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Abstract 
Protecting sensitive data often requires implementing repeated secu­
rity checks and filters throughout a program. This task is especially 
error-prone in web programs, where data flows between applica­
tions and databases. To reduce the opportunity for privacy leaks, we 
present Jacqueline, a web framework that automatically enforces se­
curity policies that restrict where sensitive data may flow. In Jacque­
line, programmers specify information flow policies separately from 
the rest of the program. In turn, the remainder of the program is 
policy-agnostic: parametric with respect to the policies. The Jacque­
line runtime differentiates outputs based on the policies and viewer 
by simulating simultaneous multiple executions. We demonstrate 
that this approach provides strong theoretical guarantees and is also 
practical. We formalize Jacqueline’s object-relational mapping and 
prove end-to-end policy compliance. Our formalism uses standard 
relational operations and thus allows us to implement Jacqueline 
as an extension of the Django Python framework using an unmodi­
fied SQL database. We demonstrate the feasibility of the approach 
through three application case studies: a course manager, a health 
record system, and a conference management system that we have 
deployed to run a workshop. We compare to code written with 
hand-implemented policies, showing that not only does Jacqueline 
reduce lines of policy code, but also that the Jacqueline runtime has 
reasonable, and often negligible, overheads. 

1. Introduction 
From social networks to electronic health record systems, web 
programs increasingly process sensitive information. A standard 
way of managing sensitive data involves implementing repeated 
checks and filters throughout the program. However, missing access 
checks, incorrect computation of the viewer, and incorrect policy 
propagation can all release sensitive data to unauthorized viewers. 

Interactions with databases further complicate the task of protect­
ing sensitive data in web programs. In particular, the programmer 
must now reason about how sensitive data flows through both appli­
cation code and database queries. Reasoning across the application-
database boundary has led to leaks in systems from the HotCRP 
conference management system [4] to the social networking site 
Facebook [45]. Indeed, the patch for the recent HotCRP bug involves 
policy checks across application code and database queries. 

We address the problem of protecting sensitive data in web 
programs by reducing the opportunity for error. We propose a policy-
agnostic programming paradigm that allows the programmer to 
specify information flow policies separately from the rest of the 

applications. We present Jacqueline, a web framework that allows the 
programmer to specify policies only once, alongside data schemas. 
Jacqueline manages policy dependencies and guarantees end-to­
end policy compliance across the application and database. A key 
advantage of Jacqueline is that it works with unmodified relational 
databases, allowing the programmer to use the policy-agnostic 
model without giving up the benefits of an optimized database. 

1.1 Policy-Agnostic Programming 

Jacqueline is based on the policy-agnostic programming model of 
the Jeeves language [11, 46]. Jeeves programs express computations 
independently of information flow policies. The runtime ensures 
that program behavior complies with the policies. Policies may 
depend on sensitive values: for example, who is allowed to learn 
a secret value may depend on the value itself. Jeeves provides 
strong guarantees, ensuring that policy enforcement does not itself 
leak sensitive information. However, Jeeves is unsuited for building 
realistic web applications for the following reasons: 

• No guarantees when interoperating with databases. For perfor­
mance reasons, web applications rely heavily on interactions 
with commodity databases. Unfortunately, a common problem 
with language-based approaches is that guarantees apply only to 
programs running entirely within the language. Indeed, Jeeves’s 
policy enforcement guarantees fail when there is any interaction 
with an external database. 

• Expensive execution model. Jeeves may explore exponentially 
many possible execution branches based on the possible viewers. 
This can become prohibitively expensive when sensitive values 
each have their own policies. 

Jacqueline overcomes these limitations and enables policy-
agnostic programming for web programs of realistic scale. A key 
insight is that rather than needing to modify existing databases 
to include policy checks, we can create a policy-agnostic object-
relational mapping (ORM). With a standard ORM, the programmer 
does not write database queries directly, but instead relies on the 
framework to manipulate data between applications and databases. 
With a policy-agnostic ORM, the programmer relies on the frame­
work to manipulate both data and policies. The challenge becomes, 
then, to design an ORM that can track sensitive data and policies 
through database queries when the database is not aware of sensitive 
values or policies. We observe that an ORM can do this through ju­
dicious manipulaton of meta-data. Jacqueline improves upon Jeeves 
in the following ways: 
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Figure 1: Application architecture in Django vs. Jacqueline. 

• Optimization approach for web programs. To avoid the ex­
ponential exploration of execution branches that may occur with 
Jeeves, we formalize an “Early Pruning” optimization and prove 
that it preserves policy compliance. We demonstrate that it de­
creases Jacqueline’s overheads and is necessary for non-trivial 
computations involving sensitive values. 

• Demonstration of practical feasibility. We implemented 
Jacqueline using an unmodified Python interpreter and unmod­
ified SQL database. We demonstrate the expressiveness and 
performance of Jacqueline through several case studies, includ­
ing a conference management system that we have deployed to 
run an academic workshop. We compare Django code with hand-
implemented policies, showing that not only does Jacqueline 
reduce lines of policy code, but also that the automatic policy 
enforcement has reasonable overheads. 

• End-to-end guarantees for database-backed applications. We 
formalize the Jacqueline ORM in terms of standard relational 
operators to track sensitive values and policies through database 
queries. We prove that this yields a policy compliance property 
across the application and database. 

• Correctness-preserving optimization approach. Jacqueline does 
not need to assume the viewer is unknown until output because 
it is common for web frameworks to track the viewing context. 
As soon as the runtime knows the viewing context, it can prune 
alternate execution branches. We formalize this optimization, 
show that it preserves end-to-end policy compliance, show that 
it allows Jacqueline to have reasonable overheads in practice, 
and demonstrate it is necessary for non-trivial computations 
involving sensitive values. 

1.2 Advantages and Contributions 

Several advantages of our approach make the programming model 
especially appealing. The first is that the language runtime manages 
the policies, thus removing the need to trust the remaining appli­
cation code of the web server—we need to trust only the policies. 
The second is that rather than simply preventing forbidden outputs, 
Jacqueline adapts program behavior to adhere to policies, simulat­
ing multiple executions of the program based on the possible ways 
the policies will need to be enforced. An additional benefit is that 
separating the policy specification and enforcement from the rest 
of the code decreases the amount of policy code needed. In Jacque­
line, the programmer writes the policy associated with data once, 
and the runtime automatically enforces the policy. By contrast, in 
most other security-conscious web frameworks, the programmer 
must implement policies by writing checks and filters throughout 
the application and database code. In Figure 1 we compare the ar­
chitecture of a Jacqueline program to that of a program using the 
popular Python web framework Django [2]. We show that in Jacque­
line, 1) application and database code do not need to be trusted, 2) 
policies are localized, and 3) the size of policy code is smaller due 
to automatic policy enforcement. 

We make the following contributions: 

• Policy-agnostic web programming paradigm. We propose a 
paradigm for database-backed web applications that allows the 
programmer to specify information flow policies once and rely 
on the framework to customize program behavior. We implement 
this paradigm in the Jacqueline web framework. 

• Semantics and end-to-end guarantees. We formalize the 
Jacqueline ORM using λJDB, an extension of Jeeves with rela­
tional operators, and prove end-to-end policy compliance. We 
show how the semantics corresponds to an implementation 
strategy using an unmodified relational database. 

With Jacqueline, we demonstrate an approach for database-backed 
web application development that both provides strong theoretical 
guarantees and exhibits good performance in practice. 

2. Introductory Example 
Consider a social calendar application. Suppose Alice and Bob 
want to plan a surprise party for Carol, 7pm next Tuesday at 
Schloss Dagstuhl. They should be able to create an event such 
that information is visible only to guests. Carol should be able to 
see that she has an event 7pm next Tuesday, but not that it is a party. 
Everyone else may be able to see that there is a private event at 
Schloss Dagstuhl, but not the details of the event. 

Enforcing policies in our calendar requires computations to be 
policy-aware. For instance, it is increasingly common for calendar 
systems to support queries such as “Who are my friends in Schloss 
Dagstuhl at 7pm Tuesday?” It is also common for the results of such 
a query to be broadcast to a set of users, each with their own per­
missions. Because a single fixed viewer may not be initially known 
and because viewers may be computed from sensitive values, we 
need information flow policies rather than access control policies. 
Using popular programming paradigms, the programmer must im­
plement policies as repeated checks and filters across application and 
database code. Using Jacqueline, the programmer needs to provide 
only a single declarative specification of each security policy. 

2.1 Policy-Agnostic Model-View-Controller Framework 

Jacqueline is a model-view-controller (MVC) web framework where 
the model describes the data, the view describes the page layouts, and 
the controller describes computation over the data to produce views. 
Standard ORM frameworks abstract over interactions with an under­
lying database, allowing the programmer to specify data schemas 
for the model in the same language as the controller. Jacqueline 
additionally abstracts over the implementation of information flow 
policies. The Jacqueline runtime takes responsibility for tracking 
sensitive values and policies between applications and databases. 
Jacqueline produces outputs that adhere to the policies with end-to­
end guarantees of policy compliance. 

