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It is well accepted that accurate information has a non-negative value. 1 

It is more difficult to determine how that value changes when the uncertainty 
faced by a decision maker changes. Our intuitive response is that the relation 
should be positive: an increase in uncertainty increases the expected value of 
information. This hypothesis is of interest because it may have certain 
implications for the information-gathering activities of firms and consumers. 

For example, suppose a seller's offering is of uniform quality but con­
sumers are uncertain of what this level of quality is. The decision of how 
much to buy from such a seller must then be made subject to the uncertainty 
about quality. Suppose, however, that perfect information about the quality 
can be made available to consumers at some cost. For example, consumers may be 
able to buy a device that can measure with perfect accuracy the quality of the 
good before purchase; alternatively, the seller may (at some cost to consumers) 
be able to "guarantee" claims about the quality of the seller's current 
offering. If the cost of consumer measurement or of the seller guarantee is 
independent of the potential variance in quality, the hypothesis above suggests 
that information produced in either way is more likely to appear the greater is 
the potential variance of quality. 

Unfortunately, the hypothesis that uncertainty and the value of information 
are positively related is not a straightforward implication of maximization 
behavior under uncertainty. Instead, such a positive relation can be esta­
blished only by imposing additional restrictions on preferences.2 It is not 
clear, however, how these mathematical restrictions on objective functions 
correspond to restrictions on behavior. 

In this paper, I investigate the relation between uncertainty and the 
value of information by recasting uncertainty as a constraint on maximization. 
By doing so, it is possible to apply the Le Chatelier principle, a local 
property which relates the value of a maximized objective function to the 
number of constraints placed on the choice variables.3 The application of the 
Le Chatelier principle is sufficient to establish that in a particular neigh­
borhood of the uncertain variable, the value of information is a convex 
function of that variable. 

1. Throughout the paper, I consider only information that is perfectly accurate: that is, the 
recipient's expectations change from a distribution of probabilities to a single point. Information 
can change the distribution in other ways. For example, a bit of information may shift the mean of 
the recipient's expectations or it may produce a mean-preserving decrease in the variance of the 
recipient's expectations. Also, to use the distinction noted in Hirshleifer (1911), I explore the 
value of market information, not technological information. 

2. Gould (1914) first explored the relation between uncertainty and the value of information. He 
showed by counterexample that this relation need not be positive. A positive relation can be 
ensured, however, if the objective function being maximized subject to uncertainty about a parameter 
is linear in that parameter. Hess (1982) noted that this condition is, of course, not necessary and 
presented a less restrictive set of conditions sufficient for the relation to be positive. Both 
Gould (1914) and Hess (1982) are discussed infra, pp. 6-1. 

3. The principle comes from physics and, as Samuelson (1960) and Silberberg (1911, fn. 3; 1918, 
p. 294) point out, is purely a local property. 
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The local nature of the Le Chatelier principle necessarily limits this 
convexity to a "local" result; however, if the value of information is globally 
convex, a mean-preserving spread in uncertainty will increase the expected 
value of information.· Thus, a positive relation between uncertainty and the 
value of information holds globally under the same conditions for which the 
Le Chatelier principle holds globally. 

The paper is divided into two sections. First, I show how uncertainty 
can be formulated as a constraint on maximization. The application of the Le 
Chatelier principle then establishes the convexity of the value of information 
in a particular neighborhood of the uncertain variable.5 Second, I discuss 
additional conditions sufficient to ensure that this positive relation is 
global. These additional conditions are difficult to state exactly; instead, I 
use a statement in Samuelson (1960) about a global Le Chatelier principle to 
sketch them out. I then compare these conditions to those established by other 
authors as sufficient for a positive relation to exist globally. 

I. Uncertainty as a Constraint on Behavior 

Suppose a decision-maker must choose the levels of a vector of decision 
variables X to maximize a payoff function h(X, A), where A is a vector of 
variables parametric to the decision-maker's choice of X. Let one of the 
elements of A, say A 1, be a random variable distributed with p.d.f. f(A 1). 

At some point in time, A1 becomes determinate. Let A1 be the realized value 
of A 1• 

In general, the decision-maker is better off if A1 is known before rather 
than after the choice of X is made.6 The value a decision-maker places on 
this information, however, is of two distinct types. First, there is the value 
attached to the information after it is received, or the ex post value of 
information. Without the knowledge that the realization of A1 is A1, a 
decision-maker would maximize the expected payoff given the p.d.f. f(A 1). The 
choice of X would be "incorrect," ex post, for at least some of the elements of 
X. In other words, if the decision-maker knows A1 before choosing X, the 
decision-maker can obtain a larger payoff than that which in fact results from 
choosing X without knowing A1. The difference between the payoff with prior 
information on A1 and the payoff without this information is a measure of the 
ex post value of the bit of information "A1." 

