
Sequential Auctions with Synergy

Yunmi Kong (NYU)

March 9, 2016

Job Market Paper

Abstract

This paper studies sequential auctions with synergy in which each bidder's values

can be a�liated across auctions, and empirically assesses the revenue e�ects of bundling.

Ignoring a�liation can lead to falsely detecting synergy where none exists. Motivated

by data on synergistic pairs of oil and gas lease auctions, where the same winner often

wins both tracts, I model a sequence in which a �rst-price auction is followed by an

English auction. At the �rst auction, bidders know their �rst value and the distribution

of their second value conditional on the �rst value. At the second auction, bidders learn

their second value, which is a�liated with their �rst value and also a�ected by potential

synergy if they won the �rst auction. Both synergy and a�liation take general func-

tional forms. I establish nonparametric identi�cation of the joint distribution of values,

synergy function, and risk aversion parameter from observed bids in the two auctions.

Intuitively, the e�ect of synergy is isolated by comparing the second-auction behavior of

a �rst-auction winner and �rst-auction loser who bid the same amount in the �rst auc-

tion. Using the identi�cation results, I develop a nonparametric estimation procedure

for the model, assess its �nite sample properties using Monte Carlo simulations, and ap-

ply it to the oil and gas lease data. I �nd both synergy and a�liation between adjacent

tracts, though a�liation is primarily responsible for the observed allocation patterns.

Bidders are risk averse. Counterfactual simulations reveal that bundled auctions would

yield higher revenue, with a small loss to allocative e�ciency.
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1 Introduction

Consider two synergistic objects being auctioned in sequence by a government agency. Syn-

ergy here refers to the value of two objects together being greater than the sum of the

individual values, or superadditive. If a single bidder wins both objects, he bene�ts from

this synergy; if di�erent bidders win each object, each winner obtains the stand-alone value

of the object he wins. Thus, the presence of synergy across the sequence creates a dynamic

problem for bidders as they decide how much to bid. Meanwhile, it also raises policy ques-

tions for the government; for instance, an easy-to-implement policy alternative to sequential

auctions would be to bundle the two objects and auction the bundle.

The revenue and e�ciency e�ects of policy alternatives are not obvious and need to be

assessed empirically. The aforementioned alternative, bundling, awards both objects to a

single bidder, ensuring that synergy is realized. But the �ip side is that it forces a single

bidder to take both tracts, eliminating the possibility of awarding each tract individually

to the highest paying bidder. So the cost or bene�t of bundling depends on, among other

things, how large the synergy is. Another alternative, the Vickrey-Clarke-Groves auction (a

type of combinatorial auction), guarantees an e�cient allocation, but may underperform in

terms of revenue compared to sequential �rst-price auctions.1 Finally, the government would

want to weigh the revenue gains of a policy against the e�ciency losses, or vice versa, which

requires some estimate of the size of each.

To address this policy question, this paper proposes a structural analysis of sequential

auctions with synergy and empirically assesses the revenue and e�ciency e�ects of bundling.

In particular, the model allows each bidder's values to be �exibly a�liated across auctions.

This a�liation is motivated by data on auctions of synergistic oil and gas leases, which are

neither independent objects nor homogeneous goods.

In the oil and gas lease auctions run by the New Mexico State Land O�ce, it is sometimes

the case that two adjacent halves of a square mile are auctioned on the same day. By

convention, one object is sold by a �rst-price sealed-bid auction, and the other object is sold

later (but on the same day) using an English auction. I observe that the same bidder often

wins both tracts. The two auctions are likely to be linked by synergy, for two reasons. First,

as noted in Sunnevåg (2000), equipment and crews will already be nearby, reducing the cost

of moving them between disparate locations and possibly eliminating duplicates. Second, in

recent years much of the drilling in New Mexico has been horizontal; with permission from

government authorities, adjacent tracts can be put together to form a �project area� where

horizontal wells can be drilled across lease borders. For these reasons, there is likely to be

extra value to winning two adjacent tracts beyond the sum of one's values for each tract

1The Vickrey-Clarke-Groves auction, while studied much in theory, remains largely unused in practice.
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individually.

Meanwhile, since the tracts in a pair are two adjacent halves of a square mile, a bid-

der's values for the two are likely to be a�liated, even after conditioning on covariates and

regardless of whether there is any synergy. For instance, a �rm may like certain geological

formations because its engineers are especially skilled in drilling that type of geology. If these

geological features are geographically clustered, the �rm's values for adjacent tracts will be

a�liated. This is a concept distinct from synergy, as it concerns the correlation of values

for individual tracts and has nothing to say about how they sum. A�liation of this kind is

likely to coexist with synergy in other contexts as well, as synergy often emerges from some

sort of adjacency, which is conducive to a�liation.

Synergy and a�liation are observationally similar; in both cases, the winner of the �rst

auction is more likely to win the second. As a result, misspeci�ed models that allow synergy

but assume away a�liation (or allow a�liation but assume away synergy) are likely to

attribute the observed e�ects of a�liation to synergy (and vice versa). In light of the policy

question we hope to address, this is problematic since synergy and a�liation have di�erent

implications for auction revenue and allocative e�ciency. As such, relaxing independence of

values across auctions is especially meaningful when estimating auction models with synergy.

In light of the data, I model a sequence in which a �rst-price auction of one tract is

followed by an English auction of the adjacent tract, under the private value paradigm.2

The timeline of the model is as follows. When bidders bid in the �rst auction, they know

their value for the �rst tract. Meanwhile, they have some uncertainty about what their value

will be in the second auction that happens later. This is because there is noise between the

two auctions � in the New Mexico data, there are other auctions taking place in between �

that can a�ect bidder values. So bidders do not know their second value exactly at the �rst

auction, but they do know the distribution from which their second value will be drawn. To

allow for a�liation, that distribution is conditional on their value for the �rst tract. I place

few restrictions on this conditional distribution, allowing a very �exible relationship between

a bidder's values for the �rst and second tract. Bidders do learn their exact value for the

second tract at the beginning of the second auction. This timing, motivated by the data,

helps the model retain tractability while being �exible.

The bidder that won the �rst auction bene�ts from synergy, so his ultimate value in the

second auction is not just the stand-alone value of the second tract, but the synergy-inclusive

value. I de�ne a synergy function that gives this synergy-inclusive value as a function of a

bidder's stand-alone values for each tract. Since the stand-alone values are idiosyncratic to

each bidder, the size of synergy, being a function of the two, is also idiosyncratic and is

private information to each bidder. The synergy function takes a general functional form.

2Reasons for the private value paradigm are discussed in Section 3.
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To characterize equilibrium bidding, I start with the second auction and work backwards.

The second auction is an English auction, where it is a dominant strategy for bidders to bid

their value for the second tract; so a bidder who lost the �rst auction would bid his stand-

alone value for the second tract, and a bidder who won the �rst auction would bid his

synergy-inclusive value for the second tract. Then in the �rst auction, bidders bid in light

of not only their value for the �rst tract, but also the expected bene�t in the second auction

from winning the �rst auction. Under some assumptions, I show that bids in the �rst auction

are strictly increasing in a bidder's value for the �rst tract, and that there exists a unique

Bayes-Nash equilibrium for bidding in the �rst auction.

I establish nonparametric identi�cation of the model primitives from observable data. I

emphasize that in doing so, I separately identify synergy and a�liation. The primitives are

the joint distribution of �rst-auction and second-auction values and the synergy function,

while the observable data include all bids in the �rst auction, the �nal price in the second

auction, and bidder identities. The identi�cation argument proceeds in multiple steps, be-

ginning with the second auction and working backwards. First, I identify the distribution

of a bidder's values in the second auction, conditional on his �rst-auction bid and whether

he won the �rst auction. Next, the synergy function is identi�ed by comparing the second-

auction value distributions of a �rst-auction winner and �rst-auction loser conditional on the

same �rst-auction bid. This conditioning on the �rst-auction bid neutralizes a�liation and

allows me to isolate the e�ect of synergy, since the �rst-auction winner bene�ts from syn-

ergy while the �rst-auction loser does not. Finally, �rst-auction values are identi�ed using

the �rst-order condition for bidding in the �rst auction. To be more precise, the �rst-order

condition can be rewritten as an inverse bid function that expresses a bidder's �rst-auction

value as a function of his �rst-auction bid, the observed bid distribution, and an additional

term representing the added bene�t in the second auction from winning the �rst auction.

This additional term is a function of the second-auction value distributions and the synergy

function, which were identi�ed in the previous two steps. So I can back out the �rst-auction

values using this inverse bid function.

Closely following the identi�cation steps, I develop a nonparametric multi-step estimation

procedure that recovers the structural parameters of the auction model. It begins with a

sieve maximum likelihood estimator to estimate bidders' value distributions in the second

auction. For the remaining primitives, which are the synergy function and �rst-auction

value distribution, my identi�cation argument is constructive, so the estimation procedure

follows the identi�cation argument step-by-step. I assess the �nite sample performance of

this estimation procedure in a Monte Carlo study.

When I apply the estimation procedure to the New Mexico data, I �nd both synergy

and a�liation between adjacent tracts, though a�liation is primarily responsible for the
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observed pattern in which the same bidder often wins both tracts. This result highlights the

importance of allowing for a�liation across auctions. Also, I allow bidders to be risk averse

when I estimate the model, and �nd that they are risk averse. Counterfactual simulations

using the estimated structural parameters reveal that bundled auctions would yield higher

auction revenue, accompanied by a small loss to allocative e�ciency.

The paper contributes to the literature by analyzing sequential auctions of a�liated

objects linked by synergy, and distinguishing synergy and a�liation in the process. While

the model and estimation procedure of this paper are tailored to the empirical application

at hand, the main insight behind disentangling synergy from a�liation is adaptable to other

contexts as long as all bids in the �rst auction are monotonic in values and observed.

In terms of broader relevance, sequential auctions with synergy are not limited to oil and

gas lease auctions. The Israeli cable TV licenses described in Gandal (1997), the construction

contracts studied by De Silva, Jeitschko, and Kosmopoulou (2005), and the milk contracts

sold by Georgia school districts (Marshall et al. (2006))3 are some other examples where

objects with potential synergy have been auctioned sequentially. More generally, examples

of synergistic objects sold via auction abound: geographically contiguous PCS licenses or

adjacent bands of spectrum (Ausubel et al. (1997), Cramton (1997)), electricity generation

in adjacent time periods (Wolfram (1998)), agri-environmental contracts (Saïd and Thoyer

(2007)), and long-haul truckloads (Triki et al. (2014)) fall into this category. Also, when

competing localities pay recruitment subsidies to �rms, there are bene�ts from agglomeration

if multiple �rms form an industrial cluster in the same area (Martin (1999)).

The paper is organized as follows. The remainder of Section 1 provides an overview of the

related literature. Section 2 describes the data and empirical evidence. Section 3 develops a

model of sequential auctions with synergy. Section 4 establishes nonparametric identi�cation

of the model. Section 5 develops an estimation procedure and discusses a Monte Carlo study

assessing �nite sample performance. Section 6 describes estimation details speci�c to the data

at hand, and discusses the estimation results. Section 7 performs counterfactual simulations

of interest including those for bundled auctions. Section 8 concludes. The appendix collects

all proofs.

Related literature

This paper is preceded by the empirical literature on sequential auctions, which begins with

Ashenfelter (1989)'s study of wine auctions, and includes among others Gandal (1997) and

De Silva et al. (2005), whose regression analyses �nd evidence of synergy in Israeli cable

TV license auctions and Oklahoma DOT construction auctions, respectively. Within that

literature, this paper is most closely related to the structural econometric work that starts

3Marshall et al. (2006) model the Georgia milk auctions as simultaneous.
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with Jofre-Bonet and Pesendorfer (2003). That literature has mostly focused on sequential

auctions of independent objects linked by bidder constraints, or homogeneous goods with

decreasing marginal values.

In the former category, Jofre-Bonet and Pesendorfer (2003) estimate an in�nite horizon

model of �rst-price procurement auctions, where capacity constraints generate dynamics

across the sequence. The construction contracts being auctioned are otherwise independent,

so a �rm's cost draws across auctions are also independent conditional on remaining ca-

pacity. Balat (2013) builds on the model of Jofre-Bonet and Pesendorfer (2003) to include

auction-level unobserved heterogeneity and endogenous participation. He �nds that the ac-

celerated release of procurement projects under the American Recovery and Reinvestment

Act increased procurement prices by increasing �rms' backlogs.

In the latter category are papers that study sequential auctions of homogeneous goods

like �sh and tobacco, where bidders retain the same value in the �rst and second auction

unless they win the �rst. For the �rst-auction winner, second-unit value is assumed to be

lower than �rst-unit value, consistent with decreasing marginal values. Donald, Paarsch, and

Robert (2006) study sequential English auctions of homogeneous goods, in which a Poisson

demand generation process imposes stationarity across auctions in the sequence. Brendstrup

and Paarsch (2006) and Brendstrup (2007) study identi�cation and estimation of sequential

English auctions using only the last stage of the game, without specifying equilibria for the

earlier stages. However, Lamy (2010) �nds that identi�cation actually fails in the context of

Brendstrup and Paarsch (2006) and Brendstrup (2007). Building on an equilibrium for the

whole two-stage game characterized in Lamy (2012), he establishes conditions under which

the model is identi�ed, and develops an estimation procedure that uses both stages of the

game.

Meanwhile, speci�cally addressing synergy, Brendstrup (2006) proposes a nonparametric

test for synergy that compares the price distribution of an object sold on its own to that

of the same object sold second in a sequence; Groeger (2014) estimates a dynamic auction

model to measure savings in bid preparation costs that come from having recently prepared

bids on contracts of the same type; and Donna and Espin-Sanchez (2015) study sequential

auctions of identical water units, which fall into a complements regime or a subtitutes regime

depending on weather seasonality.

This paper also relates to empirical work on synergy in non-sequential auctions. Ausubel

et al. (1997) and others discuss synergy in the simultaneous ascending PCS auctions run

by the FCC. Marshall et al. (2006) model and estimate simultaneous �rst-price auctions

with a speci�c form of synergy in the Georgia school milk market. Gentry, Komarova, and

Schiraldi (2015) also study simultaneous �rst-price auctions with synergy, but take a more

general approach, establishing nonparametric identi�cation of the model under certain re-
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strictions. They apply their framework to Michigan highway procurement auctions and �nd

that bidders view small projects as complements but large projects as substitutes. Cantillon

and Pesendorfer (2013) study combinatorial �rst-price auctions of London bus routes, where

synergies could exist. They show conditions for nonparametric identi�cation of the combi-

natorial auction model, and propose a two-stage estimation procedure to recover bidders'

costs from bids. Upon applying the procedure, they �nd evidence of decreasing returns to

scale rather than synergy.

