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ABSTRACT 
Secure multi-party computation (MPC) allows multiple parties to 
perform a joint computation without disclosing their private in
puts. Many real-world joint computation use cases, however, in
volve data analyses on very large data sets, and are implemented by 
software engineers who lack MPC knowledge. Moreover, the col
laborating parties – e.g., several companies – often deploy different 
data analytics stacks internally. These restrictions hamper the real-
world usability of MPC. To address these challenges, we combine 
existing MPC frameworks with data-parallel analytics frameworks 
by extending the Musketeer big data workflow manager [4]. Mus
keteer automatically generates code for both the sensitive parts of a 
workflow, which are executed in MPC, and the remaining portions 
of the computation, which run on scalable, widely-deployed analyt
ics systems. In a prototype use case, we compute the Herfindahl-
Hirschman Index (HHI), an index of market concentration used 
in antitrust regulation, on an aggregate 156 GB of taxi trip data 
over five transportation companies. Our implementation computes 
the HHI in about 20 minutes using a combination of Hadoop and 
VIFF [1], while even “mixed mode” MPC with VIFF alone would 
have taken many hours. Finally, we discuss future research ques
tions that we seek to address using our approach. 

1. INTRODUCTION 
Big data analytics are a key part of modern business processes. 

Companies and regulatory agencies can draw vital insights from 
running such analytics, especially when they are executed across 
data sets from multiple sources. However, the justified privacy con
cerns related to proprietary data sets are a major hurdle to running 
such computations across multiple competing organizations, even 
if knowing the result serves a common interest. 

Secure multi-party computation (MPC) is a cryptographic tech
nique that allows independent parties to jointly compute a shared 
result without revealing their private inputs to the computation. 
MPC has been an active area of cryptography research since the 
1980s [15], and recent advances focus on applied aspects of MPC; 
MPC frameworks such as VIFF [1], Sharemind [3], and Wyste
ria [10] allow end-users to run arbitrary programs in MPC, as long 
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as they are completely re-implemented in the chosen framework’s 
front-end language. 

However, many real-world use-cases only necessitate MPC for 
a few crucial operations as part of a larger workflow. While some 
MPC frameworks support a “mixed-mode” operation that combines 
local computation with secure, distributed MPC steps [10],1 real-
world use of MPC currently still faces three key challenges: 

1. MPC integrates poorly with existing analytics workflows and 
widely-used data processing systems; 

2. Significant expert knowledge is required to implement and 
run analytics in an MPC framework; and 

3. MPC frameworks scale poorly to large data sets, since they 
do not support efficient data-parallel processing outside MPC. 

In this work, we address these three challenges. By doing so, we 
demonstrate that use of MPC can be made viable for societally im
portant use cases that involve large data sets, such as bank stress 
tests and early detection of market oligopolies (§2). 

To make MPC more accessible to non-experts and industry data 
analysts, we have added support for secure multi-party computa
tion to the Musketeer big data workflow manager [4]. Muske
teer automatically generates code for a variety of data processing 
frameworks (such as Hadoop, Spark, and Naiad) from a high-level 
workflow description (e.g., a SQL language). With our extensions, 
Musketeer generates MPC code automatically from programs spec
ified in a relational language inspired by LINQ [8], requiring no ex
pert knowledge. It also automatically embeds the MPC into larger 
workflows that involve private processing steps on multiple orga
nizations’ heterogeneous data analytics clusters. Even if organiza
tions use different data processing stacks, we automatically gener
ate both the preprocessing code and the “glue code” for embedding 
MPC in the workflow. Specifically, our contributions are: 

1. Proof-of-concept integration of MPC into typical “big data” 
workflows specified in a high-level relational language (§3). 

2. The extension of the Musketeer workflow manager with au
tomatic code generation for secure MPC steps (§4). 

3. Implementation of an example use case that highlights the 
advantages of our approach: a market share computation in 
which private sales records are preprocessed to compute the 
Herfindahl-Hirschman index in “mixed-mode” MPC (§5). 

1 The “mixed-mode” term is overloaded: sometimes, it is used 
to mean a combination of different types of MPC (e.g., arithmetic 
MPC based on secret sharing [12] and boolean MPC based on gar
bled circuits [15]). Our system can also support the latter (§7). 
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Our evaluation compares the runtime of our market share compu
tation to two extremes: first, not using MPC and allowing a trusted 
third party (e.g., a regulator) to run the computation; and second, 
running the entire computation in an MPC framework. We find 
that our integrated workflow executes almost as fast as the inse
cure baseline while requiring no trusted third party, and that it runs 
substantially faster than when using an MPC framework only. 