The second type of value is the ex ante value of information. Before 
the realization of the random variable, A 1, the ex post value of information 

4. See Rothschild and Stiglitz (1970). 

5. This neighborhood is around a "just-binding point." See infra, p. 4, for the definition of 
this point. 

6. This is almost always the case if two conditions are met. The first condition is that a 
change in the level of A1 affects the choice of at least one of the elements of X. If not, a deci­
sion-maker would be unwilling to pay a positive amount to receive information on Al before making 
any decisons. Second, the distribution must be other than a degenerate, single-polOt distribution. 
Otherwise, there is only one possible level of A1 and therefore prior information on A1 (beyond 
some initial period) is of no value. 
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is itself a random variable with a distribution derived from f(A I ). The ex 
ante value of information, or the expected value of information before it is 
received, is therefore just the expected ex post value of information. 

Formally, consider the following maJ!:imization problem where the Xi are 
chosen after Al is revealed: 

(1) Maximize Z = h(X I, .. ,Xn,Al> .. ,Am). 
Xl'·· 'Xn 

Assuming a unique solution exists for each A = (AI' .. ,Am)' the optimal Xi 
are derived from the following system of first-order equations: 

where hi = dhjdx j• Let (h jj) be the hessian matrix of cross partials of h 
with respect to the Xi. The sufficient second order conditions are that all 
principal minors I(hi)1 of order k have sign (_I)k at the maximum point. 
Let the choice functIOns and the indirect payoff function be X~(AI' .. ,Am) 
and Z*(AI' .. ,Am)' respectively. 

Suppose instead that the realization of Al occurs only after the choice 
of X is made. (The actual payoff, however, is always a function of AI.) 
Suppose the p.d.f. f(A I ) is known and let w be a vector that summarizes the 
parameters associated with f(A I ). Suppose that for each point (A 2, •• ,Am,w), 
a unique solution exists for the problem: 

(3) Maximize EZ = Eh(Xl' .. ,Xn,A I , .. ,Am' w). 
Xl' .. ,Xn 

Here, the maximization is over the expected value (E) of the payoff function. 
The optimal Xi are derived from the first-order equations: 

Let (Ehi) be the hessian matrix of cross partials of Eh with respect to 
the Xi ; the sufficient second order conditions are similar to those of the 
first problem. Let XF(A 2, •• ,Am,w) be the choice function derived from 
equation (4). The l.h.s of equation (4) is not a function of AI' the realized 
value of AI; therefore, the XF are not functions of AI. 

As noted above, the actual payoff is a function of Al and will be 
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Because the X~ are not functions of AI' they are constant in equation (5) 
with respect to AI' 

The ex post value of information on AI' VeAl' .. ,Am)' is the difference 
between the payoff levels, or 

(6) 

The ex ante value of information, then, is the expected value of veAl' .. ,Am) 
over the p.d.f. f(A I ), or EV(A I, .. ,Am)' 

We can now examine the relation between uncertainty and the value of 
information by addressing the following question: will a mean-preserving 
spread in the distribution of Al increase or decrease EV(A l, .. ,Am)? As 
shown in Hess (1982), a sufficient condition for this relation to hold is 
that VeAl' .. ,Am) is convex in Al.7 This condition, however, only serves to 
generate a further question: what conditions are sufficient to ensure that 
VeAl' .. ,Am) is convex in AI? 

To address this latter question, we apply the Le Chatelier principle to 
show that in a particular neighborhood of AI' V(Al' .. ,Am) is convex in Al 
given only the sufficient conditions of the original maximization problems. 
Thus, at least in this neighborhood, no additional restrictions on h(X,A) are 
necessary to establish the convexity of V(Al, .. ,Am)' 

The Le Chatelier principle can be applied by viewing the presence of 
uncertainty in the following way: uncertainty places a constraint on the 
choices of a decision-maker. The choice of XE must be made despite the 
recognition that, ex post, at least some of the choices will be "wrong" 
(almost always); in other words, X~ t= X~ for at least some i (almost always). 
There may be a realization of AI' however, such that X* = XE. Such a realiza­
tion of AI' say. ABS, is called a just-binding point: at such a point, the 
constraint of uncertainty does not alter the choice of X, but in a neighborhood 
around the point, X~ t= X~ for at least some i. 

