Session 2: Mobile Privacy

ReCon: Revealing and Controlling PII Leaks in Mobile Network Traffic

David Choffnes, Northeastern University

Co-authors: Jingjing Ren (Northeastern University), Ashwin Rao (University of Helsinki), Martina Lindorfer (SBA Research), Arnaud Legout (Inria, Sophia Antipolis, France

PRIVACYCON

This research was funded in part by the Data Transparency Lab

Privacy in the mobile Internet

- Mobile vs. privacy
 - Rich sensors, ubiquitous Internet
 - Information sharing pervasive
- Users at a huge disadvantage
 - Poor control
 - Little visibility

PRIVACYCON

How big of a problem is this?

- Controlled experiments
 - Seed devices with conspicuous PII
 - Manual tests of top 100 apps for each OS
 - iOS, Android, Windows Phone
 - (Note results have **significantly better coverage** than automated tests.)

Pll leakage is pervasive

PRIVACYCON

(Tested in September, 2015)

How do we improve mobile privacy?

- Better software on the device
 - OS: Difficult to deploy, doesn't handle user input
 - App store: Requires buy-in, not portable
- Look for PII leaks in the network
 - Analysis can run anywhere
 - Trivially easy if you know what PII to search for...

PRIVACYCON

Automatically identifying PII leaks

- Hypothesis: PII leaks use predictable formats
 - E.g., "name=Choffnes" or "zip=02115"

- Approach: *Learn* the format of PII leaks
 - Does not require knowing PII in advance

PRIVACYCON

- Resilient to changes in PII leak formats over time

Revealing and controlling leaks

PRIVACYCON

fullnam	e=Jack B. Goodman i	s sent	to gaana.com by
Gaana	Correct		

```
What do you want ReCon to do with this leak in the future? Tap to control
```

>	Dor
Is this correct?	
Correct	
NOT correct	
I am not sure about this	

recon.meddle.mobi
Why should I care about Password? Your password can be read by others over the Internet, and when using public/open WiFi hotspots.
paceword-recettettet is capt to 175 45 4 59 by app
Hellotalk for 3 times. Correct
What do you want ReCon to do with this leak in the future? Tap to control
Action: Block the information Destination: For above destination Channel: when sending this informatior Apply Channel: Done
when sending this information in clear
when sending this information over HTTP

10:00 DM

-√ ≵ 30% ■ →

ANA T Mabile 2

Key results: Accuracy

- How accurate is ReCon?
 - 99% overall accuracy from controlled experiments
 - FPR: 2.2%, FNR: 3.5%

Key Results: User study

- IRB-approved user study (382 users as of November, 2016)
 - 220 iOS, 197 Android devices
 - 20/26 responses: system useful & behavior change
 - PII found: 27,009 cases (12,318 confirmed)
- Some details

PRIVACYCON

- 199 cases of credential leaks
- Average leaks: iOS > Android
- Unexpected, suspicious leaks
 - Recipe/cooking app tracks location
 - Video/Game/News app leaks gender

Impact: security and transparency

- Identified 25 apps exposing **passwords**, (most) in **plaintext**
 - Used by millions (Match, Epocrates)
 - Responsibly disclosed

PRIVACYCON

- Many have not fixed the problem
- Interesting responses from developers
 - "Thank you for responsibly disclosing this"
 - "We do not claim to be a secure messaging app"
 - "Sending passwords in plaintext is intentional"

Naming names and listing leaks

• Anonymized report of app PII leaks

https://recon.meddle.mobi/app-report.html

• Same for mobile Web browsing

https://recon.meddle.mobi/web-report.html

Platform: Android (popularity ranking 10)

- Tracking identifier(Advertiser ID) -> betrad.com
- Tracking identifier(Advertiser ID) -> mobfox.com Tracker
- Tracking identifier(Advertiser ID) -> ec2-54-227-234-84.compute-1.amazonaws.com
- Tracking identifier(Advertiser ID) -> s.amazon-adsystem.com
 Tracker
- Tracking identifier(Advertiser ID) -> scorecardresearch.com Tracker
- Tracking identifier(Advertiser ID) -> revsci.net Tracker
- Tracking identifier(Advertiser ID) -> googlesyndication.com Tracker
- Tracking identifier(Advertiser ID) -> smaato.net Tracker
- Tracking identifier(Advertiser ID), GPS Location -> ads.celtra.com
 Tracker
- Tracking identifier(Advertiser ID) -> aax-us-east.amazonadsystem.com Tracker
- Tracking identifier(Advertiser ID) -> mydas.mobi Tracker
- Tracking identifier(Advertiser ID) -> mob-appz.com