Jacqueline supports policy-agnostic application code and database 
queries. Once the programmer associates information flow policies 
with data fields, the rest of the program looks like a Django program. 
The programmer needs to be aware that policies may affect the 
values flowing through the program, e.g.defaults rather than sensi­
tive values, but does not need to know the specifics of the policies. 
In Figure 2 we show the API for individual JacquelineModel data 
records and for sets of records JeevesQuerySet. The programmer 
may call these APIs exactly as they would call the corresponding 
Django APIs for Model and QuerySet. Note that both ORMs abstract 
over implicit joins from foreign keys. 
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1 c l a s s Jeeve sQuerySe t ( QuerySet ) :
 
2 a l l ( )
 
3 d e l e t e ( )
 
4 f i l t e r ( ∗∗ kwargs )
 
5 o r d e r b y ( ∗∗ kwargs )
 
6 get ( ∗∗ kwargs )
 
7
 

8 c l a s s J ac qu e l i n eM od e l ( Model ) :
 
9 c r e a t e ( ∗ args , ∗∗ kwargs )
 

10 d e l e t e ( ) 
11 save ( ∗ args , ∗∗ kwargs ) 

Figure 2: The Jacqueline ORM API. The argument ∗args denotes 
an optional list of arguments. The argument ∗∗kwargs denotes 
an optional dictionary of arguments. The filter method takes, for 
instance, arguments for field equalities to filter on. 

1 c l a s s Event ( Ja cq ue l i n e Mo de l ) :
 
2 name = C h a r F i e l d ( max_length =256)
 
3 l o c a t i o n = C h a r F i e l d ( max_length =512)
 
4 t ime = DateTimeFie ld ( )
 
5 d e s c r i p t i o n = C h a r F i e l d ( max_length =1024)
 
6
 

7 # P u b l i c v a l u e f o r name f i e l d .
 
8 @sta t i cmethod
 
9 def j a cque l i n e _get _pub l i c _name ( even t ) :
 

10 r e t u r n " P r i v a t e even t " 
11 

12 # P u b l i c v a l u e f o r l o c a t i o n f i e l d . 
13 @sta t i cmethod 
14 def j a c q u e l i n e _ g e t _ p u b l i c _ l o c a t i o n ( even t ) : 
15 r e t u r n " U n d i s c l o s e d l o c a t i o n " 
16 

17 # P o l i c i e s f o r name and l o c a t i o n f i e l d s . 
18 @sta t i cmethod 
19 @ l a b e l _ f o r ( ’ name ’ , ’ l o c a t i o n ’ ) 
20 @ j a c q u e l i n e 
21 def j a c q u e l i n e _ r e s t r i c t _ e v e n t ( event , c t x t ) : 
22 r e t u r n ( EventGuest . o b j e c t s . ge t ( 
23 even t=s e l f , g u e s t=c t x t ) != None ) 
24 

25 c l a s s EventGuest ( J ac qu e l i n eM od e l ) : 
26 even t = Fore ignKey ( Event , n u l l=True ) 
27 g ue s t = Fore ignKey ( U s e r P r o f i l e , n u l l=True ) 

Figure 3: Jacqueline schema fragment for calendar events. 

2.2 Schemas and Policies in Jacqueline 

Continuing with our calendar example, we show a sample schema 
for the Event and EventGuest data objects in Figure 3. A Django 
schema is a Python class inheriting from Model with field names, 
field types, and optional methods. A Jacqueline schema is a Python 
class inheriting from JacquelineModel with field names, field types, 
optional policies, and optional methods. We define the Event class 
with fields name, location, description, and visibility, where visibility 
is the user-specified setting corresponding to whether the event is 
visible to everyone or only to guests. Up to line 5, this looks like a 
standard Django schema definition. The definition for EventGuest 
(line 25), with foreign keys to the Event and UserProfile (definition 
not shown) tables, is exactly as it would be in Django. 

2.2.1 Secret Values and Public Values 

In Jacqueline, sensitive values encapsulate multiple views: a secret 
view available only to viewers with sufficient permissions and a 
public view available to all over views. The Jacqueline runtime 

simulates simultaneous executions on both views. Jacqueline guar­
antees that if a viewer does not have access to the secret view, the 
system will produce all outputs as if the secret view never existed. In 
Jacqueline, if a data field has a policy, the actual value is the secret 
view. Jacqueline requires the programmer to additionally define a 
method computing the public view. 

On line 9 we define the jacqueline_get_public_name method 
computing the public view of the name field. If the information 
flow policy prohibits a viewer from seeing the sensitive name field, 
then the name field will behave as "Private event" throughout all 
computations, including database queries. This function takes the 
current row object (event) as an argument, so we could compute the 
public value using the row fields as well. The Jacqueline ORM uses 
naming conventions (e.g.the jacqueline_get_public prefix) to find 
the appropriate methods to compute public views. 

Jacqueline allows sensitive values to behave as either the secret 
value or public value, depending on the viewing context (i.e.the 
user viewing a page). Computation sinks such as print take an addi­
tional (implicit) argument corresponding to the viewer. Jacqueline 
tracks the viewer, uses that along with the policies to determine 
the value to display. For instance, print carolParty.name displays 
"Carol’s surprise party" to some viewers and "Private event" to oth­
ers, depending on the policies. Note that the programmer does not 
need to designate the viewer, as this is something that the framework 
can track. 

2.2.2 Specifying Policies 

The programmer specifies information flow policies that determine 
how sensitive values may flow through derived values. On line 21 
we implement the information flow policy for the fields name and 
location, as indicated by the label_for decorator. The policy is a 
method that takes two arguments, the current row object (event) 
and the viewer (ctxt). The framework tracks the viewing context 
corresponding to the argument ctxt, for which the programmer 
determines the type and value. Here, ctxt corresponds to the user 
looking at the page. 

Policies may contain arbitrary code: our policy queries the 
database, looking up in the EventGuest table (line 25) whether 
a given guest is associated with the event. Policies may depend 
on sensitive values: the EventGuest.guest field may have its own 
policies associated. Jacqueline enforces policies with respect to the 
row values at the time a value is created and the state of the system 
at the time of output. The jacqueline_restrict_event policy refers to 
the contents of the EventGuest table when a user views a page. 

2.3 Policy-Agnostic Application Code and Database Queries 

Jacqueline uses faceted execution [10, 11] to simulate simultaneous 
multiple executions on the different facets of a sensitive value. The 
programmer calls create in Jacqueline the same way as in Django: 

c a r o l P a r t y = Event . o b j e c t s . c r e a t e ( 
name = " C a r o l ’ s s u r p r i s e p a r t y " 

, l o c a t i o n = " S c h l o s s Dagstuh l " , . . . ) 

The Django ORM simply inserts the specified record into the 
database. In contrast, for the name field, the Jacqueline ORM creates 
the faceted value (k ? "Carol’s surprise party" : "Private event"), 
where k is a fresh boolean label guarding the secret actual field value 
and the public facet computed from the get_public_name method. 
The Jacqueline runtime maps labels to policies. For computation 
sinks such as print, the runtime assigns labels based on policies and 
the viewing context. 

Once the programmer associates policies with sensitive data 
fields, the rest of the program may be policy-agnostic and look as 
the equivalent policy-free Django program would. The Jacqueline 
runtime evaluates faceted values by evaluating each of the facets. 
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For instance, evaluating "Alice’s events: " + str(alice.events) yields 
the resulting faceted value guarded by the same label k: 

(k ? " A l i c e ’ s e v e n t s : C a r o l ’ s s u r p r i s e p a r t y " 
: " A l i c e ’ s e v e n t s : P r i v a t e even t ") 

Those with sufficient permissions, the guests of the event, will see 
"Carol’s surprise party" as part of the list of Alice’s events, while 
others will see only "Private event". Faceted execution propagates 
labels through all derived values, conditionals, and variable assign­
ments, thus preventing implicit flows. 

The Jacqueline ORM extends faceted execution to database 
queries. For instance, consider the query: 

Event . o b j e c t s . f i l t e r (
l o c a t i o n=" S c h l o s s Dagstuh l " ) 

While the Django ORM simply issues the corresponding database 
query for matching Event rows, the Jacqueline ORM manipulates 
faceted values to prevent leaks of sensitive information. Recall 
that the location field of carolParty is (k ? "Schloss Dagstuhl" : 
"Undisclosed location"). If carolParty is the only event in the 
database, faceted execution of the filter query yields a faceted 
list (m ? [carolParty] : []). Viewers who should not be able to see 
the location field will not be able to see values derived from the 
sensitive field. 

Jacqueline also prevents implicit leaks through writes to the 
database. For instance, consider the following code that replaces 
the description field of Event rows with "Dagstuhl event!" when the 
location field is "Schloss Dagstuhl": 

f o r l o c i n Event . o b j e c t s . a l l ( ) : 
i f l o c . l o c a t i o n == " S c h l o s s Dagstuh l " : 

l o c . d e s c r i p t i o n = " Dagstuh l even t ! " 
save ( l o c ) 

For carolParty the condition evaluates to (k ? True : False). The 
runtime records the influence of k when evaluating the conditional 
branch. The call to save writes (k ? carolPartyNew : carolParty), 
where carolPartyNew is the updated value. If a viewer cannot see the 
actual value of carolParty.location, the viewer will also not be able 
to see the updated description field. 