2. EXAMPLE USE CASES 
Having MPC as part of a data analytics workflow enables numer

ous use cases. Many examples involve computations across busi
ness competitors, either because the aggregate result is of interest 
to all of them, or because a regulating authority has an interest in 
monitoring the market. We discuss two concrete examples below. 

Bank stress tests. In the wake of the global financial crisis of 
2008-09, financial regulators have devised metrics to measure sys
temic market risk. Currently, such stress tests are laboriously exe
cuted, with each bank manually aggregating data for submission to 
the regulator and covering only a part of its assets and investments. 

Instead, banks could use MPC to jointly run continuous stress 
tests on their respective books in their entirety by integrating MPC 
into their existing data analytics stacks. Abbe et al. [2] suggested 
the use of MPC for this problem, while Narayan et al. [9] model 
the computation as a graph propagation problem with added differ
ential privacy. 

Market concentration. Antitrust and competition law require 
regulating agencies to monitor the concentration of revenue across 
the participants in many markets. This can be notoriously diffi
cult when private companies – who are under no obligation to pub
lish their revenues – are involved. For example, the Herfindahl-
Hirschman index [5], a standard measure of market concentration, 
requires the (private) market shares of each participant as inputs.2 

MPC allows this computation to be performed without market par
ticipants having to disclose their revenue composition. 

3. USABILITY GOALS 
In earlier work, we integrated MPC with a MapReduce plat

form [13]. By building atop a workflow manager like Muske
teer [4], this work generalizes our approach beyond a specific sys
tem (e.g., MapReduce), and achieves several usability benefits. 

1.		Code generation is automated: the participating parties need 
no in-house MPC implementation or deployment expertise, 
since Musketeer generates all necessary code automatically. 

2.		Portability across data analytics stacks: different companies 
can map a high-level joint computation to their individual 
existing data analytics stacks (e.g., Hadoop, Spark, Naiad) 
via Musketeer, and have these systems automatically feed 
data into the MPC. 

3.		Automatic framework choice: since Musketeer’s scheduler 
already supports automated choice of good backends for a 
computation, we can extend its performance model to pick
and-choose between different MPC paradigms and combine 
them depending on the operators used. 

The key premise of Musketeer is to decouple the specification of 
data-parallel workflows in a high-level frontend language from their 
execution in a parallel backend execution engine. Musketeer takes 
the user’s workflow and translates it into a common intermedi
ate representation (IR): a directed acyclic graph (DAG) of opera
tors. From this IR, Musketeer generates code for multiple parallel 
2The HHI is the sum of squared market shares. 
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Figure 1: Vehicle-for-hire market concentration workflow: 
gray boxes are tables, rounded nodes are operators. The red, 
shaded operations happen in MPC, and arrows crossing the 
MPC boundary correspond to private inputs. 

backend execution engines, and executes the workflow by flexibly 
choosing and combining them. To achieve the above benefits for 
computations involving secure MPC, we added prototype support 
for MPC to Musketeer. 

4. IMPLEMENTATION 
We have extended Musketeer with support for input columns to 

be marked as private, and with a set of MPC operators in the IR. 
With just these two extensions, Musketeer automatically generates 
Python code for VIFF’s secret sharing-based MPC when given a 
clique of MPC operators. In the generated code, private columns 
are secret-shared between parties and computations on them use 
MPC constructs. Further, we added initial code generation sup
port for the VIFF MPC framework by integrating it as a Musketeer 
backend. To ensure that secure computations run in MPC, we spec
ified infinite costs for combining them with non-MPC operators and 
for mapping them to non-MPC backends. We chose VIFF because 
it is open-source and more general than other available frameworks: 
it offers a choice between active and passive security as well as ad
justable corruption thresholds. In the future, we plan to also include 
recent and more efficient MPC frameworks as backends. Our Mus
keteer extensions are open-source, and available at: 

https://github.com/hicsail/Musketeer. 

