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ABSTRACT 
We present the first large-scale studies of three advanced web 
tracking mechanisms — canvas fingerprinting, evercookies 
and use of “cookie syncing” in conjunction with evercookies. 
Canvas fingerprinting, a recently developed form of browser 
fingerprinting, has not previously been reported in the wild; 
our results show that over 5% of the top 100,000 websites 
employ it. We then present the first automated study of 
evercookies and respawning and the discovery of a new ev­
ercookie vector, IndexedDB. Turning to cookie syncing, we 
present novel techniques for detection and analysing ID flows 
and we quantify the amplification of privacy-intrusive track­
ing practices due to cookie syncing. 

Our evaluation of the defensive techniques used by 
privacy-aware users finds that there exist subtle pitfalls — 
such as failing to clear state on multiple browsers at once 
— in which a single lapse in judgement can shatter privacy 
defenses. This suggests that even sophisticated users face 
great difficulties in evading tracking techniques. 

Categories and Subject Descriptors 
K.6.m [Management of Computing and Information 
Systems]: Miscellaneous; H.3.5 [Information Storage 
and Retrieval]: Online Information Services — Web-based 
services; K.4.4 [Computers and Society]: Electronic 
Commerce — Security 

Keywords 
Web security; privacy; tracking; canvas fingerprinting; 
browser fingerprinting; cookie syncing; evercookie, Java-
Script; Flash 
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1. INTRODUCTION 

A 1999 New York Times article called cookies compre­
hensive privacy invaders and described them as “surveillance 
files that many marketers implant in the personal computers 
of people.” Ten years later, the stealth and sophistication of 
tracking techniques had advanced to the point that Edward 
Felten wrote “If You’re Going to Track Me, Please Use Cook­
ies” [18]. Indeed, online tracking has often been described 
as an “arms race” [47], and in this work we study the latest 
advances in that race. 

The tracking mechanisms we study are advanced in that 
they are hard to control, hard to detect and resilient 
to blocking or removing. Canvas fingerprinting uses the 
browser’s Canvas API to draw invisible images and ex­
tract a persistent, long-term fingerprint without the user’s 
knowledge. There doesn’t appear to be a way to automati­
cally block canvas fingerprinting without false positives that 
block legitimate functionality; even a partial fix requires a 
browser source-code patch [40]. Evercookies actively circum­
vent users’ deliberate attempts to start with a fresh pro­
file by abusing different browser storage mechanisms to re­
store removed cookies. Cookie syncing, a workaround to 
the Same-Origin Policy, allows different trackers to share 
user identifiers with each other. Besides being hard to de­
tect, cookie syncing enables back-end server-to-server data 
merges hidden from public view. 

Our goal is to improve transparency of web tracking 
in general and advanced tracking techniques in particular. 
We hope that our techniques and results will lead to bet­
ter defenses, increased accountability for companies deploy­
ing exotic tracking techniques and an invigorated and in­
formed public and regulatory debate on increasingly persis­
tent tracking techniques. 

While conducting our measurements, we aimed to auto­
mate all possible data collection and analysis steps. This 
improved the scalability of our crawlers and allowed us to 
analyze 100,000 sites for fingerprinting experiments, as well 
as significantly improve upon the scale and sophistication of 
the prior work on respawning, evercookies and cookie sync­
ing. 

1.1 Contributions 
First study of real-world canvas fingerprinting 

practices. We present the results of previously unreported 
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canvas fingerprinting scripts as found on the top 100,000 
Alexa sites. We find canvas fingerprinting to be the most 
common fingerprinting method ever studied, with more than 
5% prevalence. Analysis of the real-world scripts revealed 
that they went beyond the techniques suggested by the aca­
demic research community (Section 3). 

Automated analysis of evercookies and respawn­
ing. We describe an automated detection method for ever-
cookies and cookie respawning. Applying this analysis, we 
detected respawning by Flash cookies on 10 of the 200 most 
popular sites and found 33 different Flash cookies were used 
to respawn over 175 HTTP cookies on 107 of the top 10,000 
sites. We also uncover a new evercookie vector, IndexedDB, 
which was never found in the wild before (Section 4). Re­
markably, respawning has already led to a lawsuit and a 
$500,000 settlement [14], and yet it is quite prevalent on the 
web. 

Cookie syncing privacy analysis. We find instances of 
syncing of respawned IDs in the wild, i.e., an ID respawned 
by one domain is passed to another domain. Respawning 
enables trackers to link a user’s browsing logs before cookie 
clearing to browsing logs after cookie clearing. In our mea­
surements, approximately 1.4% of a user’s browser history 
can be linked this way in the wild. However, the figure 
jumps to at least 11% when these respawned cookies are 
subsequently synced. Cookie syncing also allows trackers 
to merge records on individual users, although this merging 
cannot be observed via the browser. Our measurements in 
Section 5 show that in the model of back-end merging we 
study, the number of trackers that can obtain a sizable frac­
tion (40%) of a user’s browsing history increases from 0.3% 
to 22.1%. 

Novel techniques. In performing the above experi­
ments, we developed and utilized novel analysis and data 
collection techniques that can be used in similar web pri­
vacy studies. 

•	 Using the strace debugging tool for low-level monitor­
ing of the browser and the Flash plugin player (Section 
4.2). 

•	 A set of criteria for distinguishing and extracting 
pseudonymous identifiers from traditional storage vec­
tors, such as cookies, as well as other vectors such 
as Flash storage. By extracting known IDs, we can 
track them as they spread to multiple domains through 
cookie syncing. 

Making the code and the data public. We intend 
to publicly release all the code we developed for our exper­
iments and all collected data, including (i) our crawling in­
frastructure, (ii) modules for analysing browser profile data 
and (iii) crawl databases collected in the course of this study. 

1.2 Implications 
The thrust of our results is that the three advanced track­

ing mechanisms we studied are present in the wild and some 
of them are rather prevalent. As we elaborate on in Section 
6.1, they are hard to block, especially without loss of con­
tent or functionality, and once some tracking has happened, 
it is hard to start from a truly clean profile. A frequent ar­
gument in online privacy debates is that individuals should 
“take control” of their own privacy online. Our results sug­
gest that even sophisticated users may not be able to do so 
without significant trade-offs. 

We show that cookie syncing can greatly amplify privacy 
breaches through server-to-server communication. While 
web privacy measurement has helped illuminate many pri­
vacy breaches online, server-to-server communication is not 
directly observable. All of this argues that greater oversight 
over online tracking is becoming ever more necessary. 

Our results only apply to desktop browsing. Studying 
similar tracking mechanisms on mobile platforms requires 
distinct methodologies and infrastructure and is left to fu­
ture work. 

2. BACKGROUND AND RELATED WORK 

The tracking mechanisms studied in this paper can be 
differentiated from their conventional counterparts by their 
potential to circumvent users’ tracking preferences, being 
hard to discover and resilient to removal. We selected three 
of the most prominent persistent tracking techniques — can­
vas fingerprinting, evercookies and cookie syncing — based 
on the lack of adequate or comprehensive empirical measure­
ments of these mechanisms in the wild. We now give a brief 
overview of these techniques. 

Canvas fingerprinting: Canvas fingerprinting is a type of 
browser or device fingerprinting technique that was first pre­
sented in a paper by Mowery and Shacham in 2012 [32]. 
The authors found that by using the Canvas API of modern 
browsers, an adversary can exploit subtle differences in the 
rendering of the same text or WebGL scenes to extract a 
consistent fingerprint that can easily be obtained in a frac­
tion of a second without user’s awareness. 

The same text can be rendered in different ways on dif­
ferent computers depending on the operating system, font 
library, graphics card, graphics driver and the browser. This 
may be due to the differences in font rasterization such as 
anti-aliasing, hinting or sub-pixel smoothing, differences in 
system fonts, API implementations or even the physical dis­
play [32]. In order to maximize the diversity of outcomes, 
the adversary may draw as many different letters as possi­
ble to the canvas. Mowery and Shacham, for instance, used 
the pangram How quickly daft jumping zebras vex in their 
experiments. 

The entropy available in canvas fingerprints has never 
been measured in a large-scale published study like Panop­
ticlick [16]. Mowery and Shacham collected canvas finger­
prints from 294 Mechanical Turk users and computed 5.73 
bits of entropy for their dataset. Since this experiment was 
significantly limited for measuring the canvas fingerprint­
ing entropy, they had a further estimate of at least 10 bits, 
meaning one in a thousand users share the same finger­
print [32]. 

