these
participants had LG Nexus 5 phones running Android 5.1.1
and the phones were periodically updated over-the-air (OTA)
with custom modifications to the Android operating system.
Participants can decide when to install the OTA update, which
marks their entry into new experiments. During our experiment
period, different participants installed the OTA update with our
instrumentation at different times, thus we neither have data on
all PhoneLab participants, nor for the entire period. Our OTA
update was available to participants for a period of six weeks,
between February 2016 and March 2016. At the end of the
study period, we emailed participants a link to an exit survey
to collect demographic information. Our study was approved
by the relevant institutional review board (IRB).

A. Instrumentation

The goal of our instrumentation was to collect as much
runtime and behavioral data as could be observed from the
Android platform, with minimal impact on performance. We
collected three categories of data: behavioral information,
runtime information, and user decisions. We made no modifi­
cations to any third-party application code.

Table II contains the complete list of behavioral and
runtime events our instrumentation recorded. The behavioral
data fell under several categories, all chosen based on several
hypotheses that we had about the types of behaviors that might
correlate with privacy preferences: web browsing behavior,
screen locking behavior, third party application usage behavior,
audio preferences, call habits, camera usage patterns (selfie
vs. non-selfie), and behavior related to security settings. For
example, we hypothesized that someone who manually locks
their device screen (as opposed to letting it time out) might
be more privacy-conscious than someone who takes many
speakerphone calls or selfies.

We also collected runtime information about the context
of each permission request, including the visibility of the
requesting application at the time of request (i.e., whether
it was running in the foreground or not) and what the user
was doing when the request was made (i.e., the name of
the foreground application). The visibility of an application
reflects the extent to which the user was likely aware that

3

Type Event Recorded

Changing developer options
Opening/Closing security settings
Changing security settings
Enabling/Disabling NFC
Changing location mode
Opening/Closing location settings
Changing screen-lock type
Use of two factor authentication
Log initial settings information

Behavioral
Instrumentation

User locks the screen
Screen times out
App locks the screen
Audio mode changed
Enabling/Disabling speakerphone
Connecting/Disconnecting headphones
Muting the phone
Taking an audio call
Taking a picture (selfie vs. non-selfie)
Visiting a link in chrome
Responding to a notification
Unlocking the phone

Runtime An application changing the visibility
Information Platform switches to a new activity
Permission An app requests a sensitive permission
Requests ESM prompt for a selected permission

TABLE II. INSTRUMENTED EVENTS

the application was running; if the application was in the
foreground, the user had cues that the application was running,
but if it was in the background, then the user was likely not
aware that the application was running and therefore might
find the permission request unexpected. We also collected
information about which Android Activity was active in
the application; depending on the design of the application, this
might tell us only that the user was browsing with Firefox or
might provide fine-grained information such as differentiating
between reading a news feed vs. searching for a user’s profile
on Facebook. We monitored processes’ memory priority levels
to determine the visibility of all active processes.

We recorded every time that an application used one of the
10 permissions mentioned earlier. We also recorded the exact
Android API invoked by a third-party application to determine
precisely what information was requested.

Finally, once each day we randomly selected one of these
permission requests and prompted the user about them (Figure
1). We used weighted reservoir sampling to select a permission
request to prompt about. We weight permissions based on
their frequency of occurrence seen by the instrumentation; the
most-frequent permission request has a higher probability of
being shown to participants using ESM. We prompted partici­
pants a maximum of three times for each unique combination
of requesting application, permission, and visibility of the
requesting application (i.e., background vs. foreground). We
tuned the wording of the prompt to make it clear that the
request had just occurred and their response would not affect
the system (a deny response would not actually deny data).
These responses serve as the ground truth for all the analysis
mentioned in the remainder of the paper.

Fig. 1. A screenshot of an ESM prompt.

The intuition behind using a weighted-reservoir sampling
is to focus more on the frequently occurring permission re­
quests over rare ones. Common permission requests contribute
most to user habituation due their high frequency. Thus, it is
more important to learn about user privacy decisions on high
frequent permission requests over the rare ones, which might
not risk user habituation or annoyance.

B. Exit Survey

At the end of our data collection period, PhoneLab staff
emailed participants a link to our online exit survey, which
they were incentivized to complete with a raffle for two $100
Amazon gift cards. The survey gathered demographic informa­
tion and qualitative information on their privacy preferences.
Of the 203 participants in our experiment, 53 fully completed
the survey, and another 14 partially completed it. Of the
53 participants to fully complete the survey, 21 were male,
31 were female, and 1 undisclosed. Participants ranged from
20 to 72 years of age (µ = 40.83, σ= 14.32). Participants
identified themselves as 39.3% staff, 32.1% students, 19.6%
faculty, and 9% other. Only 21% of the survey respondents
had an academic qualification in STEM, which suggests that
the sample is unlikely to be biased towards tech-savvy users.

C. Summary

We collected data from February 5 to March 17, 2016.
PhoneLab allows any participant to opt-out of an experiment
at any time. Thus, of the 203 participants who installed our
custom Android build, there were 131 who used it for more
than 20 days. During the study period, we collected 176M
events across all participants (31K events per participant/day).
Our dataset consists of 1,686 unique applications and 13K

4

http:onFacebook.We

15

10

Category

Contextuals

Defaulters

5

0

0 25 50 75 100
Denial Rate

N
um

be
r

of
 P

ar
tic

ip
an

ts

Fig. 2. Histogram of users based on their denial rate. Defaulters tended to
allow or deny almost all requests without regard for contextual cues, whereas
Contextuals considered the visibility of the requesting application.

unique activities. Participants also responded to 4,636 prompts
during the study period. We logged 96M sensitive permission
requests, which translates to roughly one sensitive permission
request every 6 seconds per participant. For the remainder of
the paper, we only consider the data from the 131 participants
who used the system for at least 20 days, which corresponds
to 4,224 ESM prompts.

Of the 4,224 prompts, 55.3% were in response to ACCESS
_WIFI_STATE, when trying to access Wifi SSID information
that could be used to infer the location of the smartphone;
21.0%, 17.3%, 5.08%, 0.78%, and 0.54% were from accessing
location directly, reading SMS, sending SMS, reading call logs,
and accessing browser history, respectively. A total of 137
unique applications triggered prompts during the study period.
Of the 4,224 prompts, participants wanted to deny 60.01%
of them, and 57.65% of the prompts were shown when the
requesting application was running in the foreground or the
user had visual cues that the application was running (e.g.,
notifications). A Wilcoxon signed rank test with continuity
correction revealed a statistically significant difference in par­
ticipants’ desire to allow or deny a permission request based
on the visibility of the requesting application (p < 0.0152,
r = 0.221), which corroborates previous findings [33].

IV. TYPES OF USERS

We hypothesized that there may be different types of users
based on their behaviors. While our study size was too small
to effectively apply clustering techniques to generate classes
of users, we were able to find a meaningful distinction using
the denial rate (i.e., the percentage of prompts to which users
wanted to deny access). We aggregated users by their denial
rate in 10% increments. We discovered that visibility was a
significant predictor of user decisions for users with a denial
rate of 10–90%, but not for users with a denial rate of 0–10%
or 90–100%. We call the former group Contextuals, as they
care about the surrounding context (i.e., they make nuanced
decisions), and the latter group Defaulters, because, as we
now show, they tend to either allow application permissions
or deny them and did not vary their decision-making based on
circumstances.

Policy Contextuals Defaulters Overall Prompts

AOI 44.11% 6.00% 25.00% 0.00
AOFU-AP 64.49% 93.33% 84.61% 12.34

AOFU-APV 64.28% 92.85% 83.33% 15.79
AOFU-AF PV 66.67% 98.95% 84.61% 16.91
AOFU-VP 58.65% 94.44% 78.04% 6.43
AOFU-VA 63.39% 93.75% 84.21% 12.24
AOFU-A 64.27% 93.54% 83.33% 9.06
AOFU-P 57.95% 95.45% 82.14% 3.84
AOFU-V 52.27% 95.34% 81.48% 2.00

TABLE III. THE ACCURACY AND NUMBER OF DIFFERENT POSSIBLE

ASK-ON-FIRST-USE COMBINATIONS. A: APPLICATION REQUESTING THE

PERMISSION, P: PERMISSION TYPE REQUESTED, V: VISIBILITY OF THE

APPLICATION REQUESTING THE PERMISSION, AF : APPLICATION RUNNING

IN THE FOREGROUND WHEN THE REQUEST IS MADE. AOFU-AP IS THE

POLICY USED IN ANDROID MARSHMALLOW I.E., ASKING (PROMPTING)

THE USER FOR EACH UNIQUE APPLICATION, PERMISSION COMBINATION.

