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ABSTRACT 
Location data are routinely available to a plethora of mobile apps 
and third party web services. The resulting datasets are increas­
ingly available to advertisers for targeting and also requested by 
governmental agencies for law enforcement purposes. While the 
re-identification risk of such data has been widely reported, the dis­
criminative power of mobility has received much less attention. In 
this study we fill this void with an open and reproducible method. 
We explore how the growing number of geotagged footprints left 
behind by social network users in photosharing services can give 
rise to inferring demographic information from mobility patterns. 
Chiefly among those, we provide the first detailed analysis of ethnic 
mobility patterns in two metropolitan areas. This analysis allows us 
to examine questions pertaining to spatial segregation and the ex­
tent to which ethnicity can be inferred using only location data. Our 
results reveal that even a few location records at a coarse grain can 
be sufficient for simple algorithms to draw an accurate inference. 
Our method generalizes to other features, such as gender, offering 
for the first time a general approach to evaluate discriminative risks 
associated with location-enabled personalization. 

Categories and Subject Descriptors 
K.4.1 [COMPUTERS AND SOCIETY]: Public Policy Issues— 
Privacy 
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1. INTRODUCTION 
Human mobility is intimately intertwined with highly personal 

behaviors and characteristics. As Justice Sotomayor of the United 
States Supreme Court stated, “disclosed in [GPS] data ... [are] 
trips the indisputably private nature of which takes little imagina­
tion to conjure: trips to the psychiatrist, the plastic surgeon, the 
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abortion clinic, the AIDS treatment center, the strip club, the crimi­
nal defense attorney, the by-the-hour motel, the union meeting, the 
mosque, synagogue or church, the gay bar and on and on [47].” 
For that reason, previous studies of mobility centered on the risk of 
either re-identification in sensitive anonymized location datasets or 
on protecting visits to private locations [9, 16]. 

However, the re-identification risk based on individual locations 
is not the only threat. Many users are producing a series of foot­
prints, which might be innocuous individually, however, taken to­
gether can create a sparse yet informative view allowing inferences 
from their whereabouts. The benefits of revealing locations are ob­
vious: location data can be used for personalizing recommenda­
tions [39] and displaying more relevant advertising [28] in order 
to finance free online services. However, the downsides are more 
difficult to assess. While an individual data point may create no 
privacy risk, an aggregated dataset might enable inferences beyond 
a user’s expectation. 

In this paper we explore the discriminative power of location 
data. Solely based on mobility patterns, which we extracted from 
photosharing network profiles, we infer users’ ethnicities and gen­
der both on a demographic and an individual level. As we discuss 
in §2, this exploration stands in contrast to limitations of previous 
studies as our paper brings together the following contributions: 

•	 We show how photosharing network data can be leveraged 
to extract mobility patterns using a new method for creat­
ing location datasets from publicly available resources. Our 
method combines the use of online social networks and 
crowdsourcing platforms. It has the advantage that it gen­
erally enables anyone to study human mobility and does not 
mandate access to Call Detail Records (CDRs) or other pro­
prietary datasets. (§3). 

•	 To assess the quality of the created datasets we show that 
mobility patterns extracted from photosharing networks are 
comparable in terms of their essential characteristics to those 
previously observed and reported for CDRs. For the first 
time, we extend the analysis of mobility patterns to ethnic 
groups. We show how comparisons lead to statistically sig­
nificant differences that are meaningful for assessing residen­
tial and peripatetic segregation. (§4). 

•	 Finally, we demonstrate the discriminative power of location 
data on an individual level. Our analysis confirms for the 
first time that location data alone suffices to predict an in­
dividual’s ethnicity, even with relatively simple frequency-
based algorithms. Moreover, this inference is robust: a small 
amount of location records at a coarse grain allows for an in­
ference competitive with more sophisticated methods despite 
of data sparsity and noise. (§5). 
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2. RELATED WORK 
Our study complements works on human mobility patterns and 

attribute inference in multiple ways. 
First, the use of location data relates our study to previous in­

quiries into human mobility [7, 14, 36]. In particular, we aggre­
gate location data into mobility patterns and compare our patterns 
to those published in earlier studies [3, 20, 21] for validation, but 
furthermore we analyze those patterns both at an individual level 
and aggregated in multiple demographic groups, including, for the 
first time, from the perspective of ethnicity. This analysis com­
plements previous studies which have shown that mobility is cor­
related to social status [6] and community well-being [25] mea­
sured at city and neighborhood levels. While some studies already 
demonstrated that mobility traces can uniquely identify individuals 
[9, 44], the inference of individuals’ demographic attributes from 
location data, that is, the discriminative power of location data, re­
mained unexplored. We make inferences beyond trip purpose iden­
tification [11], activity type prediction [27, 29], and identification 
of location types [19]. 

Previous studies aimed to infer the ethnicities, gender, and other 
attributes of online users. Often they leveraged linguistic fea­
tures, such as Facebook or Twitter user names, stated first and 
last names [5, 35], or Tweet content [39, 40]. Those studies 
demonstrated an underrepresentation of females and minorities on-
line [35]; a finding which we extend and confirm using photoshar­
ing services. Mobility data from mobile phones were used to pre­
dict personality traits [10], age [4], and gender [43], but, in addition 
to relying on proprietary data, all of these studies solely analyzed 
call patterns or social network properties as opposed to locations. 
In contrast, we attempt to infer attributes using only location data, 
making our work more broadly applicable to any technology that 
can collect mobility information, such as GPS, Wi-Fi, or mobile 
apps. We additionally examine whether predictions become more 
accurate with more data, similar to [1], and how the granularity of 
data impacts prediction accuracy. 

