
1

Discovering Unwarranted Associations in Data-Driven Applications

with the FairTest Testing Toolkit

Florian Tramèr1, Vaggelis Atlidakis2, Roxana Geambasu2, Daniel Hsu2 ,

Jean-Pierre Hubaux1, Mathias Humbert1, Ari Juels3, and Huang Lin1

1Ecole Polytechnique F´´ edérale de Lausanne — 2Columbia University — 3Cornell Tech

October 8, 2015

Abstract

In today’s data-driven world, programmers routinely incorporate user data into complex algorithms,
heuristics, and application pipelines. While often beneficial, this practice can have unintended and detri­
mental consequences, such as the discriminatory effects identified in Staples’s online pricing algorithm
and the racially offensive labels recently found in Google’s image tagger.

We argue that such effects are bugs that should be tested for and debugged in a manner similar to
functionality, reliability, and performance bugs. We describe FairTest, a testing toolkit that detects un­
warranted associations between an algorithm’s outputs (e.g., prices or labels) and user subpopulations,
including sensitive groups (e.g., defined by race or gender). FairTest reports statistically significant
associations to programmers as association bugs, ranked by their strength and likelihood of being unin­
tentional, rather than necessary effects.

We designed FairTest for ease of use by programmers and integrated it into the evaluation framework
of SciPy, a popular library for data analytics. We used FairTest experimentally to identify unfair disparate
impact, offensive labeling, and disparate rates of algorithmic error in six applications and datasets. As
examples, our results reveal subtle biases against older populations in the distribution of error in a real
predictive health application, and offensive racial labeling in an image tagging system.

Introduction

Today’s applications – ranging from simple mobile games to complex web applications – are increasingly
data-driven. User data – such as clicks, locations, and social information – can enhance user experience by
letting applications customize their functionality, contents, and offers according to individual preferences. It
also enables powerful new applications, such as Google’s image tagging system, which leverages tags entered
by many users to automatically label every image on the Internet. Finally, data can improve business
revenues by enabling effective product placement and targeted advertising.

Despite these undeniable benefits, integrating user data into applications can have unintended and detri­
mental consequences that are often difficult to anticipate for developers. A case in point is the Staples
differential pricing case [46]. Staples’ seemingly rational decision to adjust online prices based on user prox­
imity to competitor brick-and-mortar stores led to pervasively higher prices for low-income customers, who
(as it turns out) generally live farther from these stores. Staples’ intentions aside, the difficulty of foreseeing
all subtle implications and risks of data-driven heuristics is clear. And such risks will only increase as new
kinds of personal and user-generated data – e.g., collected through the Internet of Things – pass through
increasingly complex machine learning algorithms, with associations and inferences that are (arguably) im­
possible to foresee.

It is no wonder, then, that reports of discriminatory effects in data-driven applications litter the news.
Google’s image tagger was recently found to associate racially offensive labels with images of black people [15].
Discriminatory online advertising has been found that associates ads for lower-paying jobs with women [6]
and offensive, racially charged ads with black people [43].

1

We argue that such algorithmic biases – which we generically call unwarranted associations – are new
kinds of bugs specific to modern, data-driven applications, which programmers should actively test for,
debug, and fix with the same urgency as they apply to functionality, performance, and reliability bugs. Such
bugs may offend and even harm users, and cause programmers and businesses embarrassment, mistrust,
and potentially loss of revenue. Unwarranted associations may also be symptomatic of a malfunction of a
data-driven algorithm, such as a machine learning algorithm exhibiting poor accuracy for minority groups
that are under-represented in its training set.

We present FairTest, a testing toolkit for data-driven applications that helps programmers test for and
diagnose unwarranted associations. At its core, FairTest detects any associations between an algorithm’s
outputs (e.g., prices or labels) and user subpopulations, including sensitive groups (e.g., those defined by
race, gender, or income level). It then reports any statistically significant associations as association bugs,
filtered and ranked by their strength, statistical significance, and likelihood of being unintended side-effects
rather than necessary effects. FairTest furthermore identifies both weak associations that affect large pop­
ulations and strong associations that affect smaller populations. For example, our simulation of Staples’s
pricing scheme fed with data from the U.S. census revealed that while some disparate impact on low-income
populations arises across the entire U.S., certain parts of the country, such as New York state, exhibit
stronger effects.

This core functionality is surprisingly flexible, enabling a wide variety of investigations that programmers
may wish to perform on their data-driven applications. At present, FairTest supports three main investigation
types: (1) Discovery of potential association bugs without a priori knowledge of what bugs an application
may present or what subpopulations these bugs may affect, (2) Testing for one or a few suspected association
bugs (e.g., higher prices or denied loans), and (3) Error profiling of a machine learning algorithm over a user
population, that is, identifying any subpopulations with which erroneous algorithmic outputs are disparately
associated. Using these capabilities, programmers can perform detailed investigations of association bugs,
from discovery to diagnosis.

To make FairTest easier to use, we have integrated it into the evaluation framework of SciPy, a popular
data analytics library. We used FairTest to test for disparate impact, discover offensive labeling, and profile
algorithm errors in six applications and datasets, including: a simulation of Staples’ pricing scheme fed by
U.S. census data [45], a movie recommender, a predictive health application, and an image tagging system.
We found association bugs in all cases, demonstrating the critical need for tools like FairTest to help uncover
them in related families of data-driven applications.

We bring the following contributions to the space of algorithmic fairness, the closest domain to our work:

1. A detailed study of the algorithmic fairness literature that highlights the conceptual fragmentation, limited
applicability, and scant experimentation to detect/prevent discriminatory associations (§2).

2. The	 design and implementation of FairTest, the first coherent, broadly applicable, extensible system
that tests for unwarranted associations, such as disparate impact, offensive labeling, and error rate
biases, in data-driven applications. FairTest simultaneously supports: (1) multiple fairness metrics as
required by various applications and use cases, (2) efficient detection of unwarranted associations in user
subpopulations, and (3) rigorous statistical result assessments (§3).

3.	 Integration of FairTest into SciPy in support of association bug discovery, testing, and error profiling (§4).

4.	 Extensive experimentation with FairTest’s three investigation types on six real-world applications and
datasets. We uncover association bugs in all cases, emphasizing the urgency of creating and deploying
tools such as FairTest. Our experiments also showcase the usability of FairTest, exemplifying how pro­
grammers can compose FairTest’s investigations to perform an end-to-end exploration of unwarranted
associations, from discovery to diagnosis (§5).

5. FairTest’s source code, released on paper publication.

Motivation

Our research aims to: (1) demonstrate the importance of testing for unwarranted associations in any data-
driven application, and (2) develop tools to assist programmers in finding and investigating such bugs.

2

2

2.1 Motivating Examples

Typical examples of unwarranted associations in the related literature focus on high-stakes processes where
differential treatment or impact is punishable by law, e.g., hiring, providing credit, or offering housing.
While we agree that such sensitive applications should be closely inspected, we argue that any application
that ingests and processes user data deserves scrutiny for association bugs. The following are examples of
unwarranted associations that we or others have uncovered in various data-driven applications. We organize
the examples based on the three investigation types presently supported by FairTest.

Example 1: Discovery of Association Bugs. This example shows the need for tools to aid developers
in searching for questionable associations without a priori knowledge of what associations to consider. As­
sociation bugs can be hard to anticipate, as shown by the recent discovery of offensive labeling by Google’s
automatic image tagging system [15]. From the article [15]:

“Google has apologized after its new Photos application identified black people as ‘gorillas.’ On
Sunday [a user] tweeted a screenshot of photos he had uploaded in which the app had labeled [him]
and a friend, both African American, ‘gorillas.’ [...] [A Google representative] responded swiftly
to [the user] on Twitter: ’This is 100% Not OK.’ And he promised that Google’s Photos team
was working on a fix.”

In §5.2, we show how programmers can use FairTest’s Discovery capability to proactively search for such
offensive labeling (if it occurs consistently) without a priori knowledge of what might constitute offensive
labels for certain populations. (Google engineers presumably did not know to scrutinize the assignment
of “gorilla” tags in particular by their algorithms.) FairTest’s discovery returns labels consistently given to
certain subpopulations of users; the programmer could then judge labels as “appropriate” or “inappropriate”
on a case-by-case basis.

Example 2: Testing of Association Bugs. This example shows the need for tools to aid developers in
testing for specific suspected association bugs. We start from a 2012 Wall Street Journal (WSJ) article on
unintended discriminatory behavior of Staples’ online pricing algorithm [46]:

“[The investigators] found that the Staples Inc. website displayed different prices to people after
estimating their locations. [...] If rival stores were within 20 miles or so, Staples.com usually
showed a discounted price. [...] In what appears to be an unintended side effect of Staples’ pricing
methods [...] areas that tended to see the discounted prices had a higher average income than areas
that tended to see higher prices.”

§5.2 shows how FairTest’s Testing capability can be used to proactively test a specific set of potential upfront
concerns or suspicions of disparate impact. We provide a step-by-step illustration of FairTest’s use in this
case using a simulation of Staples’s purported pricing scheme fed with public census data.

Example 3: Error Profiling of ML algorithms. Our third example illustrates a different and broadly
applicable type of investigation supported by FairTest: profiling the distribution of error in machine learning
(ML) algorithms. Such investigations are a form of testing with the association bug being the disparate
predictive error over a user population. A number of articles discuss potential sources of error bias in ML
algorithms, such as behavioral differences between majority and minority groups, which can yield algorithms
with good overall accuracy but high error rates for these minorities [19].

In §5.2, we further demonstrate this Error Profiling capability in FairTest. Using real-world data and
a state-of-the-art, competition-winning approach from the Heritage Health Prize Competition, we trained
a model that uses historical medical claims to predict whether a patient will be admitted to the hospital
during the coming year. As foreshadowing, we found that while the model was fairly accurate overall (85%
accuracy), its error disproportionately affects elderly patients, and is as high as 45% for older people with a
history of “emergency” treatments.