The model introduced in this paper is of theoretical interest as well, as it has not been

analyzed before. The theory of sequential auctions is more complete for the case of single-

unit demand, where bidders demand at most one unit. A number of early papers explore

equilibrium price trends when bidders have single-unit demand for identical goods. In par-

ticular, Milgrom and Weber (1999) show that the sequence of prices is a martingale un-

der common assumptions, while McAfee and Vincent (1993), Engelbrecht-Wiggans (1994),

Jeitschko (1999) and others o�er explanations for declining prices. Budish and Zeithammer

(2011) study single-unit demand for two non-identical goods. Meanwhile, when it comes to

multi-unit demand, equilibrium analysis is challenging and often intractable. As such, most

papers restrict their analysis to two auctions and assume either that a bidder's values for the

two goods are the same, that all bidders share the same values, that bidders are represented

by a single type variable, or that values are independent across auctions and learned one at a

time. Examples include Ortega-Reichert (1968), Hausch (1986), and Caillaud and Mezzetti

(2004), who study information revelation across a sequence of auctions, as well as Benoit and

Krishna (2001) and Pitchik (2009), who study the e�ect of budget constraints. Exceptions

include Katzman (1999) and Lamy (2012). They study sequential second-price auctions of

two homogeneous goods with declining marginal values. Values are not independent since

they are ordered, and bidders know both values at the start of the sequence. However, Katz-

man (1999) still restricts to bid functions that depend only on one value, while Lamy (2012)

characterizes the set of equilibria more generally. Relative to this literature, the model used

in this paper allows for a �exible relationship between values across auctions, but still retains

tractability because bidders learn their second value at the second auction.

In the theory of sequential auctions addressing synergy in particular, price trends have

been a topic of interest just as in the literature for single-unit demand. Branco (1997),

Jeitschko and Wolfstetter (2002), and Menezes and Monteiro (2003) show how prices can

decline for identical objects or when values have a two-point support, while Sørensen (2006)

show how prices can increase for stochastically equivalent objects. Jofre-Bonet and Pesendor-

fer (2014) ask whether �rst-price or second-price auctions achieve lower procurement cost,

and �nd that second-price auctions are better for complements given risk-neutral bidders and

independence across auctions. The issue of whether to bundle in the presence of synergy
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has also been a topic of interest. Grimm (2007) �nds that when bidders can subcontract,

bundled auctions yield lower procurement costs than sequential auctions. Subramaniam and

Venkatesh (2009) analyze a parametric model and suggest that bundling is better than se-

quential auctions when the number of bidders is low or synergy is strong. Papers that study

simultaneous auctions with synergy also shed light on bundling. Levin (1997) �nds that

when bidders are symmetric and represented by a single type variable, bundling maximizes

revenue over other simultaneous mechanisms. Benoit and Krishna (2001), though not princi-

pally focused on bundling, provide an example in which bundling decreases auction revenue

in the presence of synergy.

2 Data

2.1 Overview

The New Mexico State Trust Lands were granted to New Mexico by Congress under the

Ferguson Act of 1898 and the Enabling Act of 1910. In general terms, the state was granted

four square miles � sections 2, 16, 32, and 36 � in each 36-section township.4 As a result, the

Trust Lands are not one contiguous piece of land, but a collection of many non-contiguous

pieces, often in units of one square mile each. The State Land O�ce (SLO) administers

this land for the bene�ciaries of the state land trust, which include schools, universities,

hospitals and other public institutions. Its mission statement explicitly references revenue

optimization as the core of its goals.5 In oil and gas producing parts of the land, such as the

Permian Basin, the SLO auctions leases for oil and gas development.

While there is some variation, the amount of land most commonly covered by an oil and

gas lease is a rectangle of 320 acres, or half a square mile. Therefore, a section, which is

a one square mile block, produces two such leases. The SLO prefers this size because it is

long enough to allow horizontal drilling. Larger tracts are rarely o�ered under a single lease.

According to SLO sta�, this is because under current rules, leases do not expire as long as

some minimal amount of oil and gas production is sustained, and are therefore vulnerable

to abuse by �rms that might hold on to large areas of land for long periods of time with

minimal or less than full development of the tract. The 320-acre size is considered small

enough to alleviate this concern.

As mentioned above, a section of land produces two adjacent 320-acre leases. Often,

4http://www.nmstatelands.org/overview-1.aspx
A section is a one-square-mile block of land in the Public Land Survey System.
5The SLO's mission statement as stated in its 2015 Annual Report is to �optimize revenues generated

from trust lands to support the bene�ciaries while ensuring proper land management and restoration to
continue the legacy for generations to come.�
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Table 1: Number of pairs 2000-2014, by number of bidders N in the �rst auction

N pairs
0 14
1 267
2 247
3 165
4 98
5 50
6 21
7 9
8 1

these two leases are auctioned on the same day. Typically they have the same lease terms,

which include the royalty rate, rental payments, and length of the lease, and are very similar

geologically, as they are adjacent halves of a square mile. I will refer to two such leases as a

�pair.� The focus of study in this paper are pairs that were auctioned in the Permian Basin

area during 2000-2014.

The SLO uses two auction formats, the �rst-price sealed-bid format and the English

auction format. When it comes to pairs, the SLO has a convention of selling one of the

leases by �rst-price sealed-bid, and the other lease by English auction later in the day. The

English auction always occurs later. Thus the two leases in a pair are auctioned in a sequence.

In this paper, I refer to the earlier auction as the ��rst auction� and the later auction as

the �second auction.� The SLO employs a �xed and publicly known reserve price of roughly

$15.625 per acre. To be clear, the two leases of a pair are not the only items being auctioned

on a given day, nor are they auctioned back to back; in 2000-2014, the average number of

Permian Basin leases auctioned on a single day was 39.

In terms of observable data, I observe all bids and bidder identities for the �rst-price

sealed bid auction. For the English auction, I observe the transaction price and the identity

of the winner only. Table 1 displays the number of pairs observed by N , which is the number

of bidders in the �rst-price sealed bid auction. Table 2 displays other statistics, including

some within-pair statistics that are telling.

The auction prices of paired leases are highly correlated, consistent with the geological

similarity of adjacent leases. 93% of bidders winning the second auction (�A2�) also partic-

ipate in the �rst auction (�A1�), suggesting that by and large, the same set of bidders are

bidding on both items. This is consistent with conversations with SLO sta�; bidders inter-

ested in one half of a section are typically interested in the other half as well. Meanwhile,

the probability that both leases in a pair will be won by the same bidder is higher than it

would be if all A1 participants had an equal chance of winning A2. This suggests that, at a
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Table 2: Statistics for paired leases, 2000-2014

Mean winning bid per acre (2009 dollars) $239

For N ≥ 2:
Correlation of �nal price in 1st and 2nd auction 0.91
Probability that 2nd-auction winner also bid on 1st auction 93%

Probability that pair is won by same bidder: observed even odds
N = 2 74% 50%
N = 3 62% 33%

Table 3: Probit regression results for probability of winning second auction

(1) (2) (3) (4) (5)
N ≥ 2 N ≥ 2 N ≥ 2 N = 2 N = 3

Won �rst auction 1.561*** 2.045*** 2.041*** 1.723*** 1.769***
(0.093) (0.197) (0.201) (0.169) (0.194)

Number of bidders �xed e�ects Y Y Y - -
Bidder �xed e�ects Y N N Y Y
Bidder-date �xed e�ects N Y Y N N
Lease descriptive covariates N N Y N N
Observations 1557 612 612 381 405

Standard errors in parentheses

* p<0.10, ** p<0.05, *** p<0.01

simple correlation level, the winner of A1 is more likely to win A2 than other bidders.

To check this correlation more formally, I perform a probit analysis where the unit of

observation is a bidder-lease in a �rst auction, and the dependent variable is whether that

bidder wins the paired second auction. Only auctions with two or more bidders are used.

The results are displayed in Table 3. Columns (1)-(3) include number-of-bidders �xed e�ects,

and columns (4) and (5) focus on N = 2 and N = 3, respectively. Columns (1), (4), and (5)

control for bidder �xed e�ects, and columns (2) and (3) control for bidder-date-of-auction

�xed e�ects.6 Column (3) also controls for covariates describing the lease, which are listed

in Table 7 and de�ned in section 6.1.

In every column, winning the �rst auction has a highly signi�cant positive e�ect on the

observed probability of winning the second auction. Using the column (1) speci�cation, the

6There are 128 bidders in the sample, some of which bid very few times. Bidders or bidder-dates that do
not bid enough to compute �xed e�ects are dropped from the regression.

10



probit coe�cient can be interpreted as follows: winning A1 increases the observed probability

of winning A2 from 0.17 to 0.72 if N = 2, and from 0.13 to 0.66 if N = 3, for an average

tract and an average bidder. We can conclude that the winner of A1 is more likely to win A2

than other bidders. The cause, however, cannot be diagnosed without further investigation.

2.2 Evidence of synergy and a�liation

Intuitively, synergy gives winners of the �rst auction (�A1�) a boost in winning the second

auction (�A2�). However, the mere observation that A1 winners are more likely to win A2

need not indicate synergy. Instead, the phenomenon can be due to a�liation of a bidder's

values for the �rst (v1) and second item (v2), which is especially likely in this empirical

context as the tracts in question are adjacent halves of a square mile. In order to con�rm

the presence of synergy, we need to account for the fact that even without synergy, the A1

winner is more likely to have the highest v2 due to a�liation.

One way to perform such a test is to use a regression discontinuity design. For each

bidder in the �rst auction, de�ne

z ≡ ln(b)− ln(highest competing b)

where b is his bid in the �rst auction. Then z > 0 indicates an A1 winner, and z < 0

indicates an A1 loser. A large |z| indicates a large gap between the �rst and second highest

bids in A1. If bidders' v1 and v2 are a�liated, a larger |z| makes it more likely that the same

bidder will win both A1 and A2. On the other hand, if |z| is very small, this means the A1

winner just barely won. In the absence of synergy, such a bidder should not be much more

likely to win A2 than if he just barely lost. This is the idea I exploit to detect synergy; I look

for a discontinuity in the probability of winning A2 at z = 0. The test does not necessarily

prove or disprove synergy, but can provide suggestive indications. As an earlier example of

exploiting the idea of RD in the auctions literature, Kawai and Nakabayashi (2014) examine

bidders who narrowly won the �rst round of a multi-round auction, and �nd evidence of

collusion in their pattern of winning subsequent rounds.

Formally, I seek to measure

β = y+ − y−

where y+ ≡ limz→0+E[yi|zi = z] and y− ≡ limz→0−E[yi|zi = z]. As proposed in Hahn, Todd,

and Van der Klaauw (2001), I use local linear regression to estimate y+ and y−.

As di�erent bidders may have more or less aggressive bidding strategies in A1, which is

a �rst-price sealed-bid auction (unlike A2, which is English), it is best to compare the same

bidder against himself in the two scenarios of z → 0+ and z → 0−. The results that follow
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Figure 1: Regression discontinuity plot
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are for the most frequent bidder, who allows the largest number of data points.7

An RD-style plot of the data is displayed in Figure 1.8 Two features of Figure 1 stand

out. First, the probability of winning the second auction is increasing in z. This is consistent

with a�liation of values across adjacent tracts, which makes the results of A1 predictive of

A2. Second, there seems to be a discontinuity at z = 0, consistent with synergy between

adjacent tracts.

The local linear regression results are shown in Table 4. The second row of Table 4

corrects for the bias in conventional RD estimates as discussed in Calonico, Cattaneo, and

Titiunik (2014b), and the third row increases the standard error to account for the fact that

this bias is itself estimated. The columns show di�erent choices of bandwidth selectors: CV

represents the cross-validation method proposed by Ludwig and Miller (2007), IK represents

Imbens and Kalyanaraman (2012), and CCT represents Calonico et al. (2014b).

Though the null of no synergy cannot be rejected with the robust con�dence intervals

in the third row, there are nonetheless suggestive indications of synergy, both in the plot

of data and in the estimation results. The estimated jump in the probability of winning is

roughly 0.2.

7The number of observations drops exponentially going down the ordered list of bidders. See the appendix
for more on other bidders.

8Figure 1 and Table 4 are obtained using the software packages described in Calonico, Cattaneo, and
Titiunik (2014a).
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Table 4: Sharp RD estimates using local linear regression

Bandwidth selector: CV IK CCT

Conventional 0.215*** 0.211** 0.193
(0.082) (0.106) (0.120)

Bias-corrected 0.191** 0.185* 0.176
(0.082) (0.106) (0.120)

Robust 0.191 0.185 0.176
(0.122) (0.139) (0.145)

Observations 545 545 545

Epanechnikov kernel

Standard errors in parentheses

* p<0.10, ** p<0.05, *** p<0.01

3 A model of sequential auctions with synergy

Motivated by the empirical setting, I build a model of sequential auctions with synergy. To

�x ideas, I introduce the model in the context of risk-neutral, symmetric bidders. Afterwards,

I extend the model to asymmetric bidders and risk aversion.

Private values paradigm

I develop the model within the private values paradigm. In common value models of oil and

gas leases, the source of interdependence is a relatively large amount of uncertainty regarding

value-relevant components of z, such as how much oil is underground. However, the Permian

Basin in New Mexico is an area where knowledge of the geology is more complete due to a

long history of development and production dating back to the 1920s. Seismic work done

by the state is publicly available. Permits for new seismic surveys are no longer requested

in the basin, as these are only done in areas that are not well known. Much of the basin

has already been drilled in the past. And when land is drilled, electric wireline logs that

record geologic formations are submitted to the New Mexico Oil Conservation Division and

made public. Conversations with agency sta� and bidders suggest that, though the science

is never exact and uncertainty remains, the industry has a fairly good idea of oil and gas

potential in the basin, and bidders are working with the same, publicly available information

when they assess the value of a tract to their �rm. As one bidder put it,

�Bear in mind that New Mexico has been producing oil and gas for over 80 years

and there have been thousands of wells drilled. This provides us a lot of historical
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data. Most tracts that show up on a given monthly sale, are in an area with lots

of production history and exploration success, or have the lack thereof.�

Meanwhile, valuations of a lease can be highly idiosyncratic by bidder for �rm-speci�c rea-

sons. Di�erent �rms have di�erent niches and areas of interest. They may be interested

in di�erent depths or layers of the same tract of land, and engineering teams may design

di�erent plans for how to drill it. Firms vary in their leaseholding strategies. In particular,

winning a lease does not require the �rm to drill; it grants the right, but not the obligation,

for �ve years. As such, one �rm may plan on drilling in the �rst year, while another �rm may

plan on the last year. The tract may not be drilled at all - this is very common - and di�erent

�rms may have di�erent probabilities of drilling for each tract. Leasing budgets, operating

costs, and infrastructure also vary across �rms. In light of the relatively small uncertainty

regarding oil and gas potential, the private values paradigm is a decent approximation of

our setting. It is also the more relevant paradigm for other data contexts. Nonetheless, it

certainly simpli�es the complexities of the real environment.