2.4 Computing Concrete Views 

At computation sinks such as print, the runtime uses the viewing 
context and policies to produce concrete, non-faceted outputs. The 
runtime does this by producing a system of constraints on the labels. 
Printing carolParty.name to alice produces the following constraint: 

k ⇒ 
( EventGuest . o b j e c t s . ge t (

even t=s e l f , g u e s t=c t x t ) != None ) 

The runtime evaluates this constraint in terms of the guest list at the 
time of output. Because policies are program functions, labels are 
the only free variables in the fully evaluated constraints. There is 
always a consistent assignment to the labels: since policies can only 
force labels to be False, assigning all labels to False is always valid. 

The policy enforcement mechanism handles dependencies be­
tween policies, including mutual dependencies between policies and 
sensitive values. Suppose, for instance, that the policy on guest lists 
depended on the list itself: 

@ l a b e l _ f o r ( ’ g ue s t ’ ) 
def j a c q u e l i n e _ r e s t r i c t _ g u e s t ( even tgue s t , c t x t ) : 

r e t u r n ( EventGuest . o b j e c t s . ge t ( 
even t=e v e n t g u e s t . e , g u e s t=c t x t ) != None ) 

This policy says that there must be an entry in the EventGuest table 
where the guest field is the viewer ctxt. This creates a circular 
dependency: the policy for the guest field depends on the value 

of the guest field. There are two valid outcomes for a viewer who 
has access: either the system shows the fields as empty or the system 
shows the actual fields. To handle situations like this, Jacqueline has 
a notion of maximal functionality and shows values unless policies 
require otherwise. 

Circular dependencies are increasingly common in real-world 
applications. Consider, for instance, the following policies: a viewer 
must be within some radius of a secret location to see the location; 
a viewer must be a member of a secret list to see the list. To 
handle these dependencies, a system must either 1) model these 
dependencies across the application code and queries, as we do, or 
2) allow policies to be executed in a trusted “omniscient” context. 
Unfortunately, the latter is common practice. 

3. Solution Overview 
Austin et al.’s faceted semantics for Jeeves [11] provide strong guar­
antees, but they have the following problems for web applications. 
First of all, the guarantees only hold for programs that run entirely 
within a faceted Jeeves runtime, preventing Jeeves programs from 
interoperating with commodity databases. In addition, the Jeeves 
semantics may explore exponentially many possible execution paths. 

We make policy-agnostic programming practical for web pro­
grams in the following ways: 

• We extend Jeeves’s faceted semantics and guarantees to include 
unmodified relational databases. 

• We develop an optimization based on the observation that the 
viewing context is often predictable. 

In this section, we describe our ORM framework by example, as well 
as the Early Pruning optimization. We formalize both in Section 4. 

3.1 Executing Relational Queries with Facets 

We designed the Jacqueline ORM to track sensitive values and 
policies through database queries when the database is not aware 
of sensitive values or policies. The ORM is able to do this by 1) 
using meta-data to represent faceted values in the database and 
2) marshalling values to and from the database representation to 
the application-level faceted representation. Our representation al­
lows us to use the following SQL queries unmodified: CREATE, 
UPDATE, SELECT ... WHERE ..., JOIN, and ORDER BY. Our so­
lution works with any non-SQL relational database as well. 

To describe our mapping, we first introduce the concept of 
a faceted row, a faceted value containing leaves that are non-
faceted SQL records. (Any record containing faceted values may 
be rewritten to be of this form.) The Jacqueline ORM stores each 
faceted row as multiple SQL rows We map each faceted row to 
multiple SQL rows by augmenting records with meta-data columns 
corresponding to 1) an identifier jac_id, chosen uniquely for each 
faceted row, and 2) an identifier jac_vars describing which facet 
the SQL row corresponds to, using a string-encoded description of 
labels, for instance "k1=True,k2=True". 

We provide examples of our mapping in Table 1, showing a ver­
sion without policies on the left-hand side and a version with policies 
on the right-hand side. The faceted value (k ? "Carol’s surprise party" : 
"Private event") is stored as two rows in the Event table with the 
same jac_id of 1. The secret facet has a jac_vars value of "k=True" 
and the public facet has a jac_vars value of "k=False". For nested 
facets, we store more labels in the jac_vars column. For instance, the 
following faceted value gets encoded as three database rows where 
the jac_vars strings are "k1=True,k2=True", "k1=True,k2=False", 
and "k1=False": 

(k1 ? (k2 ? " C a r o l ’ s s u r p r i s e p a r t y " : " Par ty ")
: " P r i v a t e even t ") 
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Django Jacqueline 

CREATE TABLE E vent COLUMNS ( 
i d INTEGER PRIMARY KEY, 
name VARCHAR( 1 2 8 ) , 
l o c a t i o n VARCHAR( 1 2 8 ) , 

) ; 

CREATE TABLE Ev ent COLUMNS ( 
i d INTEGER PRIMARY KEY, # i g n o r e d 
name VARCHAR( 1 2 8 ) , 
l o c a t i o n VARCHAR( 1 2 8 ) , 
j a c _ i d INTEGER , 
j a c _ v a r s VARCHAR(128) , 

) ; 

id name location 

1 "Carol’s ... party" "Schloss Dagstuhl" 

id name location jac_id jac_vars 

1 "Carol’s ... party" "Schloss Dagstuhl" 1 "x=True" 
2 "Private event" "Undisclosed location" 1 "x=False" 

Table 1. SQL code and example tables, with and without policies. 

Django Query Jacqueline Query 

EventGuest.objects.filter(guest__name="Alice") 

SELECT EventGuest . event , EventGuest . gu e s t SELECT EventGuest . event , EventGuest . guest , 
FROM EventGuest EventGuest . j a c _id , EventGuest . j a c _var s , 
JOIN U s e r P r o f i l e U s e r P r o f i l e . j a c _ v a r s 

ON EventGuest . gue s t _id = U s e r P r o f i l e . i d FROM EventGuest 
WHERE U s e r P r o f i l e . name= ’ A l i c e ’ ; JOIN U s e r P r o f i l e 

ON EventGuest . gue s t _id = U s e r P r o f i l e . j a c _ i d 
WHERE U s e r P r o f i l e . name= ’ A l i c e ’ ; 

Table 2. Translated ORM queries in Django vs. Jacqueline. 

3.1.1 Queries That Track Sensitive Values 

Our representation of faceted rows allows the Jacqueline ORM to 
issue standard SQL queries for selections, projections, joins, and 
sorts. The ORM can simply rely on the correct marshalling of query 
results into faceted rows for tracking sensitive values and policies 
through queries. No modification of the database is necessary. 

Our SQL representation of faceted values allows us to rely on 
faceted execution to lift the projection operator. Consider the query 
SELECT ∗ from Event WHERE location = "Schloss Dagstuhl" on 
the rows from Figure 1. Issuing the SELECT...WHERE on the aug­
mented database will return only the rows that match: 

. . . location jac_id jac_vars 

. . . "Schloss Dagstuhl" 1 "k=True" 
Reconstructing the facet structure yields the faceted value: 

( k ? 
[ { . . . , l o c a t i o n =" S c h l o s s Dagstuh l " , . . . } ] 
: [ ] ) 

Since the initial location field is guarded by label k, the results are 
also guarded by label k. 

The Jacqueline tracks sensitive values and policies through joins 
by manipulating the meta-data appropriately. Rows from joins that 
occur based on sensitive values will be appropriately guarded by 
the appropriate path conditions. To prevent the join from leaking 
information, the ORM takes into account the jac_vars fields from 
both tables.1 The ORM also ensures that foreign keys, references 
into another table, reference faceted rows with jac_id rather than the 
primary key. In Table 2, we show an example where the WHERE 
clause filters on the results of a JOIN. In the ON clause, we use 
the jac_id rather than id. In the SELECT clause, we include the 
User.jac_vars as well as the EventGuest.jac_vars field. 

1 The ORM maintains the invariant that all tables have the correct jac_vars 
columns. We can migrate tables without these columns to comply. 

The representation also allows us to take advantage of SQL’s 
ORDER BY functionality for sorting. Suppose we had faceted 
records, each with a single field f, with values (a ? "Charlie" : "∗∗∗"), 
(b ? "Bob" : "∗∗∗"), and (c ? "Alice" : "∗∗∗"). On the left we show 
the database representation and on the right we show the records 
ordered by the field f (where jid and jvars are abbreviations for jac_id 
and jac_vars, respectively): 

f jid jvars f jid jvars 

"Charlie" 
"∗∗∗" 
"Bob" 
"∗∗∗" 
"Alice" 
"∗∗∗" 

0 
0 
1 
1 
2 
2 

"a=True" 
"a=False" 
"b=True" 
"b=False" 
"c=True" 
"c=False" 

"∗∗∗" 
"∗∗∗" 
"∗∗∗" 
"Alice" 
"Bob" 
"Charlie" 

0 
1 
2 
2 
1 
0 

"a=False" 
"b=False" 
"c=False" 
"c=True" 
"b=True" 
"a=True" 

We can use the standard SQL ORDER BY procedure without leak­
ing information because the secret values are stored in different rows 
from the public values. The ORM is responsible for enforcing the 
policies so that, for instance, an output context with the permitted 
labels {a,¬b, c} would see ["∗∗∗", "Alice", "Charlie"]. 

While the Jacqueline ORM can use SQL queries for selects, joins, 
and sorts, there is no equivalent aggregate functions, for instance 
COUNT or SUM. Using aggregate queries in the database could 
leak information, as they combine values across facets. Jacqueline 
performs these operations in memory using the Jeeves runtime. 