Figure 1 shows the basic flow of operations to fingerprint 
canvas. When a user visits a page, the fingerprinting script 
first draws text with the font and size of its choice and adds 
background colors (1). Next, the script calls Canvas API’s 
ToDataURL method to get the canvas pixel data in dataURL 
format (2), which is basically a Base64 encoded representa­
tion of the binary pixel data. Finally, the script takes the 
hash of the text-encoded pixel data (3), which serves as the 
fingerprint and may be combined with other high-entropy 
browser properties such as the list of plugins, the list of 
fonts, or the user agent string [16]. 
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Figure 1: Canvas fingerprinting basic flow of operations 
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Figure 2: Respawning HTTP cookies by Flash evercookies: 
(a) the webpage stores an HTTP and a Flash cookie (LSO), 
(b) the user removes the HTTP cookie, (c) the webpage 
respawns the HTTP cookie by copying the value from the 
Flash cookie. 

Evercookies and respawning: A 2009 study by Soltani 
et al. showed the abuse of Flash cookies for regenerating 
previously removed HTTP cookies, a technique referred to 
as “respawning” [43]. They found that 54 of the 100 most 
popular sites (rated by Quantcast) stored Flash cookies, of 
which 41 had matching content with regular cookies. Soltani 
et al. then analyzed respawning and found that several 
sites, including aol.com, about.com and hulu.com, regener­
ated previously removed HTTP cookies using Flash cookies. 
A follow up study in 2011 found that sites use ETags and 
HTML5 localStorage API to respawn cookies [7]. 

In 2010, Samy Kamkar demonstrated the “Evercookie,” a 
resilient tracking mechanism that utilizes multiple storage 
vectors including Flash cookies, localStorage, sessionStor­
age and ETags [21]. Kamkar employed a variety of novel 
techniques, such as printing ID strings into a canvas image 
which is then force-cached and read from the cached im­
age on subsequent visits. Instead of just respawning HTTP 
cookies by Flash cookies, his script would check the cleared 
vectors in the background and respawn from any storage 
that persists. 

Figure 2 depicts the stages of respawning by Local Shared 
Objects (LSOs), also known as Flash cookies. Whenever 
a user visits a site that uses evercookies, the site issues an 
ID and stores it in multiple storage mechanisms, including 
cookies, LSOs and localStorage. In Figure 2a, the value 123 
is stored in both HTTP and Flash cookies. When the user 
removes her HTTP cookie (Figure 2b), the website places 
a cookie with the same value (123) by reading the ID value 

from a Flash cookie that the user may fail to remove (Fig­
ure 2c). 

Cookie syncing: Cookie synchronization or cookie sync­
ing is the practice of tracker domains passing pseudonymous 
IDs associated with a given user, typically stored in cookies, 
amongst each other. Domain A, for instance, could pass an 
ID to domain B by making a request to a URL hosted by 
domain B which contains the ID as a parameter string. Ac­
cording to Google’s developer guide to cookie syncing (which 
they call cookie matching), cookie syncing provides a means 
for domains sharing cookie values, given the restriction that 
sites can’t read each other cookies, in order to better facili­
tate targeting and real-time bidding [4]. 

In general, we consider the domains involved in cookie sync­
ing to be third parties — that is, they appear on the first-
party sites that a user explicitly chooses to visit. Although 
some sites such as facebook.com appear both in a first and 
third-party context, this distinction is usually quite clear. 

The authors of [38] consider cookie synchronization both as 
a means of detecting business relationships between different 
third-parties but also as a means of determining to what de­
gree user data may flow between parties, primarily through 
real-time bidding. In the present work, we study the impli­
cations of the fact that trackers that share an ID through 
syncing are in position to merge their database entries cor­
responding to a particular user, thereby reconstructing a 
larger fraction of the user’s browsing patterns. 

2.1 Related work 
While HTTP cookies continue to be the most common 

method of third-party online tracking [41], a variety of more 
intrusive tracking mechanisms have been demonstrated, re­
fined and deployed over the last few years. In response, var­
ious defenses have been developed, and a number of studies 
have presented measurements of the state of tracking. While 
advertising companies have claimed that tracking is essen­
tial for the web economy to function [42], a line of research 
papers have proposed and prototyped solutions to carry out 
behavioral advertising without tracking. 

Fingerprinting, novel mechanisms. Researchers have 
presented novel browser fingerprinting mechanisms such as 
those based on performance metrics [31], the JavaScript en­
gine [33] , the rendering engine [50], clock skew [23], We­
bGL and canvas fingerprinting [32]. Most of those stud­
ies followed the path opened by the influential Panopticlick 
study [16], which demonstrated the potentials of browser 
fingerprinting for online tracking. 

Measurement studies. Web privacy measurement is a 
burgeoning field; an influential early work is [25] and promi­
nent recent work includes [29, 41]. Mayer and Mitchell made 
a comprehensive survey of tracking in combination with the 
policy that surrounds it, and developed a tool for similar 
web privacy measurement studies [29]. Roesner et al. ana­
lyzed different tracking methods and suggested a taxonomy 
for third-party tracking [41]. 

Other papers have looked at various aspects of web pri­
vacy, including PII leakage [26], mobile web tracking [17], 
JavaScript inclusions [35], targeted advertisements [27], and 
the effectiveness of blocking tools [28]. 

Two studies measured the prevalence of different finger­
printing mechanisms and evaluated existing countermea­
sures [37, 6]. Nikiforakis et al. studied three previ­
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ously known fingerprinting companies and found 40 such 
sites among the top 10K sites employing practices such 
as font probing and the use of Flash to circumvent proxy 
servers [37]. Acar et al. found that 404 sites in the top mil­
lion deployed JavaScript-based fingerprinting and 145 sites 
of the top 10,000 sites leveraged Flash-based fingerprint­
ing [6]. 

In comparison to these studies, we focus on canvas fin­
gerprinting, which, to the best of our knowledge, has never 
been reported to be found in the wild and is much harder 
to block. 

Several studies have looked at the use of Flash cook­
ies (LSOs) and, in particular, the use of Flash cookies to 
respawn HTTP cookies [43, 7, 30]. Soltani et al. uncovered 
the first use of respawning by Flash cookies [43], and in a 
follow-up study, Ayenson et al. found the first use of cache 
ETags and localStorage for respawning [7]. McDonald and 
Cranor analyzed the landing pages of 100 popular websites, 
plus 500 randomly-selected websites, and found two cases 
of respawning in the top 100 websites and no respawning 
in the randomly selected 500 sites [30]. In a recent study, 
Sorensen analyzed the use of cache as a persistent storage 
mechanism and found several instances of HTTP cookies 
respawned from cached page content [44]. The main dif­
ference between our study and the papers mentioned here 
is that we automated respawning detection as explained in 
Section 4, and this allowed us to analyze orders of magnitude 
more sites. 

Olejnik et al. studied cookie syncing (which they call 
cookie matching) [38]. They found that over 100 cookie 
syncing events happen on the top 100 sites. In comparison 
to their work, our study of cookie syncing (i) is large-scale, 
covering 3,000 sites, (ii) is based on crawling rather than 
crowd-sourcing, allowing easier comparative measurements 
over time and (iii) presents a global view, in that we go be­
yond detecting individual sync events and are able to cap­
ture and analyze the propagation of IDs through the tracking 
ecosystem. Further, we study how cookie syncing interacts 
with respawning, leading to more persistent tracking and 
widening the effects of these two vulnerabilities taken indi­
vidually. 

Program analysis of JavaScript (i.e., static analysis and 
dynamic analysis) is a common technique in web security 
[46]. A few studies have used such techniques for blocking 
or measuring web trackers. Orr et al. use static analysis 
to detect and block JavaScript-loaded ads [39]. Tran et al. 
use dynamic taint analysis to detect various privacy-invasive 
behaviors [48]. Acar et al. use behavioral analysis to detect 
fingerprinting scripts that employ font probing [6]. 

Defenses. Besson et al. [10] examined the theoretical 
boundaries of fingerprinting defenses using Quantified In­
formation Flow. Following a more practical approach, Niki­
forakis and others developed a defense called PriVaricator 
to prevent linkability from fingerprinters by randomizing 
browser features such as plugins [36]. Finally, Unger et al. 
[50], studied the potentials of browser fingerprinting as a 
defense mechanism against HTTP(S) session hijacking. 

In Section 6.1 we discuss how existing privacy tools defend 
against the advanced tracking mechanisms we study. 

Behavioral targeting without tracking. Several pa­
pers have addressed the question of whether all this tracking 
is in fact necessary — they proposed ways to achieve the 
purported goals of third-party tracking, primarily targeted 

advertising, without server-side profiles. In Adnostic, the 
browser continually updates a behavioral profile of the user 
based on browsing activity, and targeting is done locally [14]. 
PrivAd has a similar model, but includes a trusted party that 
attempts to anonymize the client [20]. RePriv has the more 
general goal of enabling personalization via interest profiling 
in the browser [19]. Bilenko et al. propose a model in which 
the user’s profile and recent browsing history is stored in a 
cookie [11]. Other work on similar lines includes [8, 49, 34]. 