More generally, our analysis fits into the category of works on 
extracting information from social networks, such as [8]. Probably, 
the closest work is [50], which also aims to infer meaning from lo­
cations, however, is not concerned with ethnicity. We obtain our 
data from profiles of the photosharing service Instagram, and our 
analysis is enhanced with auxiliary information from the geo-social 
search service Foursquare and the United States Census 2010 [46] 
(Census). To our knowledge this is the first study demonstrating 
that it is possible to extract from social networks mobility patterns 
that are enriched with ethnic or gender information at an individual 
level. It should be noted in particular that all aforementioned stud­
ies of mobile data rely on proprietary data, primarily CDRs, that are 
only available with the consent of the data owner (e.g., [9, 25]). In 
contrast, our methodology is principally reproducible by anyone at 
a small cost, and our data will be made available shortly after pub­
lication. Our study provides a contribution to overcome the lack 
of publicly available mobility datasets and serves as a validator for 
their patterns. 

3. METHODOLOGY AND APPLICATION 
User profiles on photosharing networks often contain a signif­

icant amount of photos tagged with latitude-longitude GPS loca­
tions. Over time the accumulated location data can build up to com­
prehensive mobility profiles. Based on this insight and given that 
many user profiles on photosharing networks are publicly acces­
sible we now introduce a methodology and its application to con­

struct mobility datasets from readily available data. An overview 
of our methodology is shown in Figure 1. 
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Figure 1: Methodology overview. A mobility dataset can be built in the fol­
lowing steps: (1) Public user profiles of a photosharing service are crawled 
and photo metadata are extracted into a database (Data Collection). (2) 
Corresponding photos are labeled (with labels for ethnicity, gender, etc.) 
by crowd workers in an online labor marketplace (User Labeling). (3) The 
dataset is further enhanced with auxiliary data, e.g., with the information 
that a certain location is close to a restaurant (Adding Auxiliary Informa­
tion). (4) The dataset can then be used to analyze attributes on various 
demographic levels or train and test classifiers for individual inferences. 

Data Collection. 
Applying this methodology, we collected publicly available 

photo metadata from Instagram covering data for the years from 
2011 through 2013. This data collection and use was exempt from 
user informed consent under our institution’s IRB rules since (1) 
we only collected publicly available online metadata, (2) after we 
used the metadata and the users were labeled, any identifying in­
formation, such as usernames, were removed, and (3) we only kept 
track of users’ identities separately and for one single purpose (en­
suring that the data we collected still belongs to a public Instagram 
profile). We started our crawl from a root user (the founder of In­
stagram, on whose feed a large and diverse group of users com­
ment) and followed further users subsequently through comments 
and likes. We skipped users with no geotagged photo in their first 
45 photos. Our crawl retrieved a total of 35,307,441 photo location 
points belonging to 118,374 unique users. 

User Labeling. 
To match previous studies [19, 20, 21] that leveraged ZIP codes 

of CDR billing addresses from the Los Angeles (LA) and New York 
City (NY) metropolitan areas we randomly chose users from those 
areas as well. A user’s home is the ZIP code where he or she had 
the most checkins (that is, photos taken). Note that this mitigates 
the content produced by tourists and other occasional visitors to 
LA and NY unless those have no other Instagram activity. A com­



bination of workers on Amazon Mechanical Turk (MTurk) and un­
dergraduate students were asked to annotate users’ ethnicities and 
gender based on the users’ photos. However, in order to ensure that 
user pictures on Instagram profiles are sufficient to make a conclu­
sive determination of users’ ethnicities and genders we ran a pre­
liminary experiment by selecting 200 profiles at random (excluding 
celebrities and business accounts) and having each labeled inde­
pendently by two undergraduate students. We observed a strong 
agreement on gender (98%). The errors corresponded to a family 
profile belonging to multiple people and profiles with one picture. 

For ethnicity labeling we leveraged Census categories. We asked 
the student annotators to categorize each user either as Hispanic 
or Latino (Hispanic), White alone (Caucasian), Black or African 
American alone (African American), or Other (combining all re­
maining Census categories, including Asian). Merging all remain­
ing Census fields in the last category limits our detail view, al­
though we would otherwise have some annotations being quite rare. 
Just as in the Census, our Hispanic category includes Hispanics and 
Latinos of any race, while the remaining categories do not include 
any Hispanics or Latinos. We found that our profiles are diverse: 
45% Caucasian, 21% Hispanic, 15% African American, and 19% 
Other. The students’ labels matched 87% of the time and when 
evaluated as a binary classification task (Caucasian vs. all other 
categories) the agreement reached 94%. It should be noted that the 
two labeling students were of different gender and ethnicity them­
selves. In conclusion, despite sparse data and ethnicity spanning 
a continuous spectrum, we found that labels are surprisingly pre­
dictable and consistent across annotators. As studies confirmed that 
91% of teens post a photo of themselves on social networks [31] 
and that 46.6% of photos are either selfies or show the user posing 
with other friends [17] there is also evidence in many cases that it 
is actually the account owner who is shown in the pictures. 
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Figure 2: Annotations for LA and NY. Top: percentages of user labels for 
the different categories. Bottom: absolute numbers of labeled users and 
annotation agreement results. 

To scale our annotation, we asked MTurk annotators to label a 
larger number of profiles for the same metropolitan areas using the 
same label categories. For consistency, we did not reuse the profiles 
used for the preliminary experiment described above. Each profile 
was labeled by two MTurk annotators. In cases of disagreement 
between the MTurk annotators we asked one of our undergraduate 
annotators for an additional label to break the tie or assign a label 
from a different third category. We decided to use a tiered annota­
tion mechanism with the undergraduate annotator making the final 
decision in case of disagreements as unsupervised crowd workers 
on MTurk or similar platforms tend to be less attentive than phys­
ically available workers [37], who also have the possibility to ask 
clarifying questions. We were also careful to not drop any labels 
to avoid the introduction of a systematic annotation bias. Over 
two days 117 MTurk annotators participated in our task resulting 
in 1,015 properly labeled users with the labels shown in Figure 2. 