3.1.2 Updating Data and Policies 

Jacqueline’s representation of faceted rows ensures that any action 
involving a row facet is visible only to those with the appropriate 
permissions. The Jacqueline ORM implements save, updating meta-
data and potentially deleting rows, such that all corresponding rows 
are updated appropriately. (The ORM computes default public 
values based on the state at the time of the save, using the entire 
row as the argument to the jacqueline_get_public function.) If the 
program invokes save in branches that depend on faceted values, 
Jacqueline creates facets that incorporate the path conditions. 
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Storing labels as meta-data makes it straightforward to 1) add 
policies to data that previously had no policies and 2) update policies 
on sensitive values. To add policies, the programmer needs to 
manipulate only the meta-data columns (jac_vars and jac_id). The 
programmer can add policies to legacy data by writing a database 
migration that adds the meta-data columns. To update policies using 
existing labels, the programmer can simply update the policies in 
the application code. 

3.2 Early Pruning Optimization 

With Jeeves, much of the overhead comes from executing with all 
possible views until a computation sink, as faceted values may grow 
exponentially in the number of labels. Whenever the viewer is not 
known, executing with all possible paths is necessary. This happens, 
for instance, when the program computes the viewer based on 
sensitive information, for instance when sending mail to all invitees 
of an event. Another case is when the program computes sensitive 
values to be written to the database, as the system usually cannot 
know the viewer of future database queries. 

In many cases, however, a useful correctness-preserving opti­
mization is to prune facets as soon as the runtime knows the viewer. 
As soon as the runtime knows the viewer, it can discard unnecessary 
facets. Doing this optimization involves being able to determine 1) 
the value of the viewing context and 2) that the state relevant to the 
policies will not change until output. In general, determining when 
we can perform this optimization requires non-trivial static analysis. 

Two properties of web programs make this optimization feasible. 
First of all, the framework often knows the viewing context ahead 
of time, as it is often the session user. Secondly, computation sinks 
are easy to identify in model-view-controller web frameworks. The 
most common information-leaking computation sinks involving 
writing to the database and rendering a page. Most controller 
functions either read from the database or write to the database, 
but not both. This allows us to implement functionality that, for 
“get” requests, speculates on when the viewer is known, rolling 
back to the beginning of the controller function to perform faceted 
execution when the hypothesized viewer is incorrect. The Early 
Pruning optimization is especially helpful in the common case 
because many pages that require substantial computation do not 
also involve writes to the database. We can also perform an Early 
Pruning optimization for saves by adding extra code that limits the 
visibility of a save operation to certain viewers, provided that the 
programmer knows the viewers ahead of time. 

4. Formal Semantics and Policy Compliance 
In this section, we capture the key ideas underlying Jacqueline in an 
idealized core language called λJDB. We prove that λJDB satisfies 
the key security property of termination-insensitive non-interference 
and policy compliance.When public values do not depend on secret 
values, λJDB satisfies an end-to-end non-interference property. 

e ::= Term 
x variable 
c constant 
λx.e abstraction 
e1 e2 application 
ref e reference allocation 
!e dereference 
e1:=e2 assignment 
(k ? eH : eL) faceted expression 
label k in e label declaration 
restrict(k,e) policy specification 
row e create a table 
σi= j e select rows where fields are equal 
πi e project columns 
e1 N e2 join or cross-product of tables 
e1 ∪ e2 union of tables 
fold e f ep et table fold 

S ::= Statement 
let x = e in S let statement 
print {ev} er print statement 

c ::= Constant 
f file handle 
b boolean 
i integer 
s string 

x,y,z Variable 
k, l Label 

Figure 4: λJDB syntax. 

empty) sequence of rows and each row is a sequence of strings. We 
require that all rows in a table have the same size. To manipulate 
tables, λJDB includes the usual operators of the relational calculus: 
selection (σi= j e), which selects the rows in a table where fields i and 
j are identical, projection (πi e), which returns a new table containing 
columns i from the table e, cross-product (e1 N e2), which returns all 
possible combinations of rows from e1 and e2, and union (e1 ∪ e2), 
which appends two tables. The construct row e creates a new single-
row table. The fold operation fold e f ep et supports iterating, or 
folding, over tables. Fold has the “type” ∀A, B.(B → A → B) → 
B → table A → B. 

4.2 Formal Semantics 

4.1 Syntax and Formal Semantics 

The language λJDB extends the language λjeeves [11] with support for 
databases, which we model as relational tables. Figure 4 summarizes 
the λJDB syntax, with the constructs from λjeeves marked in gray. 
The λjeeves language, in turn, extends the standard imperative λ­
calculus with constructs for declaring new labels (label k in e), 
for imperatively attaching policies to labels (restrict(k,e)), and for 
creating faceted values ((k ? eH : eL)). This last expression behaves 
like eH from the perspective of any principal authorized to see data 
with label k. For all other principals, the faceted expression behaves 
exactly like eL. 

The language λJDB extends λjeeves with support for databases, 
which we model as relational tables, where each table is a (possibly 

We formalize the big-step semantics as the relation Σ, e ⇓pc Σ
',V , 

denoting that expression e and store Σ evaluate to V , producing a 
new store Σ'. The program counter pc is a set of branches. Each 
branch is either a label k or a negated label ¬k. Association with k 
means the computation is visible only to principals authorized to 
see k. Association with ¬k means the computation is visible only to 
principals not authorized to see k. 

We could represent faceted tables as (k ? table T1 : table T2), but 
this approach would incur significant space overhead, as it requires 
storing two copies of possibly large database tables, possibly with 
only small differences between the two tables. Instead, we use the 
more efficient approach of faceted rows, where each row (B,s) in 
the database includes a set of branches B describing who can see 
that row. For example, the expression (k ? row "Alice" "Smith" : 
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Runtime Syntax Evaluation Contexts 
e ∈ Expr ::= ... | a | table T E ::= (k ? E : e) | (k ? V : E)
Σ ∈ Store = (Address →p Value) ∪ (Label → Value) | • e | v • | ref • | ! • | • :=e | V := • 
R ∈ RawValue ::= c | a | (λx.e) | row V . . . • e . . . | σi= j • | πi • 
a ∈ Address | • N e | V N • | • ∪ e | V ∪ • 
F ∈ FacetedValue ::= R | (k ? F1 : F2) | fold • e e | fold V • e | fold V V • 
T ∈ Table = (Branches × Stringn) ∗ Strict Contexts 
V ∈ Val ::= F | table T S ::= • e | ! • | • :=V | σi= j • | πi • 
b ∈ Branch ::= k | ¬k | • N V | table T N • | • ∪V | table T ∪ • 

pc,B ∈ Branches ::= | row V . . . • e . . . | fold V V •b∗ 

Expression Evaluation Rules for λjeeves Subset Σ,e ⇓pc Σ
' ,V 

[F-VAL]
Σ,V ⇓pc Σ,V 

Σ, e[x := V ] ⇓pc Σ
' ,V ' 

[F-APP]'Σ,(λx.e) V ⇓pc Σ
' ,V a  ∈ dom(Σ)
 

Σ' = Σ[a := (( pc ? V : 0))]
 
[F-REF] k  ∈ pc and ¬k  ∈ pc

Σ, ref V ⇓pc Σ
' ,a 

Σ,e1 ⇓pc∪{k} Σ1,V1 
Σ1,e2 ⇓pc∪{¬k} Σ

' ,V2 a  ∈ dom(Σ) ' [F-DEREF-NULL] V = ((k ? V1 : V2 )) 
Σ, !a ⇓pc Σ,0 ' [F-SPLIT]

Σ, (k ? e1 : e2) ⇓pc Σ
' ,V 

[F-DEREF] k ∈ pc Σ,e1 ⇓pc Σ
' ,V

Σ, !a ⇓pc Σ, Σ(a) [F-LEFT]
Σ,(k ? e1 : e2) ⇓pc Σ

' ,V 

Σ' = Σ[a := (( pc ? V : Σ(a)))] 
[F-ASSIGN] ¬k ∈ pc Σ,e2 ⇓pc Σ

' ,V
Σ,a := V ⇓pc Σ

' ,V [F-RIGHT]
Σ,(k ? e1 : e2) ⇓pc Σ

' ,V 

E  = [] ∧ e not a value ' ' Σ,(k ? S[VH ] : S[VL]) ⇓pc Σ
' ,V

Σ, e ⇓pc Σ
' ,V [F-STRICT]' 

Σ' ,E[V ' ] ⇓pc Σ
'' ,V '' Σ,S[(k ? VH : VL)] ⇓pc Σ

' ,V 
[F-CTXT]''Σ,E[e] ⇓pc Σ

'' ,V 

Evaluation with Relational Operations 

[F-ROW]
Σ, row s ⇓pc Σ, (table (c ,s)) 

'T = {(B,s1 . . .sn) ∈ T | si = s j} 
[F-SELECT]

Σ,σi= j (table T ) ⇓pc Σ,(table T ' ) 

i = i1 . . . in 
'T = {(B, si1 . . .sin ) | (B,s1 . . .sm) ∈ T } 

[F-PROJECT]
Σ, πi (table T ) ⇓pc Σ,(table T ' ) 

