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VoipLoc: Compromising location-privacy via
 
acoustic side-channel attacks
 

Anonymous 

Abstract—We develop a novel location-privacy attack based 
on acoustic side-channels. The attack is based on acoustic 
information embedded within foreground-audio. We study how 
audio data, generated by secure messaging clients in voice-call 
mode, can be (ab)used to generate a location fingerprint. The 
attack leverages the pattern of acoustic reflections of human voice 
at the user’s location. It does not depend on any characteristic 
background sounds. The attack can be used to compromise 
location privacy of participants of an anonymous VoIP session. 
Or, to carry out confirmation attacks that verify if a pair of 
audio recordings originated from same location regardless of the 
speakers. We show that location fingerprinting is exacerbated by 
codecs, and is robust to network jitter. Evaluation in real-world 
settings confirms that recording locations can be fingerprinted 
and detected remotely over VoIP channels with low false-positive 
rate. 

I. INTRODUCTION 

Secure messaging clients are popular means for resisting 
widespread surveillance. While such tools have been examined 
for security properties such as end-to-end encryption and 
inspected for their integrity via source-code audits, accidental 
ways that expose user information are a constant worry. Secure 
messaging clients providing audio calling technologies are 
used everyday by people to communicate with friends, family 
members, colleagues, and strangers. In this work, we examine 
audio calling mechanisms from first principles and uncover a 
significant privacy weakness. 

Messaging tools with audio calling technology inadvertently 
unicast unique location fingerprints in the acoustic channel, 
severely compromising the location-privacy of their users. 
During an audio call, the speaker’s voice is modulated by 
the sound reflection characteristics of the location, and the 
modulated signal is captured as an electronic signal, com­
pressed, and transmitted to the receiver. At the receiver, the 
signal is decoded and regenerated whereupon the receiver can 
examine the signal with respect to various attributes apart 
from the speakers’s direct voice to ascertain location-induced 
uniqueness: the timing and shape of reflections, the energy 
contained in various bands, and their decay rate. 

Our main finding is that, it is possible to recover this 
information in practical conditions. Endusers unknowingly 
transmit location information in addition to the intended 
(voice) content is a privacy compromise. Furthermore, obvious 
countermeasures such as filtering background noise or signal-
dampening have little impact on attack efficiency. 

While constructing active attacks for location fingerprint­
ing is widely known to be possible – injecting ultrasound 
squeaks such as those used by bats – no passive attacks 
have been proposed to the best of our knowledge. In this 

context, we ask the following research question: can human 
speech recorded by off-the-shelf devices be used to acquire 
a location fingerprint in a practical setting? How unique is 
the fingerprint? In order to be practical: fingerprints should 
be unique – distinctiveness from fingerprints of other rooms 
or locations; fingerprint acquisition should be stealthy i.e 
unobservable to any entity within the room being fingerprinted; 
be time invariant – not rely on the identification of background 
sounds for fingerprinting, such as proximity to an airport; be 
robust to environmental noise – crowds or people, whirring 
computers, blowing fans, passing trains, or noisy coffee shops; 
and, not require specialised hardware. 

The fingerprinting attacks proposed in this paper meets 
these requirements. The intuition behind our techniques is that 
room fingerprinting can be carried out passively by analysing 
recorded human speech, which encodes signal transformation 
due to the “acoustic behaviour” of a room i.e the transforma­
tion a room applies to any sound waves via a sequence of 
reflections, absorbtions, and scattering processes due to room 
geometry, construction material used, and the physical objects 
within the room [22]. An attacker who can access output audio 
but has no physical access to the room can analyse recordings 
for similarities induced by acoustic behaviour. Thus, given an 
audio recording what can possibly be understood regarding 
where the sound was recorded? Can multiple audio recordings 
of human conversations be linked to the same location of 
recording? Is it possible to develop a binary test which 
confirms or denies whether a conversation was recorded in 
a particular room in a building? 

Linking audio streams based on the recording location 
can have significant privacy implications. An attacker can 
compare audio data to confirm or deny whether they were 
also recorded at the same location as a known sample. The 
attacker can compile a database of tuples each containing a 
sample recorded at the location, which can be used to to 
detect “matches”. We report three types of privacy attacks: In a 
location traceability attack, such a matching technique can be 
used to link multiple sessions of a VoIP user, passively using 
the sound content transmitted. If a database of audio samples 
with labelled locations is known, then a location confirmation 
attack to reveal the geo-location of the victim can also be 
carried out. It is worth noting that the labelled audio samples 
don’t have to be from the victim. 

Previous approaches to acoustic location-fingerprinting con­
sider background noise sources. A critical limitation is that 
background sources can usually be filtered out via high-pass 
filters, these are often used by compressive codecs to favour 
voice transmission. In contrast, VoipLoc depends only on the 
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Fig. 1. Sound recording: x-axis is time and y-axis is pressure (or voltage) 

speaker’s voice, which cannot be filtered out during an audio 
call. This is our core contribution. 

A detailed review of prior art can be found in Section VII. 
SurroundSense [1] – combines multiple sensors including 
measurement of acoustic background sounds (and combines 
it with visual background and cellular signals). In contrast, 
VoipLoc depends exclusively on the microphone and offers 
better localisation even in the presence of compressive codecs 
which filter out ambient sounds. Acoustic Background Spec­
trum (ABS) [31], is another technique that also focuses on 
background sounds in the low-frequency bands, particularly 
the buzz produced by electrical devices. The signal character­
istics on which ABS depends are easily filtered out since its 
overlap with human speech is very little. In fact, most speech 
codecs operate above 300Hz which emulates the application of 
a high-pass filter rendering ABS ineffective. SoundSense [19] 
uses ambient sounds for activity detection such as steps on a 
staircase. 

The layout of this paper is as follows. First, we will 
cover the necessary background on sound acoustics. Second, 
we discuss the privacy implications of room fingerprinting, 
describe the threat model, and justify its use. Third, we study 
passive and active attacks. Fourth, we study the impact of 
audio compression on attack efficiency via popular codecs 
whilst adjusting for varying network conditions that impact 
their functionality. Fifth, we control for different speaker 
frequency ranges and decibel level. 

A. Threat model 

The threat model is that the adversary has access to the 
audio stream such as recorded speech after it reaches a 
communication endpoint. For example, an intelligence agency 
analysing streaming audio from a dissident website or tracing 
the location of a dissident activist giving a phone interview. 
From a communications perspective, the adversary is an 
insider, who is engaged in a VoIP conversation with the 
victim and would like to determine the location of the latter 

Fig. 2. Voice-energy distribution of two identically sized rooms with minor 
customisation differences. Note that the significant difference in the locations 
of peaks and troughs. 

party. Such a threat model is reasonable under the assumption 
that motivated adversaries would not restrict themselves to 
launching external attacks. 