Wrapup

- ReCon improves transparency and control over PII
 - Learn what information is being leaked
 - Crowdsourcing to determine correctness/importance
 - Allow users to block/change what is leaked
- Ongoing/future work

PRIVACYCON

- Deploying on devices (Haystack/Lumen), routers
- Applying analysis to IoT devices

Acknowledgements

• Contributors

Jingjing Ren (NEU), Martina Lindorfer (UCSB), Ashwin Rao (U. Helsinki), Arnaud Legout (INRIA)

Sign up at https://recon.meddle.mobi

Understanding the Mobile Ecosystem with the Lumen Privacy Monitor Narseo Vallina-Rodriguez

DISCLAIMER: The opinions expressed in this presentation are solely those of the presenter

1st parties (Direct)

Project Goals

- Identify 3rd-party tracking services on mobile apps
- Evaluate their impact on user privacy
- Promote mobile transparency and enable user control

How?

Lumen Privacy Monitor

<

Lumen Privacy Monitor

News All of	2 DT -	
Lumen		:
НОМЕ	APPS	TRAFFIC
Lumen r	monitoring	g state:
	On	
1	0	_

Preliminary research results

Dataset

- Accurate traffic fingerprints
 - 1000+ users (containing real user-stimuli)
 - 2,900+ apps
 - 3,200+ second-level domains

1st party vs. 3rd party services

Basic heuristic: deg (n)>1

PRIVACYCON

How to distinguish ad networks and trackers (ATS) from CDNs and other online services?

Challenges in classifying domains

1. Domain blacklists (e.g., Easylist) are web-oriented

2. URL classification services are inaccurate and incomplete

URL	Status	Categorization	Reputation
http://flurry.com	Categorized URL	- Internet Services	Minimal Risk

PRIVACYCON

Custom classifier

- Identify unique identifiers in data flows
 - IMEI, IMSI, Android ID, MAC Address, Serial Number,
- Analyse the content of their landing pages with a web scrapper and NLP

Results

Set	Total	Previously reported ATS (%)	Third Parties (%)
All domains	3261	11	31
UID Harvesters	336	9	41

Ad and Tracking Services (ATS) in mobile apps

Service popularity

Over 68% of tracking services are cross-platform

PRIVACYCON

Trackers by app category

Abusive practices (I)

- getprop command contains unique IDs
- Unprotected by Android permissions
 - Enables tracking without user consent

[dhcp.wlan0.domain]: [networks.imdea.org] [net.hostname]: [android-db216281e95dfab1] [persist.service.bdroid.bdaddr]: [40:B0:FA:5C:D0:80] [ro.boot.serialno]: [04efb34e55e22fcc] [ro.build.fingerprint]: [google/occam/mako:5.1.1/LMY48T/2237560:user/release-keys]

Abusive practices (II)

Host: track.XXXX.com

Accept-Encoding: gzip

device=angler&installDate=2016-11-02_0126-0700&firstLaunchDate=2016-11-02_0126-

0700&sdk=23&carrier=&date1=2016-11-02_0126-

0700&af_preinstalled=false&*advertiserldEnabled=false*&TRACKERKey=yZnL9BNtUzZLva6evLpUg5&lang=En glish&app_version_name=2.2.0&dkh=yZnL9BNt&*android_id=84f942c74fffbdef&advertiserld=fff3ca7e-61d7-4298ab14-*

256033002de9&deviceType=userdebug&af_v=da33e2cb0879238eb1dc9d93e0ce38b4564fbd9d&app_version_code=3&network=WIFI&operator=&brand=Android&date2=2016-11-02_0126-

0700&af_timestamp=1478118372355&uid=1478118365655-

1389078544330603868&isFirstCall=true&counter=1&product=aosp_angler&model=AOSP+on+angler

A tool for users

Enabling system-wide user control

DontoFohloo	DombfEchlos
Kapia labies	Rapid Landes
LEARN ABOUT INVESTING IN SILVER TODAYI RELET FOR ROMANCE	
Home -> Conversion + Length conversion -> km to miles	Home > Conversion + Length conversion > km to miles
G f 12 💓 🚉 🛨 183	
Kilometers to Miles	Kilometers to Miles
conversion	conversion
Kilometers (km) to miles (mi) conversion calculator and how to convert.	Kilometers (km) to miles (mi) conversion calculator and how to convert.
Vilomatera to miles conversion colsulator	Vilomatore to miles comparies exisuister

https://www.haystack.mobi/panopticon

The ICSI Haystack Panopticon

An interactive map of tracking activity on mobile apps

M Home
 Iblog
 Android App
 What is a panopticon?