' ' ' 'T3 = {(B1 ∪ B2,s1 . . .sms1 . . .s ) | (B1,s1 . . . sm) ∈ T1,(B2, s1 . . .s ) ∈ T2}n n [F-JOIN]
Σ,(table T1) N (table T2) ⇓pc Σ,(table T3) 

Σ,(table T1) ∪ (table T2) ⇓pc Σ,(table T1.T2) 
[F-UNION] 

Σ, fold Vf Vp (table c) ⇓pc Σ,Vp 
[F-FOLD-EMPTY] 

Σ, fold Vf Vp (table T ) ⇓pc Σ
' ,V ' 

B inconsistent with pc 
Σ, fold Vf Vp (table (B, s).T ) ⇓pc Σ

' ,V ' 
[F-FOLD-INCONSISTENT] 

Σ, fold Vf Vp (table T ) ⇓pc Σ
' ,V ' 

B consistent with pc 
Σ' ,Vf s V ' ⇓pc∪B Σ

'' ,V '' 

Σ, fold Vf Vp (table (B,s).T ) ⇓pc Σ
'' ,((B ? V '' : V ' )) [F-FOLD-CONSISTENT] 

Figure 5: Faceted evaluation of λJDB .
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row "Bob" "Jones") evaluates to the following table 2: 

({k},("Alice","Smith")) 
({¬k}, ("Bob","Jones")) 

We do not model the facet identifier row jac_id. It is useful in the 
implementation but not necessary for the formal semantics or proof. 

To accommodate both faceted values and faceted tables, we 
define the partial operation (( · ? · : · )) to create either a new faceted 
value or a table with internal branches on rows: 

(( · ? · : · )) : Label × Val × Val → Val 
def((k ? FH : FL )) = (k ? FH : FL)
def((k ? table TH : table TL )) = table T
 

where T = {(B ∪{k},s) | (B,s) ∈ TH ,¬k  ∈ B}

∪{(B ∪ {¬k}, s) | (B,s) ∈ TL,k  ∈ B}


Wrapping a facet with label k around non-table values FH and FL 
simply creates a faceted value containing k, FH , and FL. Wrapping 
a facet with label k around tables TH and TL creates a new table 
T containing the rows from TH and TL, annotated with k and ¬k 
respectively. We extend this operator to sets of branches: 

(( · ? · : · )) : Branches × Val × Val → Val 
def((0/ ? VH : VL )) = VH 
def(({k}∪ B ? VH : VL )) = ((k ? ((B ? VH : VL )) : VL )) 
def(({¬k}∪ B ? VH : VL )) = ((k ? VL : (( B ? VH : VL )))) 

We show the faceted evaluation rules in Figure 5. The key 
rule is [F-SPLIT], describing how evaluation of a faceted expression 
(k ? e1 : e2) involves evaluating the sub-expressions in sequence. 
Evaluation adds k to the program counter to evaluate e1 and ¬k to 
evaluate e2 and then joins the results in the operation ((k ? V1 : V2 )). 
The rules [F-LEFT] and [F-RIGHT] show that only one expression is 
evaluated if the program counter already contains either k or ¬k. 

Our rules use contexts to describe faceted execution. The rule 
[F-CTXT] for E[e] enables evaluation of a subexpression inside an 
evaluation context. We use S to range over strict operator contexts: 
that is, operations that require a non-faceted value. If an expression 
in a strict context yields a faceted value (k ? VH : VL), then the rule 
[F-STRICT] applies the strict operator to each of VH and VL. Thus, for 
example, the evaluation of 1 + (k ? 2 : 3) reduces to the evaluation 
of (k ? 1 + 2 : 1 + 3), where S in this case is 1 + • . The rules 
[F-SELECT], [F-SELECT], [F-PROJ], [F-JOIN], and [F-UNION] formalize 
the relational calculus operators on tables of faceted rows. These 
rules are mostly straightforward. 

The rules for folding over tables are more interesting. If a row 
(B,s) is inconsistent (i.e., not visible to) the current program counter 
label pc, then rule [F-FOLD-INCONSISTENT] ignores that row. If the 
row is consistent, then rule [F-FOLD-CONSISTENT] applies the fold 
operator Vf to the row contents s and the accumulator V ', producing 

'' : Va new accumulator V ''. The result of that fold step is ((B ? V ' )), 
''a faceted expression that appears like V to principals that can see 

'the B-labeled row and like V to other principals. 
The faceted execution semantics describe the propagation of 

labels and facets for the purpose of complying with policies at 
computation sinks. λJDB expressions do not perform I/O, while 
λJDB statements include the effectful construct print {ev} er that 
prints expression er under the policies and viewing context ev. The 
λjeeves semantics describes how, for printing, the runtime assigns 
labels based on the policies and viewers and projects a single facet 
based on the label assignment. The λjeeves rules for declaring new 
labels and attaching policies to labels are in Appendix A. 

2 Note that this value representation does not support mixed expressions such 
as (k ? 3 : row "Alice"), which mix integers and tables in the same faceted 
values. Programs that try to cons unnaturally mixed values will get stuck. 

4.3 End-to-End Policy Compliance 

Austin et al.have proven policy compliance guarantees for λjeeves [11], 
showing the faceted semantics have the properties that 1) a single 
faceted execution is equivalent to multiple different executions 
without faceted values and 2) the system cannot leak sensitive infor­
mation through the output or the choice of output channel. We prove 
that this property extends to λJDB, yielding guarantees of end-to-end 
policy compliance for database-backed applications. 

The proof of policy compliance involves extending the projection 
property of λjeeves. A key property of λjeeves is that a single execution 
with faceted values projects to multiple different executions without 
faceted values. If a viewer has access only to the public facet of an 
expression, then faceted execution is output-equivalent to executing 
with only the public facet in the first place. 

To prove this property, we first define what it means to be be a 
view and to be visible. A view L is a set of principals. B is visible to 
view L (written B ∼ L) if 

∀k ∈ B.k ∈ L 

∀¬k ∈ B.k  ∈ L 

We extend views to values: 

L : Val(with facets) → Val(without facets) 
L(R) = R  

L(F1) k ∈ LL((k ? F1 : F2)) = L(F2) k  ∈ L 

L(table T ) = {(0/ ,s) | (B,s) ∈ T,B visible to L} 

We extend views to expressions:  
L(e1) k ∈ LL((k ? e1 : e2)) = L(e2) k  ∈ L 

For all other expression types we recursively apply the view to 
subexpressions. 

We then prove the Projection Theorem. The full proof is in 
Appendix E. Proofs of the key lemmas are in Appendices B and C. 

Theorem 1 (Projection). Suppose Σ,e ⇓pc Σ
' ,V . Then for any view 

L for which pc is visible, 

L(Σ),L(e) ⇓0/ L(Σ' ),L(V ) 

The Projection Theorem allows us to extend λjeeves’s property 
of termination-insensitive non-interference. To state the theorem 
we first define two faceted values to be L-equivalent if they have 
identical values for the view L. This notion of L-equivalence nat­
urally extends to stores (Σ1 ∼pc Σ2) and expressions (e1 ∼pc e2). 
The theorem is as follows: 

Theorem 2 (Termination-Insensitive Non-Interference).
 
Let L be any view. Suppose Σ1 ∼L Σ2 and e1 ∼L e2, and that:
 

Σ1,e1 ⇓0/ Σ' 
1,V1 Σ2,e2 ⇓0/ Σ' 

2,V2 

then Σ' 
1 ∼L Σ

' 
2 and V1 ∼L V2. 

The Termination-Insensitive Non-Interference Theorem allows 
us to extend the termination-insensitive policy compliance theorem 
of λjeeves [11]: data is revealed to an external observer only if it is 
allowed by the policy specified in the program. 

4.4 Early Pruning 

The Early Pruning optimization involves shrinking a table T by 
keeping each row (B,s) only when B is consistent with the viewer 
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constraint described by pc. We show the rule below: 

Σ,e ⇓pc Σ
' ,(table T )
 

'
T = {(B,s) ∈ T | B consistent with pc} 
[F-PRUNE]

Σ,e ⇓pc Σ
' ,(table T ' ) 

We prove the Projection Theorem holds with this extension. 

5. Implementation 
We implemented Jeeves as an embedding in Python and Jacqueline 
as an extension of the Django web framework [2]. Our code is 
available at [link to repository removed for double-blind reviewing]. 

5.1 Python Embedding of the Jeeves Runtime 

Our embedding allows programmers to write programs that run 
according to Jeeves semantics simply by importing our library and 
annotating classes and functions with the @jacqueline decorator. The 
decorator indicates that the class or function is to execute according 
to the faceted semantics. The library exports functions for creating 
labels, creating sensitive values, attaching policies, and producing 
non-faceted values based on policies. Our implementation supports 
a subset of Python’s syntax that includes if-statements, for-loops, 
and return statements. 

5.1.1 Faceted Execution 

To support faceted execution, the implementation defines a special 
Facet data type to store information about faceted values. During 
faceted execution, an object’s fields might be faceted values, either 
faceted primitive values (e.g.int, bool) or faceted references to other 
objects. A field may exist only in some execution paths, in which 
case we use a special object Unassigned() for other paths. 

