
Automated Analysis of Privacy Requirements for Mobile Apps
 

1Department of Computer Science, Columbia University, 
2School of Computer Science, Carnegie Mellon University, 

Sebastian Zimmeck1∗, Ziqi Wang2, Lieyong Zou2, Roger Iyengar3∗, Bin Liu2, 
Florian Schaub4∗, Shomir Wilson5∗, Norman Sadeh2, Steven M. Bellovin1, and Joel Reidenberg6 

3Department of Computer Science and Engineering, Washington University in St. Louis,
 
4School of Information, University of Michigan,
 
5EECS Department, University of Cincinnati,
 
6School of Law, Fordham University, 

Abstract 
Mobile apps have to satisfy various privacy requirements. 
App publishers are often obligated to provide a privacy pol
icy and notify users of their apps’ privacy practices. But how 
can we tell whether an app behaves as its policy promises? In 
this study we introduce a scalable system to help analyze and 
predict Android apps’ compliance with privacy requirements. 
Our system is not only intended for regulators and privacy ac
tivists, but also meant to assist app publishers and app store 
owners in their internal assessments of privacy requirement 
compliance. 
Our analysis of 17,991 free apps shows the viability of com
bining machine learning-based privacy policy analysis with 
static code analysis of apps. Results suggest that 71% of apps 
that lack a privacy policy should have one. Also, for 9,050 
apps that have a policy, we find many instances of potential 
inconsistencies between what the app policy seems to state 
and what the code of the app appears to do. Our results sug
gest that as many as 41% of these apps could be collecting lo
cation information and 17% could be sharing such with third 
parties without disclosing so in their policies. Overall, it ap
pears that each app exhibits a mean of 1.83 inconsistencies. 

1 Introduction 
Snapchat does “not ask for, track, or access any location-
specific information.” This is what Snapchat’s privacy policy 
used to state.1 However, in reality Snapchat’s Android app 
transmitted Wi-Fi and cell-based location data from users’ 
devices to analytics service providers. These discrepancies 
remained undetected until a researcher examined Snapchat’s 
data deletion mechanism. His report was picked up by the 
Electronic Privacy Information Center and brought to the 
attention of the Federal Trade Commission (FTC), which 
launched a formal investigation requiring Snapchat to im
plement a comprehensive privacy program.2 

The case of Snapchat illustrates that mobile apps are often 
non-compliant with privacy requirements. However, any in
consistencies can have dire consequences as they may lead 
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31, 2014, Complaint). 

2In the Matter of Snapchat, Inc., FTC No. 132 3078 (December 
31, 2014, Decision and Order). 

to enforcement actions by the FTC and other regulators. This 
is especially true if discrepancies continue to exist for many 
years, which was the case for Yelp’s collection of childrens’ 
information.3 These findings not only demonstrate that reg
ulators could benefit from a system that helps them identify
ing potential inconsistencies, but also that it would be a use
ful tool for companies in the software development process. 
After all, researchers found that privacy violations often ap
pear to be based on developers’ difficulties in understanding 
privacy requirements (Balebako et al. 2014) rather than on 
malicious intentions. 

On various occasions, the FTC, which is responsi
ble for regulating consumer privacy on the federal level, 
voiced dissatisfaction with the current state of apps’ privacy 
compliance. Three times it manually surveyed childrens’ 
apps (FTC 2012a; 2012b; 2015) and concluded that the “re
sults of the survey are disappointing” (FTC 2012b). Devi
ating from mandatory provisions, many publishers did not 
disclose what types of data they collect, how they make use 
of the data, and with whom the data is shared (FTC 2012b). 
A similar examination of 121 shopping apps revealed that 
many privacy policies are vague and fail to convey how apps 
actually handle consumers’ data (FTC 2014b). Given that 
the FTC limited its investigations to small samples of apps, 
a presumably large number of discrepancies between apps 
and their privacy policies remain undetected. 

In this study we are presenting a system that checks data 
practices of Android apps against privacy requirements de
rived from their privacy policies and selected laws. Our work 
enables app publishers to identify potential inconsistencies 
before they become prevalent. Moreover, our work can also 
aid governmental agencies, such as the FTC, to achieve a 
systematic enforcement of privacy laws on a large scale. The 
techniques presented in this paper have been customized and 
packaged in the form of a tool piloted by the Office of the 
California Attorney General over the summer of 2016. App 
store owners, researchers, and privacy advocates alike might 
also derive value from our study. Our main contribution con
sists of the novel combination of machine learning (ML) and 
static analysis techniques to analyze apps’ potential non

3United States of America v. Yelp, Inc., FTC No. 132 3066 
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Penalties, and other Relief). 

http:www.aaai.org


compliance with privacy requirements. However, we want 
to emphasize that we do not claim to resolve challenges in 
the individual techniques we leverage beyond what is nec
essary for our purposes. This holds especially true for the 
static analysis of mobile apps and its many unresolved prob
lems, for example, in the analysis of obfuscated code. That 
said, the details of our contribution are as follows: 

1. For a set of 17,991 Android apps we check whether they 
have a privacy policy. For the 9,295 apps that have one 
we apply machine learning classifiers to analyze policy 
content based on a human-annotated corpus of 115 poli
cies. We show, for instance, that only 46% of the analyzed 
policies describe a notification process for policy changes. 
(§ 3). 

2. Leveraging static analysis we investigate the actual data 
practices occurring in the apps’ code. With a failure rate of 
0.4%, a mean F-1 score of 0.96, and a mean analysis time 
of 6.2 seconds per app our approach makes large-scale 
app analyses for legally relevant data practices feasible 
and reliable. (§ 4). 

3. Mapping the policy to the app analysis results we iden
tify and analyze potential inconsistencies between poli
cies and apps. With each app exhibiting a mean of 1.83 
potential inconsistencies we find their occurrence to be a 
widespread phenomenon. (§ 5). 

2 Related Work 
Privacy policies disclose an organization’s data practices. 
Despite efforts to make them machine-readable, e.g., via 
P3P (Cranor et al. 2002), or formalize them, for instance, us
ing EPAL (Ashley et al. 2003), natural language policies are 
the de-facto standard for notifying web users of data prac
tices. However, those policies are often long and difficult to 
read. Few lay users ever read them and regulators lack the re
sources to systematically review them. For instance, it took 
26 data protection agencies one week, working together as 
the Global Privacy Enforcement Network (GPEN), to ana
lyze the policies of 1,211 apps (GPEN 2015). While various 
works aim to make privacy policies more comprehensible, 
e.g., Ghazinour et al. (2009) provide a model for visualiz
ing different practices, there is a glaring absence of an auto
mated system to accurately analyze policy content. 

It is our goal to automatically analyze natural language 
privacy policies at scale (Sadeh et al. 2013). Analyzing 
such policies presents a substantial challenge (Wilson et al. 
2016a). As of now, Massey et al. (2013) provided the most 
extensive evaluation of 2,061 policies, however, not focus
ing on their legal analysis but rather their readability and 
suitability for identifying privacy protections and vulnerabil
ities from a requirements engineering perspective. In addi
tion, Hoke et al. (2015) studied the compliance of 75 policies 
with self-regulatory requirements, and Cranor et al. (2013) 
analyzed structured privacy notice forms of financial institu
tions identifying multiple instances of opt out practices that 
appear to be in violation of financial industry laws. 