One of the criticisms of the insider threat model is that it 
is unrealistic – why would a victim hold a VoIP conversation 
with an attacker. A common counter-argument to this position 
is the following stance: any motivated adversary will be an 
insider. As in most real-world situations, trust isn’t binary. 
A salesman for a firm dealing in radioactive materials or 
surveillance equipment might be contacted by attackers posing 
as prospective clients, who can gain information about the 
salesman’s clients after compromising his/her location privacy. 
Snowden’s revelations famously revealed the tracking of sales 
personnel by tracking the victim’s mobile phone. As opposed 
to the macro-level location information provided by cell-tower 
localisation, we report attacks that can be used to carry out 
fine-grained indoor-location identification, down to a specific 
room or corridor the victim used to make a voice call. As 
another example, an attacker attending an online meeting set 
up by an NGO activist could compromise operational security 
of the NGO’s protest. 

We have specifically chosen to study passive adversaries 
in order to demonstrate the power of the attacks. Even a 
passive attacker can confirm the source-location of an audio 
call. An active attack would likely be more successful by 
the injection of optimal sound waves (such as sharp impluse 
signals) these are considerable less stealthy. Optimal audio 
signal waveforms are short bursts of high-amplitude signals 
that are rarely found in human speech generation. On the 
other hand, the passive attacker model studies the lower bound 
of attacker success given the worst possible circumstances 
for location identification. It’s noteworthy that while active 
methods have received some attention in the literature, there’s 
little prior art on passive attack methods. 

II. BACKGROUND 

A room’s characteristic property is it’s wave reflection 
behaviour. Sound is a pressure wave, and the room acts as 
an energy propagation system. Upon sound production, the 
pressure wave expands radially outward, reaching obstructions 
where the energy is absorbed or reflected. The pattern of 
reflections, each represented by the time of arrival and strength 
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in various frequency bands, can be used to fingerprint the 
room. 

The sketch below depicts the sound received by a single 
listener as a function of time. The direct sound received is 
followed by distinct reflected sounds and then a collection of 
many reflected sounds which blend and overlap into what is 
called reverberation. The direct sound component is a baseline 
version of the original transmitted signal while the reflected 
waves carry information about the recording environment 
which aid in room fingerprinting. 

Thus, recorded sound consists of three components. First, 
the direct sound as transmitted from the source to the recorder 
is recorded. Second, early reflections are recorded. Third, 
the reflected waves interfere with incident waves producing 
patterns of interference known as the reverberant component. 

A. Model of room reflection behaviour 

The recorded sound at any location within a room is 
composed of the three components described earlier: direct 
sound, early reflection, and the reverberation. 

Direct sound is the speech signal on the direct path from 
the speakers mouth to the microphone. This corresponds to the 
signal from the sound source alone and no reflections. Early 
reflections (of the direct sound) are defined as those that arrive 
via a predictable directional path. They contain evidence of 
the geometrical surroundings of the receiver. We define the 
amount of time required for the early-reflections to diffuse 
into the room as the mixing time of a room. 

After the early reflections, we have the reverberation signal. 
Reverberation is composed of higher order reflections. They 
can be modeled as an exponentially decaying, ergodic, stochas­
tic process, with a Gaussian distribution and a mean of zero. 
The volume of a room dictates the frequencies (lower bound) 
above which a stochastic model of reverberation is valid. The 
Schroeder frequency, is approximated as  

RT60
fSchroeder � 2000 (Hz)

V 
, where V is the room volume in cubic meters. The stochastic 
model for the reverberant component is therefore only valid 
after the mixing time and for frequencies above the Schroeder 
frequency [15]. RT60 is the length of the reverberant part of 
the signal – i.e the time taken for direct sound to diffuse into 
the room until signal power is reduced to −60dB (the threshold 
of silence). Larger rooms typically have longer reverberation 
times. This can lead to overlapping of reverberation signal 
from the previously spoken word with the direct sound of the 
consecutive word. 

Above the Schroeder frequency the sound correlation be­
tween two locations in a room is dependant on the wavenum­
ber and the distance between them . Therefore, the assumption 
that the reverberant-path components are uncorrelated, i.e., for 
a typical recording with a 20-cm spaced microphone pair is 
only valid for frequencies greater than approximately 1 kHz. 

III. PRIMITIVES 

As explained in the previous Section II-A, recorded sound 
is composed of direct, early reflections, and late reverberation 

components. These signal components are useful to analyse 
depending on the task at hand. 

The first component, direct sound, is wholly a function of 
the speaker (or sound source). It’s useful to isolate direct sound 
or to make the signal anechoic by removing room-dependent 
features, to anonymise the signal or increase acoustic analysis 
resistance. The third component, late reverberation, is useful 
to isolate when the analysis is based on a summary of room 
reflection behaviour. In contrast, early reflections, provide a 
fine grained access to reflection behaviour. An early reflection 
is a distorted version of the direct sound where the distortion is 
defined by the reflecting surface within a room. Therefore it’s 
useful to isolate early reflections when the analysis is targeted 
at understanding reflection timing or frequency-amplitude dis­
tributions to characterise the precise location of the recording 
microphone within a given room. 

A. Audio segmentation 

Speech segmentation, obtains discrete chunks of speech for 
processing. There are many voice activity detectors, silence de­
tectors, and turn-taking options in the literature [13], [25]. We 
used a combination of volume, spectral energy, fundamental 
frequency (F0), and spectral flatness for creating a predictor 
for speech segments. The spectral flatness can be used for 
characterizing an audio spectrum for how tone-like a sound is, 
and hence can eliminate signals with a large mixture of sources 
(such as multiple people talking at once, or music or TV in 
background). Speech segmentation preceeds the application of 
the rest of the primitives. 

B. Isolating Wave Interference Pattern (reverberation compo­
nent) 

The key challenge in isolating the reverberant component 
is to isolate the complex overlapping sound patterns arising 
from multiple voice components from one or more speakers. 
In order to achieve speaker independent fingerprinting, it is 
critical that any direct sound components are removed from 
the reverberant component. For any speaker, a recorded speech 
segment contains several direct-sound components, each corre­
sponding to a syllable uttered. As the speaker utters a syllable, 
the early and late reverberation components corresponding 
to previously uttered syllables, temporally overlap the direct 
sound of the current utterance. Thus the challenge of isolating 
direct sound component is to remove the temporally overlap­
ping reverberation components from previous utterances. We 
will assume that the technique (Section III-B) for isolating 
late reverberation has already been applied on a given speech 
segment, so we now focus on removing the early reflection 
component. 

We observe that the shape and form of early reflections 
are, by definition, very similar to direct sound. As such early 
reflections can be modelled as direct sound convoluted with the 
transformation applied by the reflecting surface. We leverge 
this observation to to reverse the wave interference process to 
arrive at a reverberant component that’s free of direct sound 
and its reflections, hence achieving speaker independence. 
Recorded sound is represented as an algebriac combination 
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of repeating sound patterns where repetition is due one or 
more direct sounds reflecting off surfaces in the recording 
location. Thus direct sounds can be isolated via search for self­
similiar statistical patterns, and removed from the reverberant 
component. 

Isolating the primary signal so that room information 
doesn’t get encoded into the recorded sound wave is a de­
convolution problem. We applied non-negative matrix factori­
sation to deconvolve the sound waveform into the primary 
sound wave and its secondary and tertiary reflections. (The 
technique is weakly related to PCA [28] but doesn’t enforce 
orthogonality between the basis vectors). 