On the first day the annotators were compensated $0.10 per anno­
tation and on the second day $0.05. The undergraduate annotator 
was compensated the regular stipend at our institution. 

In order to measure the quality of agreement among the annota­
tors we made use of Krippendorff’s α [23]. Generally, values above 
0.8 are considered as good agreement, values between 0.67 and 0.8 
as fair agreement, and values below 0.67 as dubious [32]. Figure 2 
shows that we obtained fair and good agreement and, thus, reliable 
ground truth for both our ethnicity and gender classifications. 

Adding Auxiliary Information. 
We collected auxiliary information from two sources. First, for 

the comparative analysis of demographic patterns with our data in 
§4.2 we used data from the Census [46] to associate geographic 
regions with gender and ethnicity distributions. Throughout the 
study we use Census-defined geographic granularities, ranging 
from block groups of 600-3k people to neighborhood tabulation 
areas (NTAs; 15k people), public use microdata areas (PUMAs; 
100k people), and counties with populations of up to 2.6 million. 
We adjusted the distributions by ethnicity- and gender-specific In­
ternet [13, 30] and Instagram [12] usage numbers. As explained 
in §4.2 we also took into account that Caucasian Hispanics are of­
ten perceived as Caucasian alone [34]. Second, for each checkin 
we obtained Foursquare information on the ten closest venues. We 
then used Foursquare’s average venue popularities and venue cate­
gories as features for our inference algorithms (§5) since those fea­
tures could provide an estimate of the types of places a user would 
visit. 

4. MOBILITY-DEMOGRAPHICS 
We now present a mobility pattern analysis for various popula­

tion levels. Our dataset reveals mobility trends similar to those of 
CDRs (§4.1) and generally represents the adjusted Census popula­
tion well (§4.2). In many cases we are able to detect differences 
in mobility patterns between ethnic groups and genders that can be 
plausibly explained by previous sociological findings (§4.3), and 
we are also able to detect segregation among ethnic groups (§4.4). 

4.1 Mobility Patterns 
In order to compare the mobility patterns of our dataset to those 

in the CDR dataset of [20, 21] we only consider checkins for the 
years 2011 through 2013 each for the Spring months from March 
15 to May 15 and for the Winter months from November 15 to 
January 31 (the LA and NY Spring and Winter subsets, respec­
tively). Table 1 shows the distribution of the data in our subsets 
compared to those in the CDR dataset [20]. The mobility traces 
from our subsets are much more sparse. Most notably, while the 
CDR dataset has at least eight location points from call activity per 
day for the median user in LA and NY—and even 12 if text mes­
sages are added—the data in all of our subsets account for only one 
location point for the median user per day. 

Another insightful metric for comparing mobility patterns is the 
daily range, defined as the maximum straight line distance a phone 
has traveled in a single day [21]. Daily ranges are characteristic for 
mobility because, for example, median daily ranges on weekdays 
represent a lower bound for a commute between home and work 
locations [21]. Figure 3 shows a subset of our results. Our ranges 
are generally smaller than those reported by [20, 21]. However, the 
general trends in both datasets are similar. Most importantly, peo­
ple in LA have generally greater ranges than people in NY. Also, 
in both areas people tend to travel longer during the day than at 
night. However, there are also differences: according to our data 
New Yorkers in the 98th percentiles travel farther than Angelinos. 



Spring Winter 
Statistic LA NY LA NY 
Total Checkins 
(Total CDRs) 

135,503 
(74M) 

109,506 
(62M) 

118,446 
(247M) 

98,286 
(161M) 

Min. Loc./Day 1 1 1 1 
1st Qu. Loc./Day 1 1 1 1 
Med. Loc./Day 
(Med. Calls/Day) 
(Med. Texts/Day) 

1 
(9) 
-

1 
(10) 

-

1 
(8) 
(4) 

1 
(9) 
(3) 

Mean Loc./Day 1.97 2.12 1.96 2.1 
3rd Qu. Loc./Day 2 2 2 2 
Max Loc./Day 73 62 98 69 

Table 1: Statistics of our LA and NY subsets compared to the CDR dataset 
in [20] (where available, in parentheses). Our calculations do not consider 
any day where a user had no checkins. 

4.2 Demographic Patterns 
As our LA and NY subsets are annotated with ethnicity and gen­

der labels (§3) we are able to compare the resulting demographic 
distributions to the respective Census distributions. However, ini­
tial comparisons reveal substantial differences. For example, ac­
cording to the Census there are more females than males (53% vs. 
47%) living in Kings County [46] while our observed label fre­
quencies suggest that there should be substantially fewer (43% vs. 
57%). This result is even more surprising as the gender-specific 
usage rates of Internet (70% vs. 69%) [13] and Instagram (16% vs. 
10%) [12] should further increase the percentage of females beyond 
the Census. However, while 86% of female social network account 
owners set their profile to private, only 74% of males do so [30]. 
Adjusting the Census distribution for this difference (as well as for 
gender-specific Internet and Instagram usage rates) leads to a dis­
tribution of females and males (49% vs. 51%) much closer to the 
distribution we observed for our labels. 

Similarly to gender, we make adjustments to the Census distri­
butions for the varying percentages of Internet and Instagram us­
age rates among different ethnicities as well. However, even then 
we still observed a substantial Hispanic underrepresentation, which 
was also observed for the southwest of the United States by [35]. 
We found this phenomenon difficult to assess, specifically, as eth­
nicity is not significant for setting a profile private [26], activity lev­
els (posting pictures, etc.) are not lower for Hispanics [45], and our 
annotation disagreements are not higher when the Hispanic label 
is involved. However, we believe that the reason for the underrep­
resentation is the perception of Caucasian Hispanics as Caucasian 
alone. In a study, six of seven Caucasian Hispanics reported that 
others see them as Caucasian alone [34]. Therefore, we believe 
that most Caucasian Hispanics were actually labeled as Caucasian 
(i.e., our annotators agreed on an incorrect classification). Thus, we 
adjusted the observed label frequencies by adding to the Hispanic 
labels a number of labels corresponding to the Census percentage 
of Caucasian Hispanics and subtracting the same number from the 
Caucasian labels. 