3

http:Staples.com

2.2 System Requirements

The preceding scenarios illustrate the broad need for three types of investigations into unwarranted associ­
ations in data-driven applications. Other types of investigations may be needed for complete testing and
debugging support for programmers. However, our experience suggests that Discovery, Testing, and Error
Profiling are three core capabilities that enable detailed investigations of association bugs. To support these
investigations effectively, systems and tools must meet the following requirements:

•	 Generic and broadly applicable. Tools must be applicable to many data-driven applications and investiga­
tion types. Their designs must therefore remain generic, and their implementations modular, to support
extensions for unforeseen programmer needs.

•	 Easy to use. Tools must not assume that data-driven programmers are expert statisticians. They
must therefore: (1) provide complete and directly interpretable information for every association bug,
including rigorous measures of statistical significance and of effect size, and (2) filter and rank bugs by
their “importance” to help programmers prioritize their efforts.

•	 Address unwarranted associations of varied importance. The “importance” of an association bug may
be measured either by the size of the population it affects (e.g., many people may get poor movie
recommendations) or by the strength of its effect (regardless of affected population size). Testing tools
must discover both types of associations (and anything in between).

2.3 Prior Approaches

A sizeable literature on algorithmic fairness has focused on techniques for both preventing and detecting
unfairness in machine learning and data mining algorithms. Existing work, however, provides neither tools
that meet our preceding requirements nor adequate foundations to create them. Work on unfairness detection
has focused on testing for specific discrimination bugs akin to those in Example 2; only one recent work [6]
addresses discovery of such bugs (Example 1) in a very specific, ad-oriented setting; error profiling (Example
3) has never been considered. More importantly, our review has revealed important limitations in definitional
foundations and in the development and evaluation of usable tools for data-driven programmers.

We closely studied 14 representative works from the algorithmic fairness field: seven on discrimination
prevention [5, 9, 16, 22–24, 49], four on discrimination detection [6, 33, 38, 39], and three on both [13, 30, 50].
We make four observations about the field’s state.

1. A proliferation of fairness criteria. The range of fairness criteria proposed in the literature is large
and fragmented. It includes: metrics based on ratio proportions and differences [5, 13, 16, 22, 23, 30, 33, 38,
39, 50], a-protection [16, 38, 39], e-fairness [13], statistical parity [9, 49] and mutual information [24]. All
these criteria measure some form of association of program outputs (e.g., prices, errors) on protected user
attributes (e.g., race, gender). Our analysis of these criteria reveals two insights. First, different metrics are
best suited for different situations and data types, and there is no best criterion for all use cases. Second,
each proposed unfairness detection or prevention mechanism tends to focus on specific metrics that cover
a limited range of cases. The majority of existing mechanisms apply only to binary protected features and
outputs [5,13,16,22,23,30,33,38,39,50]. In this paper, we integrate multiple, carefully chosen fairness criteria
into a coherent system design with broad applicability.

2. Limited consideration of discrimination contexts. A large part of the literature [5, 13, 22–24, 50]
considers algorithmic fairness solely at full user population level. Yet prior work has shown that discrim­
inatory effects in a population may differ from, and even contradict, those exhibited in smaller subsets,
an effect known as Simpson’s paradox [41]. A famous example of this paradox is the Berkeley admissions
data [2]: University-wide admission rates appeared lower for women than men, yet when looking for similar
effects in each department, either no bias or an inverse bias was revealed because women tended to apply
to departments with lower acceptance rates. Unfortunately, the majority of prior works do not consider
discrimination contexts as part of their system designs. Existing methods [30, 38, 39] exhaustively assess all
possible contexts, leading to a number of subsets that is exponential in the feature space [38,39] or linear in

4

Data-driven
Application

user inputs
(location, clicks...)

outputs to users (O)
(prices, labels, recommendations...)

protected
features (S)
(race, gender,

age...)

FairTest

association
bug report

to programmer
(see Fig. 2)

context
features (X)

(ZIP code, job...)

explanatory
features (E)
(qualifications,
constraints...)