We split the input speech matrix O into a matrix of hidden 
patterns H (direct sound and transformation noise) and a 
weight matrix W . Recorded sound can be recomputed by 
linearly combining the pattern matrix H with weights W to 
obtain reflections. The given speech segment is expressed in 
terms of the hidden sound patterns and mixing weights as: 

O = WH (1) 

Essentially, the observed data during each time interval is 
a function of the patterns (columns of H) and the extent of 
activation of each pattern given by rows of the weight matrix  K
W : Oij = WikHkj . The key to implementing a notion k=1 
of compression is to represent as much of the speech segment 
using the sparsest and fewest number of sound patterns. This 
is achieved by standard application of the NMF algorithm. 
We start with randomly initialised positive-valued matrices W 
and H , and update them iteratively using a gradient descent 
algorithm until convergence is achieved. We chose to apply 
multiplicative update rules from optimisation literature [18]. 
Once convergence is achieved, the columns of H contain 
direct-sound signals.  OijWik k (WH)ij 

Hkj Wik = 
Wjk l  Oij

Hkj = Hkj Wik 
(WH)iji 

IV. FINGERPRINT COMPUTATION 

The fingerprint is computed over the reverberant component 
of the audio signal. We start with the following hypothesis. For 

two or more sound recordings: the reverberant components are 
at least partially correlated for recordings from the same room, 
but uncorrelated to reverberant component of a recording from 
a different room. 

Formally, the reverberant components are uncorrelated 
E{ri(t), rj (t)} = 0 for rooms i and j. However, they 
are correlated for any locations within the same room i.e 

p qE{r (t), r  (t)} = 0 for locations p and q within room i.i i 
Room fingerprint involves several steps which we expand 

on in the following sections. In summary these are as follows: 
preprocessing to remove noise, detecting the onset of the 
reverberant component, aggregation of signal power in relevant 
bands to produce the fingerprint vector, and finally training and 
classification to examine detection accuracy. 

A. Preprocessing 

Noise plays a large part in the success of fingerprint 
detection and also for reverberation estimation. After capturing 
the audio, we perform normalisation to remove the DC offset 
and to keep the maximum amplitude capped at 1.0dB. All 
environments have some level of baseline noise typically 
from the HVAC. Since most signals will contain non-speech 
(over 95% in our experience), we build a noise model of the 
uniform noise in the room and use spectral subtraction on the 
speech segments. We used a Wiener noise suppressor [24]. 
Their approach uses harmonic regeneration noise reduction 
(HRNR) to refine the SNR a priori to compute a spectral gain 
to preserve speech harmonics. More sophisticated machine 
learning-based noise subtractors can extend this approach. 

B. Reflection measurement 

The key idea underlying location fingerprint computation, 
is to compute the signal power in each frequency band within 
the reverberant component normalised by the corresponding 
signal power within the direct sound components. In simple 
terms, we measure relative signal attenuation as a function of 
room geometry. 

To design a fingerprint function, one design consideration is 
the choice of frequencies to consider. It is worth noting that the 
correlation of sound pressure for different locations within a 
given room is inversely related to the frequency. Specifically, 
the correlation in sound pressure is given by the following, 
for frequencies above the Schroeder frequency [25]. For two 
locations, il and im within the same room: 

sin(2πf/c)xE[il, im] = (2πf/c)x 
As a result of the above relationship, high frequencies 

are only correlated at close proximity, while low frequencies 
(above Schroeder frequency) can be correlated at relatively 
longer distances. Thus, signal power at low frequencies is 
ideal for room fingerprinting while high frequencies within 
the reverberant component may be used to specify the micro­
phone location within the room itself. We carry out frequency 
analysis to compute power in various bands and retain the 
spectral information related to low frequency bands ( 20 Hz 
to 500hz). 

The second design aspect relates to the frequency analysis 
approach over the chosen frequency bands. The standard tool 
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for frequency analysis is the Fourier transform. For digital 
signals, the textbook approach to ascertain signal power by 
frequency band is to apply the Discrete Fourier Transform; 
often using the Fast Fourier Transform (FFT) algorithm. 
However, FFT is unsuitable for our purpose. The average 
minimum (fundamental) frequency for human speech varies 
from 80 to 260 Hertz; 85 to 180 Hertz for Basal and Tenor 
voices and from 165 to 255 Hertz for Contralto to Soprano 
voices. Therefore, using FFT the frequency resolution would 
be insufficient. FFT with 512 temporal samples recorded at 
a sampling rate of 44.1 Khz, has a resolution of 86.1 Hz 
between two FFT samples. This is not sufficient for low 
frequencies found in human voice. For instance, the distance 
between two adjacent vocal tones could be as low as 8 Hz to 
16 Hz. The frequency resolution can be improved by using 
a higher number of FFT samples. For instance, with 8192 
temporal samples, the resolution will be improved to 5.4Hz 
for a sampling rate of 44.1 Khz. However, this alone is 
inadequate since the signal at higher frequencies will have 
better resolution than those at lower frequencies. 

To provide constant frequency-to-resolution ratio for each 
freqency band, we use the Constant-Q transform [3]. This is 
similar to the Discrete Fourier Transform but with a crucial 
difference – it permits the use of a variable window width 
to achieve constant resolution, enabling effective across the 
spectrum. Constant resolution is achieved via a logarithmic 
frequency scale. The CQT transform of the reverberant compo­
nent is computed, after due isolation using technique described 
in Section III-B. The output of the transform is a vector which 
contains the signal power in each frequency band. We call this 
the fingerprint vector. 

C. Normalisation and aggregation 

The role of the normalisation step is to enable comparison 
of reverberation signal for different excitation signals i.e 
voice from different speakers. Without this step, biases in 
the direct-sound induced by individual speakers would cause 
inaccuracies in comparing the spectrum of the reverberant 
signals. Normalisation emulates the application of a constant 
amplitude sweep across the signal frequency range. 

The process of normalisation involves computing the signal 
strength in each frequency band of the direct-sound signal. 
Note that this is the input excitation signal and the later-
reverberant signal is the corresponding output produced by the 
room. The fingerprint vector computed thus far is the output-
signal strength for each frequency, this is normalised by the 
input signal strength; the output is undefined for a frequency 
where the input signal strength was zero. Normalisation is 
carried out by element-wise division of the CQT transform of 
the reverberant signal (R) by the CQT transform of the direct-
sound signal (D). For each speech segment i, matrix Ri∗ is 
the CQT transform vector of the reverberant component, and 
matrix Di∗ stores the CQT transform vector of the direct-
sound component. 

We then aggregate the normalised fingerprint vectors from 
each speech segment. The necessity for this is that unlike a 
sine-sweep function [26], each speaker’s voice only covers 

a subset of possible frequencies. Hence we need to merge 
multiple CQT vectors computed over the late-reverberation 
component, to maximise the range of frequencies for which 
a response is analysed. The design of the merge function is 
straightforward. Vector f contains the normalised aggregated 
fingerprint. For each segment i and frequency j, 

Dij > 0 : Fij = Rij nDij (2) 
Di ≤ 0 : Fij = 0 (3) 

n 

fj = Fij (4) 
i 

D. Fingerprint classification 

We then input the fingerprint vector into an SVM classifier, 
which partitions the input into classes, where each class 
corresponds to a unique recording location. 