THE TABLE ALSO DIFFERENTIATES POLICY NUMBERS BASED ON THE

SUBPOPULATION OF Contextuals, Defaulters, AND ACROSS ALL USERS.

Based on the prompt responses, Defaulters accounted for
53% of 131 participants and Contextuals accounted for 47%.
A Wilcoxon signed-rank test with continuity correction re­
vealed a statistically significant difference in Contextuals’ re­
sponses based on requesting application visibility (p < 0.013,
r = 0.312), while for Defaulters there was no statistically
significant difference (p = 0.227). That is, Contextuals used
visibility as a contextual cue, when deciding whether or not
a given permission request should be permitted, whereas De­
faulters did not vary their decisions based on this cue, and
instead consistently chose one option for the duration of the
experiment. Figure 2 shows the distribution of users based on
their denial rate. Vertical lines indicate the borders between
Contextuals (light gray) and Defaulters (dark gray). Observe
that Defaulters appear at both ends of the denial-rate spectrum,
while Contextuals fully occupy the space between them.

Different permission models affect users differently based
on their privacy preferences; performance numbers averaged
across a user population could be misleading since different
sub-populations might react differently to the same permission
model. In the remainder of the paper, we use our Contextuals–
Defaulters categorization to measure how current and proposed
new models affect these two sub-populations, issues unique to
these sub-populations, and ways to address these issues.

V. ASK-ON-FIRST-USE PERMISSIONS

Ask-on-first-use (AOFU) is the current Android permission
model, which was first adopted in Android 6.0 (Marshmallow).
AOFU works by prompting the user whenever an application
requests a dangerous permission for the first time; the user’s
response to this prompt is thereafter applied whenever the same
application requests the same permission. As of August 2016,
only 15.2% of Android users have Android Marshmallow [8],
and of those, those who have upgraded from a previous ver­
sion only see runtime permission prompts for freshly-installed
applications.

For the remaining 95.4% of users, the system policy is
ask-on-install (AOI), which automatically allows all runtime
permission requests. During the study period, all of our partic­
ipants had AOI running as the default permission model. Be­

5

http:21.0%,17.3%,5.08%,0.78

cause all runtime permission requests are allowed in AOI, any
of our ESM prompts that the user wanted to deny correspond
to mispredictions under the AOI model (i.e., the AOI model
granted access to the data against users’ actual preferences).
Table III shows the expected median accuracy for AOI, as
well as several other possible variants that we discuss in this
section. The low median accuracy for Defaulters was due to
the significant number of people who simply denied most of
the prompts. The prompt count is zero for AOI because it
does not prompt the user during runtime; users are only shown
permission prompts at installation.

More users will have AOFU in the future, as they upgrade
to Android 6.0 and beyond. To the best of our knowledge,
no prior work has looked into the effectiveness of AOFU
systematically; this section presents analysis of AOFU based
on prompt responses collected from participants and creates
a baseline against which to measure our system’s improve­
ment. We simulate how AOFU performs through our ESM
prompt responses. Because AOFU is deterministic, each user’s
response to the first prompt for each application:permission
combination tells us how the AOFU model would respond for
subsequent requests by that same combination. For participants
who responded to more than one prompt for each combination,
we can quantify how often AOFU would have been correct for
subsequent requests. Similarly, we also measure the accuracy
for other possible policies that the platform could use to decide
whether to prompt the user. For example, the status quo is
for the platform to prompt the user for each new applica­
tion:permission combination, but how would accuracy (and the
number of prompts shown) change if the policy were to prompt
on all new combinations of application:permission:visibility?

Table III shows the expected median accuracy1 for each
policy based on participants’ responses. For each policy, A
represents the application requesting the permission, P repre­
sents the requested permission, V represents the visibility of
the requesting application, and AF represents the application
running in the foreground when a sensitive permission request
was made. For instance, AOFU-AP is the policy where the
user will be prompted for each new instance of an applica­
tion:permission combination, which is the Android 6.0 model.
The last column shows the number of runtime prompts a
participant would see under each policy over the duration of the
study, if that policy were to be implemented. Both AOFU-AP
and AOFU-AF PV show about a 4.9× reduction in error rate
compared to AOI; AOFU-AF PV would require more prompts
over AOFU-AP, though yields a similar overall accuracy rate.2

Moving forward, we focus our analysis only on AOFU-AP.

Instances where the user wants to deny a permission and
the policy instead allows it (false positives) are privacy viola-
tions, because they expose more information to the application
than the user desires. Instances where the user wants to allow a
permission, but the policy denies it (false negatives) are func­
tionality losses. This is because the application is likely to lose
some functionality that the user desired when it is incorrectly
denied a permission. Privacy violations and functionality losses

were approximately evenly split between the two categories for
AOFU-AP: median privacy violations and median functionality
losses were 6.6% and 5.0%, respectively.

The AOFU policy works well for Defaulters, because—
by definition—they tend to be consistent after their initial
responses for each combination, which increases the accuracy
of AOFU. In contrast, the decisions of Contextuals vary due to
other factors beyond just the application requesting the permis­
sion and the requested permission type. Hence, the accuracy of
AOFU for Contextuals is significantly lower than the accuracy
for Defaulters. This distinction shows that learning privacy
preferences for a significant portion of users requires a deeper
understanding of other factors affecting their decisions, such
as behavioral tendencies and contextual cues. As Table III
suggests, superficially adding more contextual variables (such
as visibility of the requesting application) does not necessarily
help to increase the accuracy of the AOFU policy.

Our estimated accuracy numbers for AOFU may be inflated
because AOFU in deployment does not filter out permission
requests that do not reveal any sensitive information. For exam­
ple, an application can request the ACCESS_FINE_LOCATION

permission to check whether the phone has a specific location
provider, which does not leak sensitive information. Our AOFU
simulation uses the invoked function to determine if sensitive
data was actually accessed, and only prompts in those cases
(in the interest of limiting the number of ESM prompts par­
ticipants viewed during the study). Currently deployed AOFU
in Marshmallow does not make this distinction. For example,
Android users will see a permission request prompt when
the application examines the list of location providers, and
if the permission is granted, the user will not subsequently
see prompts when location data is actually captured. Previous
work showed that 79% of first-time permission requests do
not reveal any sensitive information [33], and nearly 33.9% of
applications that request these sensitive permission types do
not access sensitive data at all. The majority of AOFU prompts
in Marshmallow are therefore effectively false positives, which
incorrectly serve as the basis for future decisions. Given this,
the average accuracy for AOFU is likely less than the numbers
presented in Table III. We therefore consider our estimates of
AOFU to be upper bounds.

VI. LEARNING PRIVACY PREFERENCES

Table III shows that a significant portion of users (the 47%
classified as Contextuals) make privacy decisions that depend
on factors other than the application requesting the permission,
the permission requested, and the visibility of the requesting
application. To make decisions on behalf of the user, we must
understand what other factors affect their privacy decisions.
We built a machine learning model trained and tested on our
labeled dataset of 4,224 prompts collected from 131 users over
the period of 42 days. This approach is equivalent to training a
model based on runtime prompts from hundreds of users and
using it to predict those users’ future decisions.

1The presented numbers—except for average prompt count, which was nor­
mally distributed—are median values, because the distributions were skewed.

2While AOFU-AF PV has greater median accuracy when examining De­
faulters and Contextuals separately, because the distributions are skewed, the
median overall accuracy is identical to AOFU-AP when combining the groups.

We focus the scope of this work by making the following
assumptions. We assume that the platform, i.e., the Android
OS, is trusted to manage and enforce permissions for applica­
tions. We assume that applications must go through the plat­
form’s permission system to gain access to protected resources.

6

http:ofAOFU.In

Feature

Group
Feature Type

Number of times a website is loaded to
the Chrome browser.

Numerical

Out of all visited websites, the proportion
of HTTPS-secured websites.

Numerical

Behavioral The number of downloads through Chrome. Numerical
Features Proportion of websites requested location

Numerical
(B)	 through Chrome.

Number of times PIN/Password was used to
Numerical

unlock the screen.

Amount of time spent unlocking the screen. Numerical

Numerical
Proportion of time spent on silent mode. Numerical

Proportion of times screen was timed out
instead of pressing the lock button.

Numerical

Frequency of audio calls. Numerical
Amount of time spent on audio calls.

Runtime
Features
(R1)

Application visibility (True/False)

Time of day of permission request

Categorical
Categorical
Categorical
Numerical

Aggregated
Features

Average denial rate for (A1)
application:permission:visibility
Average denial rate for (A2)
applicationF :permission:visibility

Numerical

Numerical

Permission type
User ID

TABLE IV. THE COMPLETE LIST OF FEATURES USED IN THE ML

MODEL EVALUATION. ALL THE NUMERICAL VALUES UNDER BEHAVIORAL

GROUP ARE NORMALIZED PER DAY. WE USE ONE-HOT ENCODING FOR

CATEGORICAL VARIABLES. WE NORMALIZED NUMERICAL VARIABLES BY

MAKING EACH ONE A Z-SCORE RELATIVE TO ITS OWN AVERAGE.