The Le Chatelier principle implies that at a point such as AB, the maximum 
value of the objective function does not change with the addition of the 
constraint for which AB is a just-binding point. Hence, we have Z* = ZE, 
which implies that the ex post value of information is zero. In a neighborhood 
around AB, however, the ex post value of information is positive. Thus, at 
least in a neighborhood of a just binding point, the ex post value of informa­
tion is a convex function of AI' 

7. This result is, of course, derived from Rothschild and Stiglitz (1970). 

S. The just-binding point will, tl course, be a given value of the vector A. See note 13, infra, 
for a discussion of the existence of A . 
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To demonstrate this result formally, let the index of the xt be ordered 
in the following way. If i ~ r, dX: IdAI t= ° almost everywhere; if i > r, 
dX: IdAI = ° everywhere.9 Consider the following problem: 

(7) Maximize Z = h(X I, .. ,Xn,AI, .. ,Am) 
Xl' .. ,Xn 

(8) I, .. ,r, r ~ n.lO 

The optimal Xi and Ii (the Lagrange multipliers associated with the r con­
straints) are found by solving the following first-order equations: 

(9a) hi - Ii = 0, i = I, .. ,r; 

(9b) h j = 0, j = r+l, .. ,n; 

(9c) XF(A2, .. ,Am,w) - Xi = 0, 1 = I, .. ,r. 

Let (Rr) be the bordered hessian matrix of cross partials of h with the r 
constraints and let Rr be its determinant. The sufficient second order 
conditions are examined in the Appendix. Let Xf(A 1, .. ,Am,w) and zr(AI' .. 
,Am,w) be the choice functions and the indirect objective function, respective­
ly, and let If(AI' .. ,Am,w) be the Lagrange multipliers of equation (9a).11 
The superscript "r" denotes the maximization problem with the r constraints of 
equation (8). 

The indirect objective functions, Z· and zr, can now be compared to 
establish the (local) convexity of V = Z* - zr in the neighborhood of a 

9. The x;; areihe demand functions with perfect information. If dXi ldA1 = 0 everywhere, then Xi 
is identical \0 ~l and uncertainty produces no ex post "errors" in the choIce of X" The set of X. 
such that dXi ldA l f= 0 almost everywhere is non-empty as long as the expected value of informatiob 
is non-zero. For example, if h is additively separable in AI' then Al has no effect on any demand 
function and the ~ value of information is zero. 

10. A special case is r = n. In this case, any variation in the Xi is inadmissable and it makes 
no sense to "maximize" a constant. Nevertheless, it can be shown that the results in the text still 
hold for this extreme case. See Silberberg (1971), where he includes the "degenerate" case of r = n 
in his theorem. 

1~ The Lagrange multiplier, If, represents t~ value of increasing the constrained choice of Xi' 
or Xi ' for i = l, ... ,r. This is because dZr IdXi = lr by the envelope theorem. The sign of tfie 
Lagrange mUltiplier is the same as the direction of cbange in the mar~al value of th'fu X;; when 
information is revealed prior to purchase. ~uppose Al is such that Xi > Xi' Then dZr I dXi -;;! E? and 
If is positive; if Al is such that Xi < Xi ' the opposite is the case because an increase in Xi is a 
movement away from Xi. 
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just-binding point, AB.12 By applying Silberberg's Generalized Envelope 
Theorem13 to the functions Z* and zr evaluated at AB, we obtain: 

(lOa) Z* = zr 

(lOb) Z* 
Al = zr 

Al 

(IOc) * 
ZA A' ZA A > 

1 1 1 1 

The last inequality is a restatement of the Le Chatelier principle: in a 
neighborhood of AB, Z* > zr with the equality holding only at that point. 
Equation (lOc) can be rea;;anged to show that 

(11) 

Therefore, in a neighborhood around AB, V is convex in AI' 

The set of assumptions sufficient to demonstrate this result is simply 
that the function h(X,A) is capable of supporting a local maximum at the 
just-binding point (and of course that such a point exists). This will be the 
case as long as the sufficient second order conditions are satisfied for the 
maximization problems in equations (I) and (3). These are sufficient because 
the matrix (hii) will then be non-singular, which is sufficient for the 
derivation in equation (lO), and because the matrix (Ehij) will also be 
non-singular, which is sufficient for the existence of the X~. 