We perform chi square tests for goodness of fit comparing the 
gender and ethnicity distributions of our labels to the correspond­
ing Census distributions for different levels of granularity. In most 
cases we obtain a value of p > 0.05 and find no evidence to reject 
the null hypothesis that the observed gender and ethnicity distribu­
tions follow the corresponding Census distributions. For example, 
as shown in Figure 4, for eight out of 11 counties in the NY area 
our tests resulted in p > 0.05 providing no evidence that our multi-
category ethnicity distributions deviate significantly from the Cen­
sus distributions. However, there are also cases with differences. It 
is no surprise that this is true for the state level as our distributions 
only cover users from the LA and NY metropolitan areas. How-
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Figure 3: Daily ranges in miles. Top: boxes show the 25th, 50th, and 
75th percentiles; whiskers the 2nd and 98th percentiles. Bottom: table 
with the percentiles represented in the boxplots. The maximum range (Max. 
Mo.–Fr.) is a user’s longest distance and the median range (Med. Mo.– 
Fr.) a user’s median distance, each taken on a single day for the entire 
Spring subset on a weekday [21]. The median range at night (Med. Night) 
represents the median distance a user has traveled on a day for the entire 
combined Spring and Fall subset from 7pm–7am [20]. Previous results [20, 
21] are shown in parentheses. Our calculations do not consider any day 
where a user had a zero range, that is, had multiple checkins at the same 
location or a single checkin only. We define E < 0.005 miles. 

ever, overall we believe our results suggest that geotag data often 
replicate demographic trends faithfully. 

4.3 Mobility Patterns by Demographic 
By combining our methodologies from the previous two subsec­

tions we now show the differences in mobility patterns between 
ethnic groups and between males and females, respectively. In par­
ticular, we examine differences in daily ranges, home ranges, and 
temporal checkin characteristics. 

Daily Ranges. 
Figure 5 shows some of our daily range results for ethnic groups 

and genders based on our sets of labeled users for LA and NY. We 
obtained the same types of daily ranges as described earlier in Fig­
ure 3, however, this time for all days of the year. It is striking that 
Caucasians generally have a higher maximum daily range than the 
other ethnic groups. Indeed, a two sample Kolmogorov-Smirnov 
test reveals that the Caucasian range distribution differs signifi­
cantly (p < 0.05) from the African American and Hispanic distri­
bution. This result illustrates a more general finding: daily ranges 
of Caucasians often differ significantly from those of minorities. 
For 44% (8/18) of the comparisons of a Caucasian distribution to 
a minority distribution (three comparisons for maximum weekday, 
three for median weekday, three for median at night—each for LA 
and NY) the difference is significant at the 0.05 level. However, 
for the comparisons among minority distributions we only find 6% 
(1/18) to be significantly different from each other. 



Ethnicity Multi-Cat. Ethnicity Binary Gender 
Gran. LA NY LA NY NY 
State 0/1 0/1 1/1 0/1 1/1 

(0%) (0%) (100%) (0%) (100%) 
County 1/2 8/11 2/2 6/8 4/4 

(50%) (73%) (100%) (75%) (100%) 
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Figure 4: Chi square goodness of fit test results for ethnicity and gender 
at various levels of Census-defined granularity. Top: detailed view of the 
multi-category ethnicity distributions for the NY county level. Left bars 
show the Census distributions (Cen.) and right bars the label distributions 
(Label). Bottom: complete results of the chi square tests. NTAs are specific 
to NY and not available for LA. Below the ZIP code and NTA levels we 
did not have enough data to perform chi square tests. We follow [42] and 
require the average expected frequency for a chi square test with more than 
one degree of freedom to be at least two and for a test with one degree of 
freedom to be at least 7.5. To prevent skewing due to small sample sizes we 
also use a Monte Carlo simulation with 2,000 replicates. 

The differences in ranges by ethnicity can be most prominently 
observed in the comparisons of Caucasians to African Americans 
and to Hispanics. However, it should be noted that at night all eth­
nicities exhibit very similar ranges. This finding stands in contrast 
to the difference in daily ranges between males and females. In 
fact, the only statistically significant difference (p < 0.05) that we 
observed between male and female ranges occurs for the median 
daily ranges at night. As shown in Figure 5, females tend to travel 
smaller distances at night than males. There are many possible ex­
planations for this phenomenon. One reason could be that women 
travel fewer times at night due to safety concerns [2] and, conse­
quently, also avoid longer trips. In general, for both males and 
females—as well as for all ethnicities—we find that our observed 
daily ranges follow a (skewed) log normal distribution. 

Home Ranges. 
In order to evaluate differences in mobility with respect to an 

individual’s home location we complement the analysis of daily 
ranges with the evaluation of home ranges. A home range is a 
straight line distance between someone’s home and another place to 
which the person travels. Different from daily ranges we calculate 
the home ranges not on a daily basis, but instead consider all home 
ranges—whether they were the maximum travel distance for a day 
or not. Based on a user’s home location, as specified in §3, we 
calculate the distance between the home and each checkin for the 

Figure 5: Daily ranges in miles. Top: density plot of the maximum daily 
ranges by ethnicity. Middle: density plot of the median daily ranges at 
night by gender. Bottom: table with the percentiles of the daily ranges 
represented in the plots. We rounded extremely small daily ranges up to 
0.005 miles. Our calculations do not consider any day where a user had a 
zero range, that is, had multiple checkins at the same location or a single 
checkin only. We define E < 0.005 miles. 

different ethnic groups and genders. Figure 6 shows the resulting 
CCDFs for the home ranges of the NY users. 