3. CANVAS FINGERPRINTING 
Canvas fingerprinting works by drawing text onto canvas 

and reading the rendered image data back. In the following 
experiments we used an instrumented Firefox browser that 
we built by modifying the source code and logged all the 
function calls that might be used for canvas fingerprinting. 

3.1 Methodology and Data collection 
Our methodology can be divided into two main steps. In 

the first, we identified the ways we can detect canvas fin­
gerprinting, developed a crawler based on an instrumented 
browser and ran exploratory crawls. This stage allowed us 
to develop a formal and automated method based on the 
early findings. In the second step, we applied the analysis 
method we distilled from the early findings and nearly fully 
automated the detection of canvas fingerprinting. 

Mowery and Shacham used fillText and ToDataURL 
methods to draw text and read image data respectively [32]. 
We logged the return value of ToDataURL and, in order to 
find out the strings drawn onto the canvas, we logged the 
arguments of fillText and strokeText methods1 . 

We logged the URL of the caller script and the 
line number of the calling (initiator) code using Fire­
fox’s nsContentUtils::GetCurrentJSContext and nsJSU­
tils::GetCallingLocation methods. This allowed us to 
precisely attribute the fingerprinting attempt to the respon­
sible script and the code segment. All function call logs were 
parsed and combined in a SQLite database that allowed us 
to efficiently analyze the crawl data. For each visit, we also 
added cookies, localStorage items, cache metadata, HTTP 
request/response headers and request bodies to the SQLite 
database. We used mitmproxy 2 to capture HTTP data and 
parsed data accumulated in the profile folder for other data 
such as cookies, localStorage and cache data. The aggre­
gated data were used in the early stage analysis for canvas 
fingerprinting and evercookie detection, which is explained 
in Section 4.2. Our browser modifications for Firefox con­
sist of mere 33 lines of code, spread across four files and the 
performance overhead of the modifications is minimal. 

We crawled the home pages of the top 100,000 Alexa 
sites with the instrumented Firefox browser between 1-5 
May 2014. We used Selenium [5] to drive browsers to sites 
and ran multiple Firefox instances in parallel to reduce the 

1In addition to these three methods we intercepted calls to 
MozFetchAsStream, getImageData and ExtractData meth­
ods which can be used to extract canvas image data. But we 
did not put effort into recording the extracted image data 
for three reasons: they were not used in the original can­
vas fingerprinting paper [32], they are less convenient for 
fingerprinting (requires extra steps), and we did not find 
any script that uses these methods and fingerprints other 
browser properties in the initial experiments. 
2http://mitmproxy.org/ 
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crawl time. Implementing some basic optimizations and 
a naive load limiting check, we were able to run up to 30 
browsers in parallel on a 4-core 8GB desktop machine run­
ning GNU/Linux operating system. The modified browsers 
were run in a chroot jail to limit the effects of the host op­
erating system. 

False positive removal The Canvas API is used by 
many benign scripts to draw images, create animations or 
store content for games. During our crawls we found in­
teresting use cases, such as generating dynamic favicons, 
creating tag clouds, and checking font smoothing support. 
By examining the distinctive features of false positives and 
the fingerprinting scripts found in the initial experiments, 
we distilled the following conditions for filtering out false 
positives: 

•	 There should be both ToDataURL and fillText (or 
strokeText) method calls and both calls should come 
from the same URL. 

• The canvas image(s) read by the script should con­

3.2 Results 
Table 1 shows the prevalence of the canvas fingerprinting 

scripts found during the home page crawl of the Top Alexa 
100,000 sites. We found that more than 5.5% of crawled 
sites actively ran canvas fingerprinting scripts on their home 
pages. Although the overwhelming majority (95%) of the 
scripts belong to a single provider (addthis.com), we discov­
ered a total of 20 canvas fingerprinting provider domains, ac­
tive on 5542 of the top 100,000 sites5 . Of these, 11 provider 
domains, encompassing 5532 sites, are third parties. Based 
on these providers’ websites, they appear to be companies 
that deploy fingerprinting as part of some other service 
rather than offering fingerprinting directly as a service to 
first parties. We found that the other nine provider do­
mains (active on 10 sites) are in-house fingerprinting scripts 
deployed by first parties. Note that our crawl in this paper 
was limited to home pages. A deeper crawl covering internal 
pages of the crawled sites could find a higher percentage of 
fingerprinting. 

tain more than one color and its(their) aggregate size 
should be greater than 16x16 pixels. 

• The image should not be requested in a lossy compres- F
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sion format such as JPEG. 

Checking the origin of the script for both read and write 
access helped us to remove scripts that use canvas for only 
generating images but not reading them or vice versa. Al­
though it is possible that two scripts from the same domain 
can divide the work to circumvent our detection method, we 
accepted that as a limitation. 

Enforcing a 16x16 pixel size limit allowed us to filter out 
scripts that read too few pixels to efficiently extract the 
canvas fingerprint. Although there are 28192 possible color 
combinations for a 16x16 pixel image3, operating systems or 
font libraries only apply anti-aliasing (which is an important 
source of diversity for canvas fingerprinting) to text larger 
than a minimum font size.4 

The final check was to filter out cases where canvas image 
data is requested in a lossy compression format. Under a 
lossy compression scheme, the returned image may lose the 
subtle differences that are essential for fingerprinting. 

Applying these checks, we reduced the false positive ratio 
to zero for the 100,000 crawl, upon which we perform our 
primary analysis. We used static analysis to make sure the 
scripts we flagged as canvas fingerprinting were also collect­
ing other high-entropy browser properties such as plugins, 
navigator features and screen dimensions. It should be noted 
that in other pilot crawls (beyond 100K), we witnessed some 
false positives that our conditions failed to remove. Also, 
we believe that a determined tracker may potentially cir­
cumvent our detection steps using more advanced but less 
reliable attacks such as pixel stealing using SVG filters [45] 
or CSS shaders [24]. 

3	 colordepthw×h 
, 232

16×16 
281922 = for the RGBA 

color space, which uses 24 bits for the colors 
(RGB) and 8 bits for the alpha channel. See, 
http://www.whatwg.org/specs/web-apps/current­
work/multipage/the-canvas-element.html#pixel­
manipulation 
4https://wiki.ubuntu.com/Fonts#Font_Smoothing 
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Figure 3: Frequency of canvas fingerprinting scripts on the 
home pages of Top Alexa 100K sites. 

The 5.5% prevalence is much higher than what other 
fingerprinting measurement studies had previously found 
(0.4% [37], 0.4%, 1.5% [6]), although these studies may not 
be directly comparable due to the differences in methodol­
ogy and data collection. Also note that canvas fingerprinting 
was first used by AddThis between January 15 to February 
1st, 2014, 6 which was after all the mentioned studies. 

Rank interval % of sites with canvas 
fingerprinting scripts 

[1, 1K) 1.80 
[1K, 10K) 4.93 
[10K, 100K] 5.73 

Table 2: Percentage of sites that include canvas fingerprint­
ing scripts on the homepage, found in top 100K Alexa sites 
divided in intervals of variable length. Websites in the 1 to 
1K rank interval are 2.5 times less likely to embed a canvas 
fingerprinting script than a site within 1K-10K interval. 

Below rank 10,000, the prevalence of canvas fingerprint­
ing is close to uniform. However, we found that the top 
1,000 sites are 2.5 times less likely to have included canvas 

5We discarded some cases where the canvas fingerprinting 
script is served from a content delivery network (CDN) and 
additional analysis was needed to distinguish between dif­
ferent providers serving from the same (CDN) domain. In­
cluding these cases would only change the number of unique 
sites with canvas fingerprinting to 5552 (from 5542). 
6The date was determined using http://httparchive.org/ 

678 

http:http://httparchive.org
http://www.whatwg.org/specs/web-apps/current
http:addthis.com


Charbase
A visual unicode database

Search

U+1F603: SMILING FACE WITH OPEN MOUTH

← U+1F602 FACE WITH TEARS OF JOY U+1F604 SMILING FACE WITH OPEN MOUTH AND
SMILING EYES →

0   Tweet 0

Your Browser ὠ�
Index U+1F603 (128515)
Class Other Symbol (So)
Block Emoticons

Java Escape "\ud83d\ude03"
Javascript Escape "\ud83d\ude03"
Python Escape u'\U0001f603'
HTML Escapes &#128515; &#x1f603;
URL Encoded q=%F0%9F%98%83

UTF8 f0 9f 98 83
UTF16 d83d de03

Contact Us

Fingerprinting script 
Number of 

including sites 
Text drawn into the canvas 

ct1.addthis.com/static/r07/core130.js 5282 Cwm fjordbank glyphs vext quiz, 
i.ligatus.com/script/fingerprint.min.js 115 http://valve.github.io 
src.kitcode.net/fp2.js 68 http://valve.github.io 
admicro1.vcmedia.vn/fingerprint/figp.js 31 http://admicro.vn/ 
amazonaws.com/af-bdaz/bquery.js 26 Centillion 
*.shorte.st/js/packed/smeadvert-intermediate-ad.js 14 http://valve.github.io 
stat.ringier.cz/js/fingerprint.min.js 4 http://valve.github.io 
cya2.net/js/STAT/89946.js 3 ABCDEFGHIJKLMNOPQRSTUVWXYZ 

abcdefghijklmnopqrstuvwxyz0123456789+/ 
images.revtrax.com/RevTrax/js/fp/fp.min.jsp 3 http://valve.github.io 
pof.com 2 http://www.plentyoffish.com 
*.rackcdn.com/mongoose.fp.js 2 http://api.gonorthleads.com 
9 others* 9 (Various) 

TOTAL 5559 
(5542 unique1) -

Table 1: Canvas fingerprinting domains found on Top Alexa 100K sites.
 