Different from previous studies we analyze policies at 
scale with a legal perspective and not limited to the fi
nancial industry. We analyze whether policies are avail

able as sometimes required by various laws and examine 
their descriptions of data collection and sharing practices. 
For our analysis we rely on the flexibility of ML classi
fiers (Zimmeck and Bellovin 2014) and introduce a new 
approach for privacy policy feature selection. Our work is 
informed by the study of Costante et al., who presented 
a completeness classifier to determine which data practice 
categories are included in a privacy policy (2012) and pro
posed rule-based techniques to extract data collection prac
tices (2013). However, we go beyond these works in terms 
of both breadth and depth. We analyze a much larger pol
icy corpus, and we focus on legal questions that have not 
yet been automatically analyzed. Different from many ex
isting works that focus on pre-processing of policies, e.g. 
by using topic modeling (Chundi and Subramaniam 2014; 
Stamey and Rossi 2009) and sequence alignment (Liu et al. 
2014; Ramanath et al. 2014) to identify similar policy sec
tions and paragraphs, we are interested in analyzing policy 
content. 

Supervised ML techniques, as used in this study, require 
ground-truth. To support the development of these tech
niques crowdsourcing has been proposed as a viable ap
proach for gathering rich annotations from unstructured pri
vacy policies (Sadeh et al. 2013; Wilson et al. 2016c). While 
crowdsourcing poses challenges due to the policies’ com
plexity (Reidenberg et al. 2015), assigning annotation tasks 
to experts (Zimmeck and Bellovin 2014) and setting strin
gent agreement thresholds and evaluation criteria (Wilson 
et al. 2016c) can in fact lead to reliable policy annotations. 
However, as it is a recurring problem that privacy policy an
notations grapple with low inter-annotator agreement (Rei
denberg et al. 2015; Zimmeck and Bellovin 2014), we intro
duce a measure for analyzing their reliability based on the 
notion that high annotator disagreement does not principally 
inhibit the use of the annotations for ML purposes as long as 
the disagreement is not systematic. 

The static analysis approach used in our system is in
spired by TaintDroid (Enck et al. 2010) and the studies 
of Slavin et al. (2016) and Yu et al. (2016). However, 
we move beyond these contributions. First, our privacy re
quirements cover privacy questions previously not exam
ined. Notably, we address whether an app needs a pol
icy and analyze the policy itself (i.e., whether it describes 
how users are informed of policy changes and how they 
can access, edit, and delete data). Different from Slavin et 
al. we also analyze the collection and sharing of contact 
information. Second, TaintDroid, is not intended to have 
app store wide scale. Third, previous approaches do not 
neatly match to legal categories. They do not distinguish 
between first and third party practices (Enck et al. 2010; 
Slavin et al. 2016), do not take into account negative pol
icy statements (i.e., statements that an app does not collect 
certain data, as, for example, in the Snapchat policy quoted 
in § 1) (Slavin et al. 2016), and base their analysis on a di
chotomy of strong and weak violations (Slavin et al. 2016) 
unknown to the law. Fourth, we introduce techniques that 
achieve a mean accuracy of 0.94 and a failure rate of 0.4%, 
which improve over the closest comparable results of 0.8 
and 21% (Slavin et al. 2016), respectively. 
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Figure 1: Per our privacy requirements, apps that process 
Personally Identifiable Information (PII) need to (1) have a 
privacy policy, (2-3) include notices about policy changes 
and access, edit, and deletion rights in their policy, (4-6) no
tify users of data collection practices, and (7-9) disclose how 
data is shared with third parties. The notice requirements for 
policy changes and access, edit, and deletion are satisfied by 
including the notices in the policies while the collection and 
sharing practices must be also implemented in the apps. 

3 Privacy Policy Analysis 
In this section we present our automated large-scale ML 
analysis of privacy policies. We discuss the law on privacy 
notice and choice (§ 3.1), how many apps have a privacy 
policy (§ 3.2), and the analysis of policy content (§ 3.3). 

3.1 Privacy Notice and Choice 
The privacy requirements analyzed here are derived from se
lected laws and apps’ privacy policies. Figure 1 provides an 
overview of the law on notice and choice and the nine pri
vacy requirements that our system analyzes (Privacy Policy 
Requirement, NPC, NAED, CID, CL, CC, SID, SL, SC). 
If a policy or app does not appear to adhere to a privacy 
requirement, we define a potential privacy requirement in
consistency to occur (which we also refer to as potential in
consistency or non-compliance). In this regard, we caution 
that a potential inconsistency does not necessarily mean that 
a law is violated. First, not all privacy requirements might 
be applicable to all apps and policies. Second, our system is 
based on a particular interpretation of the law. While we be
lieve that our interpretation is sound and in line with the en
forcement actions of the FTC and other regulatory agencies, 
reasonable minds may differ.4 Third, our system is based on 
machine learning and static analysis and, thus, by its very 
nature errors can occur. 

As to the privacy policy requirement, there is no generally 
applicable federal statute demanding privacy policies for 

4We are focusing on the US legal system as we are most familiar 
with it. However, in principle, our techniques are applicable to any 
country with a privacy notice and choice regime. 

apps (Zimmeck 2013). However, California and Delaware 
enacted comprehensive online privacy legislation that effec
tively serves as a national minimum privacy threshold given 
that app publishers usually do not provide state-specific app 
versions or exclude California or Delaware residents. In this 
regard, the California Online Privacy Protection Act of 2003 
(CalOPPA) requires online services that collect PII to post 
a policy.5 The same is true according to Delaware’s On
line Privacy and Protection Act (DOPPA).6 In addition, the 
FTC’s Fair Information Practice Principles (FTC FIPPs) call 
for consumers to be given notice of an entity’s information 
practices before any PII is collected (FTC 1998). Further, the 
Children’s Online Privacy Protection Act of 1998 (COPPA) 
makes policies mandatory for apps directed to or known to 
be used by children.7 Thus, we treat the existence of a pri
vacy policy as a privacy requirement. 