We assume that we are in a non-adversarial machine-learning
setting wherein the adversary does not attempt to circumvent
the machine-learned classifier by exploiting knowledge of its
decision-making process—though we do present a discussion
of this problem and potential solutions in Section IX.

A. Feature Selection

Using the behavioral, contextual, and aggregate features
shown in Table II, we constructed 16K candidate features,
formed by combinations of specific applications and actions.
Then, we selected 20 features by measuring Gini importance
through random forests [24], significance testing for correla­
tions, and singular value decomposition (SVD). SVD was par­
ticularly helpful to address the sparsity and high dimensionality
issues caused by features generated based on application and
activity usage. Table IV lists the 20 features used in the rest
of this work.

The behavioral features (B) that proved predictive relate
to browsing habits, audio/call traits, and locking behavior. All
behavioral features were normalized per day/user and were
scaled in the actual model. Features relating to browsing
habits included the number of websites visited, the proportion
of HTTPS-secured links visited, the number of downloads,
and proportion of sites visited that requested location access.
Features relating to locking behavior included whether users
employed a passcode/PIN/pattern, the frequency of screen
unlocking, the proportion of times they allowed the screen to
timeout instead of pressing the lock button, and the average
amount of time spent unlocking the screen. Features under the
audio and call category were the frequency of audio calls, the
amount of time they spend on audio calls, and the proportion
of time they spent on silent mode.

Our runtime features (R1/R2) include the requesting appli­
cation’s visibility, the permission requested, and the time of

Feature Set Contextuals Defaulters Overall

B 67.48% 96.00% 83.21%
R1 69.30% 95.80% 83.71%
R2 + B 69.48% 95.92% 83.93%
R2 + A1 86.41% 96.91% 91.87%
R2 + A2 89.02% 98.08% 93.89%
R2 + A1 + A2 92.45% 98.34% 95.73%

TABLE V. THE ACCURACY OF THE MACHINE LEARNING MODEL FOR

DIFFERENT FEATURE GROUPS ACROSS DIFFERENT USER GROUPS.

day a permission request occurred. Initially, we included the
user ID to account for user-to-user variance, but as we discuss
below, we subsequently removed this feature. Surprisingly,
the name of the application requesting the permission did not
come out as a predictive feature. Other features based on the
requesting application, such as application popularity, similarly
failed to be predictive.

Different users may have different ways of perceiving pri­
vacy threats posed by the same permission request. To account
for this, the learning algorithm should be able to determine how
each user treats permission requests in order to accurately pre­
dict their future decisions. To quantify the difference between
users in how they perceive the threat posed by the same set of
permission requests, we introduced a set of aggregate features
that could be measured at runtime and that might partly capture
users’ privacy stance. We compute the average denial rate for
each unique combination of application:permission:visibility
(A1) and of permission:applicationF

3:visibility (A2). These
aggregate features indicate how the user responded to previous
prompts associated with that combination. As expected, after
we introduced the aggregate features, the relative importance
of the user ID variable diminished and so we removed it (i.e.,
users no longer needed to be uniquely identified). We define
R2 as R1 without the user ID.

B. Inference Based on Behavior

One of our main hypotheses is that passively observing
users’ behaviors could help infer their future privacy decisions.
To this end, we instrumented Android to collect a wide array of
behavioral data, listed in Table II. We categorize our behavioral
instrumentation into interaction with Android privacy/security
settings, locking behavior, audio settings and call habits, web
browsing habits, and application usage habits. After the fea­
ture selection process (§VI-A), we found that only locking
behavior, audio habits, and web browsing habits correlated
with privacy behaviors.

We trained an SVM model with an RBF kernel on only the
behavioral and runtime features listed in Table IV, excluding
user ID. The 5-fold cross validation accuracy (with random
splitting) was 83% across all users. This first setup assumes we
have prior knowledge of previous privacy decisions to a certain
extent from each user before inferring their future privacy
decisions, so it is primarily relevant after the user has been
using their phone for a while. However, the biggest advantage

3The application running in the foreground when the permission is requested
by another application.

7

http:behavioraldata,listedinTableII.We
http:request.To

of using behavioral data is that it can be observed passively
without any active user involvement.

To measure the extent to which we can infer user privacy
decisions with absolutely no user involvement (and without
any prior data on a user), we utilized leave-one-out cross
validation. In this second setup, when a new user starts using a
smartphone, we assume there is a ML model which is already
trained with behavioral data and privacy decisions collected
from a selected set of other users. We then measured the
efficacy of such a model to predict the privacy decisions of a
new user, purely based on passively observed behavior, without
prompting that new user at all. This is an even stricter lower
bound on user involvement, which essentially mandates that
a user has to make no effort to indicate privacy preferences,
something that no system currently does.

We performed leave-one-out cross validation for each of
our 131 participants, meaning we predicted a single user’s
privacy decisions using a model trained using the data from
the other 130 users’ privacy decisions and behavioral data.
The only input for each test user was the passively observed
behavioral data and runtime data surrounding each request.
The model yielded a median accuracy of 75%, which is a 3X
improvement over AOI. Furthermore, AOI requires users to
make active decisions during the installation of an application,
which our second model does not require.

Examining only behavioral data with leave-one-group­
out cross validation yielded a median accuracy of 55% for
Contextuals, while for Defaulters it was 93.01%. Although,
prediction using solely behavioral data fell short of AOFU­
AP for Contextuals, it yielded a similar median accuracy for
Defaulters; AOFU-AP required 12 prompts to reach this level
of accuracy, whereas our model would not have resulted in any
prompts. This relative success presents the significant observa­
tion that behavioral features, observed passively without user
involvement, are useful in learning user privacy preferences.
This provides the potential to open entirely new avenues of
user learning and reduce the risk of habituation.

C. Inference Based on Context

Our SVM model with a RBF kernel produced the best
accuracy. The results in the remainder of the section are trained
and tested with five-fold cross validation with random splitting
for a SVM model with a RBF kernel using the ksvm library in
R. In all instances, the training set was bootstrapped with an
equal number of allow and deny data points to avoid training
a biased model. For each feature group, all hyperparameters
were tuned through grid search to achieve highest accuracy.
All the numerical values under the behavioral group are
normalized per day. We use one-hot encoding for categorical
variables. We normalized numerical variables by making each
one a z-score relative to its own average. Table V shows how
the accuracy changes with different sets of feature groups.
As a minor note, the addition of the mentioned behavioral
features to runtime features performed only marginally better;
this could be due to the fact that those two groups do not
complement each other in predictions. In this setup, we assume
that there is a single model across all the users of Android.

By incorporating user involvement in the form of prompts,
we can use our aggregate features to dramatically in­

crease the accuracy for Contextuals, slightly less so for
Defaulters. The aggregate features primarily capture how
consistent users are for particular combinations (i.e., ap­
plication:permission:visibility, application:permission, appli­
cationF :permission:visibility), which greatly affects accuracy
for Contextuals. Defaulters have high accuracy with just run­
time features (R1), as they are likely to stick with a default
allow or deny policy regardless of the context surrounding a
permission. Thus, even without any aggregate features (which
do not impart any new information about this type of user),
the model can predict privacy preferences of Defaulters with
a high degree of accuracy. On the other hand, Contextuals
are more likely to vary their decision for a given permis­
sion request. However, as the accuracy numbers in Table V
suggest, their variance in decisions is correlated with some
contextual cues that they observed. The high predictive power
of aggregate features indicates that they may be capturing the
contextual cues used by Contextuals to make decisions.

Of the aggregate features, A2 caused the highest accuracy
gain. The fact that applicationF :permission:visibility is highly
predictive indicates that user responses for this combination are
more consistent than other combinations. The high consistency
could relate to the notion that the foreground application
(applicationF) is also a strong contextual cue people use
to make their privacy decisions (i.e., even when this is not
the same application that is requesting the data); the only
previously studied contextual cue was the visibility of the
application requesting the sensitive data [33]. We offer a
hypothesis for why foreground application could be signifi­
cant: the sensitivity of the foreground application (i.e., high­
sensitivity applications like banking, low-sensitivity applica­
tions like games) might impact how users perceive threats
posed by requests. Irrespective of the application requesting
the data, users may be likely to deny the request because of
the elevated sense of risk. We discuss this further in §IX.