To perform faceted execution, the implementation overloads 
operators (except operator such as in and and that do not support 
overloading) and performs a dynamic source transformation using 
the macro library MacroPy [5]. The source transformation intercepts 
the standard evaluation of conditionals, loops, assignments, and 
function calls. The runtime also keeps track of path conditions 
corresponding to label assumptions in the current branch. Since the 
scope of a Python variable is determined by where it is assigned in 
the source code, the implementation handles local assignment by 
replacing a function’s local scope with a special Namespace object 
that determines the scope of each local variable. 

5.1.2 Evaluating Policies at Computation Sinks 

The runtime keeps an environment that maps labels to policies for the 
purpose of using policies to de-facet values. Effectful computations 
take two arguments: the expression to show and an additional 
argument corresponding to the output context. If there are no mutual 
dependencies between policies and sensitive values, the runtime 
simply evaluates policies to determine label values. Otherwise, the 
runtime creates a system of constraints in order to find an assignment 
for label values consistent with the policies. The implementation 
produces an ordering over Boolean label assignments and uses 
the SAT subset of the Z3 SMT solver [34] to find a satisfying 
assignment. 

5.2 Jacqueline ORM 

We implemented Jacqueline’s ORM as an extension of Django’s 
ORM. The Jacqueline ORM creates schemas with additional meta-
data columns for keeping track of facets. All queries through the 
ORM manipulate the meta-data columns in addition to the actual 
columns. The ORM reconstructs facets from the meta-data. The 
ORM looks up policies from object schemas when reconstructing 
facets and adds the policies to the Jeeves runtime environment. We 

implement the Early Pruning optimization by reconstructing only 
the relevant facets when the runtime knows the viewer. 

6. Jacqueline in Practice 
To evaluate the expressiveness and performance of Jacqueline we 
built 1) a conference management system, 2) a health record man­
ager, and 3) a course management system. We evaluate Jacqueline 
along the following dimensions: 

• Expressiveness. We worked with two programmers who were 
not involved in Jacqueline development to ensure that Jacqueline 
provides a natural programming interface. One of the appli­
cations we built is a conference management system we have 
deployed to run a real workshop [1]. 

• Code architecture. We compare the implementation of the 
Jacqueline conference management system to an implementation 
of the same system in Django, as well as the HotCRP conference 
management system. We demonstrate that Jacqueline helps with 
both centralizing policies and with size of policy code. 

• Performance. We demonstrate that Jacqueline can handle data 
from hundreds of simulated users in the database. We show that 
for representative actions, Jacqueline has comparable perfor­
mance to the Django equivalent. For the stress tests, the Jacque­
line programs often have close to zero overhead and at most a 
1.75x slowdown compared to vanilla Django. We also demon­
strate the effectiveness of and necessity of the Early Pruning 
optimization. 

6.1 Applications 

We have developed the following applications using Jacqueline. 
Conference management system. Our conference management 

system supports user registration, update of profile information, 
designation of roles (i.e.PC member), paper and review submission, 
and assignment of reviews. Users may be authors, PC members, 
or the PC chair; only the PC chair can designate users as PC 
members. The administrator specifies the PC chair when configuring 
the system. The PC chair has additional privileges: for instance, 
assigning reviewers to papers. Permissions depend on the current 
stage of the conference: submission, review, or decision. 

Health record manager. We implemented a health record sys­
tem based on a representative fragment of the privacy standards 
described in the Health Insurance Portability and Accountability 
Act (HIPAA) [12, 37]. The HIPAA standards describe how individ­
uals and entities (such as hospitals and insurance companies) may 
view a patient’s medical history depending on the information and 
the viewer’s role. An example policy is that information about an 
individual’s hospital visits is visible to the individual, the individ­
ual’s insurance company, and to the site administrator. Policies may 
also depend on more stateful properties, for instance whether there 
exists a waiver permitting information release. 

Course manager. Our course management tool allows instruc­
tors and students to organize assignments and submissions. Relying 
on Jacqueline to manage policies allows us to experiment with more 
complex policies than are normally in a course manager: for in­
stance, stateful policies that depend on submission history or the 
activity of other students in the course. 

6.2 Code Comparisons 

We compare our Jacqueline implementation of a conference man­
agement system against HotCRP and a Django implementation of 
the same system. We demonstrate that 1) centralized policies in 
Jacqueline reduces the trusted computing base and 2) separating 
policies and other functionality decreases policy code size. 
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Figure 6: Distribution of policy code with Jacqueline and Django 
conference management systems. 

6.2.1 Django Conference Management System 

We compare the lines of code in the Jacqueline and Django con­
ference management systems in Figure 6. Note Jacqueline code 
requires additional imports and function decorators because we have 
implemented Jacqueline by extending Python and Django. (With our 
current implementation, each class and function executing according 
to the faceted semantics requires the @jacqueline decorator. Policies 
require additional decorators.) 

Jacqueline demonstrates advantages in both the distribution and 
size of policy code. In the Jacqueline implementation, policy code 
is confined to the models.py file describing the data schemas, while 
in the Django implementation, the programmer needs to implement 
policies throughout the controller file views.py as well. These poli­
cies increase the overall code size. The Jacqueline implementation 
has 106 total lines of policy code, whereas the Django implementa­
tion has 130 lines. These additional lines of policy code manifest as 
repeated checks and filters across views.py. Thus, Django requires 
auditing of all of models.py and views.py (~575 total lines of code) 
to ensure policy compliance. In contrast, Jacqueline requires only 
auditing models.py (~200 lines of code), reducing the size of the 
application-specific trusted computing base by 65%. 

6.2.2 HotCRP 

Policies and functionality are intertwined across the HotCRP confer­
ence management system [6], written mostly using PHP and SQL. 
There are 191 occurrences alone of checks for whether the viewer 
is the PC chair or has the appropriate conflict status, as well as dy­
namically generated SQL queries based on analogous conditional 
checks. The policy code is in at least 24 of the 82 files. A program­
mer needs to edit code across the system to add policies or fix bugs. 
The HotCRP bug we mentioned in the introduction involved 40 
additions and 25 deletions, including adding checks in dynamically 
generated SQL, in multiple places across two files [4]. 

6.3 Performance 

We evaluated the performance of our system on representative 
actions and stress tests compared to an implementation written 
using vanilla Django. We also evaluated the effectiveness of the 
Early Pruning optimization, demonstrating its necessity for non­
trivial computations involving sensitive values. 

We measured running times using an Amazon EC2 m3.2xlarge 
instance running Ubuntu 14.04 with 30GB of memory, two 80GB 
SSD drives, and eight virtual 64-bit Intel(R) Xeon(R) CPU E5­
2670 v2 2.50Ghz processors. We use the FunkLoad testing frame­
work [3] for functional and load testing to time HTTP requests 
from another machine across the network. We ran all tests using the 
−−simple−fetch option to exclude CSS and images. We averaged 
running times over 10 rapid sequential requests. We show results 
only from sequential requests because how well Jacqueline handles 

Figure 7: Times to view profiles for a single paper and single user, 
in Jacqueline and Django. 

concurrent users compared to Django simply depends on the amount 
of available memory. 

6.3.1 Representative Actions 

We measured the time it takes for our system to do view the profiles 
for a paper and user as there is more data in the database. We 
show these numbers, as well as comparisons to Django, in Figure 7. 
The time it takes to load these profiles is under two milliseconds 
and roughly equivalent to the time it takes to do the equivalent 
action in the Django implementation. For viewing a single paper, 
Jacqueline actually performs better than the Django implementation. 
This is because in a few cases, the implementation needs iterate over 
collections of data rows again in order to apply policy checks. In the 
Jacqueline implementation, the programmer can simply rely on the 
framework to attach the policies. 

6.3.2 Stress Tests 

In Figure 8 we show results for showing an increasing number of 
papers and users for conference management systems implemented 
in Jacqueline and Django. In these tests, the system is resolving 
different policies for each paper and user field. The graphs demon­
strate that with both Jacqueline and Django, the time to load data 
scales linearly with respect to the underlying algorithms. In these 
results, Jacqueline has a 1.75x overhead for showing all papers. The 
overhead comes from Jacqueline fetching both versions of data from 
the database before resolving the policies. Integrating policies more 
deeply with the database could reduce this overhead. Note that there 
is no solver overhead, as there are no mutual dependencies between 
sensitive values and policies. 

Results for the other case studies show similar promise for 
Jacqueline’s ability to scale. In Figure 9 we show stress test data from 
our health record manager and course manager. Jacqueline resolves 
policies for rendering hundreds of data records in seconds. Most 
systems will not load over a thousand data rows at once, especially 
when each row value has its own privacy policy involving calls to 
the database. A more realistic website would load such a page in 
fragments and consolidate policies. 

6.3.3 Early Pruning Optimization 

We found the Early Pruning optimization to be necessary when the 
program performs nontrivial computations over sensitive values. In 
the course manager stress test, the page that shows all courses also 
looks up the instructors for each course, leading to blowup: before 
the course is known, the system must look up all possible instructors. 
We show in Figure 10 how for just 8 randomly generated courses and 
instructors, the system begins to hit memory limits. Early Pruning 
makes it possible to write such programs in Jacqueline. As long as 
the computation to determine a viewer is simple, Early Pruning can 
simplify other computations after the viewer is known. 