CalOPPA and DOPPA further demand that privacy poli
cies describe the process by which users are notified of pol
icy changes.8 COPPA also requires description of access, 
edit, and deletion rights.9 Under the FTC FIPPs (FTC 1998) 
as well as CalOPPA and DOPPA those rights are optional.10 

We concentrate our analysis on a subset of data types that 
are, depending on the context, legally protected: device IDs, 
location data, and contact information. App publishers are 
required to disclose the collection of device IDs (even when 
hashed) and location data.11 Device IDs and location data 
are also covered by CalOPPA12 and for childrens’ apps ac
cording to COPPA.13 The sharing of these types of informa
tion with third parties requires consent as well.14 Similarly, 
contact information, such as e-mail addresses, may be pro
tected, too.15 

It should be noted that we interpret ad identifiers to be PII 
since they can be used to track users over time and across 
devices. We are also assuming that a user did not opt out 
of ads (because otherwise no ad identifiers would be sent to 
opted out ad networks). We further interpret location data 
to refer to GPS, cell tower, or Wi-Fi location. We assume 
applicability of the discussed laws and perform our analysis 
based on the guidance provided by the FTC (1998) and the 
California Department of Justice (2014) in enforcement ac
tions and recommendations for best practices. Specifically, 
we interpret the FTC actions as disallowing the omission of 

5Cal. Bus. & Prof. Code §22575(a). 
6Del. Code Tit. 6 §1205C(a). 
716 CFR §312.4(d). 
8Cal. Bus. & Prof. Code §22575(b)(3), Del. Code Tit. 6 

§1205C(b)(3). 
916 CFR §312.4(d)(3). 

10Cal. Bus. & Prof. Code §22575(b)(2), Del. Code Tit. 6 
§1205C(a). 

11In the Matter of Nomi Technologies, Inc., FTC No. 132 3251 
(September 3, 2015, Complaint). 

12Per the interpretation of Cal. Bus. & Prof. Code §22577(a)(6) 
and (7) by the California Department of Justice (2014). 

1316 CFR §312.2(7) and (9). 
14In the Matter of Goldenshores Technologies, LLC, and Erik 

M. Geidl, FTC No. 132 3087 (April 9, 2014, Complaint). 
15In the Matter of Snapchat, Inc., FTC No. 132 3078 (December 

31, 2014, Complaint). 
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Figure 2: We analyze 17,991 free apps, of which 9,295 
(52%) link to their privacy policy from the Play store (left). 
Out of the remaining apps, 6,198 (71%) appear to lack a pol
icy while engaging in at least one data practice (i.e., PII is 
processed) that would require them to have one (right). 

data practices in policies and assume that silence on a prac
tice means that it does not occur.16 Also, we assume that all 
apps in the Play store are subject to CalOPPA and DOPPA,17 

which we believe to be reasonable as we are not aware of 
any app in the Play store excluding California or Delaware 
residents or of state-specific app versions for those states. 

3.2 Privacy Policy Requirement 
To assess whether apps fulfill the requirement of having a 
privacy policy we crawled the Google Play store (Febru
ary 2016) and downloaded a sample (n = 17, 991) of 
free apps (full app set).18 We started our crawl with the 
most popular apps and followed random links on their Play 
store pages to other apps. We included all categories in our 
crawl, however, excluded Google’s Designed for Families 
program (as Google already requires apps in this program 
to have a policy) and Android Wear (as we want to focus 
on mobile apps). We assume that our sample is representa
tive in terms of app categories, which we confirmed with a 
two-sample Kolmogorov-Smirnov goodness of fit test (two
tailed) against a sample of a million apps (Olmstead and 
Atkinson 2015). We could not reject the null hypothesis that 
both were drawn from the same distribution (i.e., p > 0.05). 
However, while the Play store hosts a long tail of apps that 
have fewer than 1K installs (56%) (Olmstead and Atkinson 
2015), we focus on more popular apps as our sample in
cludes only 3% of such apps. 

Out of all policies in the full app set we found that n = 
9, 295 apps provided a link to their policy from the Play store 
(full policy set) and n = 8, 696 apps lacked such. As shown 
in Figure 2, our results suggest that 71% (6,198/8,696) apps 
without a policy link are indeed not adhering to the policy 
requirement. We used the Play store privacy policy links as 
proxies for actual policies, which we find reasonable since 
regulators requested app publishers to post such links (FTC 

16In the Matter of Snapchat, Inc., FTC No. 132 3078 (December 
31, 2014, Complaint). 

17Cal. Bus. & Prof. Code §§22575–22579, Del. Code Tit. 6 
§1205C. 

18Whenever we refer to Google Play we mean its US store. 

Practice |Ann| Agpol % Agpol Fleisspol/Krippol 

NPC 395 86/115 75% 0.64 
NAED 414 80/115 70% 0.59 
CID 449 92/115 80% 0.72 
CL 326 85/115 74% 0.64 
CC 830 86/115 75% 0.5 
SID 90 101/115 88% 0.76 
SL 51 95/115 83% 0.48 
SC 276 85/115 74% 0.58 

Table 1: The table shows absolute numbers of annotations 
(|Ann|) as well as various agreement measures, specifically, 
absolute agreements (Agpol), percentage agreements (% 
Agpol), Fleiss’ κ (Fleisspol), and Krippendorff’s α (Krippol). 
All agreement measures are computed on the full corpus of 
115 policies and on a per-policy basis (e.g., for 92 out of 115 
policies the annotators agreed on whether the policy allows 
collection of identifiers). 

2013; California Department of Justice 2014) and app store 
owners obligated themselves to provide the necessary func
tionality (California Department of Justice 2012). The apps 
in the full app set were offered by 10,989 publishers, and 
their app store pages linked to 6,479 unique policies. 

We arrive at 71% after making two adjustments. First, 
if an app does not have a policy it is not necessarily non-
compliant with the policy requirement. After all, apps that 
are not processing PII are not obligated to have a policy. In
deed, since we found that 12% (1,020/8,696) of apps without 
a policy link are not processing PII, we accounted for those 
apps. Second, despite the regulators’ requests to post policy 
links in the Play store, some app publishers may still de
cide to post their policy elsewhere (e.g., inside their app). To 
account for that possibility we randomly selected 40 apps 
from our full app set that did not have a policy link in the 
Play store but processed PII. We found that 83% (33/40) do 
not seem to have a policy posted anywhere (with a Clopper-
Pearson confidence interval (CI) ranging from 67% to 93% 
at the 95% level based on a two-tailed binomial test).19 Thus, 
accounting for an additional 17% (1,478/8,696) of apps hav
ing a policy elsewhere leaves us with 100% − 12% − 17% = 
71% out of n = 8, 696 apps to be potentially non-compliant 
with the policy requirement. 

3.3 Privacy Policy Content 
We now move from examining whether an app has a policy 
to the analysis of policy content (i.e., privacy requirements 
(2-9) in Figure 1). As a basis for our evaluation we use man
ually created policy annotations. 