MI corr. regressionratio,diff

Association Metrics

g-test z-test permut. bootstrap
Effect Size & Stat. Significance

Bug Ranking & Filtering
filter by p-value rank by effect size

Association Context Discovery
guided decision tree

(a) Architecture (b) Basic Algorithm

~~~~~~~~~~
~~~~~~~~~~
~~~~~~~~~~
~~~~~~~~~~
~~~~~~~~~~
~~~~~~~~~~
~~~~~~~~~~
~~~~~~~~~~
~~~~

properties of the outputs
(e.g., correct or erroneous)

Input: Data D = (S, X, E, O);
Output: Association bug report.

1. Split D into Dtrain and Dtest.
2. for each protected feature Si in S:
    2.1. Using Dtrain, derive association contexts 
           by building a decision tree on X guided 
           by the value of association metric M 
           between Si and O.
    2.2. for each context:
           Using Dtest, compute confidence 
           interval (CI) and statistical significance
           (p-value) for M in this context.
3. Correct CIs, p-values for multiple testing 
    across all protected features and contexts.
4. for each protected feature Si in S: 
    4.1. Filter results on p-value.
    4.2. Rank results on CIs.
5. return association bugs for each Si.

Fig. 1: FairTest Architecture and Algorithm. (a) Grey boxes denote FairTest components. Rounded 
boxes denote specific mechanisms. White rounded boxes denote extensibility points; transparent rounded 
boxes denote core, generic mechanisms in FairTest. (b) S, X, E denote protected, context, and explanatory 
features, respectively; O denotes outputs. See (a) for examples of these features. 

the user space [30]. Beyond their scalability issues, these works often fail to account for multiple-hypothesis 
testing for the many contexts they test, raising concerns about the statistical validity of their results. In our 
work, we develop a method for efficiently and rigorously identifying of meaningful discrimination contexts. 

3. Use of thresholds rather than statistical significance. Most prior algorithmic fairness work 
defines fairness based on manually selected thresholds, i.e., an algorithm is considered fair if a chosen bias 
metric falls below a threshold. Setting thresholds appears difficult (practically and morally) as it implies 
fixing a permissible level of discrimination [34]. In fact, in legal practice, it is customary to consider the 
statistical significance of a discriminatory effect in addition to a measure of that effect. For instance, in US 
hiring law, a ratio of 4/5 for the hiring proportions of two groups is generally considered discriminatory, 
but lower effects may also qualify if statistically significant (and higher effects may be ignored if statistically 
insignificant) [11]. Some authors have included confidence intervals for measures of differences and ratios in 
outcome proportions; these measures incorporate a notion of statistical significance, but the authors persisted 
in defining fairness strictly in terms of fixed thresholds. In addition, works that have reasoned about an 
algorithm’s behavior in various subpopulations [30, 38, 39] have failed to correct effect sizes to account for 
multiple comparisons and thus provide only weak guarantees on the false positive rate of their discoveries. 
In contrast, our new method rigorously and comprehensively detects statistically significant discrimination 
cases, and ranks these cases by their effect sizes. 

4. Limited experimentation and full-system experience. Most prior work describes limited exper­
imental results, usually in the context of two datasets or less [5, 9, 16, 22–24, 38, 39, 50]. We believe that 
extensive experience with many applications and datasets is crucial for developing a robust and flexible 
system, one that can address real-world algorithmic fairness issues. Prior research also fails to cover sys­
tem design issues, such as scalability and usability for developers. In our work, we conduct an extensive 
experimental evaluation of FairTest with six real-world applications and datasets. 

2.4 Threat Model and Assumptions 

FairTest is designed to aid developers in discovering association bugs. It is therefore intended to be used 
with honestly designed applications. Applications will not intentionally induce unwarranted associations 
over a target population and seek to conceal these associations from discovery by tools such as FairTest. 
While we aim to identify associations at smaller subpopulation level, we explicitly do not aim to discover 
tiny-scale associations (e.g., at the level of an individual or a statistically insignificant group of individuals). 
For example, a movie recommender may behave poorly for a specific user, yet FairTest will not detect that. 

5 



Finally, FairTest does not currently support adaptive data analysis as would be required if embedded 
as unit tests in a build process. A programmer who blindly tweaks an application until it passes the unit 
tests may end up overfitting the data used in tests. A number of fixes are available to address this problem 
(e.g., [8]), and we will incorporate these in future work. 

3 FairTest Design 

This section describes our design, starting with the system architecture and followed by a more detailed 
description of the four modules that comprise it. 

3.1 Architecture 

FairTest’s generic and extensible architecture supports many different fairness criteria (association met­
rics) and investigation types with one coherent core. Fig.1(a) shows this architecture, indicating the core 
mechanisms and the extensibility points supported by FairTest. 

Briefly, the data-driven application – the object of FairTest’s investigations – takes inputs from each 
user, such as locations or clicks, and returns a set of outputs, O, to the user. To use FairTest, the developer 
supplies it with a number of attributes (called features) about an applications’ users, along with the outputs 
(or properties of the outputs) for those users. FairTest analyzes this data and returns an association bug 
report to the programmer. 

In more detail, FairTest expects three types of user features as inputs to its analysis: (1) Protected 
features, S, are the (sensitive) attributes on which FairTest will look for association bugs, such as race, 
gender, age. (2) Context features, X, are dimensions along which FairTest will split the global population 
to identify smaller contexts in which the associations between outputs and protected features are strongest. 
These include user information that the programmer is knowingly using in his application (e.g., location in 
the Staples pricing, or health history in the health application) and may also include protected features. (3) 
Explanatory features, E, are user properties on which the programmer deems it acceptable to differentiate, 
even if that leads to apparent discrimination on protected attributes. FairTest will explicitly avoid looking 
for bugs defined by explanatory features. 

Basic Algorithm. Fig.1(b) shows FairTest’s basic algorithm. The steps of the algorithm are as follows. 
Step 1: Given a dataset, D = {(S, X, E, O)}, FairTest first splits it into a training set, Dtrain and a testing 
set, Dtest. Step 2: For each protected feature Si in S, select an appropriate Association Metric (§3.2) and 
apply the Association Context Discovery mechanism (§3.3) to Dtrain to identify meaningful subpopulations 
of users exhibiting putative association bugs. For each discovered association context, the Statistical Sig­
nificance and Effect Size module (§3.4) assesses the bug’s validity on Dtest using p-values and confidence 
intervals (CIs) for effect sizes. A p-value here results from testing for the null hypothesis that an association 
bug is not present. A small p-value supports rejection of the null hypothesis and thus the conclusion that 
the bug in fact exists. Step 3: Correct p-values and CIs to account for the multiple comparisons problem 
that arises when making many statistical inferences. Step 4: Finally, to prioritize developers’ efforts, filter 
and rank association bugs separately for each protected feature (§3.5) to produce a comprehensive report 
that includes all statistically significant association bugs, starting with the subpopulations that are most 
affected. 

Investigations. We find the preceding architecture and algorithm to be flexible, supportive of many 
investigation needs and effective at producing insightful and directly interpretable results. To demonstrate, 
we considered a Testing investigation of suspected disparate impact of a Staples pricing simulation. We used 
U.S. census demographic statistics [45] to emulate users with realistic demographics and offered discounts 
to user located within 20 miles of an OfficeDepot store. 

Fig.2 shows part of FairTest’s bug report, beginning with a description of the dataset D. The association 
metric we use is normalized mutual information (NMI), a very general metric of association between two 
variables (defined in §3.2). It is applied here to protected feature ’income’ and output ’price’. Two 
populations are shown: the global population is first, followed by the subpopulation with the strongest effect 

6 



S: {Income: (<$50K,>=$50K), Race: (White,Black,...)} 
X: {State, City, Gender, Race} 
E: {} 
O: {Price: (High,Low)} 

Report of associations of O=Price on Si=Income:
 
Association metric: norm. mutual information (NMI)
 

Global Population of size 494,436
 
p-value = 3.34e-10 ; NMI = [0.0001, 0.0005]
 
+-----+------------+-------------+------------+
 
|Price|Income < 50K|Income >= 50K| Total |
 
+-----+------------+-------------+------------+
 
|High | 15301 (6%)| 13867 (6%)| 29168 (6%)|
 
|Low | 234167(94%)| 231101(94%)|465268 (94%)|
 
|Total| 249468(50%)| 244968(50%)|494436(100%)|
 
+-----+------------+-------------+------------+
 

Subpopulation of size 23,532
 
Context = {State: CA, Race: White}
 
p-value = 2.31e-24 ; NMI = [0.0051, 0.0203]
 
+-----+------------+-------------+-----------+
 
|Price|Income < 50K|Income >= 50K| Total |
 
+-----+------------+-------------+-----------+
 
|High | 606 (8%)| 691 (4%)| 1297 (6%)| 
|Low | 7116(92%)| 15119(96%)|22235 (94%)| 
|Total| 7722(32%)| 15810(67%)|23532(100%)| 
+-----+------------+-------------+-----------+ 
... XXX more entries (sorted by NMI desc.) ... 

Fig. 2: Sample Association Bug Report. Shows the full population and highest-effect subpopulation for 
a Testing investigation of suspected disparate impact in a Staples pricing simulation. 

(highest NMI) of all the derived subpopulations. For each context, FairTest reports the p-value, a CI for the 
NMI metric, and a contingency table providing the frequency distribution of the outputs over the population 
in that context. 

With this information, the programmer can interpret the report as follows: “There is a statistically 
significant but extremely low disparate-impact effect of my pricing algorithm against lower-income people 
across the US. However, this effect is much stronger among California’s white population, where about 8% 
of lower-income people get higher prices vs. only 4% of higher-income people.” Incidentally, the next context 
(omitted in the figure) shows a similar, slightly weaker effect for black men in New York, where 4% of 
lower-income black men get higher prices vs. 1% for higher-income black men. 

3.2 Association Metrics Module 

No single metric is suitable for measuring the existence and strength of unwarranted associations in the full 
range of applications and use cases we wish to support. However, we can clarify the landscape of existing 
metrics by focusing on a canonical set of measures, shown in Table 1, that cover the vast majority of cases. 
We analyzed each metric along three dimensions: (1) applicability to classes of feature and output types, 