The model trained on feature sets R2, A1 and A2 had the
best accuracy (and fewest privacy violations). For the remain­
der of the paper, we will refer to this model unless otherwise
noted. We now compare AOFU-AP (the status quo as of
Android 6.0, presented in Table III) and our model (Table V).
Across all users, our model reduces the error rate from 15.38%
to 4.27%, which is nearly a four-fold improvement. While
both approaches perform relatively well for Defaulters, the ML
model has a 4.72% lower error rate. For Contextuals, the ML
model’s improvements are much more dramatic, increasing
accuracy from 64.49% to 92.45%. This gain is largely due
to the contextual cues that the model takes into account (i.e.,
aggregate features). This shows that users do make contextual
decisions rather than just basing their decision on application
and permission, contrary to what AOFU assumes. That is, the
aggregate features capture a notion of context, and these users’
decisions are consistent across these notions of context.

Mispredictions (errors) in the ML model were approxi­
mately evenly split between privacy violations and function­
ality losses (54% and 46%). Deciding which error type is
more acceptable is subjective and depends on factors like the
usability issues surrounding functionality losses and gravity
of privacy violations. However, the (approximately) even split
between the two error types shows that the ML is not biased to­
wards one particular decision (denying vs. allowing a request).

8

http:ratefrom15.38
http:otherinpredictions.In
http:validation.In

Furthermore, the area under the ROC curve (AUC), a metric
used to measure the fairness of a classifier, is also significantly
better in the ML model (0.956 as opposed to 0.796 for
AOFU). This indicates that the ML model is equally good at
predicting when to both allow and deny a permission request,
while the AOFU tends to lean more towards one decision.
In particular, with the AOFU policy, users would experience
privacy violations for 10.01% of decisions, compared to just
2.32% with the ML model. Privacy violations tend to be more
costly to the user than functionality loss, as denied data can
always be granted at a later time, but disclosed data usually
cannot be taken back.

While increasing the number of prompts improves classifier
accuracy, it plateaus after reaching its maximum accuracy, at
a point we call the steady state. For some users, the classifier
might not be able to infer their privacy preference effectively,
regardless of the number of prompts. As a metric to measure
the effectiveness of the ML model, we measure the confidence
of the model in the decisions it makes, based on prediction
class probabilities.4 In cases where the confidence of the model
is below a certain threshold, the system should use a runtime
prompt to ask the user to make an explicit decision. Thus,
we looked into the prevalence of low-confidence predictions
among the current predictions. With a 95% confidence inter­
val, on average across five folds, low-confidence predictions
accounted for less than 10% of all predictions. The remaining
high-confidence predictions (90% of all predictions) had an
average accuracy of 99.2%, whereas predictions with low
confidence were only predicted with an average accuracy of
72%. §VII-B goes into this aspect in detail and estimates the
rate at which users will see prompts in steady state.

The caveat in our ML model is that AOFU-AP only
resulted in 12 prompts on average per user during the study,
while our model averaged 32. The increased prompting stems
from multiple prompts for the same combination of appli­
cation:permission:visibility, whereas in AOFU, prompts are
shown only once for each application:permission combination.
During the study period, users on average saw 2.28 prompts per
unique combination. While multiple prompts per combination
help the ML model to predict future decisions more accurately,
it risks habituation, which may eventually reduce the reliability
of the labeled data. The next section presents an in-depth
analysis on possible ways to reduce the number of prompts
needed to train the ML model.

VII. SIMULATION

To better understand how to reduce prompting, while main­
taining model accuracy over the status quo, we first examine
how prompts affect model accuracy. This section presents an
analysis of how the ML model’s accuracy changes as prompts
increase. Since a fully trained model requires twice as many
prompts as AOFU, it is necessary to understand how the ML
model behaves with fewer prompts. Once the model reaches
adequate training, we can use model decision confidence to
analyze how the ML model performs for different users and
examine the tradeoff between user involvement and accuracy.
We also utilize the model’s confidence on decisions to present

4To calculate the class probabilities, we used the KSVM library in R. It
employs a technique proposed by Platt et al. [22] to produce a numerical
value for each class’s probability.

A
cc

ur
ac

y

1.0 x x x x x x
x x xx x x x x x x

0.9

Population0.8

++

xx

Contextuals
+++ + + + Defaulters

+
+ +0.7

+

+
 +

0.6
++ +

+

4 8 12 16
Prompt Count

Fig. 3. How the median accuracy varies with the number of seen prompts

a strategy that can further reduce model error through selective
permission prompting.

A. Bootstrapping

The bootstrapping phase occurs when the ML model is
presented with a new user about whom the model has no
prior information. In this section, we analyze how the accuracy
improves as we prompt the user. Since the model presented
in §VI is a single model trained with data from all users, the
ML model can still predict a new user’s privacy decisions by
leveraging the data collected on other users’ preferences.

We measured the accuracy of the ML model as if it had
to predict each user’s prompt responses using a model trained
using other users’ data. Formally, this is called leave-one-out
cross-validation, where we remove all the prompt responses
from a single user. The training set contains all the prompt re­
sponses from 130 users and the test set is the prompt responses
collected from the single remaining user. The model had a
median accuracy of 66.6% (56.2% for Contextuals, 86.4%
for Defaulters). Although this approach does not prompt new
users, it falls short of AOFU. This no-prompt model behaves
close to random guessing for Contextuals and significantly
better for Defaulters. Furthermore, Wijesekera et al. found
that individuals’ privacy preferences varied a lot from each
other [33], suggesting that utilizing other users’ decisions to
predict decisions for a new user has limited effectiveness, es­
pecially for Contextuals; some level of prompting is necessary.

There are a few interesting avenues to explore when
determining the optimal way to prompt the user in the
learning phase. One option would be to follow the same
weighted-reservoir sampling algorithm mentioned in §III-A.
The algorithm is weighted by the frequency of each appli­
cation:permission:visibility combination. The most frequent
combination will have the highest probability of creating a
permission prompt and after the given combination reaches
a maximum of three prompts, the algorithm will no longer
consider that combination for prompting, giving the second
most frequent combination the new highest probability. Due
to frequency-weighting and multiple prompts per combina­
tion, the weighted-reservoir sampling approach requires more

9

http:priorinformation.In

prompts to cover a broader set of combinations. However,
AOFU prompts only once per combination without frequency­
weighting. This may be a useful strategy initially for a new user
since it allows the platform to learn about the users’ privacy
preferences for a wide array of combinations with minimal
user interaction.

To simulate such an approach, we extend the aforemen­
tioned no-prompt model (leave-one-out validation). In the no-
prompt model, there was no overlap of users in the train and
test set. In the new approach, the training set includes the
data from other users as well as the new user’s responses to
the first occurrence of each unique combination of applica­
tion:permission:visibility. The first occurrence of each unique
combination simulates the AOFU policy. That is, this model is
bootstrapped using data from other users and then adopts the
AOFU policy to further learn the current user’s preferences.
The experiment was conducted using the same set of features
mentioned in §VI-A (R2 + A1 + A2 and an SVM with a RBF
kernel).

Figure 3 shows how accuracy changes with the varying
number of AOFU prompts for Contextuals and Defaulters.
For each of the 131 users, we ran the experiment varying
the AOFU prompts from 1 to 16. We chose this upper bound
because, on average, a participant saw 16 different unique ap­
plication:permission:visibility combinations during the study
period. During the study period, if the AOFU policy was in
place with application:permission:visibility, a user would have
seen a minimum of 16 prompts, because AOFU cannot predict
a response to a combination it has not seen. Thus, AOFU
needs to prompt at least 16 times before it can even make
a prediction for all decisions. On the other hand, our hybrid
approach does not have to prompt 16 times to predict privacy
decisions across all the different combinations; this is because
the model is already trained using other users’ data. Hence,
the hybrid approach can reach similar to or greater accuracy
than AOFU with fewer prompts.

We trained a single model for all users, and analyze its
performance for Defaulters and Contextuals separately, finding
that it improves accuracy while reducing user involvement in
both cases, compared to the status quo. We first examine how
our model performs for Defaulters, 53% of our sample. Figure
3 shows that our model trained with AOFU permission-prompt
responses outperforms AOFU with as few as 2 prompts. After
2 permission prompts, the model’s accuracy steadies at the
96.6% mark (before it reaches close to 100% after 11 prompts),
handily exceeding AOFU’s 93.33%. This is a 83.3% reduction
in permission prompts compared to AOFU-AP (the status quo).
Even with such a significant reduction in user involvement, the
new approach cuts the prediction error rate in half.

Contextuals needed more prompts to outperform the AOFU
policy; the hybrid approach matches AOFU-AP with just 7
prompts, a 42% reduction in prompts. With 11 permission
prompts, one less than needed for AOFU-AP, the new approach
had a 16% accuracy gain over AOFU-AP. The number of
prompts needed to reach this level of accuracy in the new
approach is 31.25% less than what is needed for AOFU-APV.
We also observed that as the number of prompts increased, the
AUC of our predictions also similarly increased.