We use a support vector machine (SVM) for classification 
because of the large feature size. The LIBSVM library is used 
for both training and testing. An SVM identifies the optimal 
separating hyperplane that maximises the margin of separa­
tion between linearly separable fingerprint vectors. The data 
points which lie closest to the separting hyperplane are called 
support vectors. For generalisation, we use a non-linear kernel 
function; linearly non-separable data points in input space can 
be mapped into a higher dimensional (possibly infinite dimen­
sional) feature space through a nonlinear mapping function, so 
that the input fingerprints become almost linearly separable. 
The kernel function used in our work uses exponentiation of 
the Euclidean distance to ensure linearity in the locality of a 

(−γ||xi −xj ||2fingerprint vector: K(xi, xj ) = e ), where γ is the 
width of the Gaussian function. 

For location classification we used a standard methodology 
from ML literature called the one-versus-all technique. To link 
audio signals amongst N rooms, we use N SVMs. The ith 

SVM is trained using half the samples in the ith room with 
a positive room label and half of all the remaining samples 
with a negative room label. The other half of the samples are 
used for evaluation. This is nested within a k-fold over cross-
validation process to avoid problems such as overfitting the 
data. 

V.	 EVALUATION – COARSE-GRAINED FINGERPRINTING 
(FEASIBILITY ANALYSIS) 

To evaluate the effectiveness of our techniques we first 
experimented in a variety of real-world settings over a very 
simple range of parameters to establish the feasibility of 
voice based location-fingerprinting. Hence there are no human 
participants in this section of the evaluation. Human partic­
ipants are involved in fine-grained analysis (next section). 
Further, we selected locations with markedly different acoustic 
characteristics owing to significant differences in physical size, 
shape, volume, and construction material. The rationale for 
these evaluation choices was simply to establish feasibility 
of the attack in the first instance. In the next section, we will 
present a fine-grained evalution of the technique by comparing 
attack efficiency across rooms with relatively similar shape, 
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Room Description 
Building Atrium 
(enclosed court­
yard) 

University Sports 
Centre 

Typing Room 

Office rooms 
Stairway 
Concrete studio 

Underground car 
park 
Domestic living 
room 
Wood panelled 
room 
Stanbrook Abbey 
Malvern 
Factory 
warehouse 

Semi-enclosed atrium of the CS department. 
The courtyard is enclosed on three sides by 
partition board walls and on the third side by 
a glass wall. Volume is roughly 24000m3 . 
A large sports hall in the sports centre of the 
university. The reverberation length is fairly 
long. Volume is 12000m3 . 
Partitioned typing room in the British Mu­
seum. 
38 rooms from a university office building 
Stairway within an office building. 
Bare room with plastered walls, concrete 
floor, and concrete ceiling. 
Cemented, with pillars, 8500m3 

Wood and lathe, 1100m3 . 

Wood paneled studio room, 1400m3 

Large hall within a former monastery, 
61000m3 . 
Large empty warehouse inside the Cadbury 
factory, 4800m3 . 

TABLE I 
INDOOR LOCATIONS CONSIDERED 

size, and volume, and a comparitive analysis of codecs via 
human participants engaged in VoIP conversations. 

Speech production is carried out by playing anechoic pre­
recorded audio clips of human speech using a bias-free (power 
output per input frequency) loudspeaker system. We use the 
EmoDb speech dataset. Voice diversity: The dataset contains 
spoken utterances by 10 different actors (5 male, 5 female) 
using a variety of emotions. The utterances are various short 
phrases recorded within a non-reverberant (non echoic) cham­
ber. Each voice sample is played at 70dB (average sound 
power corresponding to normal (non-agitated) conversation 
Intra-location diversity: For each location, we divided the 
room into a 3x3 grid and the speaker was placed at a randomly 
chosen point on the grid. The idea is to rule out bias aring 
from placement of speaker within a fingerprinted location. The 
microphone was placed at a distance of 5cm in front of the 
speaker. Audio sample generation: A VOIP session is set 
up using Skype messenger between the sender at the given 
location and a recipient over mobile broadband link. Audio is 
transmitted in a single direction from the speaker location to 
the receiver. The raw audio signal is encoded by the speech 
codec on the sender side, using a cardoid microphone placed 
two inches in front of the speaker. Next, the encoded signal 
transmitted over the network via to the receiver is decoded 
and the resulting audio stream is recorded. 

In this section, our goal is to understand whether sound 
samples from the same room can be linked to each other from 
a large population of recordings that come from various indoor 
venues. Our dataset consists of sound samples collected in 
locations given in Table I. 

To resist over-training our classifiers, we carried out a ten­
fold cross validation over the audio samples. The dataset is 
partitioned randomly into ten subsets with nine being used for 
training and the tenth being used for validation, repeated ten 
times with each possible sub-sample being used for validation. 
As we require multiple classes (each class corresponds to a 

Fig. 3. Location accuracy vs RT estimation error 

Fig. 4. Location accuracy vs utterance length 

location being fingerprinted), we follow a one-vs-all approach 
wherein a classifier is trained for each location using positive 
and negative labels from the nine subsamples per location. 
Note that all training and evaluation samples are post-codec 
audio signals, which contains noise due to codec operation as 
well as network jitter. The results are shown in Fig. 4 and 
Fig. 3, and we discuss the results. 

Parameter estimation The classifier depends on accurate 
estimation of reverberation time to isolate the reverberant com­
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ponent. In practice, this parameter must be estimated without 
having any information other than the signal itself. Our method 
estimates this parameter, with some errors. The amount of 
error depends on the noise level within the signal. Hence, 
we evaluate how poor reverberation-time estimation impacts 
overall accuracy. We compare the error in room identification 
as a function of estimation error. We vary the error in mi­
croseconds (ms) from the ground truth. The results are shown 
in Figure 3. The results show that if there is a very small error 
(100ms) in estimation, then location identification accuracy 
is above 87%. If the estimation error is larger (200ms— 
300ms), then the accuracy drops to around 75%. In indoor 
offices and residence halls, we found the estimation error to 
be within 60ms. In the stairway, the error was 50ms, and 
around 400ms in the warehouse. The key insight here, is that 
the quality of separation between datapoints corresponding to 
different classes (separating hyperplane) was of sufficiently 
high quality as to enable a high detection rate that decayed 
linearly with quality of capture of the reverberant component 
(higher the RT estimation error, lower the quality of input 
datapoint into the classifer, hence lower the classification 
output). A second insight is that we observe a threshold effect 
in the false-positive rate; the false-positive rate is zero until RT 
error is 300ms but suddenly increases after RT error reaches 
350ms. Until the threshold value, quality separation between 
the various data-point categories (location classes) cushions 
the impact of the estimation error on the false-positive rate. 
Beyond the threshold, the input fingerprint candidate vectors 
are simply noise and get categorised together leading to a 
significant rise in the false-positive rate. 
Utterance length . A second parameter is the minimum 
signal power conveyed by the utterance length. If the utterance 
length is very small, there simly isn’t enough signal strength 
to carry out the necessary discriminative tests. A human 
utterance is a consecutive set of speech segments. During 
data collection, we observed that the length of an utterance 
varies in duration (a well established fact in the literature). 
Our classification technique works by extracting the statistics 
of the reverberant component across the length of an utterance. 
Conversations with long utterances increase accuracy of the 
classification. To understand the impact of utterance length, 
we used the conversations with varing lengths and observed 
classifier accuracy. We used the EmoDb speech sample dataset 
again. In figure 4, we observe that if the length of utterances 
is greater than 3.8 seconds, we obtain over 78% accuracy for 
the classifier, while for utterances lasting less than 1 second 
(monosyllable words) the accuracy is less than 28–30%. 