Inter-annotator Agreement For training and testing our 
policy classifiers we leverage the OPP-115 corpus (Wilson 
et al. 2016b)—a corpus of 115 privacy policies annotated 
by ten law students that includes 2,831 annotations for the 
practices discussed in this study. The annotations, which are 
described in detail by Wilson et al. (2016b), serve as the 

19All CIs in this paper are based on a two-tailed binomial test 
and the Clopper-Pearson interval at the 95% level. 

http:test).19
http:occur.16


0.11

1

1

0.32

0.87

1

0.26

0.94

0.26

0.35

0.97

0.86

0.04

0.32

0.65

1

0.54

0.26

1

0.91

1

1

0.01

0.9

0.35

1

1

0.7

1

0.26

0.74

1

0.05

0.94

0.02

0.26

1

0.54

1

1

1

0.94

0.01

0.74

0.43

0.8

0.65

0.21

0.41

0.91

0.7

1

0.26

1

1

1

0.33

1

1

0.33

0.26

1

0.7

1

0.33

1

0.33

0.33

1

1

0.87

0.87

0.21

0.87

0.21

0.65

0.05

0.8

1

0.87Ann

Bea

Bob

Dan

Gil

Ira

Liv

Mae

Ray

Zoe

NPC (4.5) NAED (6.6) CID (5.1) CL (5.1) CC (6) SID (1.2) SL (1.8) SC (5.1)

0.25

0.50

0.75

1.00
p values

Figure 3: Analysis of disagreement among annotators for the 
different data practices with binomial tests. Larger p values 
mean fewer disagreements. If there are no disagreements, 
we define p = 1. The numbers in parentheses are the average 
absolute disagreements for the respective practices. 

ground-truth for our classifiers. Each annotator annotated a 
mean of 34.5 policies (median 35). We select annotations 
according to majority agreement (i.e., two out of three an
notators agreed on it). As it is irrelevant from a legal per
spective how often a practice is described in a policy, we 
measure whether annotators agree that a policy describes a 
given practice at least once. 

High inter-annotator agreement signals the reliability 
of the ground-truth on which classifiers can be trained 
and tested. As agreement measures we use Fleiss’ κ and 
Krippendorff’s α, which indicate that agreement is good 
above 0.8, fair between 0.67 and 0.8, and doubtful below 
0.67 (Manning, Raghavan, and Schütze 2008). From our re
sults in Table 1 it follows that the inter-annotator agreement 
for collection and sharing of device IDs with respective val
ues of 0.72 and 0.76 is fair. However, it is below 0.67 for the 
remaining classes. While we would have hoped for stronger 
agreement, the annotations with the observed agreement lev
els can still provide reliable ground-truth as long as the clas
sifiers are not misled by patterns of systematic disagreement, 
which can be explored by analyzing the disagreeing annota
tions (Reidsma and Carletta 2008). 

To analyze whether disagreements contain systematic pat
terns we evaluate the number of each annotator’s disagree
ments with the other two annotators. If he or she is in a mi
nority position for a statistically significant number of times, 
there might be a misunderstanding of the annotation task or 
other systematic reason for disagreement. However, if there 
is no systematic disagreement, annotations are reliable de
spite low agreement levels (Reidsma and Carletta 2008). As
suming a uniform distribution each annotator should be in 
the minority in 1/3 of all disagreements. We test this assump
tion with the binomial test for goodness of fit. Specifically, 
we use the binomial distribution to calculate the probability 
of an annotator being x or more times in the minority by 
adding up the probability of being exactly x times in the mi
nority, being x +1 times in the minority, up to x + n (that is, 
being always in the minority), and comparing the sum to the 
expected probability of 1/3. We use a one-tailed test as we 
are not interested in finding whether an annotator is fewer 
times in the minority than in 1/3 of the disagreements. 

We only found few cases with systematic disagreement. 
More specifically, for 7% (11/160) of an annotator’s dis

agreements we found statistical significance (p ≤ 0.05) 
for rejecting the null hypothesis that the disagreements are 
equally distributed. An annotator can be in the minority 
when omitting an annotation that the two other annota
tors made or adding an extra annotation. Figure 3 shows 
the former. However, excluding affected annotations from 
the training set for our classifiers had only little notice
able effect. Thus, we believe that our annotations are suf
ficiently reliable to serve as ground-truth for our classifiers. 
As other works have already explored, low levels of agree
ment in policy annotations are common and do not nec
essarily reflect their unreliability (Reidenberg et al. 2015; 
Zimmeck and Bellovin 2014). In fact, different from our ap
proach here, it could be argued that an annotator’s addition 
or omission of an annotation is not a disagreement with the 
others’ annotations to begin with. 

1 def location_feature_extraction(policy): 
2 

3 data_type_keywords = [’geo’, ’gps’] 
4 action_keywords = [’share’, ’partner’] 
5 relevant_sentences = ’’ 
6 feature_vector = ’’ 
7 

8 for sentence in policy: 
9 for keyword in data_type_keywords: 

10 if (keyword in sentence): 
11 relevant_sentences += sentence 
12 

13 words = tokenize(relevant_sentences) 
14 bigrams = ngrams(words,2) 
15 

16 for bigram in bigrams: 
17 for keyword in action_keywords: 
18 if (keyword in bigram): 
19 feature_vector += bigram, bigram[0], 

bigram[1] 
20 

21 return feature_vector 

Listing 1: Pseudocode for the location sharing practice. 

Feature Selection One of the most important tasks for 
correctly classifying data practices described in privacy poli
cies is appropriate feature selection. Using information gain 
and tf-idf we identified the most meaningful keywords for 
each practice and created sets of keywords. One set of key
words refers to the data type of the practices (e.g., keywords 
for the SL practice are “geo” and “gps”) and is used to ex
tract all sentences from a policy that contain at least one 
of the keywords. On these extracted sentences we are us
ing a second set of keywords that refers to the actions of 
a data practice (e.g., for the SL practice “share” and “part
ner”) to create unigram and bigram feature vectors (Zim
meck and Bellovin 2014). Listing 1 shows a simplified use 
of our algorithm for the SL practice. Thus, for example, if 
the keyword “share” is encountered, the bigrams “not share” 
or “will share” would be extracted if the words before the 
keyword are “not” and “will,” respectively. The feature vec
tors created from bigrams (and unigrams) are then used to 
classify the practices. If no keywords are extracted, the clas



Practice Classifier Parameters Base 
n=40 

Accpol 
n=40 

95% CI 
n=40 

Precneg 

n=40 
Recneg 

n=40 
F-1neg 

n=40 
F-1pos 

n=40 
Pos 

n=9,050 

NPC SVM RBF kernel, weight 0.7 0.9 0.76–0.97 0.79 0.92 0.85 0.93 46% 
NAED SVM linear kernel 0.58 0.75 0.59–0.87 0.71 0.71 0.71 0.78 36% 
CID Log. Reg. LIBLINEAR solver 0.65 0.83 0.67–0.93 0.77 0.71 0.74 0.87 46% 
CL SVM linear kernel 0.53 0.88 0.73–0.96 0.83 0.95 0.89 0.86 34% 
CC Log. Reg. LIBLINEAR, L2, weight 0.8 0.88 0.73–0.96 0.71 0.63 0.67 0.92 56% 
SID Log. Reg. LBFGS solver, L2 0.88 0.88 0.73–0.96 0.94 0.91 0.93 0.55 10% 
SL SVM linear kernel, weight 0.95 0.93 0.8–0.98 0.97 0.95 0.96 - 12% 
SC SVM poly kernel (4 degrees) 0.73 0.78 0.62–0.89 0.79 0.93 0.86 0.47 6% 

Table 2: Classifiers, parameters, and classification results for the policy test set (n=40) and the occurrence of positive classifi
cations (Pos) in a set of n=9,050 policies (full app/policy set). We obtained the best results by always setting the regularization 
constant to C = 1 and for NPC, CC, and SL adjusting weights inversely proportional to class frequencies with scikit-learn’s 
class_weight (weight). Except for the SL practice, all classifiers’ accuracies (Accpol) reached or exceeded the baseline 
(Base) of always selecting the most often occurring class in the training set. P recneg , Recneg , and F-1neg are the scores for the 
negative classes (e.g., data is not collected or shared) while F-1pos is the F-1 score for positive classes. 

sifier will select the negative class. We applied the Porter 
stemmer to all processed text. 