Our new hybrid approach of using AOFU-style permission

prompts in the bootstrapping phase to train our model can
achieve much higher accuracy than AOFU, with significantly
fewer prompts. Contextuals have a higher need for user in­
volvement than Defaulters, primarily because it is easy to
learn about Defaulters, as they are more likely to be consistent
with early decisions. On the other hand, Contextuals vary their
decision based on different contextual cues and require more
user involvement for the model to learn the cues for each user.
Thus, it is important to find a way to differentiate between
Defaulters and Contextuals early in the bootstrapping phase to
determine which users require fewer prompts. The analysis of
our hybrid approach addresses the concern of a high number
of permission prompts initially for an ML approach. Over
time, accuracy can always be improved with more permission
prompts.

B. Decision Confidence

In the previous section, we looked into how we can
optimize the learning phase by merging AOFU and the ML
model to reach higher accuracy with minimal user prompts.
However, for a small set of users, more permission prompts
will not increase accuracy, regardless of user involvement in
the bootstrapping phase. This could be due to the fact that a
portion of users in our dataset are making random decisions,
or that the features that our ML model takes into account are
not predictive of those users’ decision processes. While we do
not have the data to support either explanation, we examine
how we can measure whether the ML model will perform
well for a particular user and quantify how often it does not.
We present a method to identify difficult users and reduce
permission prompting for those users.

While running the experiment in §VII-A, we also measured
how confident the ML model was for each decision it made. To
measure the ML model’s confidence, we record the probability
for each decision; since it is a binary classification (deny or
allow), the closer the probability is to 0.5, the less confident
it is. We then chose a class probability threshold above which
a decision would be considered a high-confidence decision. In
our analysis, we choose a class probability threshold of 0.6,
since this value resulted in >99% accuracy for our fully-trained
model (≈25 prompts per user) for high-confidence decisions,
but this is a tunable threshold. Thus, in the remainder of our
analysis, decisions that the ML model made with a probability
of >0.60 were labeled as high-confidence decisions, while
those made with a probability of <0.60 were labeled as low-
confidence decisions.

Since the most accurate version of AOFU uses 12 prompts,
we also evaluate the confidence of our model after 12 AOFU-
style prompts. This setup is identical to the bootstrapping
approach; the model we evaluate here is trained on responses
from other users and the first 12 prompts chosen by AOFU.
With this scheme, we found that 24 users (18.32% of 131
users) had at least one decision predicted with low confidence.
The remaining 81.68% of users had all privacy decisions
predicted with high confidence. Among those users whose
decisions were predicted with low confidence, the proportion
of low-confidence decisions on average accounted for 12.45%
(median = 8.69%) out of all their predicted decisions. With
a sensitive permission request once every 15 seconds [33],
prompting even for 12.45% of predictions is not practical.

10

http:accountedfor12.45
http:ahigh-confidencedecision.In
http:earlydecisions.On

Users who had low-confidence predictions had a median ac­
curacy of 70.29%, compared to 93.33% accuracy for the four­
fifths of users with only high-confidence predictions. Out of
the 24 users who had low-confidence predictions, there was
only one Defaulter. This further supports the observation in
Figure 3 that Defaulters require a shorter learning period.

In a real-world scenario, after the platform (ML model)
prompts the user for the first 12 AOFU prompts, the platform
can measure the confidence of predicting unlabeled data (sensi­
tive permission requests for which the platform did not prompt
the user). If the proportion of low-confidence predictions is be­
low some low threshold, the ML model can be deemed to have
successfully learned user privacy preferences and the platform
should keep on using the regular permission-prompting strat­
egy. Otherwise, the platform may choose to limit prompts (i.e.,
two per unique application:permission:visibility combination).
It should also be noted that rather than having a fixed number
of prompts (e.g., 12) to measure the low-confidence proportion,
the platform can keep track of the low-confidence proportion
as it prompts the users according to any heuristic (i.e., unique
combinations). If the proportion does not decrease with the
number of prompts, we can infer that the ML model is not
learning user preferences effectively or the user is making ran­
dom decisions, indicating that limiting prompts and accepting
lower efficacy could be a better option for that specific user
to avoid excessive prompting. However, depending on which
group the user is in (Contextual or Defaulter), the point at
which the platform could make the decision to continue or
limit prompting could change. In general, the platform should
be able to reach this deciding point relatively quickly for
Defaulters.

Among the participants with no low-confidence predic­
tions, we had a median error rate of 6.65% (using the new
hybrid approach after just 12 AOFU prompts); for the same
set of users AOFU reached a median error rate of 12.00%.
However, using AOFU, a user in that set would have needed
an average of 15.11 prompts to reach that accuracy. Using the
ML model, a user would need just 6.23 prompts on average
(Defaulters require far fewer prompts, dropping the average);
the model only requires 41.23% of the prompts that AOFU
requires. Even with significantly fewer prompts in the learning
phase, the ML model achieves a 45.42% reduction in error rate
as compared to AOFU.

While our model may not perform well for all users, it does
seem to work quite well for the majority of users (81.68% of
our sample). We provide a way of quickly identifying users for
whom our system does not perform well, and propose limiting
prompts to avoid excessive user burden for those users, at the
cost of reduced efficacy. In the worst case, we could simply
employ the AOFU model for users our system does not work
well for, resulting in a multifaceted approach that is at least
as good as the status quo for all users.

C. Online Model

Our proposed system relies on training models on a trusted
server, sending it to client phones (i.e., as a weight vector),
and having phones make classifications. By utilizing an online
learning model, we can train models incrementally as users
respond to prompts over time. There are two key advantages

to this: (i) this model adapts to changing user preferences over
time; (ii) training models on multiple users’ data allows more
labeled data points for training.

Our scheme requires two components: a feature extraction
and storage mechanism on the phone (a small extension to our
existing instrumentation) and a machine learning pipeline on
a trusted server. The phone sends feature vectors to the server
every few prompts, and the server responds with a weight
vector representing the newly trained classifier. To bootstrap
the process, the server’s models can be initialized with a model
trained on a few hundred users, such as our single model across
all users. Since each user contributes data points over time,
the online model adapts to changing privacy preferences even
if they conflict with previous data. When using this scheme,
each model takes less than 10 KiB to store. With our current
model, each feature and weight vector are at most 3 KiB each,
resulting in at most 6 KiB of data transfer per day.

To evaluate the accuracy of our online model, we trained
a classifier using stochastic gradient descent (SGD) with five­
fold cross validation on our 4,224-point data set. This served
as the bootstrapping phase. We then simulated receiving the
remaining data one-at-a-time in timestamp order. Any features
that changed with time (e.g., running averages for aggregate
features, event counts) were computed with each incoming data
point, creating a snapshot of features as the phone would see it.
We then tested accuracy on the chronologically last 20% of our
dataset. Our SGD classifier had 93.8% accuracy (AUC=0.929).
We attribute the drop in accuracy (compared to our offline
model) to the fact that running averages take multiple data
points to reach steady-state, causing some earlier predictions
to be incorrect.

A natural concern with a trusted server is compromise.
To address this concern, we do not send any personally-
identifiable data to the server. Furthermore, features sent to
the server have been scaled; they are reported in standard
deviations from the mean, not in raw values.

VIII. CONTEXTUAL INTEGRITY

Contextual integrity is a conceptual framework that helps
explain why most permission models fail to protect user
privacy—they often do not take the context surrounding pri­
vacy decisions into account. In addressing this issue, we pro­
pose an ML model that infers when context has changed. That
is, if the system knows that a user is comfortable sharing data
with a particular application under one set of circumstances,
it should not bother her with a permission request when the
same application requests access to the same data under similar
circumstances in the future. However, it should behave dif­
ferently when those circumstances have changed. We believe
that this is an important first step towards operationalizing the
notion of contextual integrity. In this section, we explain the
observations that we made in §VI-C within the context of the
contextual integrity framework proposed in [5].

Contextual integrity provides a conceptual framework to
better understand how users make privacy decisions; we use
Barth et al.’s formalized model [5] as a framework in which to
view the Android permission models. Barth et al. model parties
as communicating agents (P) knowing information represented
as attributes (T). A knowledge state κ is defined as a subset of

11

http:classifications.By
http:users(81.68
http:user).If

P × P × T . We use κ = (p, q, t) to mean that agent p knows
attribute t of agent q. Agents play roles (R) in contexts (C).

For example, an agent can be a game application, and
have the role of a game provider in an entertainment context.
Knowledge transfer happens when information is communi­
cated between agents; all communications can be represented
through a series of traces (κ, (p, r), a), which is a combination
of a knowledge state κ, a role state (p, r), and a communication
action a (information sent). The role an agent plays in a
given context helps determine whether an information flow is
acceptable for a user. Communications can only occur when
they follow the norms of context; the relationship between the
agent sending the information and the role of the agent ((p, r))
receiving it must follow these norms, too.