VI.	 EVALUATION – HOMOGENOUS LOCATIONS (FINE 
GRAINED ANALYSIS) 

The experiments from the previous section demonstrate the 
feasibility of room fingerprinting and identification in a real 
world environment consisting of a wide variety of locations. In 
this section, we demonstrate how well it performs using VoIP 
conversations in locations drawn from a relatively narrow dis­
tribution of acoustic characteristics. Simply stated, we consider 
geometrically identical rooms (with similar construction mate­
rial) such as those found within a modern build. This scenario 

allows us to study the quality of location identification in a 
relatively controlled setting where we can carefully understand 
the parameter space outside of coarse-grained features such as 
room geometry and construction material and focus on fine-
grained features such as network jitter, speaker orientation and 
position within the room, and the speaker’s voice. 

The 38 rooms in the study belong to the computer science 
department of a university. These rooms are customised by 
their occupants using room furnishings such as desks, book­
shelves, monitors, and other objects that affect room acoustics. 
The rooms also have typical noise sources which could be 
continuous (such as air conditioning systems, heater fans, and 
fridges) or intermittent (road traffic). They also have open 
or closed doors. These customisations form the basis for 
location identification. Our goal is to understand the extent to 
which our techniques can exploit these differences in acoustic 
absorbtion characteristics and tolerate noise sources to aid 
location identification. 

For this experiment, we requested sixteen volunteers to 
conduct VoIP sessions in each of the rooms and recorded 
them in two ways. First, the raw signal captured by the 
microphone. And second, the signal reproduced at the receiver 
after passing through the audio codec. For each room, we 
seated the volunteers at nine different positions located at the 
intersections of a 3x3 grid (rectangular). For each position, the 
volunteer was placed facing four different orientations (facing 
each of the room’s walls in turn). Volunteers were instructed to 
remain in a neutral tone and hold a conversation by reading out 
from a script. Each volunteer sitting in one of the experiment 
rooms interacts with an experimenter via a LAN link to a 
room on the same campus. The scripts are from the NXT 
Switchboard Corpus [4] consisting of telephone conversations 
between speakers of American English, is one of the longest-
standing corpora of fully spontaneous speech. We used to 
MS-State transcript of the corpus, and all volunteers read the 
same transcript for consistency. The corpus has transcripts that 
support conversations of different lengths, while allows us to 
study classifier accuracy for this parameter. 

A. Codecs 

Up until now, we have analysed raw speech signals. We now 
consider the impact of speech codecs used in VoIP systems. 
Codecs apply a range of techniques such as compression 
and variable sampling rates to efficiently encode as much 
of the speech information as possible under assumed steady 
state network conditions. The resulting compression presents 
a significant challenge to remote fingerprinting due to the 
potential loss of relevant signal information that can be crucial 
to the effectiveness of the fingerprinting process. 

Modern codecs involve a number of functions. Voice ac­
tivity detection – generates a measure of speech activity 
by measuring the signal-to-noise ratio, often across multiple 
frequency bands (ranges). A variable cutoff high-pass filter 
removes ambient sounds – low frequency background sounds 
and breathing noise. The variable cutoff ensures that for high-
pitched voices the cutoff is correspondingly higher, allowing 
all but the lowest harmonics to be filtered out. Error coding is 
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Fig. 5. Location accuracy vs bitrate 

deployed by some codecs to absorb the random loss of packets. 
This is usually done by forward packet coding techniques, 
where in information about the current packet in the queue is 
probablistically injected into a fraction of subsequent packets. 
Finally, Noise shaping is used to exploit the properties of 
the human auditory system. In modern codecs, the encoder 
determines the speech signal by minimising the perceptual 
error rather than actual reconstruction error. The decoder then 
uses a postfilter on the reconstructed signal to supress spectral 
regions where the reconstruction error (quantisation noise) 
is expected to be higher relative to the speech signal. Most 
codecs will use some form of a perceptual model [16], [29] 
to make decisions on shaping the signal reconstruction error 
and appropriately boost or supress spectral regions within 
the signal. The use of specific models characterises a codec, 
since its operation reduces bandwidth consumption whilst 
decreasing noise and making the signal more predictable. 
SILK codec(Skype) The widely used Skype VoIP services 
uses SILK codec [14] as well as other proprietary voice codecs 
for encoding high frequencies in the range of 16Khz. [this 
should come from Opus comparison paper from Nokia]. The 
key parameter for our purposes is the target bitrate. SILK’s 
signal bandwidth (frequency range) varies in time depending 
on network conditions. When throughput is low, lower bitrates 
are used, and the codec enters a Narrowband mode wherein 
the sampling rate is set to 8 kHz and the signal bandwidth 
covers 300-3400Hz. In this mode, higher frequencies are 
not transmitted, potentially affecting the performance of our 
fingerprinting techniques. The range of frequencies skipped in 
this manner depends on the network throughput. Internally, 
SILK supports 8, 12, 16, and 25kHz resulting in bitrates from 
6 to 40 kbps. 

Figure 5 shows the impact of bitrate on fingerprinting 

efficiency (detection rate). We observe a rather low efficiency 
40%, at very low bitrates in the range of 6–10kbps. Around 
14–16kbps we observed an increase in attack efficiency to 
71%. This is interesting and linked to the increase in sampling 
rate to 12kHz around 10–12kbps when SILK assumes a wider 
signal bandwidth of 6kHz. A steady improvement in attack 
efficiency is noted as the sampling rate improves transmitting 
a greater part of the signal bandwidth to the receiver. An­
other increase (to 77%) is noted at 24kbps when the codec 
switches to 24kHz sampling rate internally, also known as the 
superwideband mode in SILK parlance, stabilising to 82% at 
40kbps. At higher bitrates, SILK is able to support a wider 
band of frequencies allowing a larger fraction of the signal 
features to be transmitted to the receiver which significantly 
improves fingerprinting. 

AMR-WB (Blackberry AIM) AMR is an audio data com­
pression scheme optimised for speech coding in telecom­
munications systems such as GSM and UMTS. It employs 
Linear Predictive compressive coding, just like SILK does 
in Narrowband mode. However, unlike SILK AMR employs 
LP throughout, to support signal frequencies from 50Hz to 
7000Hz. AMR supports bitrates from 4.75 kbps onwards upto 
23.05 kbps. AMR is somewhat dated as a codec in terms of 
design principles and applications, we use it as a baseline to 
compare against relatively modern codecs. 