Both graphs show a noticeable decrease around the 2,500 mile 
mark, which is the distance from NY to major hubs on the West 
Coast of the United States (most notably LA (2,475 miles), San 
Francisco (2,563 mi), and Seattle (2,405 miles)). Males and fe­
males have very similar home ranges at the edges of the graph. 
However, females travel farther in the medium home ranges. This 
finding could be based on the fact that women generally take more 
often vacations [22] and travel longer distances to work when they 
are employed full-time [24]. It should be noted that the larger home 
ranges are not inconsistent with the previous observation of shorter 
ranges for females at night as that result does obviously not con­
sider ranges during the day. The plot for ethnicity is in line with 
our previous observation that Caucasians travel farther from home 
than minorities. 

Temporal Checkin Characteristics. 
Beyond spatial differences we explore differences in temporal 

activity as well. Figure 7 shows histograms for checkins by hour of 
day. As might be expected, we observe periodic behaviors with low 
checkin levels between 4–6am and peak levels from 3–8pm. On 
weekends the lows occur at later times than on weekdays suggest­
ing that users wake up later on weekends. We also see a dramatic 
increase in activity after 5pm on weekdays, which could correspond 
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Figure 6: CCDFs of home ranges for NY. Top: CCDFs for different ethnic 
groups. Bottom: CCDFs for males and females. 

Figure 7: Histograms of checkin times for NY. Left: Comparison of week­
ends and weekdays for all user groups. Right: Comparison of Caucasian 
and minority user groups for weekends and weekdays. Dashed lines corre­
spond to weekends, solid lines to weekdays. 

to the time at which many users get off of work. When broken up 
into Caucasians and minorities, we see fairly similar curves, except 
with a more pronounced weekday after-work increase for minori­
ties. It could be the case that Caucasians work more often in flex­
ible environments. We observe no substantial differences between 
genders or NY and LA. 

4.4 Ethnic Segregation 
Location data are the basis for measuring residential segregation, 

that is, the degree to which two or more groups live separately 
from one another in different parts of the urban environment [33]. 
Trends in residential segregation characterize a group’s proximity 
to community resources (e.g., health clinics) and its exposure to 
environmental and social hazards (e.g., poor water quality and 
crimes) [41]. In addition to residential segregation we also intro­
duce and evaluate mobility segregation, which we understand as 
the degree to which two or more groups move to and from different 
parts of an area. Mobility segregation allows for a dynamic view 
of segregation, for example, in order to determine a group’s ease 
of access to community resources away from home. 

Methodology. 
Various intersecting dimensions of segregation can be distin­

guished [33]. We explore two standard measures, each for a dif­
ferent dimension: the interaction index measures the dimension of 
exposure (the extent to which minority group members are exposed 
to majority group members in an area [33]) and the entropy index 
measures the dimension of evenness (the extent to which minor­
ity group members are over- or underrepresented in an area [33]). 
The interaction index, B, can be understood as the probability of a 
minority group member interacting with a majority group member 
and is defined [48] by 

Bkl = 
K 

( 
nik 

Nk 
)( 
nil 

ni 
), (1) 

where nik is the population of ethnic minority group k in area i 
(e.g., in a ZIP code area), Nk is the number of persons in group k 
in the total population of all areas, nil is the population of ethnic 
majority group l in area i, and ni is the area population. 

The entropy index was used in social network research before 
[8] and has the advantage over other indices that it can be used 
to measure segregation for more than two groups. We define the 
entropy index [48], H , as 

H ∗ ¯− H 
H = , (2)

H∗ 

where H ∗ is the population-wide entropy defined by 

KK 
H ∗ = − Pk ln(Pk), (3) 

k=1 

¯and H is the weighted average of the individual areas’ entropies 
defined by 

I KK ni 
K 

H̄ = − Pikln(Pik), (4)
N 

i=1 k=1 

where K is the number of different ethnic groups, Pk is the pro­
portion of ethnicity k in the total population, I is the number of 
different areas, ni is the population in an area, N is the sum of the 
population from all areas, and Pik is the proportion of the popula­
tion of ethnicity k in area i (while it is defined that Pikln(Pik) = 0 
for Pik = 0). 

For both interaction and entropy indices we make use of our sets 
of labeled users for LA and NY, however, exclude all areas for 
which the label distribution deviated significantly from the Census 
distribution as indicated by p ≤ 0.05. Thus, for example, as shown 
in Figure 4, on the county level we do not include Queens, Kings, 
and Bergen. These exclusions are necessary as otherwise the accu­
racy of our results decreases substantially. Recall that we define a 
user’s home as the ZIP code where he or she had the most checkins 
(§3) and that we adjust label and Census distributions (§4.2). 

Residential Segregation. 
Tables 2 and 3 show our results for the interaction and entropy 

indices, respectively. For the most part the interaction between 
Caucasian and minority group members can be considered fairly 
high [18]. All three minorities in LA and NY have similar proba­
bilities of interacting with Caucasians. The measurement errors of 
5% (Hisp./Cauc. and Oth./Cauc.) and 6% (Af. A./Cauc.) between 
our labeled data and the Census suggest that our results are overall 
reliable. The inaccurate results for LA on the ZIP code level appear 



Hisp./Cauc. Af. A./Cauc. Oth./Cauc. 
Gran. LA NY LA NY LA NY 
County 0.29 

(-2%) 
0.34 

(+2%) 
0.27 

(+1%) 
0.3 

(-2%) 
0.3 

(-3%) 
0.4 

(0%) 
PUMA 0.32 

(-6%) 
0.39 

(+3%) 
0.43 

(+4%) 
0.42 

(+7%) 
0.31 

(-10%) 
0.49 

(+5%) 
NTA -

-
0.54 

(+6%) 
-
-

0.43 
(+3%) 

-
-

0.55 
(+7%) 

ZIP 0.36 
(-19%) 

0.56 
(0%) 

0.33 
(-23%) 

0.55 
(+1%) 

0.58 
(-1%) 

0.5 
(-7%) 

∅ % Diff. 5% 6% 5% 

been a surprise to see lower levels of segregation as residential seg­
regation is already relatively low. 