With the Android permission model, the same framework
can be applied. Both the user and the third-party applica­
tion are communicating agents, and the information to be
transferred is the sensitive data requested by the application.
When a third-party application requests permission to access
a guarded resource (e.g., location information), knowledge
of the guarded resource is transferred from the one agent
(i.e., the user/platform) to another agent (i.e., the third-party
application). The extent to which a user expects a given
request depends not on the agent (the application requesting
the permission), but on the role that agent is playing in that
context. This explains why the application as a feature itself
(i.e., application name) was not predictive in our models: this
feature does not represent the role when determining whether it
is unexpected. While it is hard, from the platform, to determine
the exact role an application is playing, the visibility of the
application hints at its role. For instance, when the user is using
Google Maps to navigate, it is playing a different role from
when Google Maps is running in the background without the
user’s knowledge. We believe that this is the reason why the
visibility of the requesting application is significant: it helps
the user to infer the role played by the application requesting
the permission.

The user expects applications in certain roles to access
resources depending on the context in which the request is
made. We believe that the foreground application sets this
context. Thus a combination of the role and the context decides
whether an information flow is expected to occur or not.
Automatically inferring the exact context of a request (e.g.,
how data will be used, whether it will be shared with any
other parties, etc.) is likely an intractable problem. However,
for our purposes, it is possible that we need to only infer when
context has changed, or rather, when data is being requested in
a context that is no longer acceptable to the user. Based on our
data, we believe that features based on foreground application
and visibility are our most useful.

We now combine all of this into a concrete example within
the contextual integrity framework: If a user is using Google
Maps to reach a destination, the application can play the
role of a navigator in a geolocation context, whereby the
user feels comfortable sharing her location. In contrast, if the
same application requests location while running as a service
invisible to the user, the user may not want to give this service
the same information. Background applications play the role
of “passive listeners” in most contexts; this role as perceived
by the user may be why background applications are likelier

to violate privacy expectations and consequently be denied
information by users.

AOFU primarily focuses on controlling access through
rules for application:permission combinations. Thus, AOFU
neglects the role played by the application (visibility) and
relies purely on the agent (the application) and the information
subject (permission type). This explains why AOFU is wrong
in nearly one-fifth of cases. Based on Table III, both AOFU­
VA (possibly identifying the role played by the application)
and AOFU-AF PV (possibly identifying the current context
because of the current foreground application-AF) have higher
accuracy than the other AOFU combinations. However, as
the framework of contextual integrity suggests, the permission
model has to take both the role and the current context
into account before making an accurate decision. AOFU only
makes it possible to consider a single aspect, a limitation that
does not apply to our model.

While the data presented in this work suggest the impor­
tance of capturing context to protect user privacy efficiently,
more work is needed along these lines to fully understand
how people use context to make decisions and what defines all
factors that compose context in the Android permission model.
Nevertheless, we believe we contribute a significant ground
work toward future operationalization of contextual integrity.

IX. DISCUSSION

The primary goal of this research was to improve the
accuracy of the Android permission system so that it more
correctly aligns with user privacy preferences. We began with
four hypotheses: (i) that the currently deployed AOFU policy
frequently violates user privacy; (ii) that the contextual infor­
mation it ignores is useful; (iii) that a ML-based classifier can
account for this contextual information and thus improve on
the status quo; and (iv) passively observable behavioral traits
can be used to infer privacy preferences.

To test these hypotheses, we performed the first large-
scale study on the effectiveness of AOFU permission systems
in the wild, which showed that hypotheses (i) and (ii) hold.
We further built an ML classifier that took user permission
decisions along with observations of user behaviors and the
context surrounding those decisions to show that (iii) and (iv)
hold. Our results show that existing systems have significant
room for improvement, and other permission-granting systems
may benefit from applying our results.

A. Limitations of Permission Models

Our field study confirms that users care about their privacy
and are wary of permission requests that violate their expec­
tations. Our experiments show that 95% of participants chose
to block at least one permission request; in fact, the average
denial rate was 60%—a staggering amount given Android’s
earlier AOI model permits all permission requests once an
application is installed. This denial rate implies that AOI
correctly regulates permission requests only two in five times.

While AOFU improves over the AOI model, it still violates
user privacy one in five times as users deviate from their initial
response to a permission request about 16% of the time. This
amount is significant because of the high frequency of sensitive

12

permission requests: a 16% error rate translates to thousands
of privacy violations for a single user per day. It further shows
that AOFU’s correctness assumption—that users make binary
decisions based on the application:permission combination
alone—is incorrect. Users take a richer space of information
into account when making decisions about permission requests.

B. Our ML-Based Model

Our results show that ML techniques are effective at
learning from both the user’s previous decisions and the
current environmental context in order to predict whether to
grant permissions on the user’s behalf. In fact, our techniques
achieve better results than the methods currently deployed on
millions of phones worldwide—while imposing significantly
less user burden.

Our work incorporates elements of the environmental con­
text into a machine-learning model. This better approximates
user decisions by finding factors relevant for users that are
not encapsulated by the AOFU model. In fact, our ML model
reduces the errors made by the AOFU model by 75%. Our
ML model’s 96% accuracy is a substantial improvement over
AOFU’s 84% and AOI’s 25%; the latter two of which comprise
the status quo in the Android ecosystem.

Our research show that many users make neither random
nor fixed decisions: the environmental context plays a signifi­
cant role in user decision-making. Automatically detecting the
precise context surrounding a request for sensitive data is an
incredibly difficult problem (e.g., inferring how data will be
used), and is potentially intractable. However, to better support
user privacy, that problem does not need to be solved; instead,
we show that systems can be improved by using environmental
data to infer when context has changed. We found that the most
predictive factors in the environmental context were whether
the application requesting the permission is visible, and if not,
what foreground application actually was visible. These are
both strong contextual cues used by users, insofar as they
allowed us to better predict changes in context. Our results
show that ML techniques have great potential in improving
user privacy, by allowing us to infer when context has changed,
and therefore when users would want data requests to be
brought to their attention.

C. Reducing the User Burden

Our work is also novel in using passively observable
data to infer privacy decisions: we show that we can predict
a user’s preferences without any permission prompts. Our
model trained solely on behavioral traits yields a three-fold
improvement over AOI; for Defaulters—who account for 53%
of our sample—it was as accurate as AOFU-AP. These results
demonstrate that we can match the status quo without any
active user involvement (i.e., the need for obtrusive prompts).
These results imply that learning privacy preferences may be
done entirely passively, which, to our knowledge, has not
yet been attempted in this domain. Our behavioral feature
set provides a promising new direction to guide research in
creating permission models that minimize user burden.

The ML model trained with contextual data and past
decisions also significantly reduced the user burden while
achieving higher accuracy than AOFU. The model yielded

a 45% reduction in prediction errors while reducing user
involvement by 59%. The significance of this observation is
that by reducing the risk of habituation, it increases reliability
when user input is needed.

D. User- and Permission-Tailored Models

Our ML-based model incorporates data from all users into
a single predictive model. It may be the case, however, that
a collection of models tailored to particular types of users
outperforms our general-purpose model—provided that the
correct model is used for the particular user and permission.
To determine if this is true, we clustered users into groups
based first on their behavioral features, and then their denial
rate, to see if we could build superior cluster-tailored ML
models. Having data for only 131 users, however, resulted
in clusters too small to carry out an effective analysis. We
note that we also created a separate model for each sensitive
permission type, using data only for that permission. Our
experiments determined, however, that these models were no
better (and often worse) than our general model. It is possible
that such tailored models may be more useful when our system
is implemented at scale.

E. Attacking the ML Model

Attacking the ML model to get access to users’ data with­
out prompting is a legitimate concern [4]. There are multiple
ways an adversary can influence the proposed permission
model: (i) imposing an adversarial ML environment [25]; (ii)
polluting the training set to bias the model to accept permis­
sions; and (iii) manipulating input features in order to get
access without user notification. We assume in this work that
the platform is not compromised; a compromised platform will
degrade any permission model’s ability to protect resources.

A thorough analysis on this topic is outside of our scope.
Despite that, we looked at the possibility of manipulating
features to get access to resources without user consent. None
of the behavioral features used in the model can be influ­
enced, since that would require compromising the platform.
An adversary can control the runtime features for a given
permission request by specifically choosing when to request
the permission. We generated feature vectors that encompassed
every adversary-controlled value and combination from our
dataset, and tested them on our model. We did not find any
conclusive evidence that the adversary can exploit the ML
model by manipulating the input features to get access to
resources without user consent.