(2) interpretability, and (3) computational and statistical cost. §5.2 shows how we use various metrics in our 
investigations. 

We next describe and justify our selection of canonical metrics. (We will drop the subscript i on Si for 
clarity.) 

7 



Metric Description When to Use 

Binary Ratio / Difference Compares probabilities of a 
single output for two groups. 

Binary S, O 

Mutual Information (MI) General dependence measure 
for two discrete variables. 

Categorical S, O 

Pearson Correlation (CORR) Measures linear dependence 
between two ordinal variables. 

Ordinal S, O; often for Error Profiling 

Regression For labeled outputs, measure 
associations for each label. 

High dimension O; always for Discovery 

Table 1: FairTest’s Canonical Association Metrics. 

• Two Binary Measures. A very natural metric for disparate impact compares the conditional probabilities 
of a binary output under two classes of a protected feature. For example, we may compare the proportion 
of users that receive a discount for users with either high or low income. Denoting the ranges of O and S 
by, respectively, {o1, o2} and {s1, s2}, the binary ratio metric is Pr(o1|s1)/ Pr(o1|s2) − 1, and the binary 
difference metric is Pr(o1|s1) − Pr(o1|s2). These metrics are simple, interpretable, and used in numerous 
works on algorithmic fairness [5,13,16,22,23,30,33,38,39,50]. They can be efficiently estimated from a random 
sample by plugging-in maximum likelihood estimates of Pr(o1|s1) and Pr(o1|s2) (i.e., plug-in estimator). 

These metrics are easy to extend to non-binary outputs (e.g., with total variation distance), but it is much 
harder to extend beyond binary classes of protected features (especially for estimation) [9]. In these cases, 
we instead assess dependence between O and S with fundamentally different metrics: mutual information 
and correlation. 
• Mutual Information (MI) is an information-theoretic measure of statistical dependence. The mutual    Pr(o,s)information between discrete-valued O and S is I(O; S) = Pr(o, s) ln . MI is non-negative, o,s Pr(o) Pr(s)

and zero if and only if O and S are independent (i.e., when S has no effect on O). MI measures the 
information content common to both O and S. It is well-defined for arbitrary discrete outcome and protected 
feature spaces, and thus more widely applicable than binary metrics and their variants. The plug-in estimator 
for MI is also efficient as long as the ranges of O and S are not too large. A natural normalization of MI 
(NMI) divides the measure by the minimum of the Shannon entropies of S and O. 

MI ignores semantics of categorical values (e.g., ordinal values like age and credit score), which may give 
unintuitive results. It can be defined for continuous O and S but is more expensive to estimate, especially 
in high dimensions [32, 35]. In these cases, we instead opt for a different metric: correlation. 
• Correlation. A simple metric that is sensitive to ordinal and continuous values is Pearson’s correlation 
between O and S (where the output O and protected feature S are scalar valued random variables.) Pearson’s 
correlation measures the strength of a linear relationship between O and S, which may exist even if O 
and S are non-linearly related; such linear relationships are typically robust and broadly interpretable [37]. 
Pearson’s correlation is easily estimated using the well-known sample correlation. Unlike mutual information 
(and some non-linear dependence measures [14,44]), a finding of zero correlation does not imply that O and S 
are independent. However, because our aim is not to verify independence, and because we prefer interpretable 
findings of dependence, Pearson’s correlation is a natural fit in many applications. 
• Regression. None of the previous metrics is applicable or computationally tractable for high-dimensional 
outputs O. Yet, large output spaces are common in many use-cases, such as for applications that assign tags 
or labels to users, where it is not known a priori which specific tag/label to test for association bugs. This 
is the case in the Discovery investigation examples described in §2.1. To support discovery of associations 
between a protected feature and an outcome from a large output space, FairTest relies on a novel application 
of regression. 

We describe our approach for {0, 1}-valued S and applications that output a set of t labels, each in 
L = {l1, l2 . . . , ld} (so O takes values in Lt). Let b1, . . . , bd be binary indicator variables for these labels, so 
that bi = 1 ⇐⇒ li ∈ O. We model the conditional distribution of S given O by Pr[S = 1 | b1, . . . , bd] =  d
logistic(β0 + βibi), where the βi are regression coefficients that can be viewed as measures of association i=1 
between the labels and the protected feature. This approach extends to multi-valued or continuous S by 

8 



replacing logistic regression with multinomial or linear regression. 

Extensions. Despite our careful analysis of many metrics and selection of the preceding five as core metrics 
suitable for a wide range of association-bug explorations, we acknowledge that certain use cases may require 
specialized association measures. Hence, we designed FairTest to be extensible and expose a simple API for 
selecting specific metrics for each protected feature and investigation. By default, FairTest picks the “best” 
metric depending on the investigation, the protected feature, and the output types. 

3.3 Association Context Discovery Module 

A key problem with detecting association bugs is that they may manifest only in certain contexts, even if 
no effects appear over the full population. In prior work, detecting such contexts has required an expensive, 
broad-sweeping search for hidden associations [30, 38, 39]. To help developers identify, understand, and 
remove association bugs from their applications, FairTest incorporates mechanisms to efficiently discover 
hidden contexts that exhibit potential association bugs. Specifically, FairTest uses a general tree partitioning 
algorithm, which we call guided decision tree construction, an approach based on decision tree learning [36] 
that is novel to this setting. 

Let Si ∈ S be the protected feature under investigation. We first select a splitting rule based on a 
feature in X that maximizes the association between Si and O on the derived subsets (either the maximum 
or average over all subsets). We then recursively apply this process on each subset. This approach: (1) 
permits use of any association metric, (2) produces simply-defined and interpretable subpopulations, and 
(3) searches for subpopulations using scalable/distributable computations [31]. 

We further apply well-known techniques to prevent overfitting the training data [36], such as bounding 
the tree depth and pruning contexts that are simply too small (e.g., <100 users). This helps avoid spurious 
associations that can be found in the training data but are nonexistent in the broader population. The 
contexts defined by this tree construction process are candidate bugs, which we validate on test data, a topic 
that we next discuss. 

3.4 Computing Significance and Effect Size Module 

After discovering contexts that potentially exhibit association bugs, the Computing Significance and Effect 
Size module validates them before reporting to the developer. After all, the associations were discovered 
only on a sample of users from a broader population. The module validates using an independent sample – 
the test data, Dtest – taking cues from the statistical and legal communities to quantify the “significance” 
of an association bug. 

We consider two notions of significance for association bugs. The first is based on statistical hypothesis 
testing: a bug is significant if its manifestation in the test set is unlikely under the “null hypothesis” (i.e., 
there is no association between the protected feature and application output as measured by an association 
metric). This is quantified by the p-value for a test. For all metrics in §3.2, well-known statistical methods 
exist for computing or approximating the p-value (e.g., the G-test [42] for mutual information). For other 
metrics, or when the approximations are poor due to small sample sizes, we resort to generic permutation 
tests [12], which spend computational resources to gain accuracy with small test sets. 

The second notion of significance is the effect size: the actual value of the association metric, or some 
derived quantity thereof, that relates the metric to application-specific harms. We reason about these quan­
tities using confidence intervals (CIs) on effect sizes constructed using the test data. If the harm associated 
with particular outputs can be quantified (e.g., monetary loss), metrics with simple semantics (e.g., the 
binary difference) may directly translate to measures of harm. As before, for the metrics in §3.2, there are 
statistical methods for computing approximate CIs; in general cases, we can use bootstrap approaches [10] 
to produce these intervals. By default, the Computing Significance and Effect Size module chooses an 
appropriate method for computing CIs and p-values based on the metric and size of the test set. 

For both notions of significance, we take steps to ensure their statistical validity when validating multiple 
association bugs. We apply standard Holm-Bonferroni corrections [21] to account for the multiple com­
parisons problem so that all our statistical inferences are simultaneously valid. These significance notions 

9 



  
class Investigation(D,S,X,E,O,M={}) # Base class for investigations. 

# M stands for association metrics. 
class Testing(D,S,X,E,O,M) # Investigation subclass for testing. 
class Discovery(D,S,X,E,O,M,top k) # Subclass for discovery. 

# Takes in number of outputs to consider in each context. 
class ErrorProfiling(D,S,X,E,O,M,groundTruth) # Subclass for error profile. 

# Takes ground truth for a predictive output.    
train(Investigations,maxDepth=5,minLeafSize=100)}

# Derives putative association contexts for one/more investigations. 
test(Investigations,conf=0.95)} # Tests and corrects all associations. 
report(Investigations,conf=0.95,outDir) # Filters, ranks, saves reports.    
class Metric # Abstract class for association metrics.
 
Metric.computeSignificance(data) # Calculates p−value.
 
Metric.computeEffectSize(data, conf) # Calculates at given confidence level.
  
Fig. 3: FairTest API. Investigation types (top), methods to run investigations (middle), API to implement 
for new metrics (bottom). 

provide the developer with rigorous and interpretable information about each association bug; they also 
enable automatic filtering and ranking of bugs, discussed next. 

3.5 Ranking and Filtering Association Bugs Module 

Programmers can easily become overwhelmed by irrelevant, redundant, or obviously explainable associations. 
The Ranking and Filtering Association Bugs module thus incorporates techniques for prioritizing discovered 
bugs. Our goal is to produce a bug report that: (1) contains all statistically significant associations (even 
weak ones, if they are validated on large enough subpopulations) and (2) first displays the subpopulations 
that appear most affected by a bug. To this end, the module filters out associations with (corrected) p-values 
>0.05 and ranks the remaining bugs by lower bounds on their effect sizes (from corrected CIs). We note that 
ranking bugs by their p-values does not provide the same properties: a small effect on a large subpopulation 
may have a smaller p-value than one with a considerably larger effect on a smaller subpopulation (see Fig.5). 

Explanatory Features. In addition to these post-hoc rules for filtering and ranking, we proactively filter 