Interaction Entropy 
Metro Hisp./Cauc. Af. A./Cauc. Oth./Cauc. All Eth. 
LA 0.55 

(+1%) 
0.57 
(0%) 

0.58 
(-1%) 

0.06 
(+1%) 

NY 0.54 
(-2%) 

0.53 
(-1%) 

0.53 
(-5%) 

0.06 
(+2%) 

∅ % Diff. 1% 1% 3% 1% 

Table 2: Interaction index (B) for different granularities based on labeled 
Instagram data. Differences to the interaction index calculated from Cen­
sus data are shown in percentage points in parenthesis. For example, the 
probability of a Hispanic person to interact with a Caucasian person on the 
PUMA granularity level for NY is 39%. However, as shown in parenthesis, 
this result is an overestimation by three percentage points over the Census 
distribution probability of 36%. The last row of the table shows the mean 
difference between our labels and the Census for the three different ethnic­
ities in absolute percentage points for both LA and NY together. Note that 
NTAs are not available for LA and that we also did not analyze the state 
level as the label and Census distributions differ significantly (Figure 4). 

Entropy 
Metro County PUMA NTA ZIP ∅ % Diff. 
LA 0.01 

(-2%) 
0.15 

(+8%) 
-
-

0.15 
(+9%) 3%NY 0.08 

(0%) 
0.14 

(+1%) 
0.08 
(0%) 

0.09 
(+4%) 

Table 3: Entropy index (H) for different granularities based on labeled 
Instagram data. Differences to the entropy index calculated from Census 
data are shown in percentage points in parenthesis. As explained in Table 
2, the last column shows the measurement error. As further explained in 
Table 2, we did not consider NTA (LA) and state granularities (LA and NY). 

to have been caused by the smaller number of data points. While 
the level of interaction seems to increase when areas become more 
fine-grained, this phenomenon seems to be caused by the different 
area coverage for the various granularities. For example, it is not 
present when considering all NY city areas, where the Census dis­
tributions for the interaction of African Americans and Caucasians 
are: 0.41 (County), 0.25 (PUMA), 0.2 (NTA), and 0.22 (ZIP). 

With entropy index scores ranging from 0.01 to 0.15, as shown in 
Table 3, we find another indicator for low segregation [18]. How­
ever, it should be noted that this low level of segregation is a char­
acteristic of the particular areas we investigated. For example, for 
all NY city areas at the NTA level we calculated an entropy of 0.31 
indicating higher segregation. However, with mean differences of 
5% (Hisp./Cauc.) and 6% (Af. A./Cauc. and Hisp./Oth.) between 
the results for our labeled data and the Census-based calculation 
our findings are generally reliable. As in the case of interaction, we 
believe that any existing inaccuracies could be due to small num­
bers of data points. 

Mobility Segregation. 
We evaluate mobility segregation based on the same measures as 

residential segregation—interaction and entropy indices. However, 
instead of using home locations we leverage checkin data. More 
specifically, for each user we calculate the percentage that he or 
she spent at a certain area and sum the resulting values for all users 
of a certain ethnicity. This method aims to avoid overcounting of 
active users. Our results are shown in Table 4 and indicate that 
segregation levels in terms of where people go are similar to levels 
of where people live. Indeed, it would have been surprising to see 
higher segregation levels as members of minority groups may work 
in predominantly Caucasian areas. Furthermore, it would also have 

Table 4: Mobility interaction and entropy indices for ZIP code granularity 
based on labeled Instagram checkin data. Differences to the residential 
interaction and entropy indices calculated from Census data are shown in 
percentage points in parenthesis. The last row of the table shows the mean 
difference between our labels and the Census in absolute percentage points 
for both LA and NY together. 

5. INFERENCES FROM MOBILITY DATA 
We now show how location data by itself allows to infer ethnic­

ity and gender of individual Internet users. We introduce a sim­
ple frequentist approach (§5.1), describe considerations informing 
our methodology (§5.2), and present the results of its application 
(§5.3). 

5.1 A Simple Inference Algorithm 
Our approach yields two advantages: (1) it provides a formula­

tion of the problem that is intuitive and (2) it remains generic so as 
to be easily applicable to any sparse location dataset. We use the 
following assumptions: each user, i, belongs to one of two classes, 
C1 or C2. Class C1 (respectively C2) is associated with a probabil­
ity distribution µ1 (respectively µ2) over a discrete set of locations, 
representing the fraction of time spent by users of that class in that 
location. Our main assumption is that a user i makes n checkins, 

(i) (i)denoted X(i) = (X1 , . . . , Xn ) at locations that are drawn inde­
pendently from this user’s class probability distribution. The prior 
probability that a user is in class C1 or C2 is denoted π1 and π2, 
respectively. 

Note that this model does not use notions of times of the day, 
geographies, or auxiliary information. It applies to most location 
datasets as it is agnostic to how they were generated, anonymized, 
or in which granularity they are available. Such model serves as 
a starting point to approximate human mobility [15]. However, 
in practice humans show periodicity [14] or even social bias [7] 
in their movements, and users in a class may not be identically 
distributed, which is why it is important to test our technique using 
real data (§5.3). Under our assumptions, the problem of classifying 
users in their respective class reduces to a simple hypothesis testing. 
If i is in class C1 then for any location l, we have 

(i) (1)∀j, P (X = l|i ∈ C1) = µ (l), (5)j 

so that 

P (X(i) (1) (1)= (l1, . . . , ln)|i ∈ C1) = µ (l1) . . . µ (ln), (6) 

by independence, and applying Bayes’ rule 

P (i ∈ C1|X(i) = (l1, . . . , ln)) = 1 . (7)(2)(ln)π2µ(2)(l1)...µ
1+ 

(1)(ln)π1µ(1)(l1)...µ

The Neyman-Pearson lemma states under the assumptions above 
that the most powerful statistical test to determine which class a 
user belongs to from its checkins is the likelihood ratio test. A 
maximum likelihood rule classifies a user in class 1 iff 