722.1c 722.1c is a low-delay generic audio codec [35] 
standardised by the ITU. It is deployed widely in hardware-
based VoIP devices particularly the Polycom series. It offers 
supports sampling rates above 32kHz offering a wider band 
than AMR, whilst supporting bitrates of 24, 32, and 48kbps. 
Results in figure 5 show that at least 32kbps is required to 
achieve reasonable fingerprinting success. 

a) Opus (Facebook Messenger): The Opus codec is 
a framework for composing previously known high quality 
codecs, SILK [14] and CELT [21]. It operates in three modes: 
SILK mode, a new hybrid mode, and CELT mode. In the 
SILK mode, it supports narrow to wide frequency bandwidths, 
with relatively low-bit rates. The CELT mode is a high-bitrate 
consuming codec offering a greater bandwidth than the SILK 
mode; it’s best suited for audio signals. We observe a detection 
rate of less than 50% at less than 10kbps in LP mode. At 
12kbps, we observe a significant improvement of 19% in 
fingerprinting efficiency to 70% (which is in the realm of use­
fulness). This is the threshold when Opus switches to Hybrid 
(wideband) mode, once again confirming the importance of 
mid-range frequencies in the accuracy of room fingerprinting. 
This is of interest, since it’s meant to fill the gap between LP 
mode and the MDCT mode. This is the threshold at which 
Opus internally shifts from a lossy compression to lossless 
compression. As the bitrate increases the signal bandwidth 
increases leading to a greater fidelity on the decoder. At 
14kbps, the Opus codec shifts from LP to hybrid mode, 
however at this bitrate, room fingerprinting in hybrid mode 
performs much worse than in LP mode. At around 18kbps, 
the codec recovers to the same level as LP mode at 12kbps. 
A second threshold increase is noted at 20kbps as the hybrid 
mode starts to support the super-wideband frequency range. 
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Gradual further improvement is noted to 85% which is fairly 
close to the baseline (no compression) figure of 87% accuracy. 
This is achieved when the bitrate is high enough (¿48kbps) to 
allow lossless compression in CELT mode super-wideband. 

All tests were performed with a frame length of 20ms at 
constant bit rate. Opus supports short (2.5ms) and long (60ms) 
frame lengths. Shorter the frame, higher the bitrate. Opus also 
supports redundant information, which improves quality at a 
cost of higher bitrate allowing the decoder to recover against 
frame losses due to random faults. In addition to frame length 
adjustment and redundant information, Opus also supports 
multiple frame packetisation. This improves coding efficiency 
by reducing the number of packet headers needed per second 
at the cost of additional delay. Overall, we have focused our 
analysis on the impact of bitrate and assumed the network 
path is free of significant variations in jitter and other error 
conditions. This is sustainable under the assumption that the 
significant parameter is variable network bandwidth available 
to the VoIP application resulting in variable bitrate. As part 
of future work in the area, we plan comprehensive analysis 
involving other parameters, namely redundancy, framelength, 
jitter, look ahead, and training and testing on different condi­
tions influenced by these parameters. 

B. Time invariance – Reflection characteristics 

Any location fingerprinting method should be robust to 
random (non-adversarial) noise i.e temporary changes in the 
environment. We study the effects of two types of noise. The 
number of humans in a location can be time variant. For 
instance, the occupancy rates of meeting rooms, lecture rooms, 
and coffee shops can vary, changing both ambient noise as 
well as the physical characteristics of the room. We evaluate 
the impact of room occupancy on refl first. 

First, we study the impact of room occupancy on reflection 
characteristics, i.e changes in the reflection/absorbtion charac­
teristics of a room depending upon the number of people in it. 
Second, we will study the impact of ambient noise on attack 
efficiency, in the following subsection. 

Conti et al. [7] showed that human bodies are good multi-
directional reflectors assisting in the mixing of sound within 
a room. They demonstrated that the extend of reflection is 
soley described by the mass of the human which acts as 
a rigid water-filled ellipsoid. And, absorbtion by the human 
body is largly dominated by the amount and type of clothing 
— naked bodies will reflect entirely while think winter coats 
will increase signal absorbtion. Since the fingerprinting attack 
is primarily sensitive to the absorbtion characteristics of the 
room, the expected impact is minimal in most circumstances. 
However, as reflectors, the scattering of sound from the human 
body can cause new influences. For instance, if an absorbtive 
surface such as a couch is blocked by room occupants, it could 
change the room’s fingerprint. 

We examined the impact of room occupancy on reflection 
characteristics, we ran experiments in six different lecture 
rooms with various rates of occupancy. Training was carried 
out using audio traces recorded in a near-empty occupation 
state when only a few students were present. Testing was 

Fig. 6. Location accuracy vs room occupancy 

carried out at various rates of occupancy. For each room, we 
recorded four to eight different speakers lecturing or giving 
a talk over a period of 30 to 50 minutes. For each speaker, 
we collected sound traces specifically for training by having 
them read a standard script under the pretext of testing the AV 
system. Each session was recorded after taking consent of the 
speakers. 

Figure 6 shows that the detection rate is decreases gradually 
after around 60% occupancy. We note a decrease of around 
12% in the detection rate in case of SILK, from a high of 83% 
to 69%. In the case of Opus, a decrease of 14% from 87% to 
73% is noted. Interestingly, the false-positive rate of detection 
is stable throughout for both SILK and Opus codecs. These 
results indicate that occupancy has some impact but the attack 
is still a credible threat even at high occupancy rates. In the 
case of lecture and meeting rooms, all occupants were seated 
and the speaker was standing allowing the sound waves ample 
access to most parts of the room. 

However to confirm our hypothesis that attack accuracy is 
sensitive to absorbtion, we carried out another experiment. 
In this we examine the efficiency of attack when a speaker 
is surround by other people. For instance, when a hostage 
is making a statement whilst surrounded by kidnappers, or 
team participants are huddled around a microphone during 
a conference call. In this case the speaker is stitting down 
while being surrounded by people. All other test parameters 
remained the same. We observed that the detection rate incurs 
a steep fall to 50% after around 40% of the surrounding space 
is blocked. As the surrounding space is progressively blocked, 
the impact of the walls on the room behaviour is replaced 
by the sound scattering properties of people. In the worst 
case, only a minimal amounts of reverberation is created. The 
detection rate does not decrease to zero because sound being 
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Packet loss% SILK OPUS 
0 82.30/1.63 87.40/0.71 
5 80.31/1.89 85.60/0.94 
10 70.18/4.22 80.45/0.97 
20 51.91/14.23 74.71/3.66 
50 34.00/18.90 46.95/8.07 

TABLE II 
IMPACT OF PACKET-LOSS ON ATTACK EFFICIENCY 

a pressure wave can bend around obstacles albeit at a reduced 
amplitude. 

C. Robustness to network jitter 

VoIP traffic flows are routed over the Internet as a sequence 
of packets. In the process, flows can experience variability in 
the inter-arrival times of packets (jitter), experience loss of 
packets, and variation in throughput due to dynamic router 
work-loads. The impact of all these on the codec is that 
packets that arrive too late at the destination are not played 
out (discarded). This in turn impacts attack efficiency since the 
loss of audio information can negatively impact the generation 
of a reliable fingerprint — audio is damaged to the extent that 
the reverberant signal components are missing. 