5. INITIAL RESULTS 
We prototyped the market concentration use case discussed in 

§2 using our implementation. In our example, we compute the 
Herfindahl-Hirschman Index (HHI) [5] over the market shares of 
several vehicle-for-hire (VFH) companies. This computation, for 
example, might allow a regulator to assess the long-term impact of 
a changing market environment – such as the emergence of “ride-
sharing” services such as Uber and Lyft – on market concentration. 

The workflow proceeds as shown in Figure 1: each company first 
computes its local aggregate fare revenue from private trip data us
ing their big data analytics stack of choice. The per-company rev
enues are then passed into the secure part of the workflow, which 
sums them under MPC to determine the aggregate revenue, and 
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Setup Runtime 
Insecure, trusted Hadoop 

(8 nodes) 16 min 10 s (970s) 
Musketeer with MPC 

(5 parties, 1+1+1+1+4 nodes) 17 min 31 s (1,051s) 
Secure MPC framework only 

(VIFF only, 5 parties, 5 nodes) >2 hours (7,200s) 

Table 1: End-to-end runtimes for the vehicle-for-hire market 
HHI computation. Our MPC-extended Musketeer workflow 
is almost as fast as an insecure analysis on a trusted Hadoop 
cluster, and much faster than using an MPC framework only. 

subsequently computes market shares by dividing each per-company 
revenue by the total revenue. Finally, the secure MPC computes the 
HHI by squaring the market shares and adding the results. 

We use six years of public NYC taxi trips’ fare information [11] 
as our input data, dividing the data across five imaginary taxi com
panies (50%/20%/10%/10%/10%). Each company privately com
putes the initial revenue on between 16 and 80 GB of trip data in 
their own Hadoop cluster running on Amazon EC2. The results are 
automatically passed into a shared VIFF cluster with three compute 
parties, also running on EC2. 

Table 1 shows our preliminary results. We compare (i) the run
time of this workflow on a single Hadoop cluster operated by a 
trusted third party (e.g., the regulating authority); (ii) the runtime 
of the same workflow when implemented entirely in Python and 
VIFF; and (iii) the end-to-end runtime for our integrated, mixed-
mode MPC Musketeer workflow. Having a trusted third party run 
this computation is both impractical (must ship hundreds of GB of 
data) and contentious (the VFH companies might not wish to dis
close their per-trip fare information). However, the trusted third 
party case is a useful performance baseline, since it constitutes the 
fastest possible execution of this workflow (as using MPC can only 
add overhead). As our results show, the integrated Musketeer work-
flow only takes 8.3% longer than this baseline (1,051s vs. 970s), 
since the data-intensive parts of the computation run in companies’ 
private Hadoop clusters and parallelize well. By contrast, had the 
companies executed the entire computation in Python and VIFF, it 
would not have finished after two hours, and required substantial 
MPC expertise to implement. 

6. DEMO 
In our demo, we show a Musketeer-based implementation and 

live execution of the market concentration use case described above. 
First, we illustrate how an analyst or regulator specifies the joint 
computation in a SQL-like Musketeer front-end language. Sec
ond, we visualize the decomposition into a Musketeer IR DAG, 
highlighting the parties’ input ownership, the boundaries between 
their local computations, and the joint MPC. Third, we show the 
generated code executing on real Hadoop and VIFF clusters, and 
reproduce our evaluation results from §5. 

7. FUTURE DIRECTIONS 
We are currently extending Musketeer to support other MPC 

frameworks such as Sharemind [3]. Moreover, Musketeer’s sched
uler can automatically choose which system is used to execute a 
particular operator (e.g., based on a simple performance model). 
We plan to exploit and extend this capacity in several ways to im
prove the out-of-box performance of MPC. 

Static analysis and optimization techniques can similarly be lever
aged to help Musketeer pick the most performant MPC implemen

tation for a given workflow, as in work on inferring and improv
ing the performance of MPC protocols [6]. They might also help 
Musketeer to select an appropriate partitioning, similar to strategies 
used in work on MPC protocol selection [7]. 

We will also look at how end-users specify their security and 
privacy requirements. In real-world scenarios, the authors of an an
alytics algorithm may not know the privacy requirements of input 
data contributors. Analysts might require a framework that sup
ports policy-agnostic programming [14], in which security and pri
vacy properties are abstracted away from the programmer and spec
ified independently. We are currently working on initial support for 
this approach by extending Musketeer to automatically detect op
erations for which data must cross trust domain boundaries, and 
automatically using MPC for these operations. 
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