For finding the most meaningful features as well as for 
the subsequent classifier tuning we performed nested cross-
validation with 75 policies separated into ten folds in the 
inner loop and 40 randomly selected policies as held out test 
set (policy test set). We used the inner cross-validation to se
lect the optimal parameters during the classifier tuning phase 
and the held out policy test set for the final measure of classi
fication performance. We stratified the inner cross-validation 
to avoid misclassifications due to skewed classes. After eval
uating the performance of our classifiers with the policy test 
set we added the test data to the training data for the final 
classifiers to be used in our large-scale analysis. 

Classification During the tuning phase we prototyped var
ious classifiers with scikit-learn (Pedregosa et al. 2011), a 
Python library. Support vector machines and logistic regres
sion had the best performance. We selected classification pa
rameters individually for each data practice. The classifica
tion results for our policy test set, shown in Table 2, suggest 
that the ML analysis of privacy policies is generally feasible. 
For the negative classifications our classifiers achieve F-1neg 
scores between 0.67 and 0.96. These scores are the most im
portant measures for our task because the identification of a 
potential inconsistency demands that a practice occurring in 
an app is not covered by its policy. Consequently, it is less 
problematic that the sharing practices, which are skewed to
wards the negative classes, have relatively low F-1pos scores 
of 0.55 (SID) and 0.47 (SC) or could not be calculated (SL) 
due to a lack of true positives in the policy test set. 

We applied our classifiers to the policies in the full ap
p/policy set with n = 9, 050 policies. We obtained this set 
by adjusting our full policy set (n = 9, 295) to account for 
the fact that not every policy link might actually lead to a 
policy: for 40 randomly selected apps from our full policy 
set we checked whether the policy link in fact lead to a pol
icy, which was the case for 97.5% (39/40) of links (with a 
CI of 0.87 to 1 at the 95% level). As the other 2.5%, that is, 
one link, lead to some other page and would not contain any 
data practice descriptions, we randomly excluded from the 

full policy set 2.5% = 245 of policies without any data prac
tice descriptions leaving us with n = 9, 295 − 245 = 9, 050 
policies in the full app/policy set. We emphasize that this 
technique does not allow us to determine whether the 245 
documents actually did not contain a policy or had a policy 
that did not describe any practices. However, in any case the 
adjustment increases the occurrence of positive data practice 
instances in the full app/policy set and keeps discrepancies 
between apps and policies at a conservative level as some 
apps for which the analysis did not find any data practice 
descriptions are now excluded.20 

It appears that many privacy policies fail to satisfy pri
vacy requirements. Most notably, per Table 2, only 46% de
scribe the notification process for policy changes, a manda
tory requirement for apps that do not exclude California and 
Delaware residents. Similarly, only 36% of policies contain 
a statement on user access, edit, and deletion rights, which 
COPPA requires for childrens’ apps, that is, apps intended 
for children or known to be used by children. For the sharing 
practices we expected more policies to engage in the SID, 
SL, and SC practices. The respective 10%, 12%, and 6% are 
rather small percentages for a presumably widely occurring 
practice, especially, given that we focus on policies of free 
apps that often rely on targeted advertising. 

4 Mobile App Analysis 
In order to compare our policy analysis results to what apps 
actually do according to their code we now turn to our app 
analysis approach. We first discuss our system design (§ 4.1) 
and follow up with our analysis results (§ 4.2). 

4.1 App Analysis System Design 
Our app analysis system is based on Androguard (2012), 
an open source static analysis tool written in Python that 

20We also checked the random sample of 40 apps for policies 
dynamically loaded via JavaScript because for such policies the 
feature extraction would fail. We had observed such dynamic load
ing before. However, as neither of the policies in the sample was 
loaded dynamically, we do not make an adjustment in this regard. 

http:excluded.20


3rd Party Library 
Crashlytics/Fabric 
Crittercism/Aptel. 
Flurry Analytics 
Google Analytics 
Umeng 
AdMob* 
InMobi* 
MoPub* 
MillennialMedia* 
StartApp* 

Table 3: Analytics 
and ad* libraries. 

Pract Base 
n=40 

Accapp 

n=40 
95% CI 
n=40 

Precpos 

n=40 
Recpos 

n=40 
F-1pos 

n=40 
F-1neg 

n=40 
Posw/ pol 

n=9,295 
Posw/o pol 

n=8,696 
CID 0.8 0.9 0.76–0.97 0.89 1 0.94 0.67 95% 87% 
CL 0.55 0.8 0.64–0.91 0.73 1 0.85 0.71 66% 49% 
CC 0.78 1 0.91–1 1 1 1 1 25% 12% 
SID 0.68 0.95 0.83–0.99 1 0.93 0.96 0.93 71% 62% 
SL 0.93 1 0.91–1 1 1 1 1 20% 16% 
SC 0.98 1 0.91–1 1 1 1 1 2% 0% 

Table 4: App analysis results for the app test set (n=40) and the percentages of practices’ occurrences 
in the full app set (n=17,991). More specifically, P os w/ pol and P os w/o pol are showing what 
percentage of apps engage in a given practice for the subset of apps in the full app set with a policy 
(n=9,295) and without a policy (n=8,696), respectively. We measure precision, recall, and F-1 scores 
with the pos and neg subscripts referring to the scores for the positive and negative classes. 

provides extensible analytical functionality. Apart from the 
manual intervention in the construction and testing phase 
our system’s analysis is fully automated. A brief example 
for sharing of device IDs will convey the basic program flow 
of our data-driven static analysis. For each app our system 
builds an API invocation map, which is utilized as a par
tial call graph. To illustrate, for sharing of device IDs all 
calls to the TelephonyManager.getDevice.Id API are 
included in the call graph because the caller can use it to re
quest a device ID. All calls to this and other APIs that can 
be used to request a device ID are included in the call graph 
and passed to the identification routine, which checks the 
package names of the callers against the package names of 
selected third party libraries that we want to analyze, listed 
in Table 3. In order to make use of the getDeviceId API a 
library needs the READ_PHONE_STATE permission. Only if 
the analysis detects that the library has the required permis
sion, the app is classified as sharing device IDs with third 
parties.21 We identified relevant Android API calls for the 
types of information we are interested in and the permission 
each call requires by using PScout (Au et al. 2012). 