3.1 Setup

I introduce the full model �rst, and then discuss the merits and demerits of particular features

in turn.

A pair of adjacent tracts is leased via auction on the same day. One tract is sold by a

�rst-price sealed-bid auction, and the other is sold by an English auction, which happens

later chronologically. Before bidding in the �rst auction, each bidder draws a value

v1 ∼ F 1(·)

which is his private value for the �rst object.

Between the �rst auction (A1) and second auction (A2), there is noise that a�ects bidders'

values for the second object. Therefore, bidders do not know their value for the second object

(v2) with certainty at the time of the �rst auction. However, they do know the distribution

from which v2 will be drawn:

v2 ∼ F 2(·|v1)

The distribution F 2 is conditional on v1, allowing for a�liation between v1 and v2. v2 is

learned after the �rst but before the second auction.

The �rm that won the �rst auction bene�ts from synergy if he also wins the second

auction, so his ultimate value for the second object is not just v2 but
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s(v1, v2).

I allow the synergy function s to be a function of both v1 and v2 to be as general as possible.

To simplify notation when expressing the idea that the A1-winner applies synergy to his v2

when valuing the second half, I de�ne

D(x|v1) ≡ prob(s(v1, v2) ≤ x|v1)

and say winners of A1 draw their ultimate value for the second half from the distribution

D(·|v1). I assume that the same set of bidders participate in the �rst and second auction.

Now I discuss the ideas underlying speci�c parts of this model.

I do not explicitly model the noise between the �rst and second auction, but in the case

of the oil and gas lease auctions, one source of noise is other auctions that take place in

between the two sales. The type and number of tracts won and lost in these intervening

auctions can lead to adjustments in bidders' values. In other data contexts, noise may come

from the passage of time, often months, between the two auctions.9

The distribution of v2 is conditional on v1, but it is not conditional on any other signal.

The underlying assumption is that v1 is a su�cient statistic for anything known by a bidder

at the time of A1 that his F 2 could depend on. This does not require the two objects to be

identical; if each object has its own descriptive covariates, then the statement can be made

conditional on these covariates. For the oil and gas lease pairs, which are adjacent halves

of a square mile, the assumption is a reasonable approximation of reality. More generally,

it is reasonable when, as in other contexts involving adjacency, the objects are related and

determinants of private value �shocks� are likely to be similar. On the other hand, if the

objects are not so related, the model may be too crude of an approximation. The alternative

for those cases would be to have a separate signal for the second object at the time of the �rst

auction. However, two-dimensional types introduce signi�cant di�culties to characterizing

equilibria, let alone estimating the model. In contexts where it is appropriate, the model

introduced here provides a practical way forward.

It is helpful to compare this setup with other sequential or dynamic auction models. The

literature on sequential auctions of homogeneous goods, such as Brendstrup and Paarsch

(2006) and Lamy (2010), has employed models in which bidders' value for the second item

remains v1 if they do not win the �rst item. If they do win, the value of the second unit is

always less than the value of the �rst unit. The empirical applications were in auctions of

commodities, such as �sh and tobacco. Letting v2 be a draw from F2(·|v1) is less restrictive

9In Marshall et al. (2006), school milk procurements take place from May through August of each year,
and in Gandal (1997), Israeli cable TV licenses are auctioned over a period spanning 1988-1991.
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and encompasses the special case where it is exactly v1. On the other hand, bidders in Lamy

(2010) learn both (v1, v2) prior to bidding in the �rst auction. However, identi�cation and

estimation in Lamy (2010) still proceed from establishing that �rst auction bids depend only

on v1 under certain conditions.

This is also di�erent from the dynamic auction model used in Jofre-Bonet and Pesendorfer

(2003), where a bidder's values across auctions are independent conditional on covariates

and state variables. Here, the distribution of a bidder's v2 is directly dependent on his v1,

encompassing independence across auctions as a special case. Allowing for such correlation is

critical when attempting to measure synergy. As discussed in section 2.2, ignoring a�liation

could lead us to detect synergy where none exists. On the other hand, Jofre-Bonet and

Pesendorfer (2003) consider an in�nite horizon of auctions, while this paper models just two

auctions.

Notation

It is useful to introduce some notation that simpli�es long expressions in the expected pro�t

function. Though the model is di�erent, I follow the style of notation used by Lamy (2012).

The distribution of the highest competing bid in the second auction given that the bidder

wins the �rst auction and the highest competing bid in A1 is t is10

H1(u|t) = F 2(u|β ≤ t)N−2F 2(u|β = t) (1)

To explain, the probability that the highest competing bid in A2 is ≤ u is equal to the

probability that all bidders other than this bidder have values ≤ u for the second item.

Since the highest competing bid in A1 is t, the other bidders in A2 consist of one bidder

who bid t in A1 and N − 2 bidders who bid ≤ t in A1. The right-hand side of (1) expresses

the probability that all of these competing bidders have values ≤ u. The subscript 1 on H

indicates the case where the bidder wins the �rst auction.

Next, the distribution of the highest competing bid in A2 given that the bidder loses A1

and the highest competing bid in A1 is t is

H2(u|t) = F 2(u|β ≤ t)N−2D(u|β = t) (2)

The subscript 2 on H indicates the case where the bidder loses the �rst auction. The right-

hand side of (2) is the same as that of (1) except that D(u|β = t) replaces F 2(u|β = t).

10H1 and H2 are conditional only on the highest competing bid t, and not on any other bids. This is
because these expressions will be used in the expected pro�t function, which is computed by the bidder
before the �rst auction happens. Before the �rst auction, all he knows is that if he wins with bid b, the
highest competing bid must be less than b, and if he loses with bid b, the highest competing bid must be
greater than b.
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Having lost A1, the bidder knows he will be competing against the winner of A1, who bene�ts

from synergy. Therefore, H2 is di�erent from H1 if synergy exists.

Assumptions

For now, assume all items are homogeneous for expositional ease. Section 5.2 will discuss

how to work with heterogeneity across pairs.

AS1 (v1, v2) are independent across bidders: (V1i, V2i)⊥(V1j, V2j)

AS2 F1(·) is di�erentiable, with density f1 = F ′1.

AS3 F2(·|v1) is stochastically ordered in v1: v
′
1 > v1 implies F2(·|v′1) ≤ F2(·|v1).

AS4 F2(·|v1) and D(·|v1) are di�erentiable and have the same support, for every v1.

AS5 By de�nition of synergy, s(v1, v2) ≥ v2.

AS6
∂s(v1,v2)
∂v1

≥ 0 and ∂s(v1,v2)
∂v2

≥ H2(v2|t)
H1(s(v1,v2)|t) , ∀t.

AS7 The reserve price r is not binding.

AS1 means that while values can be dependent across the �rst and second auction, values

are independent across bidders. AS3 means that a bidder with higher v1 is more likely to

have a higher v2. This makes sense given that the two tracts in a pair are located in the

same square mile; even with intervening noise between the two auctions, v1 and v2 are likely

to be positively correlated. This assumption also helps make bidding in the �rst auction

monotonic in v1. AS4, which says all bidders bidding in the second auction draw their values

from the same support, is helpful for identifying the value distributions, as I will discuss

in the identi�cation section. AS5 states the idea that by de�nition of synergy, the value of

winning both tracts is at least as great as the sum of its parts. In particular, this means

that F 2(u|β = t) ≥ D(u|β = t) for any u, t, and hence H1(u|t) ≥ H2(u|t). AS6 places

some restrictions on the form of s(v1, v2), which is the synergy-included total value of the

second tract to a �rm that won the �rst tract. For one, AS6 says s(·, ·) is a nondecreasing

function in v1 and v2; this is natural. The second part of AS6, ∂s(v1,v2)
∂v2

≥ H2(v2|t)
H1(s(v1,v2)|t) , is a

more restrictive assumption on the form of s that helps ensure monotonic bidding strategies

in the �rst auction. Note that if s(v1, v2) > v2,
H2(v2|t)

H1(s(v1,v2)|t) < 1. Popular forms of synergy

such as s(v1, v2) = v2 + α used in Krishna and Rosenthal (1996) and s(v1, v2) = αv2 (α ≥ 1)

satisfy AS6.
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3.2 Bidding in the second auction

Working backwards, we discuss bidding in the second auction before thinking about the �rst

auction. The second auction is an English auction. Under the private value paradigm, it is

a dominant strategy for each bidder to bid up to his value for the tract. For the bidder who

won the �rst auction, this is s(v1, v2). For all other bidders who bid in the �rst auction, this

is v2.

3.3 Bidding in the �rst auction

Now we consider bidding in the �rst auction (A1), which is a �rst-price sealed-bid auction.

Expected pro�t at the time of the �rst auction

Using the notation just introduced, the expected pro�t from the two auctions at the time of

the �rst auction, if the bidder bids b is

π(v1, b) =

v̄ˆ

v2=v

{ bˆ

t=b

(
v1 − b+

s(v1,v2)ˆ

u=v

(s(v1, v2)− u)dH1(u|t)
)
dGN−1(t)

+

b̄ˆ

t=b

v2ˆ

u=v

(v2 − u)dH2(u|t)dGN−1(t)

}
dF 2(v2|v1)

The outer integral over v2 represents the fact that at the time of the �rst auction, v2 is

unknown. The �rst expression inside the outer integral represents the case where the bidder

wins the �rst auction, and the second expression represents the case where the bidder loses

the �rst auction. Notice that when he wins the �rst auction, he bene�ts not only from v1−b,
but also from the fact that the second item is now worth s(v1, v2) to him rather than just

v2 due to synergy. G(·) is the distribution of sealed bids in the �rst auction, and GN−1(·) is
the distribution of the highest bid out of N − 1 bidders.

First-order condition

A bidder will bid the b that maximizes his expected pro�t π(v1, b). Taking the derivative of

π(v1, b) with respect to b and setting it equal to zero gives

G(b)

(N − 1)g(b)
=

v̄ˆ

v2=v

{
v1 − b+

s(v1,v2)ˆ

u=v

(s(v1, v2)− u)dH1(u|b)−
v2ˆ

u=v

(v2 − u)dH2(u|b)
}
dF 2(v2|v1)

Using integration by parts, the �rst-order condition can be simpli�ed to
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b = v1 +

v̄ˆ

v2=v

{ s(v1,v2)ˆ

u=v

H1(u|b)du−
v2ˆ

u=v

H2(u|b)du
}
dF 2(v2|v1)− G(b)

(N − 1)g(b)
(3)

It is instructive to compare this FOC to the FOC of a stand-alone �rst-price auction.

From Guerre, Perrigne, and Vuong (2000), we know that the FOC for a stand-alone �rst-

price auction is b = v1 − G(b)
(N−1)g(b)

. In (3), there is an additional term on the right-hand

side that represents the expected bene�t due to synergy in the second auction from winning

the �rst auction. In other words, the v1 in the stand-alone �rst-price auction is replaced by

v1 plus the expected bene�t of synergy. If there is no synergy, i.e. s(v1, v2) = v2, then (3)

collapses to b = v1 − G(b)
(N−1)g(b)

, as in Guerre et al. (2000).

Note that by construction, the bids in the �rst auction are a function only of v1; only the

distribution of v2, not the realization, is known at the time of the �rst auction.

3.4 Equilibrium properties

Strictly increasing bid function

It can be shown that bids in the �rst auction are strictly increasing in v1. As a preliminary

step to doing so, Proposition 1 proves that if a low-value bidder bids more than a high-value

bidder, both bids must be in the best-response set BR of both bidders.

Proposition 1. Let v′1 < v1, with b ∈ BR(v1) and b′ ∈ BR(v′1). If b′ > b, then it implies

that b′ ∈ BR(v1) and b ∈ BR(v′1).

Then using Proposition 1, we can prove that bidding in the �rst auction is monotonic in v1.

Proposition 2. The bid function b(v1) in the �rst auction is strictly increasing in v1.

Uniqueness of equilibrium

Since the bid function b(·) is strictly increasing, we can revisit (1) and (2) to see that in a

symmetric equilibrium,

H1(u|b(x)) ≡ F 2(u|b(v1) ≤ b(x))N−2F 2(u|b(v1) = b(x)) = F 2(u|v1 ≤ x)N−2F 2(u|v1 = x)

H2(u|b(x)) ≡ F 2(u|b(v1) ≤ b(x))N−2D(u|b(v1) = b(x)) = F 2(u|v1 ≤ x)N−2D(u|v1 = x)

Then in a given equilibrium, H1(u|b) and H2(u|b) in (3) can be replaced with H1(u|ξ(b))
and H2(u|ξ(b)), where ξ(·) is the inverse bid function for that equilibrium, and the following

equation must be satis�ed:
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b(v1) = v1 +

v̄ˆ

v2=v

{ s(v1,v2)ˆ

u=v

H1(u|v1)du−
v2ˆ

u=v

H2(u|v1)du

}
dF 2(v2|v1)− G(b)

(N − 1)g(b)
(4)

Now, it is helpful to see that (4) can be represented by

b = T (v1)− G(b)

(N − 1)g(b)
(5)

where

T (v1) ≡ v1 +

v̄ˆ

v2=v

{ s(v1,v2)ˆ

u=v

H1(u|v1)du−
v2ˆ

u=v

H2(u|v1)du

}
dF 2(v2|v1) (6)

Hence, symmetric equilibria of the �rst auction are equivalent to that of a stand-alone �rst-

price auction where bidders have values T (v1). From Riley and Samuelson (1981), we know

there is a unique symmetric equilibrium for such an auction. This is stated in Proposition 3.

Proposition 3. There is a unique symmetric Bayes-Nash equilibrium for the �rst auction.

Monotonicity of bidding and uniqueness of equilibrium is useful when it comes to iden-

tifying the model from data. Also, this means F 2(v2|b(v1)) is a simple transformation of

F 2(v2|v1) that retains the stochastic ordering property. In an abuse of notation, I use the

same �F 2� to denote both F 2(·|b(v1)) and F 2(·|v1). In intermediate steps of estimation and

other parts of the paper, it will often be easier to work with F 2(v2|b) rather than F 2(v2|v1),

since b is observed while v1 is not. The same can be said of s(b(v1), v2) versus s(v1, v2). Now,

we can rewrite the �rst-order condition in (3), replacing F 2(v2|v1) with F 2(v2|b) and s(v1, v2)

with s(b, v2):

b = v1 +

v̄ˆ

v2=v

{ s(b,v2)ˆ

u=v

H1(u|b)du−
v2ˆ

u=v

H2(u|b)du
}
dF 2(v2|b)−

G(b)

(N − 1)g(b)

Then rearranging this FOC, we can write the inverse bid function

v1 = ξ(b) ≡ b+
G(b)

(N − 1)g(b)
−

v̄ˆ

v2=v

{ s(b,v2)ˆ

u=v

H1(u|b)du−
v2ˆ

u=v

H2(u|b)du
}
dF 2(v2|b) (7)

The e�ect of synergy on revenue
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In this section, I investigate the e�ect of positive synergy on auction revenue, relative to

the case of no synergy. In order to do so, I �rst establish that T (v1) as de�ned in (6) is a

monotonic function of v1.