Q, Use touchpad/mouse wheel for zoom control

Search (app/tracker)

narseo@icsi.berkeley.edu https://www.haystack.mobi

Automated Analysis of Privacy Requirements for Mobile Apps

<u>Sebastian Zimmeck</u>, Ziqi Wang, Lieyong Zou, Roger Iyengar, Peter Story, Bin Liu, Florian Schaub, Shomir Wilson, Norman Sadeh, Steven M. Bellovin, Joel Reidenberg

The research presented was funded by the National Science Foundation, the Defense Advanced Research Projects Agency, and the Air Force Research Laboratory

Privacy Requirement Compliance?

Device IDsLocationE-Mail

Policy and App Analysis

Privacy Requirements

- Privacy requirements are <u>self-</u> <u>defined standards</u> (derived from privacy laws)
- Privacy requirement inconsistencies are not necessarily violations of the law

Many Apps do not have a Policy

 71% of apps that appear to <u>lack a</u> <u>privacy policy</u> should have one

Policy Analysis Method

Classify practices based on machine learning

- 1. Sentences in policies are extracted based on data type keywords (e.g., all sentences containing "location")
- 2. Using action keywords unigram and bigram feature vectors are constructed from the extracted sentences (e.g., "share location")
- 3. Apply support vector machines and logistic regression

App Analysis Method

Analyze apps based on static code analysis

- 1. Identify relevant Android system and third party APIs
- 2. Perform static analysis on the app code (consisting of permission extraction, call graph creation, and call ID analysis)

Results

Practice	Prec _{pos} (n=40)	Rec _{pos} (n=40)	F-1 _{pos} (n=40)	Inconsistency (n=9,050)
CID	0.75	1	0.86	50%
CL	0.54	1	0.7	41%
СС	-	-	-	9%
SID	0.93	0.74	0.82	63%
SL	1	1	1	17%
SC	1	1	1	2%

Results for Sets of Apps

PRIVACYCON

Future Work

- Collaboration w/ the California Office of the Attorney General
- Help regulators, app store owners, developers, activists, ...
- Extension towards websites, iOS apps, Internet of Things ...
- Integration into app stores, software development tools, ...

PRIVACYCON

Primal Wijesekera

The Feasibility of Dynamically Granted Permissions: Aligning Mobile Privacy with User Preferences

Co-authors: Arjun Baokar, Lynn Tsai, Joel Reardon, Serge Egelman, David Wagner (University of California, Berkeley); Konstantin Beznosov (University of British Columbia)

The research presented was funded by the U.S. Department of Homeland Security's Science and Technology Directorate, the National Science Foundation, and the Natural Sciences and Engineering Research Council of Canada

the feasibility of dynamically granted permissions

Primal Wijesekera, UBC / UC Berkeley

ask-on-every-use?

213 requests per hour!

- location (10,960/day)
- reading SMS data (611/day)
- sending SMS (8/day)
- reading browser history (19/day)

asking each time is infeasible

...but 80% wanted to block at least one request

(on average, they wanted to block 35% of all requests)

users should be prompted about privacy decisions...

only when they are likely to care

only when the system does not know user preferences

users make contextual decisions

expectations drive privacy decisions

usage of an application is a strong contextual cue

can we predict privacy decisions?

field study to collect behavioral data

probabilistic prompts to measure user expectations under different contexts

the results

<u>133</u> Android smartphone users <u>176 million</u> events recorded <u>4,224</u> prompt responses

an improvement over ask-on-install

didn't match user expectations 15% of the time

can we use machine learning?

permission information

- permission
- visibility
- time of day

user behavior

PRIVACYCON

- browsing habits
- audio preferences
- screen locking habits

contextual preferences

- under different visibility levels
- under different foreground applications

contextual cues helped

	Error Rate	Average Prompts/User
Ask-on-first-use	15.4%	12.34
ML Model (behavior)	24.9%	00.00
ML Model (contextual)	03.2%	12.00
ML Model (contextual)	07.4%	08.00

PRIVACYCON

contextual privacy preferences...

were the most predictive feature group in predicting future privacy preferences

capture user's expectations under different contexts:

- foreground application
- visibility of the requesting application

based on the confidence system can...

automatically allow access when a user is likely to expect it,

automatically deny access when a user is likely to not expect it,

prompt when system cannot infer user expectations (and learn from it)

open questions

how can a system increase the transparency of automated decisionmaking?

how can passively observable traits be used to improve learning?

what's the best strategy to deny access?

Discussion of Session 2

Presenters:

- David Choffnes, Northeastern University
- Narseo Vallina-Rodriguez, IMDEA Networks; International Computer Science Institute
- Sebastian Zimmeck, Carnegie Mellon University
- **Primal Wijesekera**, University of British Columbia, Canada; University of California, Berkeley

Moderator:

• Justin Brookman, Federal Trade Commission