for obviously explained or necessary associations. A programmer may specify a set of explanatory features, 
or properties of a user on which it is deemed acceptable to differentiate. For example, a company may decide 
that giving discounts to loyal customers is always admissible even if it leads to a pricing bias against groups 
of less avid customers. Explanatory features can also encode the notion of business necessity supported by 
discrimination law, which justifies disparate effects given certain imperative business requirements [39]. 

FairTest lets developers declare user features E as necessary/explanatory for the application and ex­
plicitly avoids deriving associations that are accounted for by these features. To this end, it uses modified 
association metrics that measure the dependence of protected features S and outputs O conditioned on E 
(e.g., conditional mutual information I(S; O|E)). 

In addition to supporting business necessity and obvious explanations, explanatory features have another, 
compelling feature for FairTest: they enable debugging by letting developers eliminate plausible causes for 
association bugs. We have leveraged this feature in our investigations and will demonstrate its value in §5.2. 

4 Prototype 

We implemented a prototype of FairTest in Python, to be used either as a standalone library or as a RESTful 
service. It supports all three types of investigations, Testing, Discovery, and Error Profiling. As a library, 
our prototype’s API and workflows are designed to integrate with the popular SciPy data analytics ecosys­
tem, allowing programmers to seamlessly integrate FairTest-type investigations into their typical application 
testing process. As a service, our prototype enables continuous monitoring for association bugs in live, 

10 

http:test(Investigations,conf=0.95


5 

Application Investigations Users Features Metrics 

Microbenchmark T 988871 4 NMI 
Adult Census T 48842 13 NMI 
Berkeley Admission T 4425 2 DIFF 
Staples Pricing T 988871 4 NMI 
Health Prediction EP 86359 128 NMI,CORR 
Image Tagger D,T 2648 1 REG,DIFF 
Movie Recommender D,T,EP 6040 3 REG,DIFF,CORR 

Table 2: Workloads. Investigations: Discovery (D), Testing (T), ErrorProfiling (EP). Metrics: normalized 
mutual information (NMI), correlation (CORR), binary difference (DIFF), regression (REG). 

production applications. We focus our evaluation of FairTest exclusively in the library implementation, the 
more mature of the two prototypes that we will release upon publication. 

FairTest’s API, shown in Fig. 3, provides four abstractions: a core Investigation class that defines an 
abstract investigation, and three specific investigation subclasses, Testing, Discovery, and ErrorProfiling. To 
use FairTest, a developer assembles a dataset of user attributes and application outputs, prepared in matrix 
form. The developer then instantiates the appropriate Investigation object, specifying which columns of the 
data correspond to algorithm outputs and contextual, protected, or explanatory features. In addition, he 
or she may specify association measures, one per protected feature in the investigation, which will override 
FairTest’s defaults. Finally, the FairTest user calls the train, test, and report methods to run one or more 
investigations. These functions take as input various experiment parameters, such as the proportion of 
data to omit for testing (default=50%), the confidence level to use for p-values and CIs (default=95%), the 
maximum depth of the decision tree (default=5), and the minimum size of a subpopulation (default=100). 

Discovery takes an additional parameter that limits the number of outputs considered in each context. 
ErrorProfiling takes as input the ground truth (i.e., the true value for each prediction) and computes a 
suitable error measure, to be tested for associations on protected features. 

Our prototype implements the five metrics described in §3.2. For binary measures and correlation, we 
use approximate methods to compute CIs and p-values for large sample sizes (>1000). Otherwise, we use 
bootstrapping and permutation tests. For normalized mutual information (NMI), we always use bootstrap­
ping to compute CIs as the statistic’s asymptotic behavior is less well studied. Finally, for Discovery, we 
use regression during training to efficiently identify k candidate associated labels, but we then switch to 
binary difference for testing, in order to compute each of these k labels’ association on protected features, 
unconditionally from other labels. 

Evaluation 

In evaluating FairTest, we seek to answer three questions: (Q1) Is FairTest effective at detecting a wide 
range of association bugs? (Q2) Is it useful and usable for identifying and debugging association bugs in a 
variety of applications? and (Q3) Is it fast enough to be practical? 

To answer these questions thoroughly, we assemble a diverse set of workloads, including microbenchmarks, 
real datasets, simulations, and real applications. Our goal is to exercise FairTest with various applications, 
metrics, and investigations to identify its strengths and weaknesses. We use seven workloads, which we plan 
to release as a benchmarking suite for future fairness efforts: 

•	 One tightly controlled microbenchmark, which we use to evaluate FairTest’s bug detection abilities with 
a priory known ground truth for associations. 

•	 Two well-known datasets – the Adult Census dataset from the UCI ML-repository [28] and the 1973 
Berkeley Admissions dataset [2], that have been used in prior algorithmic fairness work. We use these 
to confirm that FairTest can detect known associations (and in some cases discover previously unknown 
ones); 

•	 Four data-driven applications that we feed with real data: (1) a simulator of Staples’s pricing scheme (as 
described by the WSJ report [46]) fed by U.S. census data; (2) a predictive healthcare application, winner 
of the Heritage Health Prize Competition [20] and fed by the competition’s data; (3) an image tagging 

11 



0

2

4

6

8

10

100 500 1000 2000 5000 10000 

∆=15%

∆=10% ∆=5%
∆=2.5%

#
 o

f 
D

is
co

v
er

ed
S

u
b
p
o
p
u
la

ti
o
n
s 

(o
f 

1
0
)

Subpopulation Size

Fig. 4: FairTest Effectiveness with Affected Subpopulation Size and Effect Strength. Number 
of association contexts discovered by FairTest, out of the ten we artificially inserted in a population of 1M 
users. Subpopulation size grows on the x axis, effect strength grows with Δ. Shows averages over 10 trials. 

system based on the OverFeat network [40], fed by images of people from the ImageNet database [7]; 
and (4) a movie recommender system based on collaborative filtering and fed by the popular MovieLens 
dataset [4]. 

Table 2 shows workload information: number of users/features, investigations we ran, and metrics we used. 

5.1 Effectiveness of Bug Detection (Q1) 

To evaluate FairTest’s effectiveness at detecting bugs, we create a microbenchmark that lets us control 
the strength and span of association bugs. We use U.S. Census [45] demographics for gender, race, and 
income to generate ≈ 1M synthetic users. We begin with a “fair” algorithm that randomly provided users 
with {0, 1}-output, independent of income. We then plant disparities in certain subpopulations of a given 
size (determined by location and race), so that income level (high or low) implies a difference in output 
proportions of size 2Δ. For various subpopulation and effect sizes, we inject 10 such randomly chosen 
discrimination contexts into our data and check how many are discovered by FairTest. 

Fig.4 shows FairTest’s discovery rate with increasing population size and for various values of Δ. Larger 
value of Δ means stronger disparity effect. FairTest reliably detects strong disparities that affect at least a 
few hundred users, as well as disparities as low as 2.5% over large contexts. However, low effects in small 
contexts often go undetected due to the limited statistical evidence available for FairTest to validate these 
cases. In all cases, FairTest made zero false discoveries. 

5.2 Investigation Experience (Q2) 

To assess FairTest’s usefulness for data-driven programmers, we conduct six explorations of the associa­
tions produced by real-world applications and datasets. One application, the Staples pricing mechanism, 
is already discussed in §3.1, and additional results are in §A.3. Our investigations illustrate scenarios in 
which developers and analysts can use FairTest’s bug finding and debugging capabilities to discover and 
analyze association bugs in applications. Our experience reveals that FairTest: (1) surfaces insightful and 
interpretable associations, and (2) assists programmers in debugging them. 

Scenario 1: Confirming Income Inequality Effects in the Adult Dataset with Testing. We begin 
by analyzing the well-known Adult Income Census dataset [28], which consists of demographics and income 
level (under or over $50K) for 48,842 U.S. citizens. Although this dataset is not the product of a data-driven 
application, it has been analyzed in the algorithmic fairness literature, and certain disparate impact effects 

12 



Report of associations of O=Income on Si=Race:
 
Global Population of size 24,421
 
p-value = 1.34e-53 ; NMI = [0.0062, 0.0143]
 
+------+--------+---------...----------+-----------+
 
|Income| Asian| Black| | White| Total|
 
+------+--------+---------...----------+-----------+
 
|<=50K |556(73%)|2061(88%)| |15647(75%)|18640 (76%)|
 
| >50K |206(27%)| 287(12%)| | 5238(25%)| 5781 (24%)|
 
|Total |762 (3%)|2348(10%)| |20885(86%)|24421(100%)|
 
+------+--------+---------...----------+-----------+
 

1. Subpopulation of size 341
 
Context = {Age <= 42, Job: Fed-gov, Hours <= 55}
 
p-value = 6.24e-03 ; NMI = [0.0094, 0.1437]
 
+------+-------+-------...--------+---------+
 
|Income| Asian| Black| | White| Total|
 
+------+-------+-------...--------+---------+
 
|<=50K |10(71%)|62(91%)| |153(63%)|239 (70%)|
 
|>50K | 4(29%)| 6 (9%)| | 91(37%)|102 (30%)|
 
|Total |14 (4%)|68(20%)| |244(72%)|341(100%)|
 
+------+-------+-------...--------+---------+
 

4. Subpopulation of size 14,477
 
Context = {Age <= 42, Hours <= 55}
 
p-value = 7.21e-31 ; NMI = [0.0066, 0.0183]
 
+------+--------+---------...----------+-----------+
 
|Income| Asian| Black| | White| Total|
 
+------+--------+---------...----------+-----------+
 
|<=50K |362(79%)|1408(93%)| |10113(83%)|12157 (84%)|
 
|>50K | 97(21%)| 101 (7%)| | 2098(17%)| 2320 (16%)|
 
|Total |459 (3%)|1509(10%)| |12211(84%)|14477(100%)|
 
+------+--------+---------...----------+-----------+
 

Report of associations of O=Income on Si=Gender:
 
Global Population of size 24,421
 
p-value = 1.39e-178 ; NMI = [0.0381, 0.0543]
 
+------+---------+----------+-----------+
 
|Income| Female| Male| Total|
 
+------+---------+----------+-----------+
 
|<=50K |7218(89%)|11422(70%)|18640 (76%)|
 
|>50K | 876(11%)| 4905(30%)| 5781 (24%)|
 
|Total |8094(33%)|16327(67%)|24421(100%)|
 
+------+---------+----------+-----------+
 

1. Subpopulation of size 1,054
 
Context = {Education <= 9, Job: Sales}
 
p-value = 1.21e-22 ; NMI = [0.0530, 0.1739]
 
+------+--------+--------+----------+
 
|Income| Female| Male| Total|
 
+------+--------+--------+----------+
 
|<=50K |464(95%)|416(73%)| 880 (83%)|
 
|>50K | 22 (5%)|152(27%)| 174 (17%)|
 
|Total |486(46%)|568(54%)|1054(100%)|
 
+------+--------+--------+----------+
 

2. Subpopulation of size 6,791
 
Context = {Education >= 12}
 
p-value = 3.58e-124 ; NMI = [0.0504, 0.0875]
 
+------+---------+---------+----------+
 
|Income| Female| Male| Total|
 
+------+---------+---------+----------+
 
|<=50K |1594(76%)|2156(46%)|3750 (55%)|
 