Proposition 4. T (v1) is a monotonically increasing function of v1.

Now it can be shown that when positive synergy exists, �rst auction revenue increases relative

to the case of no synergy. In the second auction, which is an English auction, synergy

increases the �nal price when the A1-winner ends up being the second highest bidder in A2,

or when synergy causes the A1-winner to win A2 where he would have lost otherwise. In all

other cases, synergy leaves the �nal price unchanged. This leads to the next proposition.

Proposition 5. When s(v1, v2) > v2, revenue in the �rst auction is higher than it would

be if s(v1, v2) = v2. Revenue in the second auction is at least as high as it would be if

s(v1, v2) = v2.

Proposition 5 tells us that positive synergy de�nitely increases A1 revenue and likely increases

A2 revenue compared to the case of no synergy.

3.5 Asymmetric bidders

The model of sequential auctions with synergy can be extended to the case where bidders

have asymmetric value distributions and synergy functions. In this section, I extend the

model to the case of two asymmetric subgroups. Nothing prevents us from going to larger

numbers of subgroups, though mathematical expressions will become increasingly long and

complex.

The asymmetric model requires additional notation. First, a subscript m will indicate

the subgroup to which value distributions and synergy functions belong, so

v1 ∼ F 1
m(·)

v2 ∼ F 2
m(·|v1)

sm(v1, v2)

Dm(x|v1) ≡ prob(sm(v1, v2) ≤ x|v1)

Then, the distribution of the highest competing bid in the second auction given that a bidder

from subgroup m wins the �rst auction and the highest competing bid in the �rst auction is

t from subgroup m is
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Hm,m
1 (u|t) = F 2

m(u|βm ≤ t)Nm−2F 2
−m(u|β−m ≤ t)N−mF 2

m(u|βm = t)

The distribution of the highest competing bid in the second auction given that a bidder from

subgroup m wins the �rst auction and the highest competing bid in the �rst auction is t

from subgroup −m is

Hm,−m
1 (u|t) = F 2

m(u|βm ≤ t)Nm−1F 2
−m(u|β−m ≤ t)N−m−1F 2

−m(u|β−m = t)

The distribution of the highest competing bid in the second auction given that a bidder from

subgroup m loses the �rst auction and the highest competing bid in the �rst auction is t

from subgroup m is

Hm,m
2 (u|t) = F 2

m(u|βm ≤ t)Nm−2F 2
−m(u|β−m ≤ t)N−mDm(u|βm = t)

Finally, the distribution of the highest competing bid in the second auction given that a

bidder from subgroup m loses the �rst auction and the highest competing bid in the �rst

auction is t from subgroup −m is

Hm,−m
2 (u|t) = F 2

m(u|βm ≤ t)Nm−1F 2
−m(u|β−m ≤ t)N−m−1D−m(u|β−m = t)

Additionally, for a bidder from subgroup m, the probability that the highest competing bid

in the �rst auction is ≤ t is Gm(t)Nm−1G−m(t)N−m , where Gm is the distribution of �rst

auction bids from subgroup m.

Then, for a bidder from subgroup m, the probability that the highest competing bid in

the �rst auction is = t is ∂Gm(t)Nm−1G−m(t)N−m

∂t
, and can be expressed as jm(t) + km(t), where

jm(t) ≡ (Nm − 1)Gm(t)Nm−2gm(t)G−m(t)N−m

is the probability that the highest competing bid in the �rst auction is = t and from subgroup

m, and

km(t) ≡ N−mG−m(t)N−m−1g−m(t)Gm(t)Nm−1

is the probability that the highest competing bid in the �rst auction is = t and from subgroup

−m.

Using the above notation, the expected pro�t at the time of the �rst auction for a bidder

from subgroup m is
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πm(v1, b) =

v̄ˆ

v2=v

Xm(v1, v2, b)dF
2
m(v2|v1)

where

Xm(v1, v2, b) ≡
´ b
t=b

[v1 − b+
´ sm(v1,v2)

u=v
(sm(v1, v2)− u)dHm,m

1 (u|t)]jm(t)dt

+
´ b
t=b

[v1 − b+
´ sm(v1,v2)

u=v
(sm(v1, v2)− u)dHm,−m

1 (u|t)]km(t)dt

+
´ b̄
t=b

´ v2
u=v

(v2 − u)dHm,m
2 (u|t)jm(t)dt

+
´ b̄
t=b

´ v2
u=v

(v2 − u)dHm,−m
2 (u|t)km(t)dt

In the equation de�ning Xm, the �rst two parts account for the probability that the bidder

wins the �rst auction and the last two parts account for the probability that he loses the �rst

auction. There are two parts to each case because with asymmetry, the identity (subgroup)

of the highest competing bidder in the �rst auction matters for the bidder's expected pro�t

in the second auction.

Taking a derivative of the expected pro�t function πm(v1, b) with respect to b yields the

�rst-order condition for bidding.

v̄ˆ

v2=v

∂Xm(v1, v2, b)

∂b
dF 2

m(v2|v1) = 0

After simplifying and rearranging, the FOC for subgroup m can be rewritten as follows

Gm(b)Nm−1G−m(b) = (v1 − b)(jm(b) + km(b))+´ v̄
v2=v
{jm(b)[

´ sm(v1,v2)

u=v
Hm,m

1 (u|b)du−
´ v2
u=v

Hm,m
2 (u|b)du]

+km(b)[
´ sm(v1,v2)

u=v
Hm,−m

1 (u|b)du−
´ v2
u=v

Hm,−m
2 (u|b)du]}dF 2

m(v2|v1)

(8)

The FOC for asymmetric bidders is structurally similar to the FOC for symmetric bidders

in (3), but breaks down terms to account for di�erences between subgroups. If F 2
m = F 2

−m,

sm = s−m, and Gm = G−m, equation (8) reduces to (3).

The logic of Proposition 1 and 2 can still be applied in the asymmetric case, so bidding in

the �rst auction is monotonic in v1 within each subgroup. On the other hand, with asymme-

try, uniqueness of the equilibrium is not guaranteed. When bidders are asymmetric, Maskin

and Riley (2003) used the Fundamental Theorem of ordinary di�erential equations, along

with upper and lower boundary conditions, to prove the existence of a unique equilibrium.

However, when there is a second-stage auction following the �rst one, boundary conditions
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such as bm(v̄) = b−m(v̄) generally do not hold for more than two asymmetric bidders. As a

simple example, consider the case where one subgroup derives strong synergies but the other

does not derive any, and there are multiple bidders in each subgroup. Even if the two types

of bidders are identical in all other respects and have the same v1 = v̄, the all-inclusive value

of winning the �rst auction in light of the second auction is di�erent for the two types. So

in general the optimal bids b̄m and b̄−m would be di�erent. Whether more can be said about

boundary conditions and uniqueness remains to be studied.

3.6 Risk aversion

The model of sequential auctions with synergy can also be extended to the case where bidders

are risk averse. Since the second auction is an English auction, it remains a dominant strategy

for bidders to bid their value in the second auction. However, risk aversion does a�ect bidding

in the �rst auction, which uses the �rst-price sealed-bid format.

With risk aversion, the expected pro�t at the time of the �rst auction is

π(v1, b) =

v̄ˆ

v2=v

{ bˆ

t=b

s(v1,v2)ˆ

u=v

U(v1 − b+ s(v1, v2)− u)dH1(u|t)dGN−1(t)

+U(v1 − b)
bˆ

t=b

v̄ˆ

u=s(v1,v2)

dH1(u|t)dGN−1(t)

+

b̄ˆ

t=b

v2ˆ

u=v

U(v2 − u)dH2(u|t)dGN−1(t)

}
dF 2(v2|v1)

(9)

All pro�ts now show up inside the utility function U(·). The �rst expression inside the outer

integral represents the case where a bidder wins both auctions, the second expression is the

case of winning only the �rst auction, and the third expression is the case of winning only

the second auction.

Again, taking a derivative of π(v1, b) with respect to b yields the �rst-order condition for

bidding. The mathematical expression is more complex in the risk averse case:

G(b)
(N−1)g(b)

=
´ v̄
v2=v
{
´ s(v1,v2)

u=v
U(v1 − b+ s(v1, v2)− u)dH1(u|b)

+
´ v̄
u=s(v1,v2)

U(v1 − b)dH1(u|b)−
´ v2
u=v

U(v2 − u)dH2(u|b)}dF 2(v2|v1)/´ v̄
v2=v
{
´ s(v1,v2)

u=v
U ′(v1 − b+ s(v1, v2)− u)dH1(u|t ≤ b)

+
´ v̄
u=s(v1,v2)

U ′(v1 − b)dH1(u|t ≤ b)}dF 2(v2|v1)

(10)

What is the e�ect of risk aversion on �rst auction revenue compared to the risk neutral
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case? No general statement can be made, as there are two opposing forces. On the one

hand, risk aversion pushes bidders to bid more in a �rst-price auction, as they want to buy

insurance against the possibility of losing. On the other hand, uncertainty regarding v2 at

the time of the �rst auction means the second auction is like a lottery, of which the certainty

equivalent decreases as bidders grow more risk averse. This would push risk averse bidders

to bid less. The sign of the ultimate e�ect depends on the value distributions, the synergy

function, and the amount of risk aversion.

4 Identi�cation

In this section, I show that the model primitives, meaning the value distributions F 1(·),
F 2(·|·), and the synergy function s(·, ·), are identi�ed from the observable data, which are

the joint distribution of �rst auction bids and second auction prices, along with bidder

identities. The key idea behind this identi�cation result is as follows: suppose we observe

two ex-ante symmetric bidders submit identical bids in the �rst auction, but one of them

wins and the other loses. The fact that they bid the same means they had the same v1 when

they started. If winning the �rst auction has no e�ect on bidders' values for the second item,

the winner should behave no di�erently from the loser in the second auction. By comparing

the behavior of the winner and the loser, we can measure the synergy that comes from having

two adjacent tracts.

As in the previous section, I begin with the case of risk-neutral, symmetric bidders,

and then extend to asymmetry and risk aversion. I abstract away from auction-speci�c

heterogeneity, the discussion of which is deferred to section 5.2.

4.1 Model restrictions

Before delving into whether the model is identi�ed, it is useful to �rst consider what restric-

tions the model places on the data. The data is rationalized by the model if there exists

a structure [F 1(·), F 2(·|·), s(·, ·)] that yields the observed distribution of �rst auction bids,

second auction prices, and bidder identities in equilibrium. Throughout the paper, b refers to

sealed bids in the �rst auction. Only transaction prices are observed in the second auction,

which is an English auction.

Proposition 6. The observed distribution of �rst auction bids, second auction prices, and

bidder identities are rationalized by the model if and only if there exist [F 1(·), F 2(·|·), s(·, ·)]
satisfying assumptions AS2-AS6 such that:

R1 G(b1, ..., bN) = ΠN
i=1G(bi)
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R2 ξ(b) as de�ned in (7) is strictly increasing in b.

R3 Conditional on all the �rst auction bids including the highest bid bw1 and the bid bw2

of the bidder who won the second auction, the probability that the second auction price is

≤ p

... and the same winner wins both auctions is:

(1−D(p|bw1))
∏

j 6=w1 F
2(p|bj) +

´ p
u=v

∏
j 6=w1 F

2(u|bj)dD(u|bw1)

... and bidder i 6= w1 wins the second auction is:

(1− F 2(p|bi))D(p|bw1)
∏

j 6=i,w1 F
2(p|bj) +

´ p
u=v

D(u|bw1)
∏

j 6=i,w1 F
2(u|bj)dF 2(u|bi)

where D(x|v1) ≡ prob(s(v1, v2) ≤ x|v1).

Restrictions R1 and R2 are concerned with the �rst auction. R1 comes from the inde-

pendent private values paradigm with symmetric bidders, and R2 comes from monotonic

bidding. As pointed out in section 3.4, the �rst auction is observationally equivalent to a

stand-alone �rst-price auction where bidders have values T (v1). Hence, these conditions for

rationalizing the �rst auction data are not di�erent from those listed in Guerre et al. (2000)

for �rst-price auctions.

Restriction R3 is concerned with the second auction given the �rst auction, and this is

where sequentiality comes into play. It states the probability of each event described, given

the model. One easily graspable restriction on the data that comes from R3 and assumptions

AS2-AS6 is that the probability of winning the second auction should be nondecreasing in a

bidder's �rst auction bid b. This comes from the fact that a higher �rst auction bid means

a higher v1, and a higher v1 leads to a stochastically dominant F 2(v2|v1). Furthermore, the

bidder with the highest b additionally bene�ts from potential synergy.

It is worth pointing out the ways in which the model does not restrict the data. Simula-

tions show that the model does not restrict the revenue in the �rst auction to be higher than

the second auction or vice versa, even if synergy is strictly positive. The intuition behind

this is as follows: on the one hand, anticipating the bene�ts of synergy for the second auction

leads to more aggressive bidding in the �rst auction; on the other hand, the winner of the

�rst auction bidding in light of the synergy he has secured leads to higher prices in the second

auction. The direction of the revenue relationship depends on the shape of the value distri-

butions and the size of synergy. This is in line with the theory of Sørensen (2006), who �nds

that prices need not decrease in sequential second-price auctions of stochastically equivalent

complementary objects. This is di�erent from Branco (1997) and Menezes and Monteiro

(2003), who consider di�erent models of complementary objects with identical values and

�nd that expected prices decline in the sequence.
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Likewise, no general statement can be made about whether second auction prices are

lower when the same winner wins versus when di�erent winners win, even if synergy is

strictly positive. Simulations show that depending on what the value distributions are, the

model can generate both outcomes.

4.2 Identi�cation

Now, to establish identi�cation, I need to show that there is a unique structure [F 1(·), F 2(·|·),
s(·, ·)] that rationalizes the data. The identi�cation strategy starts by looking at the second

auction, and then proceeds back to the �rst auction.

Proposition 7. The value distributions involved in the second auction, F 2(·|b) and D(·|b) are
identi�ed from the observables, which are all the bids in the �rst auction and the transaction

price in the second auction, along with bidder identities.

The identi�cation argument, presented in the appendix, is based on Athey and Haile

(2002). In their Theorem 2, Athey and Haile (2002) show that the value distributions of

asymmetric IPV bidders are identi�ed from transaction prices and winner identities. When

it comes to the second auction in our model, the �rst auction induces asymmetry between

bidders that were ex-ante symmetric. Speci�cally, the winner w1 of the �rst auction draws

his value from D(·|bw1), and each loser i from the �rst auction draws from F 2(·|bi). For a

�xed set of �rst-auction bids {bi}, we can apply Theorem 2 of Athey and Haile (2002), so

each of these distributions is identi�ed from transaction prices and winner identities in the

second auction.