The application of the Le Chatelier principle therefore involves a set 
of assumptions much less restrictive than those relied upon by previous 
authors. For example, Gould (1974) proves that if h(X,A) is linear in AI' an 
increase in uncertainty increases the expected value of information. But if 
this is the case, the just-binding point is simply the point (AI' . . ,Am)' 
where Al is the mean value of AI' This is because 

12. Such a point exists if there is a point A B that is a solution to the following system of 
equations: 

X~(A2, ... ,Am'W) - X; (AI, ... ,Am) = 0, i = I, ... ,r. 
It is likely that for any individual XF there exists a set of points Ai such that 

E" *.. 
Xi (A2""'~'W) = Xi (Ai,···,A!n) 

for each (A~, ... ,Ai lin Ai. A necessary and sufficient condition for the existence of a just binding 
point is that the ~ntersection of these sets over all i ~ r is non-empty. In other analyses of the 
Le Chatelier principle, the authors have not addressed the issue of the existence of a just-binding 
point. See Samuelson (1960) and Silberberg (1971). 

13. See Silberberg (1971). 
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and so the maximization problem represented by equation (3) is equivalent to 
that of equation (1) for Al = AI' Linearity of h in AI' however, clearly is 
not a necessary condition for the application of the Le Chatelier principle 
to hold. 

Hess (1982) states a theorem that uses a set of sufficient conditions 
(apparently) less restrictive than Gould's to prove that the relation between 
uncertainty and the expected value of information is positive. This set is, 
essentially, that V(A I) is everywhere convex in AI' On the one hand, his 
sufficient conditions are less restrictive than the ones used here because 
they apply at any value of the uncertain parameter, not simply at a just 
binding point. On the other hand, at the just binding point, Hess' sufficient 
conditions are unnecessary and essentially redundant as long as uncertainty is 
viewed as a constraint on maximization. 

This emphasizes the simplicity of applying the Le Chatelier principle to 
this problem: the conditions sufficient for V to be (locally) convex in Al 
are the same as the two sets of sufficient conditions for maximization with 
and without the constraint of uncertainty, at least in a neighborhood of a 
just binding point. Beyond this neighborhood, however, the Le Chatelier 
principle need not hold. Therefore, its application to the analysis of the 
value of information at first glance is limited because it is a local property 
and need not hold globally. The next section explores the conditions under 
which it does and does not hold globally. 

II. Global Considerations 

The set of conditions under which the Le Chatelier principle is a global 
property is not a settled issue. Samuelson (1960) addresses the question of 
when the Le Chatelier principle holds "in the large." He concludes that for 
most economic maximization problems, it need not in fact hold. For example, 
the Le Chatelier principle implies that long-run demand curves are locally 
more elastic than short-run demand curves. I4 But Samuelson notes the follow­
ing: 

14. Briefly, let RL and RS be a firm's maximized long-run n.~., when all factors are variable) and 
short-run n.~., when only labor is variable) profit functions, respectively, and let w be the price 
of labor. The Le Chatelier principle implies that 

d 2RL /dw2 > d 2RS /dw2. 

By the envelope theorem, dRL /dw = _LL, the long-run demand for labor; similarly, dRS /dw = _LS, the 
short-run demand for labor. Therefore, 

_dLL/dw > _dLS/dw, 

which, at a just binding point (LL = LS), gives the implication cited in the text. 
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When I first formulated the Le Chatelier theorem twenty years ago, 
I had hopes of proving the non-local property. But for many years 
a proof eluded my most determined efforts. Finally it dawned on me 
that the theorem was not true in the large .... 
LQJur paradox in the large could be illustrated by the following 
type of example: Near the critical point where labor and land go 
from being substitutes to being complements, as measured by the 
sign of off -diagonal elements in the profit Hessian matrix [Aij], 

we could find a clever counterexample in which the long-run arc 
elasticity of demand for labor was more inelastic than the short-run. I5 

I believe his remarks can be applied to the problem here in the following 
way. 

Consider the case where only one choice variable, X, is constrained by 
uncertainty about a single parameter, A. If uncertainty about A is a binding 
constraint on the choice of X and if there exists a just binding point, then 
dX* jdA f= 0 in a neighborhood around this point. There may exist some point 
A 0, however, outside of this neighborhood where dX* jdA reverses sign. Suppose 
dX*jdA > 0 for A < AO and dX*jdA < 0 for A > AO. As A increases above AO, 
the level of X* could return to the level where uncertainty is just binding: 
i.e., there may be two (or more) just binding points for uncertainty about A. 