Since packet delays and losses damage audio quality, 
most codecs used by secure messaging systems implement a 
(packet) loss concealment strategy. This attempts to maintain 
a perceptual level of voice quality despite any residual packet 
loss. Often, this is implemented by some form of modification 
to the signal waveform involving the generation of missing 
audio segments that are used to replace the speech segments 
that are lost or delayed due to noisy channels. One class of 
techniques is the use of insertion schemes, that replace missing 
speech segments with silence or a copy of a recently delivered 
segment with minor modifications. An alternate approach used 
by both OPUS and SILK codecs, is the replacement signal is 
generated using the frequency spectrum of recent segments 
as this results in better perceptual quality. For instance, sub­
stituting the missing signal with another signal with identical 
frequency spectrum whilst replicating the pitch waveform from 
a recently received speech-segment signal. A hybrid approach 
is to play out the segment that is still on time. We note 
that jitter by itself does not affect the attack efficiency since 
the packets arriving late can still be leveraged for fingerprint 
construction, although they are not played out. Hence, the 
focus of our analysis is on missing packets rather than delayed 
ones. 

We introduced packet losses at various rates and observed 
changes in attack efficiency. A Pica8 3920 SDN switch used 
for routing flows between source and destination pairs. The 
switch was configured to drop packets from the source-
destination flows at different rates of packet loss. 

For packet loss rates of around 5-10%, we find that the 
attack efficiency is fairly high with low FPR and reasonable 
detection rates of above 80% in the case of Opus. In the case 
of SILK codec, the detection rates are around 80% until 5% 
jitter and then reduce to 70% for 10% jitter. For higher rates 
of jitter, attack efficiency is severely degraded in both cases to 
less than 50%. More, importantly we note that the FPR in Opus 

is relatively stable, being less than 1% until medium levels of 
jitter (10%), increasing only to around 8% for 50% jitter. The 
attack efficiency degrades faster when operating via the SILK 
codec for increasing jitter; beyond 10% jitter, FPR degrades to 
14–18% which is very high. The reason for the higher attacker 
efficiency via Opus is because of a dynamic jitter buffer. When 
frames arrive after the length of the jitter buffer they are 
discarded. In the case of Opus, the codec adapts to lossy 
network conditions by embedding packet information into 
subsequent packets allowing significantly better reconstruction 
rates and hence enhanced attack efficiency in comparison with 
SILK. 

D. Discussion 

The diffraction properties of sound waves can be a source 
of new attacks on communication privacy. Sound waves can 
record information about the location of the speaker as well as 
the recorder. We found that it is possible to distinguish between 
indoor recording locations even when the rooms were identical 
in geometry. 

First, we experimented in locations with significant diversity 
from warehouses to car parks and a church. Our main finding 
was that fingerprinting and location detection via a trained 
classifier that has access to samples from all said locations 
was not just possible, but could be carried out with detection 
rates of between 85% and 90% and a false-positive rate that’s 
close to zero in good conditions. Good conditions are not 
ideal conditions: the speaker must speak for a minimum of 
two to four seconds for the detection rate to be high and the 
false-positive rates to be close to zero. We think this is quite 
reasonable and most conversations often last longer than this 
period of time. 

Second, we experimented with locations with relatively little 
diversity, i.e similar sized rooms in an office building, that 
are customised (room contents) by their occupants. Given the 
very low false-positive rates (0.0003%), we documented the 
location accuracy in terms of the detection rate alone. While 
we expected aggressive audio compression employed by the 
codecs to significantly damage the detection rates, we found 
that low-bitrate codecs such as SILK and Opus carry out an 
important function that improves detection rate: they carry out 
background noise removal that negatively influences detection. 
In most cases, the steady state detection rates are between 60 
and 88%, with a room occupancy of less than 50%, and a 
reliable network connection with 5–10% network jitter. 

Our experiments confirm the hypothesis that reverberant 
sound component, if extracted completely and without being 
polluted by direct sounds and early reflections can be used 
to generate location fingerprints with high detection and low 
false-positive rates of detection. We have proposed a suitable 
technique for extracting and exploiting the reverberant com­
ponent and successfully demonstrated how to build location 
fingerprints. 

VII. RELATED WORK 

Users who wish to hide their location whilst online, use 
anonymous communication techniques to hide their IP address. 

http:46.95/8.07
http:34.00/18.90
http:74.71/3.66
http:51.91/14.23
http:80.45/0.97
http:70.18/4.22
http:85.60/0.94
http:80.31/1.89
http:87.40/0.71
http:82.30/1.63
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However, user location information can still leak via side 
channels. Acoustic information in In the architectural acoustics 
community [17], it is well known that the broad physical 
characteristics – physical dimensions of the room and the 
furnishings used – can affect the quality of sound heard by a 
human. It is worth noting that we are our focus is on passive 
sensing of location information, i.e no explicit addition of 
sound is allowed by the attacker within our threat model. 

A. Passive approaches 

There is prior art in using acoustic information for indoor lo­
calisation. Azizyan proposed SurroundSense [1] which distin­
guishes neighbouring shops on the basis of sound amplitude. 
They combine this with camera and accelerometer inputs to 
detect overall shop ambience (sound, light, and decor). They 
report fairly low accuracy levels on the basis of amplitude 
distribution alone. 

Tarzia et al. proposed ABS [31], which measures location 
ambience using low-frequency background sounds such as 
whirring of computers and fans, and the buzz of electrical 
equipment. This is the closest paper to our work since their 
technique is fully passive. ABS divides time into equal sized 
time windows and computes the power spectrum (amplitude 
in each frequency band) in each window, obtaining one result 
vector per window. It then chooses the most frequently occur­
ing power spectrum vectors from the set of all result vectors, to 
filter out transient sounds such as human voices. ABS does not 
function well unless using raw sound traces. When subject to 
the compressive effects of modern speech codecs, most back­
ground sounds except those of a transient nature are removed. 
This is especially aggressive when using VoIP applications to 
transmit sounds, which apply significant amounts of filtering 
and compression to support low-latency communication. ABS 
is also unsuitable as a side-channel technique because of the 
increasing use of noise-cancelling microphones which filter 
out background sound. Noise cancellation is also applied by 
some VoIP applications such as Skype [14], as well as by 
sound recording applications, in order to increase the quality 
of recorded speech and music. 

Another relevant work is SoundSense [19], proposed by 
Lu et al. SoundSense applies a classifier to partition a given 
sound sample into a sequence of events. It identifies transient 
background sounds such as passing trains and associates each 
location with a set of identifiable background sounds which 
forms the location fingerprint. To determine the location, it 
performs a reverse look up on this database given an audio 
stream. SoundSense is ill-suited for localisation, since it can 
only work in locations where the ‘vocabulary’ of external 
sounds uniquely defines the location. Thus it cannot distin­
guish between two quiet locations. Or, between adjacent rooms 
in the same area, unless they are characterised by one or 
more frequent, repeating, transient sounds. SoundSense and 
similar works from the signal processing field, can however 
distinguish between broad classes of locations such as dis­
tinguishing a street from an airport and perform comparably 
with human listeners [10]. These works propose feature sets 
relevant for partitioning sound [8] and advanced signal decom­

position techniques [6] for acoustic context (hence location) 
identification. 