Having identi�ed F 2(·|b) and D(·|b), the synergy function s(·, ·) is also identi�ed. As

mentioned at the beginning of the identi�cation section, the intuition is to compare how

a �rst-auction winner and �rst-auction loser behave di�erently in the second auction when

they are otherwise identical, even to the point of having the same v1. We can do just this

by comparing F 2(·|b) and D(·|b); by conditioning on b(v1), we compare two bidders who

only di�er in that one of them won the �rst auction while the other did not. Therefore, the

di�erence between F 2(·|b) and D(·|b) can be attributed to synergy. More precisely, recall

that F 2(·|b) is the distribution of v2|b and D(·|b) is the distribution of s(b, v2)|b. Since s(b, v2)

is monotonically increasing in v2, s(b, ·) must map the α-quantile of F 2(·|b) to the α-quantile
of D(·|b). Since F 2(·|b) and D(·|b) are identi�ed, this mapping provides for nonparametric

identi�cation of s(·, ·). Figure 2 illustrates the idea graphically.

Finally, having identi�ed F 2(·|b) and s(b, ·), F 1(·) can be identi�ed using the �rst-order

condition for bidding in the �rst auction.
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Figure 2: Nonparametric identi�cation of s(b, ·)
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Proposition 8. (i) If F 2(·|b) and D(·|b) are known, the synergy function s(b, ·) is nonpara-
metrically identi�ed. (ii) Then, using F 2(·|b) and s(b, ·), F 1(·) is identi�ed nonparametrically

from bids in the �rst auction.

Once we identify F 1(·), we can tie the remaining loose ends: with some abuse of nota-

tion11, F 2(v2|v1(α)) = F 2(v2|b(v1(α))) = F 2(v2|b(α)), and s(v1(α), v2) = s(b(v1(α)), v2) =

s(b(α), v2). Now all the primitives of the model, F 1(·), F 2(·|·), and s(·, ·), are identi�ed.

4.3 Identi�cation with asymmetric bidders

The model of sequential auctions with synergy is identi�ed even if bidders are asymmetric.

Now we must keep track of the subgroup of the �rst auction winner, as synergy may manifest

itself di�erently depending on the subgroup of the bidder. The main idea for identi�cation

is to split the sample into subsamples depending on who won the �rst auction; for instance,

if there are two subgroups of bidders, there would be one subsample of cases where subgroup

1 won the �rst auction, and another subsample where subgroup 2 won the �rst auction.

Then D1(v2|b) is identi�ed from subsample 1, and D2(v2|b) is identi�ed from subsample 2.

Of course, these subsamples are not random; by de�nition there is selection on the �rst

11To be notationally correct, I should write something like F 2(v2|v1(α)) = F̃ 2(v2|b(v1(α))) = F̃ 2(v2|b(α)).
However, I abstract from notational correctness to avoid introducing more notation that is not central to
the paper.
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auction bids. However, since the value distributions being identi�ed from the subsamples

are conditional on b (i.e. F 2
m(·|b) and Dm(·|b)), that selection does not introduce problems.

Proposition 9. The primitives of the asymmetric model, F 1
m(·), F 2

m(·|·), and sm(·, ·), are
identi�ed from the observables, which are all the bids in the �rst auction and the transaction

price in the second auction, along with bidder identities.

4.4 Identi�cation with risk aversion

Is the model identi�ed when bidders are risk averse? Propositions 7 and 8 apply even with

risk averse bidders, since bidding strategies in the second auction, which is English, are

una�ected by risk aversion. This means F 2(·|b) and s(b, ·) are identi�ed regardless of risk

attitudes. U(·) and F 1(v1) remain to be identi�ed.

Rewriting the �rst-order condition for risk averse bidders in (10), replacing s(v1, v2) with

s(b, v2) and F 2(v2|v1) with F 2(v2|b), we get

G(b)
(N−1)g(b)

=
´ v̄
v2=v
{
´ s(b,v2)

u=v
U(v1 − b+ s(b, v2)− u)dH1(u|b)

+
´ v̄
u=s(b,v2)

U(v1 − b)dH1(u|b)−
´ v2
u=v

U(v2 − u)dH2(u|b)}dF 2(v2|b)/´ v̄
v2=v
{
´ s(b,v2)

u=v
U ′(v1 − b+ s(b, v2)− u)dH1(u|t ≤ b)

+
´ v̄
u=s(b,v2)

U ′(v1 − b)dH1(u|t ≤ b)}dF 2(v2|b)

(11)

Every term in the right-hand side is observed or identi�ed except for v1 and U(·). And since

U ′(·) > 0 and U”(·) ≤ 0 under risk aversion, the right-hand side is strictly increasing in v1.

This means that if we know U(·), we can use this FOC to uniqely back out the v1 associated

with any bid b. So the missing step is to identify U(·).
Appealing to ideas in Guerre et al. (2009), it is possible to identify U(·) if either the

number of bidders varies exogenously, or if there is an instrument that a�ects the number of

bidders but not the underlying private value distribution. I discuss each case in turn.

Exogenous participation

Suppose the number of bidders N varies exogenously in the data, such that F 1(v1;N ′) =

F 1(v1;N ′′), where N ′ 6= N ′′.12 Let ξ(b, U ;N) represent the value of v1 backed out from (11)

as a function of b, U(·), and N . Then, the true U(·) must satisfy

ξ(b(α|N ′), U ;N ′) = ξ(b(α|N ′′), U ;N ′′) (12)

12If there are covariates describing the auctioned object, then exogeneity here refers to exogenous variation
of N conditional on observed covariates.
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for all quantiles α ∈ [0, 1]. These so-called compatibility conditions provide a basis for

identifying U(·).
From (11), it appears that ξ(·) is a complicated function for which we do not have an

explicit expression. As a result, it is di�cult to provide a nonparametric identi�cation

strategy for U(·) the way Guerre, Perrigne, and Vuong (2009) did. I present a parametric

alternative instead.

Suppose U(·) can be represented in parametric form, like the constant relative risk aver-

sion utility U(x) = x1−ρ. Then the compatibility conditions become a function of the single

parameter ρ:

ξ(b(α|N ′), ρ;N ′) = ξ(b(α|N ′′), ρ;N ′′) (13)

While I cannot show analytically that there is a unique ρ satisfying the compatibility con-

ditions, it is possible to check this numerically as long as ρ is bounded. If numerical com-

putations show that there is a unique best ρ in a bounded range known to contain the true

parameter, then ρ is identi�ed.

Endogenous participation

In real data settings, the number of bidders is often endogenously determined. For instance,

there may be auction-speci�c unobserved heterogeneity u, of which higher realizations lead

to more participation. Following Guerre et al. (2009), it is still possible to identify U(·)
parametrically in this setting if the following conditions hold (assume items are observably

homogeneous for ease of exposition):

1. There is an instrument x such that N = N(x, u) and F 1(v1|x, u) = F 1(v1|u)

2. N is a su�cient statistic for u given x, e.g. u = N − E[N |x]

The second condition allows for recovery of u. After conditioning on u, all remaining variation

in N comes from the instrument x, allowing us to return to the logic of the exogenous

variation case. The compatibility conditions are the same as before except that they are

now conditional on u:

ξ(b(α|N ′, u), ρ;N ′, u) = ξ(b(α|N ′′, u), ρ;N ′′, u) (14)

for all quantiles α ∈ [0, 1]. The risk aversion parameter is identi�ed numerically if there is a

unique value of ρ that best satis�es the compatibility condition.
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5 Estimation

5.1 A multi-step estimation procedure

I develop a multi-step estimation procedure that closely follows the identi�cation steps.

Following the identi�cation strategy in section 4.2, the �rst step of estimation is to estimate

D(·|b) and F 2(·|b), which are the distributions of second auction values for the �rst-auction

winner and �rst-auction loser, respectively, given the �rst-auction bids. For this task I

propose a sieve maximum likelihood estimator using Bernstein polynomial bases, similar to

the one used in Kong (2015). General properties of sieve maximum likelihood estimators are

discussed in Chen (2008), and Komarova (2013) illustrates the use of Bernstein polynomials

in sieve estimation.

In the second auction, we observe for each item the transaction price p, the identity of

the winner, and the identity and �rst-auction bids of all bidders in the related �rst auction.

Taking the case of N = 2 (two bidders in the �rst auction) as an expositional example,

the likelihood of the second-auction price and winner given the �rst-auction data can be

expressed as follows for each item.

If the �rst-auction winner wins the second auction:

L = (1−D(p|bw1))f 2(p|bl1)

If the �rst-auction loser wins the second auction:

L = (1− F 2(p|bl1))d(p|bw1)

where d, f 2 are the derivatives with respect to the �rst argument of D, F 2 respectively;

and bw1, bl1 are the �rst-auction bids of the �rst-auction winner and loser, respectively. The

log-likelihood of the observed second-auction data is then

L =
∑
i

log(Li)

Now, to use sieve estimation, D(·|·) and F 2(·|·) can be approximated with Bernstein

polynomials. Speci�cally, D(v|b) and F 2(v|b) can be approximated by bivariate Bernstein

polynomials of the form

B(v, b) ≡
m∑
i=0

n∑
j=0

γi,j

(
m

i

)
vi(1− v)m−i

(
n

j

)
bj(1− b)n−j (15)

where m and n are the polynomial degrees for v and b, respectively. This approximation

does place a restriction that D and F 2 be continuous in b. Finally, D and F 2 are estimated
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by �nding the polynomial parameters γ that maximize L .

A bene�t of using Bernstein polynomials is that they are easy to restrict to satisfy

required properties. Since D and F 2 are cdf's, I restrict B(v, b) to be weakly increasing in

v by applying the restriction γi,j ≤ γi′,j if i < i′. I also impose γ0,0 = 0 (i.e. F 2(v) = 0)

and γm,n = 1 (i.e. F 2(v̄) = 1). Additionally, I restrict D(v|b) ≤ F 2(v|b), in keeping with the

assumption s(v1, v2) ≥ v2 (AS5).13

The second step of the estimation procedure is to estimate s(b, v2). As the proof of

identi�cation for s(b, v2) is constructive, we can use it directly as an estimator as follows.

In the identi�cation section, we said that for a �xed b, s(b, ·) maps the α-quantile of F 2(·|b)
to the α-quantile of D(·|b), because s(b, v2) is monotonic in v2. Therefore, given F̂ (·|·) and
D̂(·|·) from the �rst step of the estimation procedure, we obtain ŝ(b, ·) nonparametrically

as the function that maps F̂ 2,−1(α|b) → D̂−1(α|b) for every quantile α on a grid over [0,1].

Since we can repeat this procedure for any b we choose, we have an estimator for ŝ(·, ·).
The third step of the estimation procedure is to estimate F 1(·), the distribution of v1,

using the inverse bid function ξ(b) derived in (7):

v̂1 = ξ̂(b) ≡ b+
Ĝ(b)

(N − 1)ĝ(b)
−

v̄ˆ

v2=v

{ ŝ(b,v2)ˆ

u=v

Ĥ1(u|b)du−
v2ˆ

u=v

Ĥ2(u|b)du
}
dF̂ 2(v2|b)

The cdf and pdf of �rst-auction bids Ĝ(·) and ĝ(·) can be estimated from observed bids

nonparametrically using a sieve estimator. ŝ(·, ·) and F̂ 2(·|·) are known from estimation steps

1 and 2. Ĥ1 and Ĥ2, de�ned in (1) and (2), are functions of F̂ 2(·|·) and D̂(·|·). Therefore,
we are able to compute ξ̂(b). Since bids are monotonic in v1, F

1,−1(α) ≡ v1(α) = ξ(b(α)) for

any quantile α. Upon computing ξ̂(b(α)) for a grid of α over [0,1], we obtain F̂ 1(·) as the

function that maps ξ̂(b(α))→ α.

If bidders are risk averse, F̂ 1(·) must be estimated conditional on a risk aversion parameter

ρ, since the FOC for bidding depends on ρ. This ties into the fourth and �nal step of the

estimation procedure.

The last step of the estimation procedure is to estimate the risk aversion parameter

ρ. As discussed in section 4.4, ρ can be identi�ed using the compatibility condition (13),

ξ(b(α|N ′), ρ;N ′) = ξ(b(α|N ′′), ρ;N ′′). The idea is to �nd the ρ that satis�es this con-

dition. For a given value of ρ, we can evaluate the condition by using the estimated

inverse bid function ξ̂(·) to compute the left-hand and right-hand sides of the equation.

13I �rst perform the estimation without this restriction to see whether s(v1, v2) ≥ v2 generally holds, and
estimate with the restriction only after con�rming this. The restriction is placed to maintain consistency
with the model in subsequent computations.
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Speci�cally, ξ̂(b(α|N ′), ρ;N ′) takes the α-quantile of b conditional on the number of bidders

N = N ′ as an argument and returns the α-quantile of v̂1 conditional on N = N ′. Likewise,

ξ̂(b(α|N ′′), ρ;N ′′) takes b(α|N ′′) as an argument and returns v̂(α|N ′′). Given exogenous vari-

ation in the number of bidders, v̂(α|N ′) = v̂(α|N ′′) should be true when computed using the

true value of ρ. We can evaluate this condition for any value of ρ in an interval containing

the true value, and �nd the ρ that satis�es is best, i.e.

ρ̂ = arg min
ρ

(ξ̂(b(α|N ′), ρ;N ′)− ξ̂(b(α|N ′′), ρ;N ′′))2

If the number of bidders varies endogenously, we can use the modi�ed compatibility con-

dition as discussed in section 4.4. A choice remains of which quantile(s) α to evaluate the

compatibility condition at. For instance, one could evaluate it at the median.

5.2 Auction heterogeneity

In the model and identi�cation sections, auction-speci�c heterogeneity was suppressed for

expositional ease. In the real data, there are characteristics z that di�er across pairs, which

must be accounted for in estimation.

Supposing we had a very large sample, the ideal way to deal with heterogeneity would

be to estimate separate value distributions for every value of z. However, this approach is

usually infeasible given the size of real datasets. As a result, a common approach in the

empirical auction literature, as explained in Haile, Hong, and Shum (2003), has been to

homogenize bids across auctions by �demeaning� them, i.e. transforming bids to residuals

ε = b − z′β and working with the residuals in estimation. This allows one to �pool� all the

data. The underlying assumptions are that v = z′β+µ (additive separability), and that the

distribution of µ is invariant to z (homoskedasticity). Depending on the context, however,

these assumptions may be quite strong.