|>50K | 492(24%)|2549(54%)|3041 (45%)|
 
|Total |2086(31%)|4705(69%)|6791(100%)|
 
+------+---------+---------+----------+
 

(a) Disparate Impact on Race. (b) Disparate Impact on Gender. 

Fig. 5: Disparate Impact Reports on (a) Race and (b) Gender in the Adult Income Dataset. 
Shows the global population, the subpopulation with the strongest effect, and (a) its parent subpopulation 
or (b) the subpopulation with the second strongest effect. 

13 



have been identified [13, 16, 24, 30, 49, 50]. Our goal in this investigation is to show how an analyst can use 
FairTest to further study this and other social datasets. 

We perform a Testing investigation to confirm biases of income based on race and gender (which are 
categorical features, hence our use of the NMI metric). Fig.5 shows parts of the bug reports for associations 
(a) income-race and (b) income-gender. We make three observations. First, FairTest confirms income race 
and gender biases at global population level: 88% of blacks have <$50K-income compared to 75% of whites 
and 73% of Asians. Similarly, 89% of women had <$50K-income compared to 73% of men. Second, FairTest 
finds interpretable contexts that give new insights into these societal biases. For example, Fig.5(a) reveals a 
much stronger race-income bias favoring white people among those under 42 working fewer than 55 hours a 
week – especially for federal government employees; Fig.5(b) shows that women with low education working 
in sales, and women with a higher education, are the most disadvantaged compared to men in similar 
situations. Finally, FairTest reveals small subpopulations that are nonetheless significant because they 
showed a strong association effect (e.g., the first subpopulation in Fig.5(a)). Since it ensures simultaneous 
validity for all results in the report, the programmer can reliably compare these effect sizes, even for the 
small subpopulations. 

Scenario 2: Investigating Disparate Impact in the Berkeley Dataset with Explanatory Features: 
Our second scenario provides a first look at FairTest’s debugging capabilities. We examine the well-known 
Berkeley graduate admissions dataset, which contains admission decisions and gender for 4,425 applicants [2]. 
This data exhibits an unintuitive effect known as Simpson’s paradox: at full university level, admissions 
appear to disfavor women, yet this bias is not reflected in any given department. We show how a hypothetical 
analyst can use FairTest to discover this effect in this and other datasets. 

The process has two stages, shown in Fig.6. First, the analyst runs a Testing investigation. This 
investigation reveals a moderate but statistically significant bias over the full population (top box): only 
32% of female applicants are admitted versus 47% of male applicants. Second, the analyst asks “Why?” 
and proceeds to investigate which department(s) might explain this bias. To do so, the analyst conducts 
another Testing investigation, this time using ‘department’ as an explanatory feature. FairTest’s report for 
this investigation (bottom box) clearly illustrates the paradox in this dataset: only one department (‘A’) 
exhibits a significant difference in admission rates between men and women (in favor of women), while the 
other departments (‘B’, ‘C’, . . . , ‘F’) exhibit no statistically significant bias. Therefore, the analyst may 
need to do further investigations to understand the cause of this paradox, with or without FairTest’s help. 

Scenario 3: Checking for Racial Labels in the Image Tagger with Discovery. Our third scenario 
show cases FairTest’s Discovery capability from the perspective of a developer of an image tagging system, 
who is willing to search for offensive labels associated with sensitive groups. To illustrate the process, we 
inspect the labels produced by OverFeat [40], a ready-to-use image tagger, when applied to images of people 
from the ImageNet database [7]. We let OverFeat assign five labels to each of 1,405 images of black people 
and 1,243 images of white people, and then run a Discovery to identify the top k=35 labels most strongly 
associated with a user’s race. We note that OverFeat is only trained with images and tags of everyday 
objects and animals, but not people. 

Fig.7 shows part of FairTest’s report. It lists the labels most disparately applied to images of black people 
(first table) and white people (second table); for clarity, we just show three labels per race. A developer 
may inspect all top k labels to determine whether further scrutiny is warranted on a case-by-case basis. For 
example, the ‘bulletproof vest’ label is applied particularly to images of black people, even though none of 
them depict bulletproof vests. OverFeat also consistently associates female clothing tags with images of white 
people, and a large portion of these tags are erroneous. Further investigation is warranted to understand the 
causes of these errors; a likely conclusion one could draw is that OverFeat is under-trained for this population 
of images. 

Scenario 4: Understanding Accuracy in the Predictive Healthcare App with ErrorProfiling. 
Our fourth scenario demonstrates FairTest’s ErrorProfiling capability, which lets developers understand 
subtle biases in the error of a prediction application when ground truth predictions are available. We 
build a predictive healthcare system based on data and a winning method from the Heritage Health Prize 

14 



Report of associations of O=Admitted on Si=Gender:
 
Global Population of size 2213
 
p-value = 3.47e-13 ; DIFF = [-0.1945, -0.1122]
 
+--------+--------+---------+----------+
 
|Admitted| Female| Male| Total|
 
+--------+--------+---------+----------+
 
|No |615(68%)| 680(52%)|1295 (59%)| 
|Yes |295(32%)| 623(48%)| 918 (41%)| 
|Total |910(41%)|1303(59%)|2213(100%)| 
+--------+--------+---------+----------+<EOF> 

Report of associations of O=Admitted on Si=Gender,
 
conditioned on explanatory feature E=Department:
 

Global Population of size 2213
 
p-value = 7.98e-01 ; COND-DIFF = [-0.0382, 0.1055]
 

*	 Department A: Global Population of size 490: 
p-value = 5.81e-03 ; DIFF = [0.0649, 0.3464] 
+--------+-------+--------+---------+ 
|Admitted| Female| Male| Total| 
+--------+-------+--------+---------+ 
|No | 9(15%)|161(37%)|170 (35%)| 
|Yes |51(85%)|269(63%)|320 (65%)| 
|Total |60(12%)|430(88%)|490(100%)| 
+--------+-------+--------+---------+ 

*	 Department B: Global Population of size 279: 
p-value = 1.00e+00 ; DIFF = [-0.4172, 0.3704] 
+--------+-------+--------+---------+ 
|Admitted| Female| Male| Total| 
+--------+-------+--------+---------+ 
|No | 3(30%)| 93(35%)| 96 (34%)| 
|Yes | 7(70%)|176(65%)|183 (66%)| 
|Total |10 (4%)|269(96%)|279(100%)| 
+--------+-------+--------+---------+ 

*	 ... Departments C-F, all with high p-values ... 

Fig. 6: Investigating Simpson’s Paradox in the Berkeley Admissions Dataset. Results from an 
initial investigation, which reveals the apparent bias in the full population (top); results from a second 
investigation using explanatory feature E = Department (bottom). COND-DIFF is the binary difference 
metric (DIFF), conditioned on E. 

15 



Report of associations of O=Labels on Si=Race: 
Global Population of size 1324 
* Labels associated with Race=Black: 

Black White DIFF p-value 
Mask 8% 2% [0.0287,0.1026] 8.00e-07 
Ski Mask 5% 0% [0.0234,0.0807] 5.84e-08 
Bullet Vest 5% 0% [0.0137,0.0694] 1.56e-05 
* Labels associated with Race=White: 

Black White DIFF p-value 
Maillot 4% 21% [-0.2309,-0.1171] 1.09e-21 
Brassiere 2% 15% [-0.1755,-0.0817] 4.29e-17 
Miniskirt 2% 11% [-0.1377,-0.0477] 1.49e-10 

Fig. 7: Race-based Label Associations in the Image Tagger. Shows partial report of a Discovery 
(top k=35) investigation; only top three most strongly associated labels are shown for each race. 

Competition [20]. The application uses historical healthcare claims to predict a patient’s number of visits to 
the hospital in the next year. 

We use FairTest’s ErrorProfiling to examine the distribution of the algorithm’s absolute error based on 
patient age (scalar quantities; hence the use of correlation). FairTest’s report (Fig.8) shows the error/age 
correlations for the overall population (a) and three subpopulations (b–d). The predictions for older people 
are patently more erroneous than for younger people, and this effect is strongest for patients who suffered 
a fracture and were admitted to the hospital for at least one emergency in past years (b). This association 
may translate into quantifiable harms if, for instance, the application is used to adjust insurance premiums. 
(Findings from a second ErrorProfiling investigation are given in §A.1.) 

Scenario 5: Investigating Curious Effects in the Movie Recommender with Testing, Discovery, 
and ErrorProfiling. Our fifth scenario shows how programmers can compose FairTest’s investigations 
to perform end-to-end explorations of associations. We build a movie recommender system using a dataset 
of 1M ratings from 6,040 users on 3,900 movies [4]. The dataset also includes user demographic features 
(e.g., age, gender) and movie metadata (e.g., release date, genre). We reserve 10 ratings per user as the test 
set; the rest comprise the training set. (More details are in §A.2.) 

We are interested in how recommendations associate with user populations. We configure the system to 
output 50 new movies to each user, and Test for differences in simple characteristics of recommended movies 
(e.g., a movie’s average user rating – a proxy for popularity – and a movie’s age in years since its release). 
FairTest reveals that: (1) recommendations for women are more recent and less popular than those for men, 
and (2) recommendations for older people are older and more popular than those for younger people. (In 
this dataset, older movies tend to get higher ratings than younger movies.) 

We hypothesize that the type of movies that are recommended account for disparities in recommended 
movie popularity. We thus run Discovery to determine what genres are associated with age and gender. 
FairTest finds: (1) women tend to receive more recommendations for romantic movies, musicals and children 
movies while men receive more action movies, thrillers and war films; (2) users of age >35 receive more 
recommendations for movies on war, while users of age ≤35 receive more action and crime films. These 
associations offer a plausible explanation for the rating differences: war movies are among the most highly 
rated movies in the dataset, while the action and children genres typically score lower. 

Finally, we run ErrorProfiling, to see how the system’s prediction errors are distributed in the population, 
as they also may partially account for associations found above. However, FairTest finds only small differences 
in accuracy, with men and older users getting somewhat more accurate predictions overall than, respectively, 
women and younger users. This result does not support our suspicion, although a follow-up Test of association 
between popularity and gender or age using prediction error as an explanatory feature could uncover some 
convincing evidence (à la Simpson’s paradox). 

Overall, this and the preceding scenarios show that FairTest reveals insightful associations and helps 
programmers investigate them. 

16 



Report of association of O=AbsoluteError on Si=Age: 
(a)	 Global Population of size 43179 

p-value = 3.90e-179 ; CORR = [0.3219, 0.3494] 
(b) Subpopulation of	 size 123 

Context = {Emergencies: [1, 4], Fractures: 1} 
p-value = 2.20e-03 ; CORR = [0.4006, 0.6835] 

(c) Subpopulation of	 size 8177 
Context = {Emergencies: [1, 4]} 
p-value = 3.90e-179 ; CORR = [0.3792, 0.4385] 

(d) Subpopulation of	 size 558 
Context = {Emergencies >= 5} 