Our static analysis is informed by a manual evaluation of 
Android and third party APIs. Because sharing of data most 
often occurs through third party libraries (Enck et al. 2011), 
we can leverage the insight that the observation of data shar
ing for a given library allows extension of that result to all 
apps using the same library (Gibler et al. 2012). As the top 
libraries have the farthest reach (Gibler et al. 2012) we focus 
on those. We used AppBrain (2015) to identify the ten most 
popular libraries by app count that process device ID, loca
tion, or contact data. To the extent we were able to obtain 
them we also analyzed previous library versions dating back 
to 2011. After all, apps sometimes continue to use older li
brary versions even after the library has been updated. For 
each library we opened a developer account, created a sam
ple app, and observed the data flows from the developer per
spective. For these apps as well as for a sample of Google 
Play store apps that implement the selected libraries we ad
ditionally observed their behavior from the outside by cap
turing and decrypting packets via a man-in-the-middle at

21Android’s permission model as of Android 6.0 does not dis
tinguish between permissions for an app and permissions for the 
app’s libraries, which, thus, can request all permissions of the app. 

tack and a fake certificate (Progress Software Corporation 
2016). We also analyzed library documentations. These ex
ercises allowed us to see or deduce which data types were 
sent out to which third parties. 

4.2 App Analysis Results 
Table 4 shows our results for the app analysis, specifically, 
the occurrence of practices in the full app set and the per
formance for a set of 40 apps (app test set), which we se
lected randomly from the publishers in the policy test set 
to obtain corresponding app/policy test pairs (for our later 
performance analysis of potential inconsistencies in § 5). To 
check whether the data practices in the test apps were cor
rectly analyzed by our system we dynamically observed and 
decrypted the data flows from the test apps to first and third 
parties, performed a manual static analysis for each test app 
with Androguard (2012), and studied the documentations of 
third party libraries. Thus, for example, we were able to infer 
from the proper implementation of a given library that data 
is shared as explained in the library’s documentation. We did 
not measure performance based on micro-benchmarks, such 
as DroidBench (Arzt et al. 2014), as those do not fully cover 
the data practices we are investigating. 

In the context of potential inconsistencies correctly identi
fying positive instances of apps’ collection and sharing prac
tices is more relevant than identifying negative instances be
cause only practices that are occurring in an app need to be 
covered in a policy. Thus, the results for the data practices 
with rarely occurring positive test cases are especially note
worthy: CC, SL, and SC all reached F-1pos = 1 indicating 
that our static analysis is able to identify positive practices 
even if they rarely occur. Further, the F-1pos scores, aver
aging to a mean of 0.96, show the overall reliability of our 
approach. For all practices the accuracy is also above the 
baseline of always selecting the test set class that occurs the 
most for a given practice. 

For all six data practices we find a mean of 2.79 occur
ring practices per app for apps with policies and 2.27 occur
rences for apps without policies. As all practices need to be 
described in a policy per our privacy requirements (§ 3.1), it 
is already clear that there are substantial amounts of poten
tial inconsistencies between apps and policies simply due 
to missing policies. For example, the SID practice was de

http:parties.21
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Pract Acc 
n=40 

Accpol· Accapp 

n=40 
95% CI 
n=40 

Precpos 

n=40 
Recpos 

n=40 
F-1pos 

n=40 
F-1neg 

n=40 
MCC 
n=40 

TP, FP, TN, FN 
n=40 

Inconsistency 
n=9,050 

CID 0.95 0.74 0.83–0.99 0.75 1 0.86 0.97 0.84 6, 2, 32, 0 50% 
CL 0.83 0.7 0.67–0.93 0.54 1 0.7 0.88 0.65 8, 7, 25, 0 41% 
CC 1 0.88 0.91–1 - - - 1 - 0, 0, 40, 0 9% 
SID 0.85 0.84 0.7–0.94 0.93 0.74 0.82 0.87 0.71 14, 1, 20, 5 63% 
SL 1 0.93 0.91–1 1 1 1 1 1 3, 0, 37, 0 17% 
SC 1 0.78 0.91–1 1 1 1 1 1 1, 0, 39, 0 2% 

Table 5: Results for identifying potential inconsistencies in the app/policy test set (n=40) and the percentage of potential 
inconsistencies for all 9,050 app/policy pairs (Inconsistency). Assuming independence of policy and app accuracies, Accpol · 
Accapp, that is, the product of policy analysis accuracy (Table 2) and app analysis accuracy (Table 4), indicates worse results 
than the directly measured accuracy. However, the Matthews correlation coefficient (MCC), a measure that is particularly 
insightful for evaluating classifier performance in skewed classes, indicates a positive correlation between the observed and 
predicted classes. 

tected in 62% of apps that did not have a policy (Table 4), 
which, consequently, are potentially non-compliant with pri
vacy requirements. Furthermore, for apps that had a policy 
only 10% disclosed the SID practice (Table 2) while it oc
curred in 71% of apps (Table 4). Thus, 61% of those apps 
are potentially non-compliant in this regard. The only prac
tices for which we cannot immediately infer the existence of 
potential inconsistencies are the CC and SC practices with 
policy disclosures of 56% and 6% and occurrences in apps 
of 25% and 2%, respectively. 

We want to point out various limitations of our static anal
ysis. At the outset our approach is generally subject to the 
same limitations that all static analysis techniques for An
droid are facing, most notably, the difficulties of analyzing 
native code, obfuscated code, and indirect techniques (e.g., 
reflection). It is a further limitation that the identification of 
data practices occurs from the outside (e.g., server-side code 
is not considered). While this limitation is not a problem for 
companies’ analysis of their own apps, which we see as a 
major application of our approach, it can become prevalent 
for regulators, for instance. Also, our results for the sharing 
practices only refer to the ten third parties listed in Table 3. 
The percentages for sharing of contacts, device IDs, or lo
cations would almost certainly be higher if we would con
sider additional libraries. In addition, our definition of shar
ing data with a third party only encompasses sharing data 
with ad networks and analytics libraries. 

Identifying Potential Inconsistencies 
In this section we marry our policy (§ 3) and app (§ 4) 
analyses. We explore to which extent apps are potentially 
non-compliant with privacy requirements. We emphasize 
that app developers were found to lack an understanding of 
privacy-best practices (Balebako et al. 2014), and it could 
be that many of the potential inconsistencies that we found 
are a result of this phenomenon. Especially, many devel
opers struggle to understand what type of data third par
ties receive, and with limited time and resources even self-
described privacy advocates and security experts grapple 
with implementing privacy and security protection (Bale
bako et al. 2014). In this regard, our analysis can provide de
velopers with a valuable indicator for instances of potential 

non-compliance. For identifying those instances only posi
tive app classes and negative policy classes are relevant. In 
other words, if a data practice does not occur in an app, it 
does not need policy coverage because there can be no po
tential inconsistency to begin with. Similarly, if a user is no
tified about a data practice in a policy, it is irrelevant whether 
the practice is implemented in the app or not. Either way, the 
app is covered by the policy. Based on these insights we an
alyze the performance of our approach. Table 5 shows our 
results. 