In this paper, I need to homogenize bids in order to perform the �rst step of estimation,

where I recover F 2(·|b) and D(·|b) using a sieve maximum likelihood estimator. As I do so, I

seek to make the minimal assumptions that still allow me to pool heterogeneous objects for

the estimation task at hand. Instead of transforming bids and prices to demeaned residuals,

I transform bids and prices to quantiles conditional on z′β; that is, b → b̃ ≡ G(b|z′β)

and p → p̃ ≡ J(p|z′β), where G(·) is the distribution of �rst auction bids and J(·) is the

distribution of second auction prices. Both G and J are observed in the data. I then use

these quantiles to perform the �rst step of estimation. Afterwards, the output from this

step is transformed back to real values before proceeding with the other steps of estimation.

Note that demeaning is a special case of taking quantiles; under assumptions of additive

separability and homoskedasticity, the residuals ε = b − z′β map to quantiles of the bid
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distribution.

Although I would like to make as few assumptions as possible, this method is not without

assumptions. The following assumptions underly the homogenizing procedure.

Assumptions

AS8 Single index assumption: F 1(·|z) = F 1(·|z′β), F 2(·|·, z) = F 2(·|·, z′β)

Now de�ne α1 ≡ F 1(v1|z′β), α2 ≡ F 2(v2|z′β), and αs ≡ F 2(s(v1, v2)|z′β). Also de�ne

α̃2 ≡ J(v2|z′β) and α̃s ≡ J(s(v1, v2)|z′β), where J(·) is the distribution of second-auction

prices.

AS9 Quantile relationships are invariant to z:

1. C(α1, α2|z) = C(α1, α2)

2. C(α1, αs|z) = C(α1, αs)

In assumption AS9, the C(·, ·)'s are copulas de�ned on [0, 1]2 → [0, 1]. AS9 says that the

quantile of a bidder's v1 implies a distribution for what the quantile of his v2 will be, and that

this quantile-to-quantile relationship, or copula, is invariant to z′β. A8.2 is the strongest part

of the assumption, as it implicitly restricts the synergy function s(·, ·) to preserve a quantile
relationship across di�erent z′β. For instance, suppose that when z′β = High, synergy

boosts a bidder's value for the second object from the 0.5-quantile to the 0.6-quantile for

z′β = High. Then AS9.2 implies that synergy must also boost a bidder at the 0.5-quantile

to the 0.6-quantile when z′β = Low.

Proposition 10. Under assumptions AS8 and AS9, C(α1, α̃2) and C(α1, α̃s) are invariant

to z.

Given Proposition 10, it directly follows that the objects to be estimated - F 2(α̃2|α1) and

D(α̃s|α1) - are invariant to z′β, since F 2(α̃2|α1) is just a marginal of C(α1, α̃2), for instance.

Therefore, observations with di�erent z′β can be pooled in the �rst step of estimation once

the bids and prices have been transformed to quantiles in this way.14

14If, in addition, F 2(·|·, z′β) does not vary with the number of bidders N , observations with di�erent N
can be pooled during the �rst step of estimation. In that case, b should be transformed to b̃ ≡ G(b|z′β,N),
conditioning on N as well as z′β. This is necessary because, in a �rst-price auction, the bidding strategy
changes whenN changes. On the other hand, p should be transformed to J(p|z′β,N = n), �xing n, regardless
of the number of bidders. This is alright because, in the second auction which is English, the bidding strategy
does not change with N . In fact, this is necessary for pooling; unlike G(·), J(·) is the distribution of the
second highest out of N values, so the meaning of the statistic represented by J changes with N . If we
transform each p to the quantile of J(·|z′β,N) for its own N , it would be like all the p̃'s are in di�erent
units, and it would make no sense to pool across N .
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Table 5: Simulation sieve orders selected by AIC and BIC
AIC BIC

sample size m n m n
250 4 2 3 2
500 5 2 3 2
1000 6 2 4 2

*m and n are de�ned in equation (15).

To provide a comparison, if we were to take the demeaning approach, we would need

all of the assumptions made here and two more in addition: that v1 and v2 are additively

separable functions of z′β and a residual µ, and that these residuals have the same distribu-

tion regardless of z′β. The quantile approach, on the other hand, does not assume additive

separability and allows marginal distributions to vary with z′β.

I restate that only the �rst step of estimation requires homogenized bids. After the �rst

step, F̂ 2(α̃2|α1) and D̂(α̃s|α1) are translated back to their real-valued versions F̂ 2(v2|v1) and

D̂(s(v1, v2)|v1) before proceeding with the other steps of estimation.

5.3 Monte Carlo study

To evaluate the ability of the estimator to recover the synergy function, I simulate datasets of

varying size and apply the estimator. The model underlying the simulated data is speci�ed

as follows:

• N = 2

• v1 ∼ U [0, 1]

• v2 ∼ Triangular(0, 1, v1)

• s(v1, v2) = min(v2 + 0.1, 1)

Triangular(0,1,v1) is a triangular distribution with lower limit 0, upper limit 1, and peak at

v1. Synergy takes a simple form in which a constant 0.1 is added to v2 up to the constraint

that v2 ≤ 1.

Sieve orders (i.e. polynomial degrees) selected by the AIC (Akaike information criterion)

and BIC (Bayesian information criterion) are displayed in Table 5. Although originally

derived for parametric models in the asymptotic case, AIC and BIC are sometimes used

to select sieve orders for sieve estimation, where established rules of thumb do not exist.

Estimation results for 100 Monte Carlo runs are displayed in Figure 3 for both AIC and BIC.

The �gures depict estimated synergy functions against the known, true synergy function.
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Figure 3: Monte Carlo experiments using estimator with AIC (left) and BIC (right)
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Table 6: Simulation sieve orders selected by IC3 and IC4
IC3 IC4

sample size m n m n
250 5 2 5 2
500 7 2 8 3
1000 7 3 10 3

*m and n are de�ned in equation (15).

When the sample size is small, the estimated synergy function is biased upwards. This

is because a small sample size leads to selection of small sieve orders, which may not control

for v1 tightly enough in estimates of F 2(v2|v1) and D(v2|v1). Since synergy is identi�ed by

comparing F 2(v2|v1) and D(v2|v1) for the same v1, small sieve orders may allow the e�ects of

a�liation to seep into the estimates of synergy, resulting in upward bias. However, as sample

sizes and therefore sieve orders increase, the bias goes to zero, and the synergy function is

estimated quite well.

AIC, which selects larger sieve orders than BIC, seems to result in smaller bias than BIC.

It should be noted that the parameters being estimated are not free and independent. As

the polynomials are approximating cdf's, all parameters are bounded by [0,1]. Furthermore,

since we restrict F 2 and D to be nondecreasing in v2, as all cdf's should be, γi,j is bounded

by [γi−1,j,1]. In light of this, BIC and even AIC may be penalizing the number of parameters

more than is optimal.

In order to reduce the bias in smaller samples, I experiment with criteria that penalize

the number of parameters less than do AIC and BIC. AIC seeks to minimize 2k−2ln(L), and

BIC seeks to minimize ln(n)k− ln(L), penalizing k by a multiple of 2 and ln(n), respectively,

where k is the number of estimated parameters, ln(L) is the log likelihood of the data, and

n is the sample size. I experiment with �IC3� and �IC4�, which I de�ne as IC3 = k− 2ln(L)

and IC4 = 0.5k−2ln(L). I repeat the simulations in Figure 3 with the newly de�ned criteria.

Sieve orders selected by IC3 and IC4 are displayed in Table 6, and Monte Carlo results are

displayed in Figure 4.

Compared to AIC and BIC, IC3 and IC4 seem to reduce bias at an acceptable cost to

variance, and IC4 in turn seems favorable to IC3. I use the IC4 criterion to select sieve

orders in my estimation.

6 Estimation using the paired leases in New Mexico

In light of the relatively small sample size (see Table 2), I estimate the model with symmetric

bidders to reduce the burden on the estimator. Meanwhile, as Kong (2015) found risk

aversion to be important in the New Mexico oil and gas lease auctions, I do allow bidders to
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Figure 4: Monte Carlo experiments using estimator with IC3 and IC4
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be risk averse. Thus the primitives of the model are the v1-distribution F
1(·), the conditional

v2-distribution F 2(·|·), the synergy function s(·, ·), and the risk aversion parameter ρ. As

the model assumes that the set of bidders participating in the �rst and second auction are

the same, observations in which the second-auction winner did not bid in the �rst auction

are dropped from the sieve maximum likelihood estimator. As shown in Table 2, 7% of all

pairs with N ≥ 2 fall into this category.

6.1 Covariates z

As discussed in section 5.2, lease characteristics z will be used to form a single index z′β that

controls for heterogeneity across pairs. This section explains the z's available in the data.

Observable characteristics of auctioned leases fall into three categories: lease terms (roy-

alty rate, rental), time of auction (industry, economic, local conditions of that time), and

location of the tract (encompassing geological features). The royalty rate is indicated by the

lease pre�x: VA (subregular), V0 (regular), or VB (premium). As the VA pre�x was discon-

tinued in 2005, pre�xes pre-2005 will be distinguished from pre�xes post-2005. The rental

rate ($0.50 or $1) is completely determined by whether the tract is located in a township15

north ($0.50) or south ($1) of a horizontal geographic line; thus it is subsumed by the loca-

tion variables. I choose year �xed e�ects to represent the time of auction, and supplement

them with oil and gas prices.

Location contains important information and is observed to a very detailed level. To

reduce this information to a smaller number of covariates while retaining �exibility, I �rst

regress all submitted sealed bids on the lease term and time variables, along with township

�xed e�ects, of which there are more than 200. I then sort the township coe�cients into

quartiles, and assign a dummy variable for each quartile. The townships in each quartile

are mapped in Figure 5. Blank squares indicate townships with no data, and darker colors

indicate higher quartiles. The map shows a pattern in which townships of the south-central

area are highest value, and values decline as we move further out and away from this �center�,

in an almost concentric way.

To allow variation within township, I supplement the quartile dummies with a distance-to-

center variable that is computed relative to own township: taking the average x-y coordinates

of top-quartile townships as the �center� of high value, I compute how much farther each

auctioned lease is from this �center� relative to the centroid of the township it is located in. It

is expected that within each township, tracts that are located closer to the �center� will have

relatively higher value. Also, this relative position within township is likely to matter only

for townships within some radius of the center's in�uence, such as the townships in the upper

15A township is a 6 x 6 square mile plot of land in the Public Land Survey System (PLSS). It contains 36
sections.
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Figure 5: Map of townships in each location quartile

quartiles. The location quartiles and distance-to-center variable are further supplemented

with information on past drilling and production on the tract.

To ascertain which characteristics of the lease most a�ect its value to bidders, I regress

the log of submitted sealed bids on these covariates. I also run a regression on lease �xed

e�ects (�xed e�ects for each auction item) to assess explanatory power of the covariates by

comparison. Table 7 shows the results.

The coe�cient on the dummy variable for lease pre�x VB is positive as expected, since

the NMSLO assigns the VB pre�x to premium tracts. Also as expected, the location quartile

�xed e�ects are higher for higher quartiles, and being further away from the �center� leads to

lower bids. Controlling for year �xed e�ects, gas prices seem to explain bids better than oil

prices. The incremental explanatory power of the remaining variables on bids is negligible,

perhaps because this information is subsumed in the lease pre�xes, location variables, and

year �xed-e�ects. As such, I take the covariates listed in column (3) to form the single index.

6.2 Estimation of risk aversion

As explained in section 4.4, auction data at two di�erent levels of N are needed to identify

the risk aversion parameter. Since both winners and losers are needed in order to identify

synergy, N must be at least 2. Table 1 shows that amongst N ≥ 2, the sample size is largest
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Table 7: Regression of ln(sealed bid) on observable characteristics

(1) (2) (3)

lease pre�x V0 pre-2005 0.087 0.099
(0.073) (0.073)

lease pre�x VB pre-2005 0.215 0.226
(0.254) (0.254)

lease pre�x VB post-2005 0.350*** 0.368***
(0.060) (0.059)

location quartile 2 0.520*** 0.517***
(0.064) (0.063)

location quartile 3 0.824*** 0.826***
(0.064) (0.064)

location quartile 4 1.345*** 1.343***
(0.065) (0.065)

relative dist. to center if upper qrtl -0.037** -0.036**
(0.017) (0.017)

nat gas 1 mo futures 0.045*** 0.041***
(0.015) (0.014)

WTI oil price -0.002
(0.003)

drilled before 0.046
(0.046)

log production 1970-auction date (boe) 0.007
(0.008)

Constant 10.826*** 9.253*** 9.215***
(0.499) (0.148) (0.137)

Lease �xed e�ects Y N N
Year �xed e�ects N Y Y
Observations 2090 2090 2090
R2 0.561 0.316 0.315
Adjusted R2 0.258 0.308 0.308

Standard errors in parentheses

* p<0.10, ** p<0.05, *** p<0.01
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at N = 2 and N = 3. Therefore, I use these two levels of N in my estimation, which gives

a sample of roughly 400 pairs. Auctions with only one bidder or less are not useful, and

auctions with N ≥ 4 do not have enough observations to be usable.

As discussed in section 4.4, if N is endogenous we need an instrument(s) x that shifts

N but satis�es F 1(v1|x) = F 1(v1). Kong (2015) found that the amount of land o�ered for

auction outside the Permian Basin quali�es as such an instrument. Bidders say that when

there is a lot of acreage being auctioned on a single date, they have to �lter down to the

ones they can spend more time analyzing; therefore each individual item receives fewer bids.

Meanwhile, the quantity of o�erings outside the Permian Basin does not seem to a�ect values

inside the Permian Basin.

To con�rm this idea, regressions in Table 8 measure the e�ect of non-Permian acreage

on the number and size of submitted sealed bids in our sample. Column (1) estimates

a generalized linear model (GLM) where the dependent variable is the number of bidders

N , and columns (2) and (3) are OLS regressions where the dependent variable is the log

of submitted sealed bids (log de�ated dollars). The e�ect of non-Permian acreage on N is

signi�cant and negative, supporting the anecdotal evidence that it leads to fewer bids on each

item. Meanwhile, we may be concerned that increases in non-Permian supply also negatively

a�ect bidders' values. If so, we would expect bid amounts to decrease in response to increases

in non-Permian supply. However, columns (2) and (3) do not detect a signi�cant negative

e�ect, suggesting that non-Permian supply does not exert negative pressure on in-Permian

values.

Also as discussed in section 4.4, we want to recover unobserved heterogeneity u in order

to estimate risk aversion when N is endogenous. Under the assumption that N is a su�cient

statistic for u given z and x, this involves computing u = N − E[N |z, x].

The ideal way to compute E[N |z, x] would be to do it nonparametrically. However, when

z consists of many variables, or when the sample size is small, this can be impractical. As

such, I take a parametric approach to computing E[N |z, x], by estimating a generalized

linear model where

N ∼ Binomial
(
N̄ ,

1

1 + e−(γ0+γ1x+γ2z′β+γ3(z′β)2+γ4(z′β)3)

)
Squares and cubes of z′β are included to allow for �exible forms of the relationship

between z′β and N . I let N̄ = 24 , the maximum number of unique bidder names ob-

served on a single auction date in the sample's time period. Then E[N |z, x] = N̄/[1 +

e−(γ0+γ1x+γ2z′β+γ3(z′β)2+γ4(z′β)3)], and u = N − E[N |z, x].