*: Some URLs are truncated or omitted for brevity. See Appendix for the complete list of URLs.
 

1: Some sites include canvas fingerprinting scripts from more than one domain.
 

fingerprinting scripts than the ones within the 1,000-10,000 
range. 

Note that the URL http://valve.github.io, printed by 
many scripts onto the canvas, belongs to the developer of 
an open source fingerprinting library7 . Furthermore, all 
scripts except one use the same colors for the text and back­
ground shape. This similarity is possibly due to the use of 
the publicly available open source fingerprinting library fin­
gerprintjs [51]. Figure 4 shows five different canvas images 
used by different canvas fingerprinting scripts. The images 
are generated by intercepting the canvas pixel data extracted 
by the scripts listed in Table 1. 

Figure 4: Different images printed to canvas by fingerprint­
ing scripts. Note that the phrase “Cwm fjordbank glyphs 
vext quiz” in the top image is a perfect pangram, that is, it 
contains all the letters of the English alphabet only once to 
maximize diversity of the outcomes with the shortest possi­
ble string. 

Manually analyzing AddThis’s script, we found that it 
goes beyond the ideas previously discussed by researchers 

7See, https://github.com/Valve/fingerprintjs/blob/ 
v0.5.3/fingerprint.js#L250 

and adds new tests to extract more entropy from the can­
vas image. Specifically, we found that in addition to the 
techniques outlined in Mowery and Shacham’s canvas fin­
gerprinting paper [32] AddThis scripts perform the following 
tests: 

•	 Drawing the text twice with different colors and the 
default fallback font by using a fake font name, starting 
with “no-real-font-”. 

•	 Using the perfect pangram 8 “Cwm fjordbank glyphs 
vext quiz” as the text string 

•	 Checking support for drawing Unicode by printing the 
character U+1F603 a smiling face with an open mouth. 

•	 Checking for canvas globalCompositeOperation sup­
port. 

•	 Drawing two rectangles and checking if a specific point 
is in the path by the isPointInPath method. 

By requesting a non-existent font, the first test tries to em­
ploy the browser’s default fallback font. This may be used 
to distinguish between different browsers and operating sys­
tems. Using a perfect pangram, which includes a single in­
stance of each letter of the English alphabet, the script enu­
merates all the possible letter forms using the shortest string. 
The last three tests may be trying to uncover the browser’s 
support for the canvas features that are not equally sup­
ported. For instance, we found that the Opera browser can­
not draw the requested Unicode character, U+1F603. 

Another interesting canvas fingerprinting sample was the 
script served from the admicro.vcmedia.vn domain. By in­
specting the source code, we found that the script checks 
the existence of 1126 fonts using JavaScript font probing. 
8http://en.wikipedia.org/wiki/List_of_pangrams# 
Perfect_pangrams_in_English_.2826_letters.29 
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Overall, it is interesting to see that commercial tracking 
companies are advancing the fingerprinting technology be­
yond the privacy/security literature. By collecting finger­
prints from millions of users and correlating this with cookie 
based identification, the popular third party trackers such 
as AddThis are in the best position to both measure how 
identifying browser features are and develop methods for 
monitoring and matching changing fingerprints. Note that 
according to a recent ComScore report, AddThis “solutions” 
reaches 97.2% of the total Internet population in the United 
States and get 103 billion monthly page views.9 

4. EVERCOOKIES 
Evercookies are designed to overcome the “shortcomings” 

of the traditional tracking mechanisms. By utilizing multiple 
storage vectors that are less transparent to users and may 
be more difficult to clear, evercookies provide an extremely 
resilient tracking mechanism, and have been found to be 
used by many popular sites to circumvent deliberate user 
actions [43, 7, 14]. In this section, we first provide a set 
of criteria that we used to automatically detect identifier 
strings, present detailed results of an automated analysis of 
respawning by Flash evercookies, and show the existence of 
respawning by both HTTP cookies and IndexedDB. 

4.1 Detecting User IDs 
Given that not all instances of the various potential stor­

age vectors are used to track users, detecting evercookies 
hinges on determining whether a given string can serve as a 
user ID. In order to detect persistent IDs in a given storage 
vector, we leveraged data from two simultaneous crawls on 
separate machines and applied the following set rule set for 
determining which elements are identifying. We present the 
rules with respect to HTTP cookies but note that they are 
applicable to other storage locations of a similar format. 

•	 Eliminate cookies that expire within a month of being 
placed. These are too transient to track a user over 
time. 

• Parse cookie value strings using common delimiters 
(e.g. : and &). This extracts potentially identifying 
strings from non-essential data. 

•	 Eliminate parsed fields which don’t remain constant 
throughout an individual crawl. Identifiers are likely 
to be unchanging. 

•	 Compare instances of matching parsed cookie fields 
(for cookies with the same domain and name) between 
two unrelated crawls on different machines. 

– Eliminate fields which are not the same length. 

–	 Eliminate fields which are more than 33% sim­
ilar according to the Ratcliff-Obershelp algo­
rithm [12]. These are unlikely to contain sufficient 
entropy. 

that are obfuscated or embedded in longer strings using non­
standard delimiters or ID strings that happen to have a high 
similarity. Similarly, an adversarial tracker could continually 
change an identifier or cookie sync short-lived identifiers, but 
keep a mapping on the back end to enable long-term track­
ing. Therefore, the results of this analysis provide a lower 
bound on the presence of evercookie storage vectors and on 
the level of cookie syncing. 

4.2 Flash cookies respawning HTTP cookies 
Although there are many “exotic” storage vectors that can 

be used to store tracking identifiers, Flash cookies have a 
clear advantage of being shared between different browsers 
that make use of the Adobe Flash plugin10 . We developed a 
procedure to automate the detection of respawning by Flash 
cookies employing the method discussed in Section 4.1 to 
detect IDs and using GNU/Linux’s strace [22] debugging 
tool to log access to Flash cookies. 

Compared to earlier respawning studies [43, 7, 30], the 
method employed in this paper is different in terms of au­
tomation and scale. In prior studies, most of the work, in­
cluding the matching of HTTP and Flash cookie identifiers 
was carried out manually. By automating the analysis and 
parallelizing the crawls, we were able to analyze 10,000 web­
sites, which is substantially more than the previous studies 
(100 sites, 700 sites). Note that, similar to [30], we only 
visited the home pages, whereas [43, 7] visited 10 internal 
links on each website. Another methodological difference is 
that we maintained the Flash cookies when visiting different 
websites, whereas [43, 7] used a virtual machine to prevent 
contamination. Last, [30] also used the moving and contrast­
ing Flash cookies from different computers to determine ID 
and non-ID strings, which is one of the main ideas of the 
analysis described below. 

For this analysis we used data from four different crawls. 
First, we sequentially crawled the Alexa top 10,000 sites and 
saved the accumulated HTTP and Flash cookies (Crawl1). 
We then made three 10,000 site crawls, two of which were 
run with the Flash cookies loaded from the sequential crawl 
(Crawl2,3). The third crawler ran on a different machine, 
without any data loaded from the previous crawl (Crawl4). 
Note that, except for the sequential crawl (Crawl1), we ran 
multiple browsers in parallel to extend the reach of the study 
at the cost of not keeping a profile state (cookies, localStor­
age) between visits. During each visit, we ran an strace 
instance that logs all open, read and write system calls of 
Firefox and all of its child processes. Trace logs were parsed 
to get a list of Flash cookies accessed during the visit, which 
are then parsed and inserted into a crawl database. 