10 2015/7/13 

http:models.py
http:views.py
http:models.py
http:views.py
http:views.py
http:models.py


Showing All Courses, with and without Pruning 

CFM Stress Tests 
View all papers 

Papers Jacq. Django 
8 0.241s 0.201s 

16 0.299s 0.241s 
32 0.542s 0.388s 
64 0.855s 0.554s 

128 1.551s 0.931s 
256 2.810s 1.633s 
512 5.717s 3.265s 

1024 10.729s 6.055s 

View all users 
Users Jacq. Django 

8 0.172s 0.163s 
16 0.249s 0.234s 
32 0.279s 0.254s 
64 0.358s 0.341s 

128 0.510s 0.541s 
256 0.769s 0.820s 
512 1.352s 1.269s 

1024 2.305s 1.538s 
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Figure 8: Times to view list of summary information for all papers 
and all users, in Jacqueline and Django. 

Other Stress Tests 
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Figure 9: Jacqueline stress tests for other case studies. 

Courses Without pruning With pruning 
4 0.377s 0.185s 
8 64.024s 0.192s 

16 – 0.248s 
32 – 0.337s 
64 – 0.522s 

128 – 0.886s 
256 – 1.630s 
512 – 3.691s 

1024 – 6.233s 

Figure 10: The course manager stress test performs well with the 
Early Pruning optimization and times out otherwise. 

7. Related Work 
There are many approaches that check programs, statically and 
dynamically, to prevent information leaks. Using these approaches, 
the programmer still needs to implement the policy checks and filters 
correctly across the program. Policy-agnostic solutions mitigate 
programmer burden by using the language runtime to customize 
program executions to adhere to policies. Approaches for checking 
information flow include the following: 

• Integrated query languages. The SeLINQ system [39] builds 
on Cheney et al.’s theory of language-integrated query [20] to 
track information flow across the application and database in 
an embedded query language [39]. Lourenço and Caires have 
developed a type-based information flow analysis for tracking 
across database-backed applications [31]. 

• Web frameworks. Passe [14] dynamically analyzes applica­
tions to enforce policies about what information may be leaked 
from database queries. The Hails web framework [27] also sepa­
rates out information flow policies from the rest of the program 
and enforces them using the LIO system for dynamic information 
flow controls [42]. The SIF web framework [22] uses a label-
based approach and tracks all information-flow end-to-end to 
verify the correctness of programs with respect to stated policies. 
Ur/Web [21] uses static dependent types to check information 
flow properties in web programs. 

• Static, language-based checking. Language-based approaches 
for verifying information flow security include Jif [35], Fab­
ric [9, 30], Fine [18], F∗ [43], flow locks [15, 16]. IFDB checks 
information flow policies in databases [40]. 

• Dynamic, systems-based checking. Work on capabilities [13, 
32] and dynamic, system-based informational flow control tech­
niques [47] insert checking routines into programs. 

• Provenance-based checking. Jacqueline’s tracking of sensitive 
values in the database is also related to work in data prove­
nance [7, 26, 38], especially recent work in provenance for secu­
rity [8, 19] that uses the history of how values were computed 
for enforcing security properties. 

Jacqueline differs from access control approaches in the same way: 
for instance, the Rubicon verification based on bounded model 
checking [36], the Margrave policy analyzer [25], and the Sunny 
approach [33] for model-based, event-driven programming. 

Related security approaches include symbolic execution [29] 
and secure multi-execution [17, 23, 24], which executes a separate 
process for high- and low-confidentiality values to guarantee non­
interference by construction. Faceted execution avoids overhead 
when code does not depend on confidential data. In addition, the 
policy-agnostic paradigm mitigates programmer burden by factoring 
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out policies from the rest of the code and supporting policies that 
may depend on sensitive values. 

Sensitive values in Jeeves and Jacqueline are similar to varia­
tional data structures [44], values that encapsulate properties related 
to program customization. Aspect-oriented programming [28, 41] 
has similar goals of separating program concerns. Policy-agnostic 
programming goes beyond these approaches in customizing pro­
gram behavior because the semantics allow properties of data to 
determine control flow. 

8. Conclusions 
Policy-agnostic programming prevents information leaks by reduc­
ing opportunity for programmer error. The approach mitigates pro­
grammer burden by allowing the programmer to separate the imple­
mentation of information flow policies from the rest of the function­
ality. Previous work on the Jeeves programming language [11, 46] 
defines a semantics for policy-agnostic programming. Unfortunately, 
Jeeves is unsuited for the scale of realistic web programs because 1) 
the guarantees do not extend when interoperating with commodity 
databases and 2) Jeeves has an expensive execution model that may 
explore exponentially many possible executions. 

We present Jacqueline, a policy-agnostic web framework that 
supports realistic web applications. With Jacqueline, we extend the 
policy-agnostic model to work across applications and databases. 
The main contribution is an object-relational mapping (ORM) 
framework that enforces policies throughout application code as 
well as database queries. We model the ORM by extending the 
policy-agnostic semantics with relational operators and prove end­
to-end policy compliance. To address the performance issues with 
Jeeves, we formalize an Early Pruning optimization approach. We 
demonstrate that this optimization not only helps Jacqueline run with 
reasonable–and often negligible–overheads, but is also necessary 
for nontrivial computations involving sensitive data. 

We demonstrate that a policy-agnostic web programming 
paradigm reduces the amount of policy code and trusted com­
puting base without sacrificing expressiveness or performance. By 
giving web frameworks more responsibility in managing sensitive 
data, we can allow programmers to focus on the novel parts of their 
applications, instead of implementing policies as repeated checks 
and filters across the program. 
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A. Rules from λjeeves 

These rules from λjeeves [11] descrbe how to declare labels and 
attach policies to labels. The rule [F-LABEL] dynamically allocates a 
label (label k in e), adding a fresh label to the store with the default 
policy of λx.true. Any occurrences of k in e are α-renamed to k' 
and the expression is evaluated with the updated store. Policies may 
be further refined (restrict(k,e)) by the rule [F-RESTRICT], which 
evaluates e to a policy V that should be either a lambda or a faceted 
value comprised of lambdas. The additional policy check is restricted 
by pc, so that policy checks cannot themselves leak data. It is then 
joined with the existing policy for k, ensuring that policies can only 
become more restrictive. 

k' f resh 
Σ[k' := λx.true], e[k := k' ] ⇓pc Σ

' ,V 
[F-LABEL]'Σ, label k in e ⇓pc Σ

' ,V 

Σ,e ⇓pc Σ1,V
 
Vp = ((pc ∪{k} ? V : λx.true))
 

Σ' = Σ1[k := Σ1(k) ∧ f Vp]
 [F-RESTRICT]
Σ, restrict(k,e) ⇓pc Σ

' ,V 

B. Proof of Lemma 1 
Lemma 1 (A). 

L(((k ? V1 : V2 ))) = 
L(V1) 
L(V2) 

if k ∈ L 
if k  ∈ L 

L(V1) if k ∈ LL(((k ? V1 : V2 ))) = L(V2) if k  ∈ L 

Proof. By case analysis on the definition of (( k ? V1 : V2 )). 
Let x = L((( k ? V1 : V2 ))). 
• If x = L((k ? F1 : F2)) for some non-table values F1 and F2, then 

this case holds since 

x = L(F1) if k ∈ L.
 
x = L(F2) if k  ∈ L.
 

• If x = L((( k ? table T1 : table T2 ))), then x = L(table T ) where 
T = {(B ∪{k}, s) | (B,s) ∈ T1, ¬k  ∈ B}

∪ {(B ∪ {¬k},s) | (B,s) ∈ T2,k  ∈ B}.
 

And so 
x = {(0/ ,s) | (B,s) ∈ T1,¬k  ∈ B,B ∪{k} ∼ L}
∪ {(0/ , s) | (B,s) ∈ T2, k  ∈ B, B ∪ {¬k} ∼ L}.
 

If k ∈ L, then B ∪ {¬k}  ∼ L and
 
B ∪{k} ∼ L => ¬k  ∈ B, and so
 
x = {(0/ ,s) | (B,s) ∈ T1,B ∼ L}

= L(table T1), as required. 

If k  ∈ L, then this case holds by a similar argument as the 
previous case. 

C. Proof of Lemma 2 
Lemma 2 (B). 

L(V1) if B ∼ LL(((B ? V1 : V2 ))) = L(V2) if ¬(B ∼ L) 

Proof. The proof is by induction and case analysis on the derivation 
of L(((B ? V1 : V2 ))). Let x = L(((B ? V1 : V2 ))). 
• If B = 0/ , then B ∼ L, so x = L(V1) as required. 
• Otherwise, B = B' ∪{k}.
 

If B ∼ L, then
 
x = L(((k ? ((B' ? V1 : V2 )) : V2 )))
 
= L(((B' ? V1 : V2 ))) by Lemma 1, since k ∈ L 
= L(V1) by induction, as B' ∼ L. 

Otherwise, B  ∼ L, then
 
− if k  ∈ L, then x = L(V2) by Lemma 1.
 
− otherwise k ∈ L, so B'  ∼ L.
 

Therefore, x = L((( B' ? V1 : V2 ))) = L(V2), as required. 

D. Lemma 3 
If a set of branches is compatible with view L, then we can execute 
only using that view. We prove an additional lemma that if pc is 
not visible, then execution should not affect the environment under 
projections of L. 