The effect of this on the global convexity of the value of information is 
shown in Figure 1. Let Al and A2 be such that X*(AI) = XE = X*(A2); both Al 
and A 2 are then just binding points. Around each just binding point, the ex 
post value of information is convex in A. Because there are two points of 
tangency between Z* and Zr, however, there must exist a region where the ex 
P.Q.ll value of information is concave in A.I6 Therefore, there could be mean­
preserving increases in uncertainty that would decrease the expected value of 
information. 

Consider the following example, where a firm maximizes profits subject 
to uncertainty about a parameter, a, that affects the marginal productivity 
of the firm's only input, X. Let g(a)ln(X) be the firm's production function, 
where g(a) = d - c(b - a)2. Finally, assume that X is available at unit cost. 

If information on a is available before X is chosen, X* = pg(a), where p 
is the price of the firm's output and a is the realization of a; ex post 
profits are then R * = pg(a)ln[pg(a)]. Note that for a < b, dX* jda > 0; for a = 
b, dX*jda = 0; and for a > b, dX*jda < O. If a is realized only after X is 
chosen, XE = pEg(a) and ex post profits are R E = pg(a)ln[pEg(a)]. The value 
of information, then, as a function of a, is V(a) = pg(a)ln[g(a)jEg(a)]. 

It is easily shown that the graph of this function is similar to that 
presented in Figure 1. It is then possible to specify values of the parameters 

15. Paul Samuelson, "An Extension of the Le Chatelier Principle," Econometrica, 28(2): 368-379, 
April 1960, p. 372 (footnote omitted). 

16. This is the thrust of Hess (1982): to rule out this possibility, he assumes it away. This in 
many ways avoids the question addressed here: what restrictions on behavior are sufficient to 
produce a positive relation? 
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and a p.d.f. f(a) for which a mean-preserving spread decreases the expected 
value of information. An example is presented in Table I: 

Probability 
of Stat~ 

1 2 3 

.40 .20 .40 

.45 .10 .45 

Table 1 
A Counterexample 

ER* ERE 

$101.66 $90.15 
69.30 62.32 

Expected 
Value of 

Inf orma tion 17 

$11.51 
6.98 

d = c = b = I a1 =.1 a2 = I as = 1.9 p = 100 

To rule out the existence of a second just-binding point, it is sufficient to 
restrict X· to be a strictly monotonic function of a; however, this apparently 
is not sufficient to rule out the occurence of any concave portions of V(a). 
Hence, it may be that, for global convexity, we must appeal to the broad 
sufficient conditions of Hess (1982). 

There is another set of circumstances under which the Le Chatelier prin­
ciple may not hold in the large. Gould (1974) presents a counterexample in 
which the expected value of information and uncertainty are negatively re­
lated. The example consists of a firm maximizing profits by choosing the 
level of a single input, X, subject to uncertainty about a discrete state 
variable, A. The important feature of Gould's example is a discontinuity in 
the profit function, perhaps due to an "escalator" clause in the firms labor 
con tract. 18 

This discontinuity has two important effects which are more easily explored 
if the uncertainty in Gould's example is transformed from a discrete distribu­
tion to a continuous distribution and if the discontinuity coincides with the 
mean of the distribution.19 First, the discontinuity produces the anamolous 

17. Note also that the expected value of information as a percentage of ERE, or the "rate of return 
to perfect information," also decreases. 

18. See Gould (1974), p. 77. 

19. Suppose A is uniformly distributed in the interval [l-e, l+e). Let the profit function be 

F(X,A) = AX - X2, A< 1; 

where D is a measure of the discontinuity, D ~ 0, and D = 0 implying a continuous function. In the 
manner described in the text (see equation (6», let V be the ex post value of information on A and 
EV be the expected (~) value of information. The following propositions, discussed in the 
text, are presented without proof: 
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result that as uncertainty goes to zero around the mean, the expected value of 
information approaches a strictly positive value. This is because the discon­
tinuity creates a "point" of uncertainty. In fact, the value approached 
is equal to the average ex post value of information at the discontinuity, 
calculated by taking the limit from above and below.20 

The second important effect is to create an interval where the ex post 
value of information is concave. As A approaches the discontinuity from below, 
it goes through a just binding point, where the unconstrained choice of X, X*, 
which is positively related to A, is equal to the choice of X under uncertain­
ty, X E. Through this point, the ex post value of information is convex. The 
discontinuity, however, changes the first order condition of the firm's profit 
maximization problem and decreases X* (discontinuously, of course). As A 
continues to increase, it goes through a second just binding point where 
X* = XE again. 