For the analysis, we first split the Flash cookie contents 
from the three crawls (Crawl2,3,4) by using a common set of 
separators (e.g. ”=:&;). We then took the common strings 
between crawls made with the same LSOs (Crawl2,3) and 
subtracted the strings found in LSO contents from the unre­
lated crawl (Crawl4). We then checked the cookie contents 
from the original profile (Crawl1) and cookies collected dur-

The presented method provides a strict and conservative 
detection of identifiers that we believe (through manual in­
spection) to have a very low false positive rate. We antici­
pate several sources of false negatives, for example ID strings 
9http://www.businesswire.com/news/home/ 
20131113005901/en/comScore-Ranks-AddThis-1­
Distributed-Content-United 

ing the visits made with the same LSO set (Crawl2,3). Fi­
nally, we subtracted strings that are found in an unrelated 
visit’s cookies (Crawl4) to minimize the false positives. Note 
that, in order to further eliminate false positives, one can use 
cookies and LSOs from other unrelated crawls since an ID­

10iOS based devices and Chrome/Chromium bundled with 
the Pepper API are exceptions 
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string cannot be present in unrelated crawls. We used the 
100K crawl described in the canvas fingerprinting experi­
ments for this purpose. 

For clarity, we express a simplified form of the operation 
in set notation: 

MaxRank

 
((((F2i ∩ F3i ) \ F4) ∩ C2i ∩ C3i ) \ C4), 

i=1 

where Fni denotes Flash cookies from Crawln for the site 
with the Alexa rank i, Cni denotes Cookies from Crawln 

for the site with the Alexa rank i and F4, and C4 denotes all 
Flash cookies and HTTP cookies collected during Crawl4. 

We applied the method described above to four crawls 
run in May 2014 and found that 33 different Flash cook­
ies from 30 different domains respawned a total of 355 
cookies on 107 first party domains during the two crawls 
(Crawl2,3). Table 3 shows that on six of the top 100 sites, 
Flash cookies are used to respawn HTTP cookies. Nine 
of top ten sites on which we observed respawning belong 
to Chinese companies (one from Hong Kong) whereas the 
other site belongs to the top Russian search engine Yan­
dex. The Flash cookie that respawned the most cook­
ies (69 cookies on 24 websites) was bbcookie.sol from the 
bbcdn-bbnaut.ibillboard.com domain which belongs to 
a company that is found to use Flash based fingerprint­
ing [6]. Note that this Flash cookie respawned almost three 
HTTP cookies per site which belong to different third party 
domains (bbelements.com, .ibillboard.com and the first-
party domain). The domain with the second highest number 
of respawns was kiks.yandex.ru which restored 11 cookies 
on 11 sites in each crawl (Crawl2,3). 

Global 
Site CC 

Respawning 1st/3rd 
rank (Flash) domain Party 

16 sina.com.cn CN simg.sinajs.cn 3rd* 
17 yandex.ru RU kiks.yandex.ru 1st 
27 weibo.com CN simg.sinajs.cn 3rd* 
41 hao123.com CN ar.hao123.com 1st 
52 sohu.com CN tv.sohu.com 1st 
64 ifeng.com HK y3.ifengimg.com 3rd* 
69 youku.com CN irs01.net 3rd 
178 56.com CN irs01.net 3rd 
196 letv.com CN irs01.net 3rd 
197 tudou.com CN irs01.net 3rd 

Table 3: Top-ranked websites found to include respawning 
based on Flash cookies. CC: ISO 3166-1 code of the coun­
try where the website is based. 3rd*: The domains that 
are different from the first-party but registered for the same 
company in the WHOIS database. 

IndexedDB as Evercookie While running crawls for 
canvas fingerprinting experiments, we looked for sites that 
store data in the IndexedDB storage vector. Specifically, 
we checked the storage/persistent directory of the Fire­
fox profile. A very small number of sites, only 20 out of 
100K, were found to use the IndexedDB storage vector. 
Analyzing the IndexedDB file from the respawning crawl 
(Crawl2) described above, we found that a script from the 
weibo.com domain stored an item in the IndexedDB that 

exactly matched the content of the Flash cookie named 
simg.sinajs.cn/stonecc_suppercookie.sol. This Flash 
cookie was used to respawn HTTP cookies on Chinese mi­
croblogging site weibo.com and its associated web portal 
sina.com.cn. To the best of our knowledge, this is the first 
report of IndexedDB as an evercookie vector. A more thor­
ough study of respawning based on IndexedDB is left for 
future study. 

4.3 HTTP cookies respawning Flash cookies 
We ran a sequential crawl of the Top 3,000 Alexa sites 

and saved the accumulated HTTP and Flash cookies. We 
extracted IDs from this crawl’s HTTP cookies using the 
method described in Section 4.1. We then made an addi­
tional sequential crawl of the Top 3,000 Alexa sites on a 
separate machine loading only the HTTP cookies from the 
initial crawl. 

Our method of detecting HTTP respawning from Flash 
cookies is as follows: (i) take the intersection of the initial 
crawl’s flash objects with the final crawl’s flash objects (ii) 
subtract common strings from the intersection using an un­
related crawl’s flash objects and (iii) search the resulting 
strings for the first crawl’s extracted HTTP cookie IDs as 
described in Section 4.1. This enables us to ensure that the 
IDs are indeed found in the Flash objects of both crawls, 
aren’t common to unrelated crawls, and exist as IDs on the 
original machine. Using this method, we detected 11 differ­
ent unique IDs common between the three storage locations. 

These 11 IDs correspond to 14 first-party domains, a 
summary of which is provided by Table 8 in the Ap­
pendix. We primarily observe respawning from JavaScript 
originating from two third-parties: www.iovation.com, a 
fraud detection company that is specialized in device fin­
gerprinting, and www.postaffiliatepro.com, creators of af­
filiate tracking software (that runs in the first-party con­
text). We also observe three instances of what appears to 
be in-house respawning scripts from three brands: Twitch 
Interactive (twitch.tv and justin.tv), casino.com, and 
xlovecam.com. 

5. COOKIE SYNCING 

Cookie synchronization — the practice of third-party do­
mains sharing pseudonymous user IDs typically stored in 
cookies — provides the potential for more effective tracking, 
especially when coupled with technologies such as evercook­
ies. First, pairs of domains who both know the same IDs 
via synchronization can use these IDs to merge their track­
ing databases on the back end. Second, respawned cookies 
may contain IDs that are widely shared due to prior sync 
events, enabling trackers to link a user’s browsing histories 
from before and after clearing browsing state. 

In this section, we present our method for detecting syncs, 
present an overview of the synchronization landscape and ex­
amine the threats of back-end database merges and history-
linking for users who clear state. 

5.1 Detecting cookie synchronization 
Using the techniques outlined in Section 4.1, we identified 

cookies containing values likely to be user IDs. In order to 
learn which domains know a given ID through synchroniza­
tion, we examined cookie value strings and HTTP traffic. 
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If a domain owns a cookie containing an ID, clearly the 
domain knows that ID. In fact, a telltale sign of cookie sync­
ing is multiple domains owning cookies containing the same 
ID. Likewise, if an ID appears anywhere in a domain’s URL 
string (e.g. in the URL parameters), then that domain also 
knows the ID. Note that a given tracker may simply ignore 
an ID received during a sync, but as we will demonstrate in 
Section 5.3, trackers opting to store IDs have the ability to 
gain user data through history merging. 

The domains involved in HTTP traffic can be divided into 
(referrer, requested URL, location) tuples in which the loca­
tion domain is non-empty only for HTTP response redirects. 
The rules for ID passing are as follows: 

•	 If an ID appears in a requested URL, the requested 
domain learns the ID. 

•	 If an ID appears in the referrer URL, the requested 
domain and location domain (if it exists) learn the ID. 

•	 If an ID appears in the location URL, the requested 
domain learns the ID. 

We cannot assume that the referrer learns a synced ID 
appearing in the requested URL or location URL string [38]. 
In particular, third-party JavaScript executing a sync on a 
first-party site will cause the first-party to show up as the 
referrer, even though it may not even be aware of the ID 
sync. Although we can determine the directionality of ID 
syncs in the cases of redirects, the fraction of flows in which 
we could determine both the sender and receiver was small. 
Hence, when examining cookie synchronization, we focused 
on which domains knew a given ID, rather than attempting 
to reconstruct the paths of ID flows. 

5.2 Basic results 
Before examining the privacy threats that can stem from 

cookie synchronization, we first provide an overview of 
cookie syncing activities that occur when browsing under 
different privacy settings. We ran multiple crawls of the 
top 3,000 Alexa domains on Amazon EC211 instances using 
three different Firefox privacy settings: allowing all cookies 
(i.e. no privacy-protective measures), allowing all cookies 
but enabling Do Not Track, and blocking third-party cook­
ies. With all cookies allowed, the impact of Do Not Track on 
the aggregate statistics we measure was negligible. In par­
ticular, enabling Do Not Track only reduced the number of 
domains involved in synchronization by 2.9% and the num­
ber of IDs being synced by 2.6%. This finding is consistent 
with studies such as Balebako et al. [9] — they find that, due 
to lack of industry enforcement, Do Not Track provides lit­
tle practical protection against trackers. We therefore omit 
further measurement and analysis of the effect of Do Not 
Track in this section. 