p-value = 2.20e-03 ; CORR = [0.3740, 0.5296] 

Fig. 8: Error Profile for Health Predictions. Shows the global population and 3 contexts with high 
effect size (correlation). Plots show the distribution of predictive error over age groups. The green line 
represents the best linear fit (least-squares) over the data. 

17 



0

25

50

75

100

Adult Berkeley Staples Health Tagger MovieRecP
er

ce
n
ta

g
e 

o
f 

T
o
ta

l 
T

im
e

train
test

95s 25s 120s 72s 34s 116s

Fig. 9: FairTest Performance. Total FairTest analysis time (labels above bars) broken down into training 
and testing times (bars). 

5.3 Performance (Q3) 

We discuss FairTest’s performance briefly. Although its building blocks (decision trees, standard statistical 
tests) admit of efficient and scalable implementations, our prototype does not currently incorporate the best 
available optimizations. We still find that our system is fast enough for practical use. Fig.9 shows FairTest’s 
analysis time for each of our applications (top numbers), broken down in two components: (1) the time 
spent on training to form association hypotheses, and (2) the time spent on testing, correcting, filtering, 
and ranking these hypotheses. On a commodity laptop (4-core Intel CPU @1.7GHz, 8GB RAM), the total 
execution times range from 25 seconds for the smallest dataset (Berkeley) to two minutes for the largest 
(Staples, with 1M users). For the smaller datasets, Adult, Berkeley, Image Tagger, and Recommender (see 
Table 2 for dataset sizes), we often use bootstrapping and permutation tests for CI and p-value calculations 
in small contexts; these are expensive and subsume the cost of training. For Staples, a much larger dataset, 
we use faster, approximate computations of CIs and p-values, making the testing phase fast and the training 
phase proportionally more expensive. For the Health dataset, training is particularly expensive due to many 
user features (128), most serving as contextual features in the decision tree’s generation. Further performance 
benchmarks are in §A.4. 

6 Related Work 

Apart from algorithmic fairness (reviewed in §2.3), the field of web transparency [1,3,6,17,18,26,27,29,47,48] 
is closest to our work; indeed, our team contributed two scalable and generic system designs [26, 27]. Web 
transparency is orthogonal to our work here, however, as it relies on controlled, randomized experiments that 
probe a service with different inputs (generally not real user profiles) and observe the effects on outputs so as 
to identify and quantify Web services’ use of personal data to target, personalize, and tune prices. Although 
some works touch on discrimination and fairness (e.g., [6]), the web transparency setting is also different 
from that in this paper. Detection of unfair or unwarranted associations, as in FairTest, requires making 
inferences from application behavior on real user profiles, which may contain hidden correlations between 
inputs and sensitive values that would be unobservable with controlled experiments. 

7 Conclusions 

We have presented FairTest, a tool to help developers negotiate a world of increasingly complex applica­
tion pipelines, machine learning algorithms, and data flows, as well as spreading impact of algorithms on 
users’ lives. Designed with usability for developers in mind, FairTest enables scalable, statistically rigorous 
investigation of unwarranted associations in data-driven applications. Our study of a suite of six real-world 
applications and datasets demonstrates the broad utility of the three key investigation types currently sup­

18 



ported in FairTest: Discovery of association bugs, Testing of suspected bugs, and ErrorProfiling for machine 
learning algorithms. 

Although designed for developers, FairTest is largely a black-box analysis system. Our hope is that it 
will therefore not just serve application developers, but also help pave the way to more general algorithmic 
transparency, leading to tools that empower auditors, regulators, and users to act as watchdogs for pervasive 
fair data use. 

References 

[1] P.	 Barford, I. Canadi, D. Krushevskaja, Q. Ma, and S. Muthukrishnan. Adscape: Harvesting and 
Analyzing Online Display Ads. WWW ’14: Proceedings of the 23nd international conference on World 
Wide Web, Apr. 2014. 

[2] P. J. Bickel, E. A. Hammel, and J. W. O’Connell. Sex bias in graduate admissions: Data from Berkeley. 
Science, 187(4175):398–404, 1975. 

[3] T. Book and D. S. Wallach. An Empirical Study of Mobile Ad Targeting. arXiv.org, 2015. 

[4] D. Brent J., K. Joseph, H. Jon, G. Nathaniel, B.	 Al, and R. John. Jump-starting movielens: User 
benefits of starting a collaborative filtering system with ”dead date”. Technical report, University of 
Minnesota, March 1998. 

[5] T. Calders and S. Verwer.	 Three naive Bayes approaches for discrimination-free classification. Data 
Mining and Knowledge Discovery, 21(2):277–292, 2010. 

[6] A. Datta, M. C. Tschantz, and A. Datta.	 Automated experiments on ad privacy settings: A tale of 
opacity, choice, and discrimination. In Proceedings of Privacy Enhancing Technologies Symposium, 2015. 

[7] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. Imagenet: A large-scale hierarchical image 
database. In Computer Vision and Pattern Recognition, 2009. CVPR 2009. IEEE Conference on, pages 
248–255. IEEE, 2009. 

[8] C. Dwork, V. Feldman, M. Hardt, T. Pitassi, O. Reingold, and A. Roth.	 The reusable holdout: Pre­
serving validity in adaptive data analysis. Science, 349(6248):636–638, 2015. 

[9] C. Dwork, M. Hardt, T. Pitassi, O. Reingold, and R. Zemel. Fairness through awareness. In Proceedings 
of the 3rd Innovations in Theoretical Computer Science Conference, ITCS ’12, pages 214–226, New 
York, NY, USA, 2012. ACM. 

[10] B. Efron. Bootstrap methods: Another look at the jackknife. The Annals of Statistics, 7(1):1–26, 1979. 

[11] Equal Employment Opportunity Commission.	 Information on impact (§ 1607.4), Uniform Guidelines 
on Employee Selection Procedure, 1978. 

[12] M. D. Ernst.	 Permutation methods: A basis for exact inference. Statistical Science, 19(4):676–685, 
2004. 

[13] M. Feldman, S. A. Friedler, J. Moeller, C. Scheidegger, and S. Venkatasubramanian.	 Certifying and 
removing disparate impact. In Proceedings of the 21th ACM SIGKDD International Conference on 
Knowledge Discovery and Data Mining, KDD ’15, pages 259–268, New York, NY, USA, 2015. ACM. 

[14] A. Gretton, O. Bousquet, A. Smola, and B. Schölkopf. Measuring statistical dependence with hilbert­
schmidt norms. In S. Jain, H. Simon, and E. Tomita, editors, Algorithmic Learning Theory, volume 
3734 of Lecture Notes in Computer Science, pages 63–77. Springer Berlin Heidelberg, 2005. 

[15] J. Guynn. Google photos labeled black people ’gorillas’. USA Today, July 2015. 

[16] S. Hajian and J. Domingo-Ferrer.	 A methodology for direct and indirect discrimination prevention in 
data mining. Knowledge and Data Engineering, IEEE Transactions on, 25(7):1445–1459, 2013. 

19 

http:arXiv.org


[17] A. Hannak, P.	 Sapiezynski, A. M. Kakhki, B. Krishnamurthy, D. Lazer, A. Mislove, and C. Wilson. 
Measuring personalization of web search. In WWW ’13: Proceedings of the 22nd international conference 
on World Wide Web. International World Wide Web Conferences Steering Committee, May 2013. 

[18] A. Hannak, G.	 Soeller, D. Lazer, A. Mislove, and C. Wilson. Measuring Price Discrimination and 
Steering on E-commerce Web Sites. IMC ’14: Proceedings of the 14th ACM SIGCOMM conference on 
Internet measurement, 2014. 

[19] M. Hardt. How big data is unfair. Understanding sources of unfairness in data driven decision making. 
https://medium.com/@mrtz/how-big-data-is-unfair-9aa544d739de, September 2014. 

[20] Heritage Provider Network. Heritage Health Prize Competition.	 http://www.heritagehealthprize. 
com/c/hhp, 2012. 

[21] S. Holm.	 A simple sequentially rejective multiple test procedure. Scandinavian Journal of Statistics, 
6(2):pp. 65–70, 1979. 

[22] F. Kamiran and T. Calders. Classifying without discriminating. In Computer, Control and Communi­
cation, 2009. IC4 2009. 2nd International Conference on, pages 1–6. IEEE, 2009. 

[23] F. Kamiran, T. Calders, and M. Pechenizkiy.	 Discrimination aware decision tree learning. In Data 
Mining (ICDM), 2010 IEEE 10th International Conference on, pages 869–874. IEEE, 2010. 

[24] T. Kamishima, S. Akaho, H. Asoh, and J. Sakuma.	 Fairness-aware classifier with prejudice remover 
regularizer. In Machine Learning and Knowledge Discovery in Databases, pages 35–50. Springer, 2012. 

[25] Y. Koren, R. Bell, and C. Volinsky. Matrix factorization techniques for recommender systems. Computer, 
42(8):30–37, 2009. 

[26] M. Lecuyer, G. Ducoffe, F. Lan, A. Papancea, T. Petsios, R. Spahn, A. Chaintreau, and R. Geambasu. 
XRay: Enhancing the Web’s Transparency with Differential Correlation . In 23rd USENIX Security 
Symposium (USENIX Security 14), San Diego, CA, 2014. USENIX Association. 

[27] M. Lecuyer, R. Spahn, Y. Spiliopoulos, A. Chaintreau, R. Geambasu, and D. Hsu.	 Sunlight: fine-
grained targeting detection at scale with statistical confidence. In Twenty-Second ACM Conference on 
Computer and Communications Security, 2015. 

[28] M. Lichman. UCI machine learning repository, 2013. 

[29] B. Liu, A. Sheth, U. Weinsberg, J. Chandrashekar, and R. Govindan. AdReveal: improving transparency 
into online targeted advertising. In HotNets-XII: Proceedings of the Twelfth ACM Workshop on Hot 
Topics in Networks. ACM Request Permissions, Nov. 2013. 

[30] B. T. Luong, S. Ruggieri, and F. Turini.	 k-NN as an implementation of situation testing for discrim­
ination discovery and prevention. In Proceedings of the 17th ACM SIGKDD International Conference 
on Knowledge Discovery and Data Mining, pages 502–510. ACM, 2011. 

[31] X. Meng, J. Bradley, B. Yavuz, E. Sparks, S. Venkataraman, D. Liu, J. Freeman, D. Tsai, M. Amde, 
S. Owen, et al. Mllib: Machine learning in apache spark. arXiv preprint arXiv:1505.06807, 2015. 

[32] L. Paninski.	 Estimation of entropy and mutual information. Neural computation, 15(6):1191–1253, 
2003. 

[33] D. Pedreschi, S. Ruggieri, and F. Turini. Discrimination-aware data mining. In Proceedings of the 14th 
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pages 560–568. 
ACM, 2008. 

[34] J. L. Peresie. Toward a coherent test for disparate impact discrimination. Ind. LJ, 84:773, 2009. 

[35] B. Poczos, L. Xiong, and J. Schneider.	 Nonparametric divergence estimation with applications to 
machine learning on distributions. In Uncertainty in Artificial Intelligence, 2011. 

20 

https://medium.com/@mrtz/how-big-data-is-unfair-9aa544d739de
http://www.heritagehealthprize.com/c/hhp
http://www.heritagehealthprize.com/c/hhp


[36] J. R. Quinlan. C4.5: Programs for Machine Learning. Morgan Kaufmann Publishers, 1993. 

[37] J. L. Rodgers and W. A. Nicewander. Thirteen ways to look at the correlation coefficient. The American 
Statistician, 42(1):pp. 59–66, 1988. 

[38] S. Ruggieri, D. Pedreschi, and F. Turini. Data mining for discrimination discovery.	 ACM Transactions 
on Knowledge Discovery from Data (TKDD), 4(2):9, 2010. 

[39] S. Ruggieri, D. Pedreschi, and F. Turini.	 Integrating induction and deduction for finding evidence of 
discrimination. Artificial Intelligence and Law, 18(1):1–43, 2010. 

[40] P. Sermanet, D. Eigen, X. Zhang, M. Mathieu, R. Fergus, and Y. LeCun. Overfeat: Integrated recogni­
tion, localization and detection using convolutional networks. In International Conference on Learning 
Representations (ICLR 2014). CBLS, April 2014. 

[41] E. H. Simpson. The interpretation of interaction in contingency tables.	 Journal of the Royal Statistical 
Society. Series B (Methodological), pages 238–241, 1951. 