(2) (2) (1) (1)π2µ (l1) . . . µ (ln) < π1µ (l1) . . . µ (ln) (8) 



Task Best Algorithm Parameters Important Features Baseline Accuracy Accuracy AUC F1 
Ethnicity NY Logistic Regression L1, C = 0.01 Avg. ZIP ethnicities 0.52 0.72 0.76 0.74 
Ethnicity LA Logistic Regression L1, C = 1 Avg. ZIP ethnicities 0.50 0.63 0.66 0.64 
Gender NY Logistic Regression L2, C = 0.1 Men’s Store 0.53 0.58 0.59 0.55 

Table 5: Results for the binary classifications of ethnicity and gender in NY and LA. The algorithms ran on all available features, such as counts of visits to 
different neighborhoods, the ethnicity of the most visited block, and the categories of nearby Foursquare venues. The baseline was obtained by predicting the 
class of a user based on the label distribution. 

or, equivalently, if we have 
nK 

k=1 

ln 
µ(1)(lk ) 
µ(2)(lk ) 

> ln 
π2 

π1 
. (9) 

We expect that our predictions are more accurate on users with 
more checkins. One can show under these assumptions that this 
classifier’s error probability for a user decreases exponentially as 
the number of checkins n grows, that is, 

−nC(µ1,µ2)P (error|n checkins) ≈n→∞ 2 , (10) 

where µ1 and µ2 are the probability distributions associated with 
C1 and C2, and C denotes the Chernoff information, defined as e 
C(µ1, µ2) = − min0≤λ≤1 ln l µ1(l)

1−λ µ2(l)
λ . 

Based on this analysis, a simple algorithm to infer ethnicity or 
gender can first estimate µ1, µ2 and π1, π2 using the training data 
and then classify according to this likelihood rule. 

5.2 Methodology 
Our purpose is to explore generally what might be inferred about 

users from their location data only. This affected our methodology 
in a few key ways. First, we utilized well-understood, commonly-
applied techniques that could easily be employed by anyone with 
access to mobility data. We also used publicly available data-
sources. Second, to make our results applicable to other sources 
of location data beyond Instagram, we did not use features specific 
to Instagram, such as the social network graph or user-generated 
descriptions. Thus, our work should be viewed as a lower-bound 
on the accuracy of what can be inferred using location data. Ad­
versaries with access to more detailed auxiliary information, more 
data about each user (such as a contact list or recent purchases), or 
more advanced machine learning techniques might achieve better 
results. 

We considered two questions: (1) Can minorities be distin­
guished from Caucasians? (2) Can women be distinguished from 
men? We represented users as feature vectors, using three classes 
of features: geographic features, such as counts or percentages 
of visits to locations; semantic features derived from Foursquare, 
such as the popularity of visited venues or counts of visits to venues 
with certain categories like “Restaurant" or “Park" (the collection 
of which we explained in §3); and Census derived features, such 
as the average ethnic makeup of all visited locations or the ethnic 
makeup of a user’s most-visited location. 

We performed all our experiments using the scikit-learn li­
brary [38] and tested the algorithms logistic regression, decision 
trees, naive Bayes, and support vector machines (SVMs). As a 
baseline, we predicted ethnicity or gender based on the class dis­
tribution, giving us baseline accuracies of 52% for ethnicity in NY, 
50% for ethnicity in LA, and 53% for gender in NY. 

Auxiliary Data. 
Auxiliary information about a location derived from Foursquare 

or the Census may not always be available, e.g., in countries with­
out publicly available census data or when locations are anony­
mized. Furthermore, a labeled training set of user data may not 

always be available either. To understand the performance of an 
algorithm that does not have access to any data beyond counts of 
visits to locations, we applied our Bayesian algorithm to our data. 
To test if labeled data was necessary to guess ethnicity, we devel­
oped a simple decision rule that used no labels. Based on Census 
data we calculated the average percentage of Caucasians living in 
all locations that a user visited. If this percentage was over the 
metropolitan area’s average, we predicted that the user was Cau­
casian. If it was below, we predicted that the user was of a minority 
ethnicity. We called this the Unsupervised Threshold algorithm. 
We compared this algorithm to an algorithm with access to labeled 
data, which learned an optimal threshold rather than using one de­
rived from publicly available Census data and which we dubbed 
the Supervised Threshold algorithm. Finally, we compared these 
algorithms against our best performing algorithm, run with all fea­
tures at the lowest granularity. We call this the Full algorithm. 

Data Granularity. 
The granularity of location data can vary greatly depending on 

how it is created. Previous research has investigated the impact 
of location granularity on anonymity [9, 49]. To investigate the 
impact of granularity on inferences, we represented our location 
data at several different granularities defined by the Census ranging 
from block groups to states. The ethnic makeup of a large granu­
larity area, such as a county, will typically be more similar to the 
overall metropolitan area’s ethnic makeup than a small granularity 
area like a city block. Thus, increasing the granularity should make 
inferences more difficult. 

Data Quantity. 
Finally, with four different analyses, we studied the impact of 

data quantity on prediction accuracy. First, to explore the impact 
of user activity on inference accuracy, we grouped users according 
to their number of geolocated Instagram photos. Next, we investi­
gated the impact of location diversity by grouping users according 
to the number of distinct ZIP codes they visited. Both of these are 
impacted by choices made by users—users who post more might be 
inherently easier to identify or predict. We thus did two more anal­
yses where we sampled locations from a user’s full set of check-
ins. In the first, we ran the Supervised Threshold algorithm on a 
user’s k most visited locations. In the second, we ran the Super­
vised Threshold algorithm on n randomly sampled checkins. 