To check the performance of our system for correctly 
identifying potential inconsistencies we use a test set with 
corresponding app/policy pairs (app/policy test set). The set 
contains the 40 apps from our app test set (§ 4.2) and their 
associated policies from our policy test set (§ 3.3). We as
sociate an app and a policy if the app or its Play store page 
links to the policy or if the policy explicitly declares itself 
applicable to mobile apps. As only 23 policies satisfy this 
requirement we associated some policies with multiple apps 
to which the respective policies are applicable. Making 240 
classifications in the app/policy test set—that is, classifying 
six practices for each of the 40 app/policy pairs—our system 
correctly identified 32 potential inconsistencies (TP). It also 
returned five false negatives (FN), 10 false positives (FP), 
and 193 true negatives (TN). As shown in Table 5, accuracy 
results range between 0.83 and 1 with a mean of 0.94. Al
though not fully comparable, AsDroid achieved an accuracy 
of 0.79 for detecting stealthy behavior (Huang et al. 2014) 
and Slavin et al. (2016) report an accuracy of 0.8 for detect
ing discrepancies between app behavior and policy descrip
tions. 

The F-1pos scores for our analysis, ranging from 0.7 to 
1, indicate the overall reliable identification of potential in
consistencies. While we think that these results are gener
ally promising, we obtain a relatively low precision value 
of P recpos = 0.54 for the CL practice. This result illus
trates a broader point that is applicable beyond location col
lection. False positives seem to occur because our analysis 
takes into account too many Android system APIs that are 
only occasionally used for purposes of the data practice in 
question. Despite our believe that it is better to err on the 
side of false positives, which is especially true for an au



0.00

0.05

0.10

0.15

0.20

0.25

0 1 2 3 4 5 6
|Potential Privacy Requirement Inconsistencies|

D
en

si
ty

0

500

1K

1.5K

2K

|Apps|

Figure 4: For the full app/policy set (n = 9,050) we found 
that 2,455 apps have one potential inconsistency, 2,460 have 
two, and only 1,461 adhere completely to their policy. Each 
app exhibits a mean of 1.83 (16,536/9,050) potential incon
sistencies (with the following means per data practice: CID: 
0.5, CL: 0.41, CC: 0.09, SID: 0.63, SL: 0.17, SC: 0.02). 

diting system (Gibler et al. 2012), in hindsight we probably 
would have left out some APIs. The opposite problem seems 
to occur in the SID practice. We included too few relevant 
APIs. In this regard, we acknowledge the challenge of iden
tifying a set of APIs that captures the bulk of cases for a 
given practice without being over-inclusive. 

As indicated by the high percentages, potential inconsis
tencies seem to be a widespread phenomenon. Specifically, 
collection of device IDs and locations as well as sharing of 
device IDs are practices that appear to be inconsistent for 
50%, 41%, and 63% of apps, respectively. It is further note
worthy that for SL and SC nearly every detection of the prac
tice goes hand in hand with a potential inconsistency. For 
the apps that share location information (20%, per Table 4) 
nearly all (17%, per Table 5) do not properly disclose such 
sharing. Similarly, for the 2% of apps that share contact data 
only a handful provide sufficient disclosure. For the major
ity of those cases it is not even necessary to perform a policy 
analysis to detect potential inconsistencies. 

From a big picture view, the average number of 1.83 po
tential inconsistencies per app is high compared to the clos
est previous averages with 0.62 (113/182) cases of stealthy 
behavior (Huang et al. 2014) and potential privacy violations 
of 1.2 (24/20) (Enck et al. 2010) and 0.71 (341/477) (Slavin 
et al. 2016). Figure 4 shows the details. It should also be 
noted that for apps without a policy essentially every data 
collection or sharing practice causes a potential inconsis
tency. For example, all 62% apps without a policy that share 
device IDs (Table 4) are potentially inconsistent. Thus, over
all our results suggest a broad level of potential inconsisten
cies between apps and policies. 

6 Future Directions 
The law of notice and choice is intended to enable enforce
ment of data practices in mobile apps and other online ser
vices. However, verifying whether an app actually behaves 
according to the law and its privacy policy is decisively 
hard. To alleviate this problem we propose the use of an 
automated analysis system based on machine learning and 
static analysis. Our system advances app privacy in three 
main thrusts: it increases transparency for otherwise largely 
opaque data practices, offers the scalability necessary for 

potentially making an impact on the app eco-system as a 
whole, and provides a first step towards the automation of 
privacy requirement checks.22 

Our results suggest that potential privacy requirements 
inconsistencies are quite common in mobile apps. Results 
from our analysis could be used to prioritize further man
ual analysis of apps for compliance with relevant regula
tions. While we focused on the Android platform, our ap
proach is, in principle, adaptable to other mobile platforms, 
for example, for iOS using previous works (Deng et al. 2015; 
Kurtz et al. 2014). Our approach can also be made workable 
for analyzing website practices, e.g., leveraging the work of 
Sen et al. (2014), for which first and third party cookies and 
other tracking mechanisms can be observed to evaluate col
lection and sharing of data. The Internet of Things and sen
sor data represent other rich use cases. Fitness trackers with 
APIs for monitoring the heart rate and other body sensor 
data could be a first step towards exploring these areas. 

We believe that it is necessary to develop public policy 
and law alongside the privacy requirement analysis system 
we propose. In our opinion, regulators are moving in the 
right direction by pushing for app store standardization (Cal
ifornia Department of Justice 2012) and early enforcement 
of potentially invasive privacy practices (FTC 2014a). Ap
proaches like the one proposed here can relieve regulators 
through automation and allow them to focus their limited re
sources to move from a purely reactionary approach towards 
more systematic oversight. As we also think that many soft
ware publishers do not intend non-compliance with privacy 
requirements, but rather lose track of their obligations or are 
unaware of them, we also advocate for implementation of a 
privacy law check in software development tools and as part 
of the app vetting process in app stores. Given their broad 
access to app code, app stores are in a unique position to 
leverage the approach described in this paper. 
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Costante, E.; Sun, Y.; Petković, M.; and den Hartog, J. 2012. 
A machine learning solution to assess privacy policy com
pleteness. In WPES ’12. ACM. 
Costante, E.; den Hartog, J.; and Petkovic, M. 2013. What 
websites know about you: Privacy policy analysis using in
formation extraction. In Data Privacy Management ’13. 
Springer. 
Cranor, L. F.; Langheinrich, M.; Marchiori, M.; Presler-
Marshall, M.; and Reagle, J. M. 2002. The Platform for 
Privacy Preferences 1.0 (P3P1.0) specification. World Wide 
Web Consortium, Recommendation REC-P3P-20020416. 
Cranor, L. F.; Idouchi, K.; Leon, P. G.; Sleeper, M.; and Ur, 
B. 2013. Are they actually any different? comparing thou
sands of financial institutions’ privacy practices. In WEIS 
’13. 
Deng, Z.; Saltaformaggio, B.; Zhang, X.; and Xu, D. 2015. 
iris: Vetting private api abuse in ios applications. In CCS 
’15. ACM. 
Enck, W.; Gilbert, P.; Chun, B.-G.; Cox, L. P.; Jung, J.; 
McDaniel, P.; and Sheth, A. N. 2010. Taintdroid: An 