[42] R. R. Sokal and F. J. Rohlf. Biometry: The Principles and Practice of Statistics in Biological Research. 
Freeman, second edition, 1981. 

[43] L. Sweeney. Discrimination in online ad delivery. Queue, 11(3):10, 2013. 

[44] G. J. Székely, M. L. Rizzo, and N. K. Bakirov. Measuring and testing dependence by correlation of 
distances. The Annals of Statistics, 35(6):pp. 2769–2794, 2007. 

[45] United States Census Bureau. Easy stats. http://www.census.gov/easystats/, September 2015. 

[46] J. Valentino-DeVries, J. Singer-Vine, and A. Soltani. Websites vary prices, deals based on users’ infor­
mation. The Wall Street Journal, December 2012. 

[47] T. Vissers, N. Nikiforakis, N. Bielova, and W. Joosen.	 Crying Wolf?On the Price Discrimination of 
Online Airline Tickets. Proceedings of the 7th Hot Topics in Privacy Enhancing Technologies (HotPETs 
2014), pages 1–12, June 2014. 

[48] X. Xing, W. Meng, D. Doozan, N. Feamster, W. Lee, and A. C. Snoeren.	 Exposing Inconsistent Web 
Search Results with Bobble. Passive and Active Measurements Conference, 2014. 

[49] R. Zemel, Y. Wu, K. Swersky, T. Pitassi, and C. Dwork. Learning fair representations. In Proceedings 
of the 30th International Conference on Machine Learning (ICML-13), pages 325–333, 2013. 

[50] I. Zliobaite, F. Kamiran, and T. Calders. Handling conditional discrimination. In Data Mining (ICDM), 
2011 IEEE 11th International Conference on, pages 992–1001. IEEE, 2011. 

A Supplementary Results 

A.1 Predictive Healthcare Application (Scenario 3) 

We give a few additional details and results from our investigation of the predictive healthcare application 
(Scenario 3 in §5.2). We use 25% of the Heritage Health Prize Competition’s dataset to train our application, 
and reserve the remaining 75% for testing. The prediction is actually of log(1 + number of visits). Using 
the test data, we find that the application has root-mean-squared error in this prediction of 0.4, and also 
achieves 85% accuracy for the binary prediction of whether the patient visits the hospital. 

Fig.10 displays FairTest’s ErrorProfiling report for the binary healthcare classification task (will a patient 
visit the hospital next year?). Here we compare proportions of false positives (we predict a visit to the hospital 
for a healthy patient), false negatives (we fail to predict that a patient will visit the hospital) and correct 
classifications across age groups. Overall, our model’s accuracy is about 90% for patients below 60 vs. only 
76% for older patients. This disparity is even stronger for men who were treated for an emergency at least 
once and stayed at urgent care at least twice in the past. For these patients, the accuracy remains at 90% for 
the young but drops to 55% for the elderly. In particular, the false-positive rate is close to 0% for younger 
patients, yet over 35% for older patients in this context. 

21 

http://www.census.gov/easystats/


Report of association of O=FP/FN/True on Si=Age:
 
Global Population of size 43179
 
p-value = 4.50e-179 ; NMI = [0.0419, 0.0546]
 
+------+----------+----------+----------+-----------+
 
|Output| Age 1-30| Age 31-60| Age 61-99| Total|
 
+------+----------+----------+----------+-----------+
 
|True | 9977(89%)|14616(90%)|11981(76%)|36574 (85%)|
 
|FN | 953 (9%)| 1270 (8%)| 1720(11%)| 3943 (9%)|
 
|FP | 266 (2%)| 326 (2%)| 2070(13%)| 2662 (6%)|
 
|Total |11196(26%)|16212(38%)|15771(37%)|43179(100%)|
 
+------+----------+----------+----------+-----------+
 

Subpopulation of size 736
 
Context = {Gender: Male, Emergencies >= 1,
 

SDS Code = 0, Urgent Care >= 2} 
p-value = 2.30e-04 ; NMI = [0.1153, 0.2616] 
+------+---------+---------+---------+---------+ 
|Output|Age 01-30|Age 31-60|Age 61-99| Total| 
+------+---------+---------+---------+---------+ 
|True | 209(93%)| 274(90%)| 114(55%)|597 (81%)| 
|FN | 15 (7%)| 26 (9%)| 21(10%)| 62 (8%)| 
|FP | 0 (0%)| 4 (1%)| 73(35%)| 77 (10%)| 
|Total | 224(30%)| 304(41%)| 208(28%)|736(100%)| 
+------+---------+---------+---------+---------+ 

Fig. 10: Prediction error for the medical application. Displays proportions of false negatives (FN), 
false positives (FP) and true predictions of a patient’s hospital visit. 

22 



A.2 Movie Recommender (Scenario 5) 

We next give a few details on the movie recommender investigation setup (Scenario 5 in §5.2) and illustrate 
the experience related there with results (Fig.11). Our movie recommender is trained using the alternating 
least squares algorithm [25] and the MovieLens-1M dataset [4] (1M ratings provided by 6,040 users on a 
total of 3,900 movies). The ratings take values in [1, 5], and each user has rated at least 20 movies. The test 
set is comprised of 10 randomly chosen ratings per user, and the rest of the data are used as the training 
set. The system is trained to model the kinds of movies users generally like. Furthermore, the system can 
be configured to recommend new movies and also predict the rating that a user will give a movie. For 
ErrorProfiling, we measure the root-mean-squared-error of our system’s predicted ratings over the test set. 

As mentioned in §5.2, we first considered associations between a user’s age or gender and a recommended 
movie’s popularity or anciency. The top results in Fig.11(a) highlight weak disparities in the average ratings 
of recommended movies, with men and older users getting somewhat more popular movies than respectively 
women and younger users. Interestingly, a much stronger correlation appears between a user’s age and 
the anciency of offered movies (bottom of Fig.11(a)). Men and women however tend to get movies of 
approximately the same time period. Finally, we profiled our recommender’s error when predicting the 
ratings given by users (RMSE for 10 ratings per user). The results in Fig.11(b) again show weak, yet 
statistically significant, differences in prediction accuracy across age groups and genders, implying that our 
system is a little better at modeling the movie preferences of men and older users, than respectively women 
and younger users. 

A.3 Staples Simulation 

We next give further results from our Testing investigation of the Staples-inspired location-based pricing 
scheme (described in §3.1). We observed in Fig.2 a significant impact of lower-income people getting higher 
prices, particularly among white people in California. We additionally tested for disparate impact on gender 
and race. On race, we found that Native Americans are shown high prices in over 19% of the cases, three 
times more than the population average. Fig.12 shows the top of FairTest’s report of pricing-race impact. 
Globally, the strongest negative impact of the location-based pricing scheme is for American Indians and 
Alaska Natives, a minority that accounts for less than 1% of the users in our dataset. At a finer grain, 
the subpopulation with the strongest disparities are low-income female population in New York, with white 
users, as well as the very few native Americans in this category, being most affected by the location-based 
pricing. It is interesting to note that among low-income New Yorkers, disparities appear stronger for women 
than for men, implying that the geographical distribution of genders (for individual ethnic groups) is not 
completely uniform. 

A.4 Performance Microbenchmark 

To microbenchmark FairTest’s performance, we use the Staples dataset and artificially create additional 
pseudo-features. We duplicate the original demographic features and shuffle their values across the popula­
tion. We produce bug reports for increasing number of features and input sizes (#of users) and evaluate the 
two main phases of FairTest’s analysis time: train and test. 

Fig.13 shows the results. Both times increase linearly with the number of features and the input size. The 
training phase (a) increases more rapidly, compared to the testing time (b) as the number of features grows. 
This is because testing time mostly depends on the number of subpopulations uncovered (and their sizes), 
which is not strongly dependent on the number of features. In contrast, building the association-guided 
decision tree obviously implies testing each feature for potential splits, which explains the increase. 

23 



p-value = 3.94e-16 p-value = 1.39e-04 
CORR = [0.11, 0.19] CORR = [0.03, 0.11] 

p-value = 1.71e-62 p-value = 8.22e-03 
CORR = [0.26, 0.33] CORR = [0.01, 0.09] 

(a) Association Testing 

p-value = 4.12e-05 p-value = 7.57e-04 
CORR = [-0.12, -0.04] CORR = [-0.10, -0.02] 

(b) Error Profiling 

Fig. 11: Associations for the movie recommender (a) Correlation between user age and gender and 
the rating and age of offered movies. (b) Error profiling (RMSE for 10 ratings) across age and gender. 

24 



Report of association of O=Price on Si=Race:
 
Global Population of size 494436
 
p-value = 2.31e-178 ; NMI = [0.0241, 0.0286]
 
+-----+----------+----------+----------+----------------------+----------------+-----------+------------+
 
|Price| Asian| Black| Hispanic|Indian & Alaska Native|Pacific Islander| White| Total|
 
+-----+----------+----------+----------+----------------------+----------------+-----------+------------+
 
|High | 430 (2%)| 977 (2%)| 4013 (5%)| 654(19%)| 55 (7%)| 22544 (7%)| 29168 (6%)|
 
|Low |23244(98%)|60629(98%)|82652(95%)| 2879(81%)| 766(93%)|286877(93%)|465268 (94%)|
 
|Total|23674 (5%)|61606(12%)|86665(18%)| 3533 (1%)| 821 (0%)|309421(63%)|494436(100%)|
 
+-----+----------+----------+----------+----------------------+----------------+-----------+------------+
 

Subpopulation of size 7337
 
Context = {Gender: Female, State: NY, Income: <50K}
 
p-value = 4.73e-102 ; NMI = [0.0936, 0.1573]
 
+-----+--------+---------+---------+----------------------+----------------+-----------+----------+
 
|Price| Asian| Black| Hispanic|Indian & Alaska Native|Pacific Islander| White| Total|
 
+-----+--------+---------+---------+----------------------+----------------+-----------+----------+
 
|High | 12 (2%)| 17 (1%)| 31 (2%)| 5(14%)| 0(0%)| 493(15%)| 566 (8%)|
 
|Low |512(98%)|1482(99%)|1795(98%)| 31(86%)| 0(0%)| 2848(85%)|6771 (92%)|
 
|Total|524 (7%)|1499(20%)|1826(70%)| 36 (0%)| 0(0%)| 3341(46%)|7337(100%)|
 
+-----+--------+---------+---------+----------------------+----------------+-----------+----------+
 

Fig. 12: Disparate impact of a Staples-inspired pricing scheme across ethnic groups. In the 
global population, American Indians and Alaska natives are negatively effected. For low-income women in 
New-York, white users are also strongly disadvantaged. 

25 



 0

 10

 20

 30

 40

 50

 60

 10  20  30  40  50  60

T
o
ta

l 
ti

m
e
 (

se
c
o
n
d
s)

#Contextual features

size: 10K
size: 20K
size: 40K
size: 60K

(a) Training Phase 

 0

 20

 40

 60

 80

 100

 120

 140

 160

 10  20  30  40  50  60

T
o
ta

l 
ti

m
e
 (

se
c
o
n
d
s)

#Contextual features

size: 10K
size: 20K
size: 40K
size: 60K

(b) Testing Phase
 

Fig. 13: Performance Benchmark of FairTest Operations: Time spent in hypothesis generation phase
 
(a) and testing phase (b). Uses Microbenchmark as workload and averages over 10 iterations. 

26 


	Introduction
	Motivation
	Motivating Examples
	System Requirements
	Prior Approaches
	Threat Model and Assumptions

	FairTest Design
	Architecture
	Association Metrics Module
	Association Context Discovery Module
	Computing Significance and Effect Size Module
	Ranking and Filtering Association Bugs Module

	Prototype
	Evaluation
	Effectiveness of Bug Detection (Q1)
	Investigation Experience (Q2)
	Performance (Q3)

	Related Work
	Conclusions
	Supplementary Results
	Predictive Healthcare Application (Scenario 3)
	Movie Recommender (Scenario 5)
	Staples Simulation
	Performance Microbenchmark