5.3 Results 
The results of our best-performing algorithms are displayed in 

Table 5, and a detailed comparison of accuracy as a function of 
granularity can be seen in Figure 8. Our results suggest that geo­
tag data can be used to infer an individual’s ethnicity and gender. 
The accuracy for predicting ethnicity falls squarely within what has 
been reported for other types of datasets. On the lower bound, in 
their work of predicting individual Twitter users as African Ameri­
can or not based on linguistic features of Tweets [39] report as best 
performance an F-1 score of 0.66. On the upper bound, for predict­
ing whether the ethnic origin of a phone user is inside or outside 
the United States based on a rich feature set containing Internet 
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Figure 8: Accuracy of ethnicity prediction versus granularity for our NY population using several different inference techniques. Accuracy increases slightly at 
the ZIP code and neighborhood granularities and then decreases. Interestingly, the Bayesian algorithm, which uses only counts of visits to locations, performs 
comparably to the Supervised Threshold algorithm, which uses data on the ethnicity of visited locations. 

usage, call, text message, and location features [1] achieved an 
F-measure of 0.81 and for gender an F-measure of 0.61. For gen­
der [50] achieved an F-measure of 0.81 for social network users in 
Beijing and 0.82 for Shanghai based on spatial, temporal, and loca­
tion context knowledge. Given that our dataset contains far fewer 
features our results demonstrate that geotags are surprisingly pow­
erful in predicting gender and ethnicity. 

Auxiliary Data. 
It can be observed in Figure 8 that the Supervised Threshold al­

gorithm performs much better than the Unsupervised Threshold al­
gorithm suggesting that labeled data improves the algorithmic ac­
curacy across the board by roughly 5%. Interestingly, the Bayesian 
algorithm performs comparably to the Supervised Threshold algo­
rithm. Thus, an algorithm with no semantic information about vis­
ited locations performs just as well as one that knows the ethnic 
makeup of all visited locations. This suggests that an adversary 
with enough location data labeled with demographic data could 
obtain reasonable levels of accuracy with no knowledge of what 
locations were visited. Even if locations are “anonymized," that is, 
GPS coordinates or venue names were obscured, they can still be 
used to infer demographic information about the user. 

Data Granularity. 
The Full algorithm (that is, our best performing algorithm, with 

access to all features at all levels of granularity) achieves the 
best performance; no algorithm with access to restricted, coarser-
grained features is as accurate. 

The performance of all algorithms decreases at the most coarse 
granularities. This is most likely because the ethnicity distribu­
tions of larger regions are closer to the overall distribution of the 
metropolitan area and provide less information. Several algorithms 
improve in performance at medium granularities, such as ZIP and 
neighborhood. This is most likely caused by the sparsity of our 
dataset at the most detailed granularity as many blocks are only 
visited by a few users. 

Data Quantity. 
It appears that the accuracy of ethnicity prediction improves with 

the total number of checkins a user has made as shown in Figure 9. 
The distinct number of ZIP checkins of a user provides a separate 
measure of user activity as a user could have a large fraction of 

checkins in few ZIP codes. We can observe a substantial boost in 
accuracy after a user checked in at 12 distinct ZIP codes. 
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Figure 9: Checkin user activity. Left: accuracy as a function of total num­
ber of checkins at ZIP code locations. Right: accuracy as a function of 
number of checkins at distinct ZIP code locations. 

We also found that when a user is only observed in a limited 
set of locations, the inference accuracy increases fast with a rela­
tively small increase in the number of locations. Moreover, it is not 
even required to focus on the most significant locations of a user to 
get good inference accuracy. Observations of a user in a few ran­
dom locations at the tract or neighborhood level might be enough 
for predicting ethnicity, and those locations may be even selected 
randomly and must not be necessarily related to the user’s most 
significant places. These results, which are displayed in Figure 10, 
suggest that inference for the purpose of ethnicity identification is 
quite robust to data sparseness and obfuscation methods. 

6. CONCLUSION 
This study highlights the risks and opportunities of discrimina­

tive big data analysis by demonstrating that it is possible to infer 
Internet users’ ethnicities and genders based on location data alone. 
It also shows that mobility patterns can be studied using publicly 
available data. Internet users may often be unaware that releas­
ing such data could also disclose possibly sensitive personal infor­
mation. Simply reducing granularity proved to be insufficient to 
prevent such privacy leakage as mobility remains discriminative. 
However, the trove of geotagged pictures available through indi­
vidual online profiles also yields important insights for beneficial 
uses, for example, by city planners and social scientists. 
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Figure 10: Accuracy of predicting a user’s ethnicity from a small number 
of locations chosen either as most frequently visited locations or randomly. 
The algorithm used is the Supervised Threshold algorithm. Left: tract gran­
ularity. Right: neighborhood granularity. 

As our dataset is similar, both demographically and mobility-
wise, to other datasets as shown in §4, we believe that our results 
are generalizable and applicable to other unlabeled datasets. Al­
though it could be claimed that our data is biased by the fact that the 
users in our study have willingly disclosed their gender and ethnic­
ity by publicly using Instagram, we want to stress that it would be 
difficult and possibly unethical to create a labeled dataset of users 
who do not want to disclose their gender and ethnicity. 

This work motivates multiple avenues of further research: First, 
it enables the extension of demographic mobility analysis to many 
researchers using shareable public datasets and reproducible re­
sults. Beyond ethnicity and gender, attributes such as age, occu­
pation, and other lifestyle features may be extracted from users’ 
pictures, and naturally there are many other mobility properties to 
account for beyond, for example, daily ranges. Second, better un­
derstanding the discriminative power of location data might inform 
the design of tools for raising user awareness about the information 
they reveal. This insight motivates revisiting mobility modeling 
and the inferences it renders possible to empower users to make at 
will their locations as clear as a photograph or as opaque as foot­
prints in the mud. 
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