As this is not a comprehensive analysis on attack vectors,
it is possible that there exists a scenario where the adversary
is able to access sensitive resources without prompting the
user first. Our preliminary analysis suggests that they may
be non-trivial, but more work is needed to study and prevent
such attacks. In particular, to protect against adversarial ML
techniques and formally examining feature brittleness.

F. Experimental Caveat

We repeat a caveat about our experimental data: users were
free to deny permissions without any consequences: denying
a legitimately-needed permission did not result in loss of
functionality. We explicitly informed participants in our study

13

that their decisions to deny permission requests would have
no impact on the actual behavior of their applications. This
is important to note because if an application is denied a
permission, it may exhibit undefined behavior or lose important
functionality. If these consequences are imposed on users,
they may decide that the functionality is more important than
their privacy decision. Similarly, the loss of functionality may
demonstrate the necessity of allowing certain permissions that
are otherwise unclear.

If we actually denied permissions, users’ decisions may
skew towards a decreased denial rate. The denial rates in
our experiments therefore represent the preferences of users
and their expectations of reasonable application behavior—
not the result of choosing between application functionality
and privacy preferences. It is possible, for instance, that those
categorized as Defaulters are an artifact of our experiment, as
denying all permissions had no consequences. Yet, limiting our
analysis to Contextuals does not limit our claims.

We leave as future work the replication of this experiment
with consequences for denied application permissions. Note
that the instrumentation of the Android platform to seamlessly
provide this is non-trivial because many applications are not
programmed to correctly handle denied permissions. This is
despite modern Android already empowering users to deny
permissions on their first use. In fact, researchers have noted
that many applications crash when permissions are denied [10].
Consequently, we must develop a mock environment where
permissions appear—to the application—to be allowed, but in
reality only spurious or artificial data is provided. Such an
experiment should provide the most accurate user permission
data ever collected, and we expect that a significant portion
of the default-deny contingent would become more contextual
with their observed behaviors.

G. Types of Users

We presented a categorization of users based on the sig­
nificance that the application’s visibility played towards their
individual privacy decisions. We believe that in an actual
permission denial setting, the distribution will be different from
what was observed in our study. Our categorization’s signifi­
cance, however, motivates a deeper analysis on understanding
the factors that divide Contextuals and Defaulters. We believe
that visibility is an important factor in this division but there
may be others that are more significant. More work needs to
be done to explore how Contextuals make decisions and which
behaviors correlate with their decisions.

H. User Interface Panel

Any model that predicts user decisions has the risk of
making incorrect predictions. Making predictions on a user’s
behalf, however, is necessary because permissions are re­
quested by applications with too high a frequency for manual
processing. Thus, platforms need to make these predictions
and should strive to be as accurate as possible. While we do
not expect any system to be able to obtain perfect accuracy,
we do expect that our 96% accuracy can be improved upon.

One plausible way of improving the accuracy of the per­
mission model is to empower the user to review and make
changes on how the ML model makes decisions through a user

feedback panel. A major benefit is that users would be able
to go back and review the decisions made by the ML model.
It would also allow users to adjust these decisions according
to their preferences, thereby correcting errors. This gives users
recourse to correct undesirable decision. The UI panel could
also be used to reduce the usability issues and functionality
loss stemming from permission denial. The panel should help
the user figure out which rule incurred the functionality loss
and change it accordingly. A user may also use this to adjust
their privacy preferences as they evolve over time.

I. Conclusions

We have shown a number of important results. Users
care about their privacy: they deny a significant number of
requests to access sensitive data. Existing permission models
for Android phones still result in significant privacy violations.
User may allow permissions some times, while denying them
at others, which means that there are more factors that go
into the decision-making process than simply the application
name and the permission type. We collected real-world data
from 131 users and found that application visibility and the
current foreground application were important factors in user
decisions. We used the data we collected to build a machine-
learning model to make automatic permission decisions. One
of our models matched the errors made by AOFU without any
user prompting, and another of our models reduced the number
of errors by 75% with the same amount of prompting.

REFERENCES

[1] H. M. Almohri, D. D. Yao, and D. Kafura, “Droidbarrier: Know
what is executing on your android,” in Proc. of the 4th ACM Conf.

on Data and Application Security and Privacy, ser. CODASPY ’14.
New York, NY, USA: ACM, 2014, pp. 257–264. [Online]. Available:
http://doi.acm.org/10.1145/2557547.2557571

[2] H. Almuhimedi, F. Schaub, N. Sadeh, I. Adjerid, A. Acquisti, J. Gluck,
L. F. Cranor, and Y. Agarwal, “Your location has been shared 5,398
times!: A field study on mobile app privacy nudging,” in Proc. of

the 33rd Annual ACM Conference on Human Factors in Computing

Systems. ACM, 2015, pp. 787–796.

[3] K. W. Y. Au, Y. F. Zhou, Z. Huang, and D. Lie, “Pscout: Analyzing
the android permission specification,” in Proc. of the 2012 ACM

Conf. on Computer and Communications Security, ser. CCS ’12.
New York, NY, USA: ACM, 2012, pp. 217–228. [Online]. Available:
http://doi.acm.org/10.1145/2382196.2382222

[4] M. Barreno, B. Nelson, R. Sears, A. D. Joseph, and J. D. Tygar,
“Can machine learning be secure?” in Proceedings of the 2006 ACM

Symposium on Information, computer and communications security.
ACM, 2006, pp. 16–25.

[5] A. Barth, A. Datta, J. C. Mitchell, and H. Nissenbaum, “Privacy
and contextual integrity: Framework and applications,” in Proc. of

the 2006 IEEE Symposium on Security and Privacy, ser. SP ’06.
Washington, DC, USA: IEEE Computer Society, 2006. [Online].
Available: http://dx.doi.org/10.1109/SP.2006.32

[6] I. Bilogrevic, K. Huguenin, B. Agir, M. Jadliwala, and J.-P.
Hubaux, “Adaptive information-sharing for privacy-aware mobile
social networks,” in Proceedings of the 2013 ACM International Joint

Conference on Pervasive and Ubiquitous Computing, ser. UbiComp
’13. New York, NY, USA: ACM, 2013, pp. 657–666. [Online].
Available: http://doi.acm.org/10.1145/2493432.2493510

[7] E. Bodden, “Easily instrumenting android applications for security
purposes,” in Proc. of the ACM Conf. on Comp. and Comm. Sec.,
ser. CCS ’13. NY, NY, USA: ACM, 2013, pp. 1499–1502. [Online].
Available: http://doi.acm.org/10.1145/2508859.2516759

[8] G. Developer, “Distribution of android versions,” http://developer.
android.com/about/dashboards/index.html, accessed: August 16, 2016.

14

http://developer
http://doi.acm.org/10.1145/2508859.2516759
http://doi.acm.org/10.1145/2493432.2493510
http://dx.doi.org/10.1109/SP.2006.32
http://doi.acm.org/10.1145/2382196.2382222
http://doi.acm.org/10.1145/2557547.2557571

[9] W. Enck, P. Gilbert, B.-G. Chun, L. P. Cox, J. Jung, P. McDaniel,
and A. N. Sheth, “Taintdroid: an information-flow tracking system for
realtime privacy monitoring on smartphones,” in Proceedings of the 9th
USENIX Conference on Operating Systems Design and Implementation,
ser. OSDI’10. Berkeley, CA, USA: USENIX Association, 2010, pp.
1–6. [Online]. Available: http://dl.acm.org/citation.cfm?id=1924943.
1924971

[10] Z. Fang, W. Han, D. Li, Z. Guo, D. Guo, X. S. Wang, Z. Qian, and
H. Chen, “revdroid: Code analysis of the side effects after dynamic
permission revocation of android apps,” in Proceedings of the 11th ACM

Asia Conference on Computer and Communications Security (ASIACCS

2016). Xi’an, China: ACM, 2016.