In contrast, VoipLoc depends on unamplified human speech 
as opposed to background noise which ensures it does not get 
filtered out using noise-cancelling functions in microphones or 
signal processing software. Codecs are designed to be carry 
human voice and therefore is hard to filterout, indeed the 
whole purpose of audio codecs is to reject all but speech. 
It is highly robust to compressive codecs except at very low 
bitrates, where the transfer of the primary audio signal itself is 
poor. Location identification using human voice can be fairly 
challenging given the variable signal amplitudes and energy 
envelope across frequencies. Despite this, with appropriate 
normalisation, and by filtering out ambient sound we are able 
to achieve fairly reasonable rates of location identification. 

Another set of works, from the digital forensics community 
leverage room models to determine the authenticity of a given 
audio recording by linking a recorded audio to a physical 
location. Kraetzer et al. [15] showed that it was possible to 
distinguish between recording locations using the recorded 
music. They developed a set of 63 statistical features similar to 
those used in SoundSense [19], consisting of 56 mel-cepstral 
domain based features and 7 time-domain based features. 
Their work showed that it was possible to distinguish between 
recording locations at a macro level, such as between: a large 
office, a small office, a bathroom, a laboratory, a lecture hall, a 
parking lot, and a corridor. Follow up work in audio forensics 
by Usher et al. [34] generalised this a bit further by replacing 
music with the voice of a single human speaker. Malik et al. 
carried out a small study over four very differently sized rooms 
and showed that differently sized rooms had different length 
and decay rate of reverberation [20]. . 

In the content-based audio processing community, audio 
fingerprinting (also called acoustic fingerprinting) is used to 
map an audio recording to a unique identifier. These tech­
niques [5], [12], [20], [36] are suitable for searching for a 
noisy song snippet within a music database. These techniques 
have little to do with location fingerprinting, and instead focus 
on fingerprinting audio content (identifying the speaker or the 
music clip). 

B. Active approaches 

There’s also prior art from the architectural forensics com­
munity. These works [23], [27], [32] apply forensic measure­
ment techniques to develop room models to build auralisation 
systems — synthetic generation of sound in simulated loca­
tions. Or, to develop a high-fidelity location acoustic model 
in order to be able to replicate acoustic effects of a room 
over any anechoic signal [11]. The principle idea is to inject 
well designed impulse signals into a location and measure 
the impulse response to develop a room model. The most 
commonly used impulse pattern is a ‘pop’ impulse composed 
of a single maximum-amplitude signal at maximum frequency 
for a very short period of time, typically a few milliseconds. 
The impulse response appears as a series of reflections most of 
which are temporally non-overlapping with others. Extracting 
a room model from the impulse response is effectively a 
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fingerprinting process. These techniques depend on the use 
of powerful speaker equipment to actively inject a unit im­
pulse signal and record the location response using an array 
of several carefully placed microphones. The state-of-the-art 
technique [9] requires four microphones spaced exactly 1 
metre apart. In comparison, VoipLoc is fully passive technique 
and does not depend on the use of sophisticated equipment 
or specific configurations of microphone arrays at the attack 
location. It uses human voice as the impulse signal and a single 
microphone — which is significant challenging not just due to 
complex interference patterns caused by overlapping signals, 
but also due to compressive codecs and network jitter. 

Sonar systems are capable of location fingerprinting using 
mapping techniques. Both passive [2], [33] and active tech­
niques [30] have been proposed using ultrasonic sonars for 
above ground as well as underground location mapping. While 
the output of these systems can very well be used for location 
fingerprinting, the omnidirectional, unfocused, and insensitive 
microphones built into modern computing devices are not 
serviceable for building a rich sonar system. Thus traditional 
sonar techniques, while excellent at range mapping from a 
distance are of little use in our context where the victim is 
only equipped with a humble computer microphone. 

C. Future work: privacy implications of location fingerprint­
ing 

Applications supporting and accepting voice based commu­
nications are very popular today. Humans record and exchange 
audio data on a planetary scale. For instance, VoIP is a 
popular and important application used by dissidents, police, 
journalists, government, industry, academics, and members of 
the public. Thus privacy for VoIP applications is an important 
requirement. Voice also serves as an increasingly popular 
method of user-device interaction in smart devices, for instance 
to dictate emails to a smartphone. For these reasons, it’s 
important to resist side-channel attacks instituted via audio-
calling technologies. 
’See behind the camera’ attacks: The typical audio con­
ference call involves a human speaking in front of a camera 
which records a video stream of the information in front of 
the camera. This is streamed electronically along with the 
speaker’s voice to one or more destinations. The speakers 
voices are a series of sound signals at various frequencies. 
Both the primary wave and subsequent reflections are recorded 
and transmitted to other parties. Since the subject is facing 
the camera, most of the sound energy is directed in the 
opposite direction to which the camera is facing. The resulting 
sound reflections carry information about the areas behind the 
camera. This can have privacy implications since information 
about the scene behind the camera is being captured. 
Location identification within a given room: VoipLocate 
is a macro-location fingerprinting and identification technique. 
However, users of audio-calling or audio-recording technolo­
gies may want to specifically hide their location within the 
room as well. For instance, consider a citizen journalist 
attending a secret meeting where illegal activities are being 
planned. The journalist wants to secretly record and publish 

the proceedings. In this case, would the audio-reflection char­
acteristics give away his/her location within the room? Since 
both the primary wave from the speaker and the reflections 
are being recorded and made available over the Internet, the 
timing pattern between consequtive reflections of the primary 
wave might reveal information about the specific location of 
the recorder within the room. Specific features include time 
of arrival and sound pressure level. Once the location of 
the recorder is known, the adversary could consult CCTV 
recordings of the room to identify the set of people who were 
standing at the said location during the time of the meeting, 
substantially compromising the citizen journalist’s identity. 

VIII. CONCLUSION 

Location information is embedded into human voice due to 
the laws of acoustic physics — the reflections of direct sound 
interfere with each other and with direct sound resulting in 
a rich interference pattern carried by encoded human voice, 
which forms the basis of location fingerprinting. Given the 
wide usage of smartphones and VoIP tools among the wider 
public to record and transmit audio, this work may have 
important implications for user privacy. 

In contrast to past work that focused on extracting infor­
mation from background sources, side-channels that exploit 
human voice as the carrier signal are hard to filter-out as 
transmission of human speech is the whole point of the com­
munication channel. Modern codecs used in secure messaging 
clients detect and retain relevant signal components (such as 
speech or music) and subsequently apply a range of com­
pressive filtering, and whitening techniques. These techniques 
are designed to remove the impact of steady background 
sounds and transient interference sources, on listening quality. 
However, voice itself must be transmitted with high fidelity 
since that is the primary goal of codec operation. Further, the 
complex wave interference patterns are a fundamental function 
of the location, and cannot be trivially reversed due to the 
time-overlapping nature of the direct sound with its higher 
order reflections (see section II-A). Finally, the attacks are 
completely passive, as there is no requirement for active agents 
to inject marker patterns. 
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