Figure 2 illustrates this result. Strictly above or below the discon­
tinuity, V(A) is convex. In at least part of the region between the two just 
binding points, Al and A2, however, the ex post value of information is a 
concave function of A. Hence, for small levels of uncertainty (recall, the 
discontinuity coincides with the mean), uncertainty and the expected value of 
information may be negatively related. For larger levels, however, the convex 
portions are likely to "dominate" if the increase in uncertainty is a general 
spreading out of the distribution. 

III. Conclusions 

The application of the Le Chatelier principle shows that uncertainty 
and the expected value of information are positively related in a neighborhood 
of a point where uncertainty is a just binding constraint. With this result as 
a foundation, it is then possible to sketch out the sufficient conditions for 
this relation to be globally positive: conditions that are sufficient to ensure 
a global Le Chatelier principle are also sufficient for a global positive 
relation. Although the former set of conditions is an unsettled matter, the 
application of the Le Chatelier principle provides us with a new perspective on 
the problem. 

PI: dEY/de ~ 0 dEY/dO ~ 0 

d2EV/de2 > 0 d2EV/d02 < 0 

P2: lim EV = 0 2/[8(0+1)(0+2)] > o. 
e->O 

P3: lim EV = (1/2) lim V (1/2) lim V 
e->O Al"O A+O 

N: lim (lim EV) = 0 
0->0 e->O 

20. See proposition 3, note 18. 
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To ensure that the Le Chatelier principle holds in the large, what types 
of behavior are ruled out? One such type of behavior would be a discontinuous 
change in the marginal benefit or cost of an action. As shown above, this can 
create two just binding points and result in an interval where the ex post 
value of information is concave. A restriction that all relevant functions be 
globally continuous is palatable but should be recognized as being more 
restrictive than the standard conditions necessary and sufficient for the 
existence of a J..QgU maximum. 

Another type of behavior ruled out would be "reversals" of behavior. In 
many instances, this again would not be overly restrictive. For example, if 
the uncertain variable is price, there is little objection to assuming that 
demand curves always slope downward; somewhat more restrictive but still 
acceptable in many cases is the assumption that pairs of goods are always 
substitutes or always complements. 

Other variables are harder to restrict in this fashion. For example, 
Leffler (1982) shows that the relation between quality and demand need not be 
monotonic. If this is the case, changes in uncertainty about quality can 
increase or decrease the expected value of information on quality. In addi­
tion, as I have stated above, restricting behavior to avoid reversals is 
necessary but may not be sufficient to ensure a positive relation between 
uncertainty and the expected value of information. 

Nevertheless, the Le Chatelier principle is a valuable tool for analyzing 
the problem of uncertainty. Under conditions no more restrictive than those 
placed on a simple maximization problem, its application proves that, locally, 
an increase in uncertainty increases the 'expected value of information. But 
rather than asserting that this relation will hold globally, we must recognize 
that additional restrictions are necessary. This paper has suggested what some 
of these restrictions might be. 
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Appendix 

This appendix discusses the sufficient second order conditions associated 
with the maximization problem of equations (7) and (8). 

Let (Hr r) be the matrix of the cross partials of the first r choice 
variables. These are the choice variables in the constraints of equation 
(8). Let (Hn_r n-r) be the matrix of the cross partials of the last (n-r) 
choice variables and (Hr n_r)be the matrix of the cross partials between the 
two groups. Finally, let (Ir) be the rxr identity matrix. 

Consider the determinant: 

o 

o o 

The sufficient second order conditions for the maximization problem of equa­
tions (7) and (8) are that all kxk border-preserving principal minors of Hr 
have sign (_I)k-r, k = 2r+I, .. ,n+r. By evaluating the determinant on the 
r.h.s. along the diagonals of the two identity matrices, it can be shown that 

(AI) Hr = (_I)2rn+4r-r
2 

I(h )1. n-r,n-r 

The sign of I(hn_r n-r)1 is (_l)n-r by the sufficient second order conditions 
of the unconstrained maximization problem in equation (1). Thus, we have 

b (I)2rn+n+3r-r2 1 ecause - = . 

Using similar reasoning, it can be shown that smaller, non-vanishing 
border preserving principal minors also have the correct sign. Some principal 
minors vanish, however, because the r constraints do not admit any variation in 
the Xi' i = 1, .. ,r. There is a single point (Xf, .. ,X~) that satisfies 
the constraint and therefore variation along those margins is inadmissable. 
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