Table 4 shows high-level statistics for illustrative crawls 
under the two third-party cookie settings. We say that an 
ID is involved in synchronization if it is known by at least 
two domains. Cookies and domains are involved in synchro­
nization if they contain or know such an ID, respectively. 
The statistics displayed aggregate both third-party and 
first-party data, as many domains (e.g. doubleclick.com, 
facebook.com) exist in both the Alexa Top 3000 and as 
third-parties on other sites. 

11http://aws.amazon.com/ec2/ 

Statistic 
Third party cookie policy 
Allow Block 

# IDs 
# ID cookies 
# IDs in sync 
# ID cookies in sync 
# (First*) Parties in sync 
# IDs known per party 
# Parties knowing an ID 

1308 
1482 
435 
596 

(407) 730 
1/2.0/1/33 
2/3.4/2/43 

938 
953 
347 
353 

(321) 450 
1/1.8/1/36 
2/2.3/2/22 

Table 4: Comparison of high-level cookie syncing statistics 
when allowing and disallowing third-party cookies (top 3,000 
Alexa domains). The format of the bottom two rows is 
minimum/mean/median/maximum. *Here we define a first-
party as a site which was visited in the first-party context 
at any point in the crawl. 

Appendix B shows a summary of the top 10 parties in­
volved in cookie synchronization under both cookie policies. 
Observe that although some parties are involved in less sync­
ing under the stricter cookie policy, many of the top parties 
receive the same number of IDs. Overall, disabling third-
party cookies reduces the number of synced IDs and parties 
involved in syncing by nearly a factor of two. While this 
reduction appears promising from a privacy standpoint, in 
the next section we will see that even with this much sparser 
amount of data, database merges could enable domains to 
reconstruct a large portion of a user’s browsing history. 

Included in Appendix C is a summary of the top 10 most 
shared IDs under both cookie policies. For a specific exam­
ple, consider the most shared ID which all third party cook­
ies are allowed, which was originally created by turn.com. 
This ID is created and placed in a cookie on the first page 
visit that includes Turn as a third-party. On the next page 
visit, Turn makes GET requests to 25 unique hostnames 
with a referrer of the form http://cdn.turn.com/server/ 
ddc.htm?uid=<unique_id>... that contains its ID. These 
25 parties gain knowledge of Turn’s ID, as well as their own 
tracking cookies, in the process. Similar sharing occurs as 
the user continues to browse, eventually leading to 43 total 
domains. With third-party cookies disabled, the top shared 
IDs come from a disjoint set of parties, largely composed 
of syncs which share a first party cookie with several third-
party sites. 

5.3 Back-end database synchronization 
We now turn to quantifying how much trackers can learn 

about users’ browsing histories by merging databases on the 
back-end based on synced IDs. Cookie syncing allows track­
ers to associate a given user both with their own pseudony­
mous ID and with IDs received through syncs, facilitating 
later back-end merges. We cannot observe these merges di­
rectly, so we do not know if such merges occur with any 
frequency. That said, there is a natural incentive in the 
tracking ecosystem to aggregate data in order to learn a 
much larger fraction of a user’s history. 

First, assuming no collaboration among third-party track­
ers, only a handful of trackers are in position to track a 
sizeable fraction of an individual’s browsing history. As per 
Olejnik et al [38], if a visited first party appears as the re­
ferrer in a request to another domain, we assume the second 
domain knows about this visit. For a crawl of 3,000 sites 
when allowing all cookies, only two of the 730 trackers could 
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Figure 5: Proportions of user history known when allow­
ing and blocking third party cookies under the two different 
merging schemes. Note that since the x-axis is sorted by the 
proportion of a user’s history that a domain can recover, 
the domains may appear in different orders for the different 
models. 

recover more than 40% of a user’s history and only 11 could 
recover more than 10%. When disabling third-party cook­
ies, the corresponding numbers are two and six, respectively. 
These results are consistent with earlier findings in Roesner 
et al [41]. 

We consider the following model of back-end database 
merges: a domain can merge its records with a single other 
domain that mutually knows some ID. We assume that when 
two domains merge their records for a particular user, they 
will share their full records. Our model assumes some col­
laboration within the tracking ecosystem — among domains 
already known to share IDs — but is much weaker than as­
suming full cooperation. 

Figure 5 shows the proportion of a user’s 3,000-site brows­
ing history a domain can recover, in decreasing sorted order, 
if a user enables all cookies. The figure when blocking third-
party cookies (also Figure 5) takes a identical shape but is 
steeper because it only includes roughly 60% as many par­
ties. 

Observe that after introducing the ability for a site to 
merge records directly with one other tracker, the known 
proportion of a user’s 3,000-site history dramatically in­
creased for a large number of sites. When third-party cook­
ies are allowed, 101 domains can reconstruct over 50% of a 
user’s history and 161 could recover over 40%. Even when 
these cookies are blocked, 44 domains could recover over 
40% of a user’s history. 

Not much is known about how prevalent back-end 
database merges are. In terms of incentives, a pair of track­
ers may enter into a mutually beneficial arrangement to in­
crease their respective coverage of users’ browsing histories, 
or a large tracker may act as a data broker and sell user 
histories for a fee. 

5.4 Respawning and syncing 
At a given point in time, cookie synchronization pro­

vides a mechanism for trackers to link a user’s history to­
gether. Represented as a graph, sites in an individual’s his­
tory can be represented as nodes with edges between sites 
if a user tagged with some pseudonymous ID visited both 
sites. When a user clears his cookies and restarts browsing, 
the third parties will place and sync a new set of IDs and 
eventually reconstruct a new history graph. 

Since these history graphs correspond to browsing periods 
with completely different tracking IDs, they will be disjoint 
— in other words, trackers can not associate the individual’s 
history before and after clearing cookies. However, if one of 
the trackers respawns a particular cookie, parts of the two 
history graphs can be connected by an edge, thereby linking 
an individual’s history over time. This inference becomes 
stronger if this respawned ID is synced to a party present 
on a large number of the sites that a user visits. 

To test this possibility, we ran two 3,000 site crawls on two 
EC2 instances, A and B. We cleared the cookies, Flash stor­
age, cache, and local storage from machine B and loaded the 
Flash files from A to seed respawning from Flash. Finally, 
we ran another 3,000 site crawl on site B. 

We discovered a total of 26 domains that respawned IDs 
between the two crawls on machine B either through Flash 
or through other means 12 . Three of these IDs were later 
observed in sync flows. After conducting manual analysis, 
we were unable to determine the exact mechanism through 
which 18 of these IDs were respawned since we cleared all 
the storage vectors previously discussed, nor did we detect 
JavaScript-based browser fingerprinting. We conjecture that 
these IDs were respawned through some form of passive, 
server-side fingerprinting13 . 

One of these IDs provides a useful case study. After 
respawning this ID, its owner, merchenta.com, passed it 
to adnxs.com through an HTTP redirect sync call. Now, 
merchenta.com by itself is not in a position to observe a 
large fraction of a user’s history — it only appears on a sin­
gle first party domain (casino.com). In fact, the largest ob­
served percentage of a user’s history observable by a cookie­
respawning domain acting alone was 1.4%. However, by 
passing its ID to adnxs.com, merchenta.com enabled a much 
larger proportion of a user’s history to be linked across state 
clears. 

In particular, we observed adnxs.com on approximately 
11% of first party sites across the two crawls. Thus adnxs. 
com now has the ability to merge its records for a particular 
user before and after an attempt to clear cookies, although of 
course we have no insight into whether or not they actually 
do so. This scenario enables at least 11% of a user’s history 
to be tracked over time. 

Our measurements in this section illustrate the potential 
for cookie respawning and syncing event on a single site by a 

12The exact method here is not important, as we are con­
cerned with the fact that an ID which has been respawned 
is later involved in sync. 

13Note that a document from one of these respawning do­
mains, merchenta.com mentions tracking by fingerprint­
ing: “Merchenta’s unique fingerprint tracking enables con­
sumers to be engaged playfully, over an extended period of 
time, long after solely cookie-based tracking loses its effec­
tiveness”, http://www.merchenta.com/wp-content/files/ 
Merchenta%20Case%20Study%20-%20Virgin.pdf. 
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Figure 6: The Tor Browser’s notification dialog for canvas 
read attempts. The empty image is returned to thwart can­
vas fingerprinting. 

small tracker to enable a large proportion of a user’s history 
to be tracked by more prolific third parties. 

6. DISCUSSION 
After presenting an evaluation of advanced tracking tech­

niques, we now discuss the potential defenses against these 
methods and the implications of our study for privacy-
conscious users. 

6.1 Mitigation 
A blunt way to defend against tracking is to simply block 

third-party content. This is the approach taken by tools 
such as AdBlock Plus14 and Ghostery.15 The user may also 
disable evercookie storage vectors such as Flash cookies [3], 
but to the best of our knowledge, tracking vectors such as lo­
calStorage, IndexedDB and canvas cannot be disabled, often 
due to the fact that doing so would break core functionality. 