Once u is obtained in this way, the estimation steps described in section 5.1 can be

performed conditional on (N, u). As conditioning on u nonparametrically is impractical

given the sample size, I instead include unobserved heterogeneity u with the observable
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Table 8: E�ect of non-Permian acreage on N and sealed bids

(1) (2) (3)
GLM numbids OLS lnbid OLS lnbid

Non P. Basin acreage (1000s) -0.007** -0.001 -0.001
(0.003) (0.003) (0.003)

lease pre�x V0 pre-2005 0.138* 0.092 0.081
(0.081) (0.074) (0.075)

lease pre�x VB pre-2005 0.196 0.221 0.204
(0.283) (0.255) (0.255)

lease pre�x VB post-2005 0.098 0.350*** 0.287***
(0.068) (0.060) (0.062)

location quartile 2 0.196*** 0.519*** 0.490***
(0.069) (0.064) (0.065)

location quartile 3 0.245*** 0.823*** 0.796***
(0.070) (0.064) (0.065)

location quartile 4 0.420*** 1.343*** 1.275***
(0.070) (0.065) (0.069)

relative dist. to center (mi) if upper qrtl -0.032* -0.037** -0.033*
(0.019) (0.017) (0.018)

nat gas 1 mo futures -0.010 0.045*** 0.048***
(0.017) (0.015) (0.015)

WTI oil price 0.004 -0.002 -0.002
(0.003) (0.003) (0.003)

drilled before -0.000 0.046 0.047
(0.051) (0.046) (0.046)

log production 1970-auction date (boe) 0.009 0.007 0.008
(0.009) (0.008) (0.008)

Constant -2.919*** 9.262*** 9.878***
(0.160) (0.149) (0.204)

GLM detail binomial with logit link
Year �xed e�ects Y Y Y
Number of bidders �xed e�ects - N Y
Observations 864 2090 2090

GLM: generalized linear model

Standard errors in parentheses

* p<0.10, ** p<0.05, *** p<0.01
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Figure 6: F̂ 1(v1) and F̂ 2(v2|v1) at median z′β
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characteristics z to re-estimate the single index z̃′β, where z̃ ≡ [z u]. This single index z̃′β

accounts for both observed and unobserved heterogeneity. I then perform all estimation

steps using z̃′β instead of z′β, and �nally use the compatibility condition (13) to estimate ρ.

6.3 Empirical results

In this section I discuss the empirical results from applying the estimation procedure to

the data. Figure 6 displays the estimated distributions F̂ 1(v1) and F̂ 2(v2|v1). As expected,

F̂ 1 is more dispersed than each F̂ 2(·|v1). F̂ 2(·|v1) is still quite dispersed; the interquartile

range of F̂ 2(·|median v1) is roughly 1 in logs. There are a number of possible explanations for

dispersion in v2 even after conditioning on v1. As mentioned before, the outcomes of auctions

that take place between A1 and A2 are one explanation. Bidders' own auction outcomes may

a�ect v2 through budget constraints or not wanting to �go home with nothing.� Outcomes for

competitors may also have an in�uence on v2 for competitive reasons. Some sort of learning

may be taking place as well. On the other hand, it may be that F̂ 2 is more dispersed than

the true F 2 due to approximations made in the estimated model. For instance, I estimate a

model of symmetric bidders, but real bidders are not truly symmetric. Also, if the true F 2

is conditional on a second signal besides v1, not accounting for that signal would result in a

more dispersed F̂ 2.
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Figure 7: f̂ 2(v2|v1) at median z′β
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The F̂ 2(·|v1) in Figure 6 are stochastically ordered in v1, indicating that v1,v2 are af-

�liated. Figure 7 visualizes the a�liation of v1 and v2 by plotting the conditional density

f̂ 2(v2|v1). Lighter colors indicate higher densities, and the tail ends have been trimmed to

accentuate the shift of the central mode. We can see that as v1 increases, so does the modal

value of v2|v1.

Figure 8 plots the estimated synergy function. The estimator measures positive synergy,

as s(v1, v2) > v2. For median z′β and median v1, the added bene�t of synergy, i.e. s(v1, v2)−
v2, is estimated to be on the order of $14,000. To put this in context, the median value of

v2 conditional on median z′β and median v1 is roughly $50,000.

In section 4.4 we saw that the CRRA parameter ρ is identi�ed if there is a unique ρ that

satis�es the compatibility condition ξ(b(α|N = 2), ρ;N = 2, z̃′β) = ξ(b(α|N = 3), ρ;N =

3, z̃′β). Figure 9 displays the squared error [ξ(b(α|N = 2), ρ;N = 2, z̃′β) − ξ(b(α|N =

3), ρ;N = 3, z̃′β)]2 evaluated at α = 0.5 (median) as a function of ρ. ρ appears to be

identi�ed, as there is a unique value that satis�es the compatibility condition; ρ̂ = 0.58. As

a comparison, Kong (2015) estimates CRRA parameters of 0.49 and 0.23 for two subgroups

of bidders, Holt and Laury (2002) measure CRRA parameters centered around the 0.3-0.5

range in laboratory experiments, and Lu and Perrigne (2008) measure roughly 0.59 for the

USFS timber auctions.
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Figure 8: ŝ(median v1, v2) at median z′β
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Figure 9: Squared error of compatibility condition, as a function of ρ
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Table 9: Counterfactual revenues for a pair: median z′β, N = 2
Sequential Revenue Bundled Revenue

% same (a) (b) (c) (d) (e) (f) (g)

winner A1 A2 Total FPSB Eng (d)+(e)
2

(f)-(c)
(c)

Observed 78%* 48,269 39,200 87469 - - - -
Simulated

(1) S + RA + A 77% 54,875 34,841 89,716 121,163 83,847 102,505 14%

(2) RA + A 71% 50,035 33,015 83,050 107,015 70,995 89,005 7%

(3) A 71% 31,078 33,015 64,093 70,609 70,995 70,802 10%

(4) S + RA 58% 54,074 37,348 91,422 128,219 92,830 110,525 21%

(5) S + A 77% 45,452 34,841 80,293 83,231 83,847 83,539 4%

*Excluding cases where A2-winner did not bid in A1, as these cases were not used in estimation.

�S� = synergy

�A� = a�liation

�RA� = risk aversion

7 Counterfactuals

Given the structural estimates obtained, we can perform counterfactual simulations to un-

derstand the driving forces behind what we observe, and predict the outcome of alternative

policies. Table 9 displays the results of counterfactual simulations performed with these

objectives in mind.

The �observed� row shows what is observed in the data for pairs with N = 2 at median

z′β.16 Under the �simulated� heading, row (1) displays the expected revenue simulated using

the full model; it is the simulated analog of the �observed� row. Subsequent rows show what

revenue would be if selected elements of the full model were shut down. Columns (d)-(f) show

counterfactual revenue when the pair is auctioned as a bundle, using the �rst-price sealed-

bid format, the English auction format, and an even use of the two formats, respectively.

Keeping in mind that �rst-price auctions yield higher revenue than English auctions when

bidders are risk averse, column (f) is useful because it provides a fairer comparison with the

sequential auctions, which use both formats. In addition, the State Land O�ce may have

institutional reasons for using both formats, and column (f) respects that constraint. In

each of these bundled auction simulations, I assume that v1,v2 are both known at the time

of bidding, in order to provide a fair comparison with not bundling. The total value of the

bundle is v1 + s(v1, v2).

Comparing the �observed� row to row (1) gives us a sense of model �t. The probability

that the same bidder wins both tracts is 78% in the data and 77% when model-simulated,

so the model �ts that aspect of the data very well. Total revenue from the two auctions

16Revenue �at� median z′β is computed via kernel regression of revenue on z′β.
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is $87,469 in the data and $89,716 as simulated by the model. Simulated revenues for the

�rst auction and second auction separately do not �t the data as closely, though they are

not far o�. This may be due to the model assuming bidders are symmetric when there are

some asymmetries in reality. Also, keep in mind that the observed revenue �at� median z′β

is itself an estimate obtained via kernel regression of observed auction revenue on z′β.

We observed in Table 2 that the A1-winner is more likely than other bidders to win

A2, but until now we were unable to assess whether this was due to synergy or a�liation.

Comparing rows (1) and (2) reveals that if synergy were eliminated, the proportion of cases

in which the same bidder wins both tracts would drop from 77% to 71%. On the other

hand, row (4) shows that if v1,v2 were not a�liated, that percentage would drop to 58%.

We can conclude that both synergy and a�liation are responsible for the same-winner %,

but a�liation is the primary explanation. This highlights the importance of allowing for and

distinguishing a�liation from synergy.

Another phenomenon we observe in the pairs data is that revenue is higher in the �rst

auction. Comparing rows (1)-(3) helps us understand the forces behind that observation.

First, looking at row (1) relative to row (2), synergy seems to increase revenue in both

auctions, but increases A1 revenue more, playing a part in the A1-A2 revenue di�erence.

But second, comparing rows (2) and (3) reveals that the majority of the revenue gap is

explained by risk aversion, which increases bidding strategies in A1 (�rst-price) but not in

A2 (English). This is consistent with Kong (2015), which �nds that risk aversion is primarily

responsible for the dominance of �rst-price auctions over English auctions in the New Mexico

setting overall.

Row (5) can be misleading as there is a substantial A1-A2 gap even without risk aversion.

This is an artifact of A2 being a lottery to the bidder at the time of A1 (since v2 is known

only in distribution); for a given lottery, the certainty equivalent falls with risk aversion.

Hence, when bidders are risk neutral the expected synergy is worth more than if they were

risk averse. In this sense, the e�ective synergy in (5) is much larger than in (1). Row (5)

should be interpreted with this in mind.

An obvious policy alternative in the presence of synergy would be to auction the pair

as a bundle, as this guarantees that the winning bidder will realize synergy. A downside

of bundling is that it forces a single bidder to take both tracts, even when the highest-

value bidder for each tract is di�erent. A general theoretical comparison of sequential versus

bundled auctions that applies to this model does not exist. Ultimately, whether to bundle

these tracts is an empirical question that depends on the primitives - including the size of

synergy, the shape of the value distributions, the degree of a�liation, and degree of risk

aversion - and their interaction. The size of synergy matters, because the computations of

Subramaniam and Venkatesh (2009) suggest that the larger the synergy, the more likely that
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bundled auctions will increase revenue. Also, if synergy is large, a social planner may want

to ensure that it is always realized (by using bundled auctions), while if it is small, he may

prefer to award each tract separately to the highest-value bidder. Meanwhile, bundling tends

to reduce heterogeneity in values (see Schmalensee (1984)) and more generally change the

shape of the auction-relevant value distribution. How this will matter depends on the shape

of the non-bundled value distributions and degree of a�liation between the two tracts. Risk

aversion matters, because it a�ects bidding strategies in �rst-price auctions, and also because

it changes the way bidders internalize the uncertainty surrounding the second auction and

synergy when they bid in the �rst auction.

Comparing column (f) to column (c) indicates that bundling would increase auction

revenue over sequential sales, assuming the State Land O�ce maintains its policy of using

both the �rst-price sealed-bid and English auction formats evenly. Column (g) computes the

percentage increase in auction revenue that would come from this bundling. Judging from

rows (1)-(5) of column (g), the bene�t of bundling over not bundling seems to be greatest

when both synergy and risk aversion are present. I conjecture that this is because bidders can

depend on realizing synergy if they win the bundled auction - unlike in sequential auctions,

where a bidder may lose the second auction even after winning the �rst - and this certainty

is relatively more valuable when bidders are risk averse than when they are risk neutral.

Having used Table 9 to understand the forces at work, I focus exclusively on the question

of whether to bundle in Table 10. Row (1) of Table 10 restates row (1) of Table 9. Meanwhile,

since these auctions are run by a public institution, revenue considerations must be balanced

against allocative e�ciency, or the desire to award tracts to the �rms that value them most.

Row (2) addresses allocative e�ciency by computing the total value derived from a pair of

tracts by the winner(s). If a single bidder wins both - which is always the case for bundled

auctions - this total value is inclusive of synergy. Row (2) shows that bundling leads to a

small loss in this total value, of roughly 1%. One reason the loss is small is that, even in the

sequential auctions currently being used, the same bidder often wins both tracts, leading to

the same allocative outcome as bundled auctions. In the remaining cases where the allocative

outcomes are di�erent, cases that favor bundling and cases that favor sequential auctions

seem to balance out. The gains to bundling come from synergy, and the losses come from not

giving each tract to its respective highest-valuer. Now, I repeat this counterfactual exercise

for three-bidder auctions, considering revenue and allocative e�ciency in rows (3) and (4).

As was the case for two-bidder auctions, bundling leads to higher revenue with a relatively

small loss to allocative e�ciency, though the revenue gains of bundling are smaller than in

the two-bidder case.

As we saw in Table 1, a large majority of these auctions receive three bids or less. Relating

to the bundling literature, the �nding in Table 10 that bundling would be better in two-
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Table 10: Sequential versus bundled auctions, revenue and allocation
Sequential Bundled

(c) (d) (e) (f) (g)

FPSB English (d)+(e)
2

(f)-(c)
(c)

N = 2
(1) Revenue per pair 89,716 121,163 83,847 102,505 14%
(2) Value of tracts to winner(s) 305,887 303,128 -1%

N = 3
(3) Revenue per pair 136,781 168,527 125,151 146,839 7%
(4) Value of tracts to winner(s) 358,634 350,426 -2%

At median z′β

bidder and three-bidder auctions is consistent with the computations of Subramaniam and

Venkatesh (2009), which suggest that the smaller the number of bidders, the more likely are

bundled auctions to dominate sequential auctions in terms of revenue. This can be reversed

for larger N , where it may be optimal to exploit competition twice by selling each tract

separately. This helps explain why the revenue gains from bundling in row (3) are smaller

than in row (1). The result is also generally consistent with papers that study bundling in

contexts without synergy, such as Palfrey (1983) and Chakraborty (1999). Both of these

papers �nd that the smaller the number of bidders, the more likely is bundling to increase

revenue in Vickrey auctions.

8 Conclusion

This paper performs a structural analysis of two auctions that take place sequentially, are

linked by synergy, and in which each bidder's values can be a�liated across auctions. It

explains that ignoring a�liation can lead to falsely detecting synergy where none exists,

and distinguishes synergy from a�liation in identifying and estimating the auction model.

The model uses general functional forms for synergy and the joint distribution of v1,v2 while

allowing for risk averse bidders. The paper establishes nonparametric identi�cation of this

model and develops a multi-step estimation procedure that recovers all model primitives.