[11] A. P. Felt, E. Chin, S. Hanna, D. Song, and D. Wagner, “Android
permissions demystified,” in Proc. of the ACM Conf. on Comp. and

Comm. Sec., ser. CCS ’11. New York, NY, USA: ACM, 2011, pp. 627–
638. [Online]. Available: http://doi.acm.org/10.1145/2046707.2046779

[12] A. P. Felt, S. Egelman, M. Finifter, D. Akhawe, and D. Wagner, “How
to ask for permission,” in Proc. of the 7th USENIX conference on Hot
Topics in Security. Berkeley, CA, USA: USENIX Association, 2012.
[Online]. Available: http://dl.acm.org/citation.cfm?id=2372387.2372394

[13] A. P. Felt, S. Egelman, and D. Wagner, “I’ve got 99 problems,
but vibration ain’t one: a survey of smartphone users’ concerns,”
in Proc. of the 2nd ACM workshop on Security and Privacy

in Smartphones and Mobile devices, ser. SPSM ’12. New
York, NY, USA: ACM, 2012, pp. 33–44. [Online]. Available:
http://doi.acm.org/10.1145/2381934.2381943

[14] A. P. Felt, E. Ha, S. Egelman, A. Haney, E. Chin, and D. Wagner,
“Android permissions: user attention, comprehension, and behavior,”
in Proc. of the Eighth Symposium on Usable Privacy and Security, ser.
SOUPS ’12. New York, NY, USA: ACM, 2012. [Online]. Available:
http://doi.acm.org/10.1145/2335356.2335360

[15] C. Gibler, J. Crussell, J. Erickson, and H. Chen, “Androidleaks:
Automatically detecting potential privacy leaks in android applications
on a large scale,” in Proc. of the 5th Intl. Conf. on Trust

and Trustworthy Computing, ser. TRUST’12. Berlin, Heidelberg:
Springer-Verlag, 2012, pp. 291–307. [Online]. Available: http:
//dx.doi.org/10.1007/978-3-642-30921-2_17

[16] A. Gorla, I. Tavecchia, F. Gross, and A. Zeller, “Checking app
behavior against app descriptions,” in Proceedings of the 36th

International Conference on Software Engineering, ser. ICSE 2014.
New York, NY, USA: ACM, 2014, pp. 1025–1035. [Online]. Available:
http://doi.acm.org/10.1145/2568225.2568276

[17] S. E. Hormuth, “The sampling of experiences in situ,” Journal of

personality, vol. 54, no. 1, pp. 262–293, 1986.

[18] P. Hornyack, S. Han, J. Jung, S. Schechter, and D. Wetherall, “These
aren’t the droids you’re looking for: retrofitting android to protect data
from imperious applications,” in Proc. of the ACM Conf. on Comp. and

Comm. Sec., ser. CCS ’11. New York, NY, USA: ACM, 2011, pp. 639–
652. [Online]. Available: http://doi.acm.org/10.1145/2046707.2046780

[19] J. Jung, S. Han, and D. Wetherall, “Short paper: Enhancing mobile
application permissions with runtime feedback and constraints,”
in Proceedings of the Second ACM Workshop on Security and

Privacy in Smartphones and Mobile Devices, ser. SPSM ’12. New
York, NY, USA: ACM, 2012, pp. 45–50. [Online]. Available:
http://doi.acm.org/10.1145/2381934.2381944

[20] P. G. Kelley, S. Consolvo, L. F. Cranor, J. Jung, N. Sadeh, and
D. Wetherall, “A conundrum of permissions: Installing applications
on an android smartphone,” in Proc. of the 16th Intl. Conf.

on Financial Cryptography and Data Sec., ser. FC’12. Berlin,
Heidelberg: Springer-Verlag, 2012, pp. 68–79. [Online]. Available:
http://dx.doi.org/10.1007/978-3-642-34638-5_6

[21] W. Klieber, L. Flynn, A. Bhosale, L. Jia, and L. Bauer, “Android taint
flow analysis for app sets,” in Proceedings of the 3rd ACM SIGPLAN
International Workshop on the State of the Art in Java Program

Analysis, ser. SOAP ’14, New York, NY, USA, 2014. [Online].
Available: http://doi.acm.org/10.1145/2614628.2614633

[22] H.-T. Lin, C.-J. Lin, and R. C. Weng, “A note on platt’s probabilistic
outputs for support vector machines,” Machine learning, vol. 68, no. 3,
pp. 267–276, 2007.

[23] B. Liu, J. Lin, and N. Sadeh, “Reconciling mobile app privacy
and usability on smartphones: Could user privacy profiles help?” in

Proceedings of the 23rd International Conference on World Wide Web,
ser. WWW ’14. New York, NY, USA: ACM, 2014, pp. 201–212.
[Online]. Available: http://doi.acm.org/10.1145/2566486.2568035

[24] G. Louppe, L. Wehenkel, A. Sutera, and P. Geurts, “Understanding
variable importances in forests of randomized trees,” in Advances in

Neural Information Processing Systems 26, C. J. C. Burges, L. Bottou,
M. Welling, Z. Ghahramani, and K. Q. Weinberger, Eds. Curran
Associates, Inc., 2013. [Online]. Available: http://papers.nips.cc/paper/
4928-understanding-variable-importances-in-forests-of-randomized-trees.
pdf

[25] D. Lowd and C. Meek, “Adversarial learning,” in Proceedings of

the eleventh ACM SIGKDD international conference on Knowledge
discovery in data mining. ACM, 2005, pp. 641–647.

[26] A. Nandugudi, A. Maiti, T. Ki, F. Bulut, M. Demirbas, T. Kosar,
C. Qiao, S. Y. Ko, and G. Challen, “Phonelab: A large programmable
smartphone testbed,” in Proceedings of First International Workshop on

Sensing and Big Data Mining. ACM, 2013, pp. 1–6.

[27] H. Nissenbaum, “Privacy as contextual integrity,” Washington Law
Review, vol. 79, p. 119, February 2004.

[28] J. L. B. L. N. Sadeh and J. I. Hong, “Modeling users’ mobile app
privacy preferences: Restoring usability in a sea of permission settings,”
in Symposium on Usable Privacy and Security (SOUPS), 2014.

[29] B. Shebaro, O. Oluwatimi, D. Midi, and E. Bertino, “Identidroid:
Android can finally wear its anonymous suit,” Trans. Data Privacy,
vol. 7, no. 1, pp. 27–50, Apr. 2014. [Online]. Available: http:
//dl.acm.org/citation.cfm?id=2612163.2612165

[30] M. Spreitzenbarth, F. Freiling, F. Echtler, T. Schreck, and J. Hoffmann,
“Mobile-sandbox: Having a deeper look into android applications,”
in Proceedings of the 28th Annual ACM Symposium on Applied
Computing, ser. SAC ’13. New York, NY, USA: ACM, 2013.
[Online]. Available: http://doi.acm.org/10.1145/2480362.2480701

[31] C. Thompson, M. Johnson, S. Egelman, D. Wagner, and J. King, “When
it’s better to ask forgiveness than get permission: Designing usable audit
mechanisms for mobile permissions,” in Proc. of the 2013 Symposium

on Usable Privacy and Security (SOUPS), 2013.

[32] X. Wei, L. Gomez, I. Neamtiu, and M. Faloutsos, “Permission
evolution in the android ecosystem,” in Proceedings of the 28th

Annual Computer Security Applications Conference, ser. ACSAC ’12.
New York, NY, USA: ACM, 2012, pp. 31–40. [Online]. Available:
http://doi.acm.org/10.1145/2420950.2420956

[33] P. Wijesekera, A. Baokar, A. Hosseini, S. Egelman, D. Wagner, and
K. Beznosov, “Android permissions remystified: A field study on
contextual integrity,” in 24th USENIX Security Symposium (USENIX

Security 15). Washington, D.C.: USENIX Association, Aug. 2015,
pp. 499–514. [Online]. Available: https://www.usenix.org/conference/
usenixsecurity15/technical-sessions/presentation/wijesekera

[34] H. Wu, B. P. Knijnenburg, and A. Kobsa, “Improving the prediction of
users’ disclosure behavior by making them disclose more predictably?”
in Symposium on Usable Privacy and Security (SOUPS), 2014.

[35] K.-P. Yee, “Guidelines and strategies for secure interaction design,”
Security and Usability: Designing Secure Systems That People Can Use,
vol. 247, 2005.

[36] H. Zhu, H. Xiong, Y. Ge, and E. Chen, “Mobile app recommendations
with security and privacy awareness,” in Proc. of the 20th ACM

SIGKDD International Conference on Knowledge Discovery and Data

Mining. New York, NY, USA: ACM, 2014. [Online]. Available:
http://doi.acm.org/10.1145/2623330.2623705

15

http://doi.acm.org/10.1145/2623330.2623705
https://www.usenix.org/conference
http://doi.acm.org/10.1145/2420950.2420956
http://doi.acm.org/10.1145/2480362.2480701
http://papers.nips.cc/paper
http://doi.acm.org/10.1145/2566486.2568035
http://doi.acm.org/10.1145/2614628.2614633
http://dx.doi.org/10.1007/978-3-642-34638-5_6
http://doi.acm.org/10.1145/2381934.2381944
http://doi.acm.org/10.1145/2046707.2046780
http://doi.acm.org/10.1145/2568225.2568276
http://doi.acm.org/10.1145/2335356.2335360
http://doi.acm.org/10.1145/2381934.2381943
http://dl.acm.org/citation.cfm?id=2372387.2372394
http://doi.acm.org/10.1145/2046707.2046779
http://dl.acm.org/citation.cfm?id=1924943