Canvas fingerprinting: The initial canvas fingerprinting 
study discusses possible countermeasures such as adding 
noise to the pixel data or trying to produce same pixel re­
sults for every system. Finding some barriers to all these 
options, the paper concludes that asking user permission for 
each canvas read attempt may be the only effective solu­
tion. Indeed, this is precisely the technique adopted in the 
Tor Browser, the only software that we found to successfully 
protect against canvas fingerprinting. Specifically, the Tor 
Browser returns an empty image from all the canvas func­
tions that can be used to read image data [13]. The user 
is then shown a dialog where she may permit trusted sites 
to access the canvas. We confirmed the validity of this ap­
proach when visiting a site we built which performs browser 
fingerprinting. 

As for more traditional fingerprinting techniques, the Tor 
browser again appears to be the only effective tool. With 
the exception of a recent Mozilla effort to limit plugin enu­
meration [2], browser manufacturers have not attempted to 
build in defenses against fingerprinting. We note that they 
are in a position to facilitate such defenses by providing APIs 
or settings or tools that can be used to develop countermea­
sures. 

Finally, academic studies on mitigating browser fingerprint­
ing are promising but still far from providing practically 
implementable and comprehensive countermeasures that ad­
dress all the attack possibilities [10, 36]. 

14https://adblockplus.org 
15http://www.ghostery.com 

Evercookies: The straightforward way to defend against 
evercookies is to clear all possible storage locations. The 
long list of items removed by the Tor Browser when a user 
switches to a new identity provides a hint of what can be 
stored in unexpected corners of the browser: “searchbox 
and findbox text, HTTP auth, SSL state, OCSP state, site-
specific content preferences (including HSTS state), content 
and image cache, offline cache, Cookies, DOM storage, DOM 
local storage, the safe browsing key, and the Google wifi ge­
olocation token. . . ”[40]. 

The user interfaces provided by popular browsers for manag­
ing browsing information are often fragmented, incomplete, 
or esoteric. For instance, Firefox’s Clear Recent History in­
terface does not clear localStorage if the user doesn’t select 
“Everything” as the time range of removal16and there is no 
unified interface for checking what is stored in localStor­
age and IndexedDB. Similarly, Offline Website Data (App-
Cache and Cache) can only be checked by visiting a separate 
about:cache page. 

Even if the user manages to clear all storage vectors, the fact 
that Flash storage is not isolated17 between browsers which 
use the Adobe Flash plugin (e.g. Firefox, Chromium, and 
Internet Explorer) still creates an opportunity for respawn­
ing. Consider the common scenario of a multi-user environ­
ment where Alice uses browser A and Bob uses browser B, 
without any OS-level separation of user accounts. Assume 
that Alice is privacy-conscious and clears browser state fre­
quently, but Bob does not. Consider an ID on Browser A is 
shared between Browser A’s Flash Cookies and HTTP Cook­
ies. When Bob browses, X may be respawned as an HTTP 
cookie in browser B. In Section 4.2, we showed that this be­
havior occurs in the wild. Now when Alice completely clears 
the state of Browser A, the ID X will be removed from com­
mon flash storage and Browser A’s HTTP storage. Crucially, 
however, when Bob browses again, it could be respawned 
from B’s HTTP storage to common flash storage and later 
when Alice browses again, back to A’s HTTP storage. We 
showed in Section 4.3 that HTTP-to-Flash respawning oc­
curs in the wild as well. Thus the only way to defend against 
this attack in a multi-browser environment is to clear state 
on all browsers simultaneously. As a proof-of-concept, we 
manually tested the first-party domains on which we ob­
serve HTTP-to-Flash respawning (Appendix Table 8) and 
we found this exact scenario occurs on both casino.com and 
xlovecam.com. 

Cookie syncing: We’re not aware of any tools that specifi­
cally block cookie syncing. The bluntest approach, of course, 
is to simply block third-party cookie placement and HTTP 
traffic. EFF’s newly released tool Privacy Badger18 uses 
heuristics to block third-party cookies with the goal of pre­
venting third-party tracking, erring on the side of false pos­
itives (i.e., blocking too many cookies). The Tor Browser 
Bundle (TBB) prevents cross-site cookie tracking by dis­
abling all third-party cookies, and not storing any persis­
tent data such as cookies, cache or localStorage. A more 
targeted solution would be to block third-party traffic con­
taining strings that are cookie values, but this approach will 

16Bug 527667 https://bugzilla.mozilla.org/show_bug. 
cgi?id=527667 

17Confirmed through manual analysis 
18https://www.eff.org/privacybadger 
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likely suffer from false negatives. However, even a perfect 6.3 Implications 
blocking tool is flawed if it is not used immediately from 
a completely fresh browsing state. For instance, if a user 
browses for a short amount of time before installing such a 
tool, trackers may have already placed and synced cookies 
— enabling them to merge data in the back-end. If these 
IDs are maintained through a hard-to-block technique such 
as canvas fingerprinting, the trackers can still follow a user as 
he browses and link their records through these previously-
established syncing relationships even if all future syncs are 
blocked. 

6.2 The effect of opt-out 
In order to study the effect of ad-industry opt-out tools 

on the tracking mechanisms we study, we opted-out from 
all the listed companies on the Network Advertising Initia­
tive (NAI)19 and European Interactive Digital Advertising 
Alliance (EDAA)20 opt-out pages. 

Canvas fingerprinting: For each canvas fingerprinting 
script we visited two sites that included this script. We 
did not observe any website that stopped collecting can­
vas fingerprint due to opt-out.21 This was despite the fact 
that AddThis was listed on the NAI opt-out page and Lig­
atus (second most popular canvas fingerprinter) was listed 
on EDAA’s page. 

We also tried opting-out by on AddThis’ own Data Collec­
tion Opt-Out website22, which again, did not stop AddThis’s 
script collecting the canvas fingerprint. 

Respawning: We did not observe any change in cookie 
respawning from HTTP to Flash cookies. This is expected 
as the parties involved are not participants in the advertising 
opt-out initiatives. 

Cookie syncing: The use of opt-out cookies reduces the 
number of IDs involved in cookie synchronization by 30%. 
However, we see only a 5% reduction in the number of par­
ties involved in synchronization. This reduction is compar­
atively smaller than the reduction seen when the browser 
is set to block third-party cookies. The composition of the 
top parties involved in synchronization is nearly the same as 
in the first-party cookie only case seen in Appendix B. In 
Section 5.3 we show how, even under the larger reduction 
in sync activity afforded by blocking all third-party cookies, 
it is possible to recover a large portion of a user’s browsing 
history using just a small number of the parties involved. 

Note that most companies offering or honoring the opt-outs 
we evaluated do not promise to stop tracking when a user 
opts out, but only behavioral advertising. While we ob­
served tiny or nonexistent reductions in various forms of 
tracking due to opt-out, we make no claims about how opt-
outs affect behavioral advertising. 

19http://www.networkadvertising.org/choices/ 
20http://www.youronlinechoices.com/uk/your-ad­
choices 

21We observed that two of the 20 fingerprinting scripts 
(revtrax.com and vcmedia.vn) were missing on the sites we 
found them before, though we checked to ensure that this 
was not related to opt-out. 

22http://www.addthis.com/privacy/opt-out 

Let us consider the level of user effort and sophistication 
required for effective mitigation. First, users must be very 
careful in their use of existing tools, such as clearing state 
on all browsers at once or installing blocking tools before 
cookie syncing has occurred. Second, users must accept us­
ability drawbacks such as the prompt for Canvas API access. 
Third, there are also trade-offs in functionality and content 
availability. Finally, the rapid pace at which new tracking 
techniques are developed and deployed implies that users 
must constantly install and update new defensive tools. It 
is doubtful that even privacy-conscious and technologically-
savvy users can adopt and maintain the necessary privacy 
tools without ever experiencing a single misstep. 

Evercookies were at the center of fierce debates when 
Soltani et al. reported their findings [43] a few years ago. 
Although this resulted in a lawsuit and a $500,000 settle­
ment [14], we find an increasing number of websites using 
these tracking technologies as well as significant advances in 
the technologies themselves. 

The World Wide Web Consortium (W3C) standards doc­
uments that describe three new storage APIs (localStorage, 
IndexedDB and WebStorage APIs) have the same boiler­
plate warning about the tracking potentials of these mech­
anisms23 and mention the necessity of an interface to com­
municate the evercookie risk. Perhaps a fruitful future di­
rection for standards bodies is to consider privacy issues at 
the design stage, acknowledging that without such a proac­
tive effort, tracking techniques are likely to have the upper 
hand over defenses. W3C’s draft specification “Fingerprint­
ing Guidance for Web Specification Authors” is a notable 
effort in this direction, for providing a guideline to Web 
specification authors about privacy risks of browser finger­
printing [15]. 