Applying the estimation method to oil and gas lease data, I �nd both synergy and a�liation

between adjacent tracts. A�liation is very important in explaining why the same bidder

often wins both tracts. The model predicts, and counterfactual decomposition con�rms,

that synergy increases revenue in both auctions relative to the case of no synergy.

Meanwhile, bidders are risk averse, and this boosts �rst-auction revenue substantially, as

the �rst auction is a �rst-price auction. Interestingly, it seems that the �rst-price sealed-bid

auction - English auction sequence used in New Mexico strikes a balance between revenue
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and allocative e�ciency. The �rst-price auction in the �rst stage takes advantage of higher

bids generated by risk aversion, while in the second stage, where synergy induces endogenous

asymmetry, the English auction maintains allocative e�ciency. Counterfactual simulations

reveal that bundled auctions would yield higher revenue, given the combination of synergy

and risk aversion and the typically low number of bidders.

Groundwork for extending the procedure to asymmetric bidders is provided, but there are

a number of issues to be considered when doing so. As the number of primitives multiplies,

the sample size needs to grow. Stronger assumptions will be needed when homogenizing bid

data. New channels of bias can arise when estimating asymmetric synergy functions with

real data, and they should be assessed carefully.

The paper opens the door to analyzing synergy and a�liation in other types of sequential

auctions. The main insight for distinguishing synergy from a�liation is adaptable to other

auction formats, such as two second-price auctions, as long as �rst-auction bids are monotonic

in values and observed. The equilibrium bidding strategy would have to be worked out

separately for each type of sequence. Another very interesting possibility is that of extending

the model to a longer sequence of a�liated items. A�liation of a bidder's values across a

longer sequence creates a challenge for analysis, but since bidders do not know future values

ahead of time, the model retains hope of tractability, perhaps with the help of some well-

placed assumptions. These questions remain open for future research.

Appendix

Evidence of synergy

In section 2.2, regression discontinuity results using local linear regression were shown

for the most frequent bidder. Going down the list of bidders ordered by frequency of bids,

the number of observations drops exponentially. For each of the remaining bidders, there

were not enough observations near z = 0 to perform a meaningful regression discontinuity

analysis. However, we can still examine some simple statistics for clues. For the 3 other

bidders that had at least 5 observations on each side of z = 0 with |z| < 0.2, the following

table shows the probability of winning the second auction when z ∈ [−0.2, 0] (i.e. lost �rst

auction with less than 20% bid di�erence) versus when z ∈ [0, 0.2] (i.e. won �rst auction

with less than 20% bid di�erence).

Table 11: Probability of winning the second auction, given |z| < 0.2
Bidder name: CP DG DS

Lost �rst auction 22% 38% 0%
Won �rst auction 30% 57% 20%
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Deriving the �rst-order condition in section 3.3

A bidder will bid the b that maximizes the expected pro�t π(v1, b). Taking the derivative

of π(v1, b) with respect to b and setting it equal to zero gives

´ v̄
v2=v
{
´ b
t=b

(−1)dGN−1(t)

+[v1 − b+
´ s(v1,v2)

u=v
(s(v1, v2)− u)dH1(u|b)](N − 1)GN−2(b)g(b)

−
´ v2
u=v

(v2 − u)dH2(u|b)(N − 1)GN−2(b)g(b)}dF 2(v2|v1) = 0

This can be rewritten as

GN−1(b)

+(N − 1)GN−2(b)g(b)
´ v̄
v2=v
{v1 − b+

´ s(v1,v2)

u=v
(s(v1, v2)− u)dH1(u|b)

−
´ v2
u=v

(v2 − u)dH2(u|b)}dF 2(v2|v1) = 0

Rearranging,

G(b)
(N−1)g(b)

=
´ v̄
v2=v
{v1 − b+

´ s(v1,v2)

u=v
(s(v1, v2)− u)dH1(u|b)

−
´ v2
u=v

(v2 − u)dH2(u|b)}dF 2(v2|v1)

Some algebra using integration by parts shows that

s(v1,v2)ˆ

u=v

(s(v1, v2)− u)dH1(u|b) =

s(v1,v2)ˆ

u=v

H1(u|b)du

v2ˆ

u=v

(v2 − u)dH2(u|b) =

v2ˆ

u=v

H2(u|b)du

So the �rst-order condition can be simpli�ed to

b = v1 +

v̄ˆ

v2=v

{
s(v1,v2)ˆ

u=v

H1(u|b)du−
v2ˆ

u=v

H2(u|b)du}dF 2(v2|v1)− G(b)

(N − 1)g(b)

Proposition 1

Proof. b′ ∈ BR(v′1) means π(v′1, b
′) − π(v′1, b) ≥ 0 and b ∈ BR(v1) means 0 ≥ π(v1, b

′) −
π(v1, b). De�ning κ(v1) ≡ π(v1, b

′)− π(v1, b), this means κ(v′1) ≥ κ(v1).

Writing out κ(v1) gives the following expression:
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´ v̄
v2=v
{ v1[GN−1(b′)−GN−1(b)]− b′GN−1(b′) + bGN−1(b)

+
´ b′
t=b

´ s(v1,v2)

u=v
(s(v1, v2)− u)dH1(u|t)dGN−1(t)

−
´ b′
t=b

´ v2
u=v

(v2 − u)dH2(u|t)dGN−1(t) }dF 2(v2|v1)

If I take a derivative with respect to v2 of the expression inside the outer integral (i.e. inside

the squiggly brackets), I get

∂{}
∂v2

=
´ b′
t=b

[
´ s(v1,v2)

u=v
∂s(v1,v2)
∂v2

dH1(u|t)−
´ v2
u=v

dH2(u|t)]dGN−1(t)

=
´ b′
t=b

[∂s(v1,v2)
∂v2

H1(s(v1, v2)|t)−H2(v2|t)]dGN−1(t)

Since ∂s(v1,v2)
∂v2

≥ H2(v2|t)
H1(s(v1,v2)|t) by assumption AS6, ∂s(v1,v2)

∂v2
H1(s(v1, v2)|t) − H2(v2|t) ≥ 0 and

hence ∂{}
∂v2
≥ 0.

The derivative with respect to v1 of the expression inside the outer integral is

∂{}
∂v1

= GN−1(b′)−GN−1(b) +

b′ˆ

t=b

s(v1,v2)ˆ

u=v

∂s(v1, v2)

∂v1

dH1(u|t)dGN−1(t)

Since b′ > b and ∂s(v1,v2)
∂v1

≥ 0, ∂{}
∂v1
≥ 0. Then, given ∂{}

∂v2
≥ 0, ∂{}

∂v1
≥ 0, and the stochastic

ordering of F 2(v2|v1) in v1, we obtain that κ is nondecreasing in v1. So if v′ < v and

κ(v′) ≥ κ(v), it must be that κ(v′) = κ(v).

Then π(v′, b) = π(v′, b′) and π(v, b′) = π(v, b), so b ∈ BR(v′) and b′ ∈ BR(v).

Proposition 2

Proof. In the RHS of (3), take a derivative of the expression inside the squiggly brackets

with respect to v2:
∂{}
∂v2

= ∂s(v1,v2)
∂v2

H1(s(v1, v2)|b) − H2(v2|b). Since ∂s(v1,v2)
∂v2

≥ H2(v2|t)
H1(s(v1,v2)|t) by

assumption AS6, ∂{}
∂v2
≥ 0. Meanwhile, ∂{}

∂v1
= ∂s(v1,v2)

∂v1
H1(s(v1, v2)|b) ≥ 0. Given ∂{}

∂v2
≥ 0,

∂{}
∂v1
≥ 0, and the stochastic ordering of F 2(v2|v1) in v1, we obtain that the RHS of (3) is

strictly increasing in v1. Hence, for any given bid b, there can only be one v such that

b ∈ BR(v). So two di�erent values cannot share the same best response b.

By Proposition 1, if v′1 < v1 with b ∈ BR(v1) and b′ ∈ BR(v′1) and b′ > b, then v and

v′ share b and b′ as best responses, violating what we have just shown. Hence it cannot be

that b′ > b. Neither can b′ = b, since this means two di�erent values share the same best

response. So it must be that b′ < b if v′1 < v1. The bid function β(v1) in the �rst auction is

strictly increasing in v1.

Proposition 4
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Proof. From Proposition 2, we have that b(v1) is monotonically increasing in v1. Meanwhile,

from (5) we know that the �rst auction is equivalent to a stand-alone auction in which

bidders have value T (v1). If bidding strategies in this hypothetical stand-alone auction are

represented by the function B(·), then b(v1) = B(T (v1)). Now, since b(·) is strictly increasing
in v1, then B(T (·)) must also be strictly increasing in v1.

Meanwhile, B(·) is the bid function for a standard stand-alone �rst-price auction; hence

B(·) is strictly increasing in its argument. Then in order for B(T (v1)) to be strictly increasing

in v1, T (v1) must also be strictly increasing in v1.

Proposition 5

Proof. First, consider an auction in which there is no synergy, i.e. s(v1, v2). Then the �rst

auction is a stand-alone auction in which bidders have values v1 ∼ F 1(·). From Riley and

Samuelson (1981), we know that for this auction the bid function is

β(v1) = v1 −
1

F 1(v1)N−1

v1ˆ

v

F 1(s)N−1ds

Using integration by parts, we can rewrite this as

β(v1) =
N − 1

F 1(v1)N−1

v1ˆ

v

sF 1(s)N−2f 1(s)ds

Next, consider the �rst auction out of a sequential pair in which there is positive synergy,

i.e. s(v1, v2) > v2. Let F̃ (·) be the distribution of T (v1), which is de�ned in (6). From the

formulation in (5), we can think of this auction as a transformed stand-alone auction, so the

bid function is

B(T (v1)) =
N − 1

F̃ (T (v1))N−1

T (v1)ˆ

T (v)

uF̃ (u)N−2f̃(u)du

Now, since T (v1) is strictly increasing in v1, T is invertible. Also, F̃ (T (v1)) = F 1(v1).

I now rewrite B(T (v1)) using a change of variables s = T−1(u), u = T (s) and plugging in

F̃ (T (·)) = F 1(·).

B(T (v1)) =
N − 1

F 1(v1)N−1

v1ˆ

v

T (s)F 1(s)N−2f(s)
T ′(s)

T ′(s)
ds =

N − 1

F 1(v1)N−1

v1ˆ

v

T (s)F 1(s)N−2f(s)ds
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But notice that if s(v1, v2) > v2, T (v1) > v1, hence

B(T (v1)) = N−1
F 1(v1)N−1

´ v1
v
T (s)F 1(s)N−2f(s)ds

≥ N−1
F 1(v1)N−1

´ v1
v
sF 1(s)N−2f(s)ds = β(v1)

Therefore, revenue in the �rst auction is higher when synergy is positive.

Proposition 7

Proof. For a �xed set of �rst auction bids {bi}, values in the second auction are drawn

from D(·|bw1) for the A1-winner w1, and from F 2(·|bi) each loser i 6= w1. These draws

are independent across bidders. Furthermore, by assumption AS4, all value distributions

involved are continuous and have the same support. Hence, we can apply Theorem 2 of

Athey and Haile (2002), which establishes identi�cation of asymmetric value distributions

from transaction prices and bidder identities. Theorem 3 of Athey and Haile (2002) extends

this to auctions with auction-speci�c covariates.

Proposition 8

Proof. By assumption AS6, s(b, v2) is strictly increasing in v2. So if we de�ne v2(α|b) ≡
F 2,−1(α|b), i.e. the α-quantile of v2 conditional on b, then s(b, v2(α|b)) must be the α-quantile
of s conditional on b, D−1(α|b). That is, for any quantile α,

s(b, F 2,−1(α|b)) = D−1(α|b)

Since b is observed and F 2(·|b) and D(·|b) are identi�ed from Proposition 7, we know the

function s(·, ·). This proves part (i).
Next, consider (7), the inverse bid function. From Propositions 7 and 8, every component

of the right-hand side is either observed or identi�ed from data, so ξ(b) can be computed.

Since bids are monotonic in v1, the α-quantile of v1, v1(α), corresponds to ξ(b(α)). Now,

since the distribution of b is observed and ξ(b) can be computed for any b, we can compute

v1(α) for any quantile α. Hence, the distribution of v1 is identi�ed nonparametrically. This

proves part (ii).

Proposition 9

Proof. Split the data into two subsamples, one where the �rst auction winner is from sub-

group m, and the other where the �rst auction winner is from subgroup −m. Take the �rst

subsample. In the �rst subsample, bidders in the second auction are either the �rst auction

winner from subgroup m, a �rst auction loser from subgroup m, or a �rst auction loser from

subgroup −m. By Proposition 7, the value distributions from which each of these bidders
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draws their second auction values, Dm(·|b), F 2
m(·|b), and F 2

−m(·|b), are identi�ed. Similarly,

D−m(·|b) is additionally identi�ed from the second subsample.

Then, by Proposition 8, the synergy function sm(b, ·) is identi�ed from Dm(·|b) and

F 2
m(·|b), and s−m(b, ·) is identi�ed from D−m(·|b) and F 2

−m(·|b).
Finally, F 1

m(v1) and F 1
−m(v1) are identi�ed using each subgroup's FOC for bidding in

the �rst auction, equation (8). If we replace sm(v1, v2) with sm(b, v2) and F 2
m(v2|v1) with

F 2
m(v2|b), every component of (8) other than v1 is either observed or identi�ed. Therefore,

we can back out any quantile of v1 by computing the equation using the same quantile of

bm.

Once F 1
m(v1) and F 1

−m(v1) are identi�ed, we can convert sm(b, v2) and F 2
m(v2|b) back to

sm(v1, v2) and F 2
m(v2|v1) by replacing b(α) with v1(α). This completes the identi�cation.

Proposition 10

Proof. Consider theN = 2 case as an example. J(·|z′β) is the distribution of the second high-

est value out of {s(v1, v2), v2}, which can be rewritten {F 2,−1(αs|z′β), F 2,−1(α2|z′β)}, where

the -1 superscript indicates the inverse function. Now for any v, de�ne α ≡ F 2(v|z′β) and α̃ ≡
J(v|z′β). Then α̃ ≡ J(v|z′β) = J(F 2,−1(α|z′β)|z′β) = prob({F 2,−1(αs|z′β), F 2,−1(α2|z′β)}(2) ≤
F 2,−1(α|z′β)|z′β) = prob({αs, α2}(2) ≤ α|z′β).17 From AS9, the distributions of αs, α2 are

invariant to z′β, so we can simplify α̃ = prob({αs, α2}(2) ≤ α|z′β) to prob({αs, α2}(2) ≤ α).

Hence α̃ is a function only of α, invariant to z. Furthermore, since C(α1, α2) is invariant to

z according to AS9, and α̃ is a function only of α, C(α1, α̃2) is also invariant to z. The same

applies for C(α1, α̃s).
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