information-flow tracking system for realtime privacy mon
itoring on smartphones. In OSDI’10. USENIX Assoc. 
Enck, W.; Octeau, D.; McDaniel, P.; and Chaudhuri, S. 
2011. A study of android application security. In USENIX 
’11. USENIX Assoc. 
FTC. 1998. Privacy online: A report to congress. 
https://www.ftc.gov/reports/privacy
online-report-congress. Last accessed: Septem
ber 8, 2016. 
FTC. 2012a. Mobile apps for kids: Current privacy disclo
sures are disappointing. http://www.ftc.gov/os/ 
2012/02/120216mobile_apps_kids.pdf. Last 
accessed: September 8, 2016. 
FTC. 2012b. Mobile apps for kids: Disclosures still 
not making the grade. https://www.ftc.gov/ 
reports/mobile-apps-kids-disclosures
still-not-making-grade. Last accessed: Septem
ber 8, 2016. 
FTC. 2013. Mobile privacy disclosures. www.ftc.gov/ 
os/2013/02/130201mobileprivacyreport. 
pdf. Last accessed: September 8, 2016. 
FTC. 2014a. FTC warns children’s app maker 
BabyBus about potential COPPA violations. 
https://www.ftc.gov/news-events/press
releases/2014/12/ftc-warns-childrens
app-maker-babybus-about-potential-coppa. 
Last accessed: September 8, 2016. 
FTC. 2014b. What’s the deal? a federal trade 
commission study on mobile shopping apps. 
https://www.ftc.gov/reports/whats-deal
federal-trade-commission-study-mobile
shopping-apps-august-2014. Last accessed: 
September 8, 2016. 
FTC. 2015. Kids’ apps disclosures revisited. 
https://www.ftc.gov/news-events/ 
blogs/business-blog/2015/09/kids-apps
disclosures-revisited. 
Ghazinour, K.; Majedi, M.; and Barker, K. 2009. A model 
for privacy policy visualization. In 2009 33rd Annual IEEE 
International Computer Software and Applications Confer
ence, volume 2, 335–340. IEEE. 
Gibler, C.; Crussell, J.; Erickson, J.; and Chen, H. 2012. An
droidleaks: Automatically detecting potential privacy leaks 
in android applications on a large scale. In TRUST’12. 
Springer. 
GPEN. 2015. 2014 annual report. https://www. 
privacyenforcement.net/node/513. 
Hoke, C.; Cranor, L.; Leon, P.; and Au, A. 2015. Are They 
Worth Reading? An In-Depth Analysis of Online Trackers 
Privacy Policies. I/S : a journal of law and policy for the 
information society. 
Huang, J.; Zhang, X.; Tan, L.; Wang, P.; and Liang, B. 2014. 
Asdroid: Detecting stealthy behaviors in android applica
tions by user interface and program behavior contradiction. 
In ICSE ’14. ACM. 

https://www
https://www.ftc.gov/news-events
https://www.ftc.gov/reports/whats-deal
https://www.ftc.gov/news-events/press
http:www.ftc.gov
http:https://www.ftc.gov
http://www.ftc.gov/os
https://www.ftc.gov/reports/privacy
https://oag.ca.gov/sites
http://www.oag.ca.gov/news/press
http://www.appbrain
http:http://doc.androguard.re


Kurtz, A.; Weinlein, A.; Settgast, C.; and Freiling, F. 2014. 
Dios: Dynamic privacy analysis of ios applications. Tech
nical Report CS-2014-03, Friedrich-Alexander-Universitat¨
Erlangen-Nürnberg, Dept. of Computer Science. 
Liu, F.; Ramanath, R.; Sadeh, N.; and Smith, N. A. 2014. A 
step towards usable privacy policy: Automatic alignment of 
privacy statements. In COLING ’14. 
Manning, C. D.; Raghavan, P.; and Schütze, H. 2008. In
troduction to Information Retrieval. Cambridge University 
Press. 
Massey, A. K.; Eisenstein, J.; Antón, A. I.; and Swire, P. P. 
2013. Automated text mining for requirements analysis of 
policy documents. In RE ’13. 
Olmstead, K., and Atkinson, M. 2015. Apps 
permissions in the Google Play store. http: 
//www.pewinternet.org/2015/11/10/apps
permissions-in-the-google-play-store/. 
Last accessed: September 8, 2016. 
Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; 
Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, 
R.; Dubourg, V.; Vanderplas, J.; Passos, A.; Cournapeau, D.; 
Brucher, M.; Perrot, M.; and Duchesnay, E. 2011. Scikit
learn: Machine learning in Python. Journal of Machine 
Learning Research 12:2825–2830. 
Progress Software Corporation. 2016. Fiddler. http:// 
www.telerik.com/fiddler. Last accessed: Septem
ber 8, 2016. 
Ramanath, R.; Liu, F.; Sadeh, N.; and Smith, N. A. 2014. 
Unsupervised alignment of privacy policies using hidden 
markov models. In ACL ’14. 
Reidenberg, J. R.; Breaux, T.; Cranor, L. F.; French, B.; 
Grannis, A.; Graves, J. T.; Liu, F.; McDonald, A.; Norton, 
T. B.; Ramanath, R.; Russell, N. C.; Sadeh, N.; and Schaub, 
F. 2015. Disagreeable privacy policies: Mismatches be
tween meaning and users’ understanding. Berkeley Tech
nology Law Journal 30(1):39–88. 
Reidsma, D., and Carletta, J. 2008. Reliability measurement 
without limits. Comput. Linguist. 34(3):319–326. 
Sadeh, N.; Acquisti, A.; Breaux, T. D.; Cranor, L. F.; Mc
Donald, A. M.; Reidenberg, J. R.; Smith, N. A.; Liu, F.; 
Russell, N. C.; Schaub, F.; and Wilson, S. 2013. The us
able privacy policy project. Tech. report CMU-ISR-13-119, 
Carnegie Mellon University. 
Sen, S.; Guha, S.; Datta, A.; Rajamani, S. K.; Tsai, J.; and 
Wing, J. M. 2014. Bootstrapping privacy compliance in big 
data systems. In SP ’14. IEEE Comp. Soc. 
Slavin, R.; Wang, X.; Hosseini, M.; Hester, W.; Krishnan, 
R.; Bhatia, J.; Breaux, T.; and Niu, J. 2016. Toward a frame
work for detecting privacy policy violation in android appli
cation code. In ICSE ’16. 
Stamey, J. W., and Rossi, R. A. 2009. Automatically identi
fying relations in privacy policies. In SIGDOC ’09. ACM. 
Wilson, S.; Schaub, F.; Dara, A.; Cherivirala, S. K.; Zim
meck, S.; Andersen, M. S.; Leon, P. G.; Hovy, E.; and Sadeh, 
N. 2016a. Demystifying privacy policies with language 
technologies: Progress and challenges. In Proceedings of 

LREC 1st Workshop on Text Analytics for Cybersecurity and 
Online Safety, TA-COS ’16. Portorož, Slovenia: ELRA. 
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