6.4 A Path Forward 

Blocking tools are currently the primary solution to third-
party tracking for the informed user. We believe that these 
tools can be greatly improved by a back-end consisting of 
regular web-scale crawls. Crawlers can incorporate sophisti­
cated rules to detect unwanted tracking, as we have shown, 
whereas it would be difficult to deploy these directly into 
browser tools. Accordingly, we plan to further scale our 
crawling infrastructure, while continuing to release results 
in a machine-readable format. 

Crawler-supported blocking tools could also benefit from 
machine learning and crowd-sourcing (instead of rules hand-
coded by experts) for minimizing false positives and neg­
atives. For example, we have produced an initial classi­
fication of canvas fingerprinting scripts on 100,000 sites, 
but there are surely many more such scripts in the web’s 
long tail, which suggests that a semi-supervised learning ap­
proach could be effective. The resulting classifier would label 
scripts that access the canvas API as canvas fingerprinters 
or non-canvas-fingerprinters. Turning to crowdsourcing, a 
browser tool could default to blocking all canvas write/read 
attempts, but slowly incorporate user feedback about bro­
ken functionality to train a model for identifying true fin­

23http://www.w3.org/TR/webstorage/#user-tracking, 
http://www.w3.org/TR/IndexedDB/#user-tracking, 
http://www.w3.org/TR/webdatabase/#user-tracking 
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gerprinting attempts. Of course, these two approaches can 
be combined. 

Finally, publishers have little insight into the types of 
tracking occurring on their own sites. The tools that we and 
others have built can be re-purposed to provide transparency 
not just to end-users but also allow publishers an in-depth 
look into how trackers collect data from their sites, where 
the data flows, and how it is used. This will allow them 
to discriminate between advertising or analytics providers 
on the basis of privacy practices.24 If combined with public 
pressure to hold first parties accountable for online tracking 
and not just third parties, it can move online tracking in a 
more transparent and privacy-friendly direction. 

7. CONCLUSION 

We present a large-scale study of tracking mechanisms 
that misuse browser features to circumvent users’ tracking 
preferences. We employed innovative measurement meth­
ods to reveal their prevalence and sophistication in the wild. 
Current options for users to mitigate these threats are lim­
ited, in part due to the difficulty of distinguishing unwanted 
tracking from benign behavior. In the long run, a viable 
approach to online privacy must go beyond add-ons and 
browser extensions. These technical efforts can be but­
tressed by regulatory oversight. In addition, privacy-friendly 
browser vendors who have hitherto attempted to take a neu­
tral stance should consider integrating defenses more deeply 
into the browser. 
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APPENDIX 

A.	 FLASH COOKIES WITH THE MOST 
RESPAWNS 

Table 7: Number of domains which have knowledge of 
unique IDs created by each listed domain. ID creator 

determined manually by first placement of cookie (* the 
relationship was unclear from HTTP/cookie logs). 

All Cookies Allowed No 3P Cookies 
ID Creator # D. ID Creator # D. 
turn.com 43 sociomantic.com 22 
adsrvr.org 30 mybuys.com 11 

mookie1.com 29 mybuys.com 11 
Unknown* 24 mercadolibre.com 9 

media6degrees.com 23 shinobi.jp 7 
parsely.com 22 newsanalytics.com.au 6 
Unknown* 19 microsoft.com 6 
titaltv.com 18 mercadolibre.cl 5 

crwdcntrl.net 18 mercadolibre.com.ar 5 
uservoice.com 15 rackspace.com 5Flash domain # respawned cookies 

Pass 1 Pass 2 
bbcdn-bbnaut.ibillboard.com 
irs01.net 
embed.wistia.com 
source.mmi.bemobile.ua 
kiks.yandex.ru 
static.baifendian.com 
tv.sohu.com 
ar.hao123.com 
embed-ssl.wistia.com 
img5.uloz.to 

63 69 
21 18 
14 13 
13 14 
11 11 
10 10 
7 7 
3 2 
3 3 
3 3 

Table 5: The Flash cookies that respawn most cookies on 
Alexa top 10,000 sites. The rightmost two columns 

represent the number of cookies respawned in two crawls 
made with the same set of Flash cookies (Crawl2,3). 

B.	 TOP PARTIES INVOLVED IN COOKIE 
SYNC 

All Cookies Allowed No 3P Cookies 
Domain # IDs Domain # IDs 
gemius.pl 33 gemius.pl 36 

doubleclick.net 32 2o7.net 27 
2o7.net 27 omtrdc.net 27 

rubiconproject.com 25 cbsi.com 26 
omtrdc.net 24 parsely.com 16 
cbsi.com 24 marinsm.com 14 
adnxs.com 22 gravity.com 14 
openx.net 19 cxense.com 13 

cloudfront.net 18 cloudfront.net 10 
rlcdn.com 17 doubleclick.net 10 

Table 6: Number of IDs known by the Top 10 parties 
involved in cookie sync under both the policy of allowing 

all cookies and blocking third-party cookies. 
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D. LIST OF HTTP RESPAWNING SCRIPTS
 

First-Party Domains Source of Respawn Script Source 
accountonline.com (citi.com), 
fling.com*, flirt4free.com, 
zoosk.com 

Third-party: Iovation Fraud Detection https://mpsnare.iesnare.com/snare.js 
https://mpsnare.iesnare.com/stmgwb2.swf 

seoprofiler.com, seobook.com, bi­
grock.in, imperiaonline.org, me­
diatemple.net, resellerclub.com 

First-party: Post Affiliate Pro Software http://seobook.com/aff/scripts/trackjs.js 

twitch.tv, justin.tv Third-party: Shared CDN http://www-cdn.jtvnw.net/assets/global­
6e555e3e646ba25fd387852cd97c19e1.js 

casino.com First-party: Unknown/In-house http://www.casino.com/shared/js/mts.tracker.js 
xlovecam.com First-party: Unknown/In-house http://www.xlovecam.com/colormaker.js 

Table 8: Summary of HTTP respawning. “Source of Respawn” describes whether or not the tracking occurs in the 
first-party or third-party context and lists the entity responsible for writing the script. * Interestingly fling.com has 

the ID passed from the third-party context and saved in the first-party context 

E. LIST OF CANVAS FINGERPRINTING SCRIPTS 

Domain URL of the Fingerprinting Script 

addthis.com http://ct1.addthis.com/static/r07/core130.js, http://ct1.addthis.com/static/r07/sh157.html# and 16 others 
ligatus.com http://i.ligatus.com//script/fingerprint.min.js 
kitcode.net http://src.kitcode.net/fp2.js 
vcmedia.vn http://admicro1.vcmedia.vn/fingerprint/figp.js 
amazonaws.com1 https://s3-ap-southeast-1.amazonaws.com/af-bdaz/bquery.js 
shorte.st http://static.shorte.st/js/packed/smeadvert-intermediate-ad.js?v1.7.10 
ringier.cz http://stat.ringier.cz/js/fingerprint.min.js 
cya2.net http://cya2.net/js/STAT/89946.js?ver=adl&cid=T. . . 
revtrax.com http://images.revtrax.com/RevTrax/js/fp/fp.min.jsp 
pof.com http://www.pof.com/ 
rackcdn.com2 https://c44ed9b5ebea0e0739c3-dcbf3c0901f34702b963a7ca35c5bc1c.ssl.cf2.rackcdn.com/mongoose.fp.js 
hediyera.com http://www.hediyera.com/js/dota/dota.js 
meinkauf.at http://www.meinkauf.at/assets/application-74bbc9cea66102ea5766faa9209cf3e0.js 
freevoipdeal.com http://www.freevoipdeal.com/en/asset/js/39b4e838c58e140741f9752542545e77 
voipbuster.com http://www.voipbuster.com/en/asset/js/8ecf64add423a396f83430f9357a0e55 
nonoh.net http://www.nonoh.net/asset/js/e4cf90bfdfa29f5fd61050d14a11f0a1 
49winners.com http://49winners.com/js/49w3/fingerprint.js?v=1.1 
freecall.com http://www.freecall.com/asset/js/f4ccb1cb0e4128b6d4b08f9eb2c8deb4 
domainsigma.com http://static.domainsigma.com/static/public/js/common.9b6f343c.js 
insnw.net3 http://dollarshaveclub-002.insnw.net/assets/dsc/dsc.fingerprint-b01440d0b6406b266f8e0bd07c760b07.js 

Table 9: URLs of Canvas Fingerprinting JavaScript. The URL parameters snipped for brevity are denoted by . . .
 
1: s3-ap-southeast-1.amazonaws.com (sends the collected fingerprint to adsfactor.net domain).
 

2: 44ed9b5ebea0e0739cdcbf3c0901f34702b963a7ca35c5bc1c.ssl.cf2.rackcdn.com (sends the collected fingerprint to
 
api.gonorthleads.com). 3:dollarshaveclub002.insnw.net
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