Lemma 3 (C). If pc is not visible to L and 

Σ, e ⇓pc Σ
' ,V 

then L(Σ) = L(Σ' ). If pc is not visible to L and 

Σ, e ⇓pc Σ
' ,V 

then L(Σ) = L(Σ' ). 

This lemma is also useful in the proof of the Projection Theorem. 

E. Proof of Theorem 1 (Projection) 
For convenience, we restate Theorem 1. 
Suppose Σ,e ⇓pc Σ

' ,V . Then for any view L for which pc is visible, 

L(Σ),L(e) ⇓0/ L(Σ' ),L(V ) 

For our proof, we extend L to project evaluation contexts, but 
they may project away the hole, and so map evaluation contexts to 
expressions, in which case filling the result is a no-op. 
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We also note that if a branch B is inconsistent with the program 
counter pc, at most one of B and pc may be visible to any given view 
L. This property is captured in the following lemma. 

Lemma 4. If B is inconsistent with pc and pc ∼ L, then B  ∼ L. 

With these properties established, we now prove projection. 

Proof. By induction on the derivation of L(Σ),L(e) ⇓0/ L(Σ' ),L(V ) 
and by case analysis on the final rule used in that derivation. 

• Cases [F-VAL], [F-DEREF], [F-DEREF-NULL], [F-ROW], [F-PROJECT], 
and [F-UNION] hold trivially. 

• For case [F-SELECT], e = σi= j (table T ), so 

Σ,σi= j (table T ) ⇓pc Σ,(table T ' ) 
'where T = {(B,s) | si = s j}.
 

Therefore, this case holds since L(table T ) = {(0/ , s) | (B,s) ∈
 
T,B ∼ L},
 
and L(table T ' ) = {(0/ ,s) | (B,s) ∈ T, B ∼ L,si = s j},
 

• For case [F-JOIN], e = (table T1) N (table T2), so 

Σ,(table T1) N (table T2) ⇓pc Σ,(table T ) 

where T = {B.B' ,s.s ' ) | (B,s) ∈ T1,(B' ,s ' ) ∈ T2}. 
L(T ) = {(B.B' ,s.s ' ) | (B, s) ∈ T1,(B' , s ' ) ∈ T2,B.B' ∼ L}, so this 
case holds. 

• For case [F-CTXT], e = E[e ' ]. By the antecedents of this rule 

E = [] 
' e not a value 

' 'Σ, e ⇓pc Σ1,V 
Σ1,E[V ' ] ⇓pc Σ

' ,V 

Note that L(E[V ' ]) = L(E)[L(V ' )], etc., so by induction 

L(Σ),L(e ' ) ⇓0/ L(Σ1),L(V ' ) 
L(Σ1),L(E)[L(V ' )] ⇓0/ L(Σ' ),L(V ) 

Therefore, L(Σ),L(E[e]) ⇓0/ L(Σ' ),L(V ), as required. 
• For case [F-STRICT], e = S[(k ? V1 : V2)]. By the antecedents of 

this rule 
'

Σ,(k ? S[V1] : S[V2]) ⇓pc Σ
' ,V 

We now consider each possible case for the next step in the 
derivation. 

For subcase [F-LEFT], we know that k ∈ pc,k ∈ L and 

Σ,S[V1] ⇓0/ Σ
' ,V 

By induction, L(Σ),L((k ? S[V1] : S[V2])) ⇓0/ L(Σ' ), L(V ' ). 

Subcase [F-RIGHT] holds by a similar argument. 
For subcase [F-SPLIT], k  ∈ pc,¬k  ∈ pc and 

''Σ,S[V1] ⇓pc∪{k} Σ
'' ,V 

Σ'' ''' ,V 
V = ((k ? V '' : V ''' )) 

'' ). 

,S[V2] ⇓pc∪{¬k} Σ
' 

− If k ∈ L, then by induction L(Σ), L(S[V1]) ⇓0/ L(Σ'' ),L(V 
'' ).L(Σ'' ) = L(Σ' ) by Lemma 3, and L(V ) = L(V 

Therefore, L(Σ),L(S[V1]) ⇓0/ L(Σ' ),L(V ' ), as required. 
− If k  ∈ L, then this case holds by a similar argument. 

• For case [F-FOLD-EMPTY], we have 

Σ, fold Vf Vb (table c) ⇓pc Σ,Vb 

Clearly, L(Σ), fold L(Vf ) L(Vb) L(table c) ⇓0/ L(Σ),L(Vb). 

• For case [F-FOLD-INCONSISTENT], e = fold Vf Vp (table (B, s).T ). 
By the antecedents of this rule, we have 

Σ, fold Vf Vb (table T ) ⇓pc Σ
' ,V 

B is inconsistent with pc 

By Lemma 4, B  ∼ L.
 
Therefore, L(table (B, s).T ) = L(table T ).
 
By the [F-FOLD-EMPTY] rule,
 

L(Σ), fold L(Vf ) L(Vb) L(table (B, s).T ) ⇓0/ L(Σ' ), L(V ) 

By induction, L(Σ),L(fold Vf Vb (table T )) ⇓0/ L(Σ' ),L(V ), as 
required. 

• For case [F-FOLD-CONSISTENT], e = fold Vf Vb (table T ). 
By the antecedents of this rule, we have 

Σ, fold Vf Vb (table T ) ⇓pc Σ1,V1
 
B is consistent with pc
 
Σ1,Vf s V1 ⇓pc∪B Σ

' ,V2
 
V = ((B ? V2 : V1 ))
 

If B ∼ L, then pc ∪ B ∼ L.
 
By induction,
 

L(Σ), L(fold Vf Vb (table T )) ⇓0/ L(Σ1),L(V1)
 
L(Σ1),L(Vf s V1) ⇓0/ L(Σ' ), L(V2)
 

By Lemma 2, L(V ) = L(((B ? V2 : V1 ))), as required.
 
Otherwise, B  ∼ L, and therefore pc ∪ B  ∼ L. By Lemma 3,
 
L(Σ1) = L(Σ' ).
 
By induction, L(Σ),L(fold Vf Vb (table T )) ⇓0/ L(Σ1),L(V1).
 
L(table (B,s).T ) = L(table T ).
 
By Lemma 2, L(V ) = L(((B ? V2 : V1 ))), as required.
 

• For case [F-LEFT], e = (k ? e1 : e2). 
By the antecedents of this rule, we have 

k ∈ pc
 
Σ,e1 ⇓pc Σ

' ,V
 

Since k ∈ pc, L(e) = L(e1).
 
By induction, L(Σ),L(e1) ⇓0/ L(Σ' ), L(V ).
 

• Case [F-RIGHT] holds by a similar argument. 
• For case [F-SPLIT], e = (k ? e1 : e2). 

By the antecedents of this rule, we have 

k  ∈ pc ¬k  ∈ pc 
Σ,e1 ⇓pc∪{k} Σ1,V1 

Σ1, e2 ⇓pc∪{¬k} Σ
' ,V2 

V = ((k ? V1 : V2 )) 
If k ∈ L, then by induction L(Σ),L(e1) ⇓0/ L(Σ1), L(V1).
 
L(Σ1) = L(Σ' ) by Lemma 3, and by Lemma 1
 
L(V ) = L(((k ? V1 : V2 ))) = L(V1), as required.
 
Otherwise ¬k ∈ L, so L(Σ) = L(Σ1) by Lemma 3.
 
By induction, L(Σ1),L(e2) ⇓0/ L(Σ' ), L(V2),
 
and by Lemma 1 L(V ) = L(((k ? V1 : V2 ))) = L(V2), as
 
required.
 

• For case [F-APP], e = (λx.e ' V ' ). By the antecedents of this rule, 

Σ,e ' [x := V ' ] ⇓pc Σ
' ,V 

We know that L(e) = L(λx.e ' V ' ) = L(e ' [x := V ' ]).
 
By induction, L(Σ),L(e ' [x := V ' ]) ⇓0/ L(Σ' ),L(V ), as required.
 

• For case [F-REF], e = ref V '. By the antecedents of this rule 

a  ∈ dom(Σ) 
'Σ' = Σ[a := (( pc ? V : 0))] 

Without loss of generality, we assume that both evaluations 
allocate the same address a. Since a  ∈ dom(Σ),a  ∈ dom(L(Σ)). 

'Also, we know that ∀a ∈ dom(Σ),Σ(a ' ) = Σ' (a ' ), and therefore 
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L(Σ(a ' )) = L(Σ' (a ' )).
 
Since pc ∼ L, L(Σ' (a)) = L(((pc ? V ' : 0)))= L(V ' ) by Lemma 2.
 
Since L(((0/ ? V ' : 0))) = L(V ' ) = L(V ), this case holds.
 

• For case [F-ASSIGN], e = (a:=V ). By the antecedent of this rule, 
Σ' = Σ[a := (( pc ? V : Σ(a) ))]. We know ∀a ' ∈ dom(Σ),Σ(a ' ) = 
Σ' (a ' ), and therefore L(Σ(a ' )) = L(Σ' (a ' )). 
Since L ∼ pc, L(Σ' (a)) = L((( pc ? V : Σ(a)))) = L(V ) by 
Lemma 2. And since L(((0/ ? V : Σ(a)))) = L(V ), this case 
holds. 
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