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ABSTRACT 

This paper models procurement auctions when suppliers face increasing costs. It is shown than an 

asymmetric equilibrium exists whereby one bidder bids different prices on each project in a series of 

simultaneous auctions, while its competitor bids the same price on each project. This existence of such an 

equilibrium may provide an explanation for observed bidding behavior in industries plausibly characterized by 

increasing costs. Further, it is shown that the price paid in simultaneously-held auctions will be less than the 

prices paid in sequentially-held auctions. Hence, the existence of an asymmetric equilibria may explain the 

prominence of simultaneous auctions for certain products. 





1. Introduction 

Government bodies often hold procurement auctions for multiple projects simultaneously. For 

example, state and local governments often hold simultaneous auctions for one-year contracts to supply milk, 

bread and other goods to proximate school districts and prisons. Multiple simultaneous auctions are common 

for contracts to build roads. If the firms bidding in the auction had constant marginal cost, the fact that 

multiple projects are bid upon simultaneously would be largely irrelevant. However, when the bidders face 

increasing costs of additional projects their bidding strategies become more complex. Moreover, under these 

circumstances there is a coordination problem: While total production cost may be minimized by an even 

distribution of projects across bidders, this allocation is unlikely to be achieved in a symmetric equilibrium. 

This paper presents a model of bidding for multiple projects under increasing cost. The model, I 

assumes that there are two bidders for two identical projects to be purchased by a buyer at auction.1 The two 

buyers have ex-ante identical costs (which may differ ex-post) and face increasing incremental production costs. 

Under these circumstances, the coordination problem discussed above may arise. For example, if a symmetric 

pure-strategy equilibrium emerges, small differences in realized cost will lead to one bidder winning both bids. 

The coordination problem can be ameliorated if bidders have asymmetric bidding strategies whereby 

one bidder has a common price across auctions, while the other bidder bids "high" sometimes and "low" 

sometimes.2 This will result in each bidder winning half the bids more frequently than in the symmetric 

equilibrium. Moreover, these bids represent a non cooperative equilibrium. If bidder j bids a common price 

on all projects, i's optimal (non cooperative) reaction is not to bid the same amount on all projects. Rather 

i will bid low enough to win some bids, but will not find it in its interest to bid below j everywhere. That is, 

by bidding 'low' on some projects, and 'high' on others, i guarantees itself some share of the projects, but is 

able to avoid the potential for winning so many bids that it loses money. Given this strategy by i, j finds that 

a strategy of bidding the same price everywhere serves to guarantee itself some share of the projects. 

1 Government procurement auctions frequently have only two participants. 

2 Figure 1 details the actual bids made by the two bidders in four simultaneous auctions. This paper in part 
represents an attempt to explain this behavior. 
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The existence of this non cooperative equilibrium is interesting for several reasons. First, it provides 

an explanation of actual bidding behavior is a series of simultaneous auctions (see Figure 1). Second, to the 

extent that this equilibrium emerges it explains why government agencies hold auctions simultaneously, even 

though sequential auctions mitigate the coordination problem. As I show, while sequential auctions lead to 

lower total production costs, they lead to higher winning bids. 

Finally, government agencies have begun to examine pricing behavior in order to spot "patterns" which 

suggest the existence of bid-rigging. This approach has been advocated by some economists as well. For 

example, Rothrock et al. (1978) suggest that descriptive statistics can help identify markets in which collusion 

has occured.3 The existance of an asymmetric equilibrium under fairly general conditions suggests such an 

approach may be counterproductive. Determining if collusion occured by observing prices requires the 

investigator to know the non cooperative equilibrium.4 Even with the simplest type of cost interdependency 

(i.e., increasing cost) across projects, the non cooperative equilibrium may appear collusive.s When cost 

interdepencies are more complicated (e.g., optimal routing of delivery trucks, lumpiness in production 

facilities), the equilibrium may take a different seemingly-collusive form. 

2. EQUILIBRIUM AUCTION STRATEGIES UNDER INCREASING COSTS 

A. A Model or Auctions Under Increasing Costs 

To formalize the structure described above, let the production cost of player k (k = i,j) be 

C1 + t!t if one project is produced and 

Ct + Cz + 2e1t if two projects are produced 

where Cz > c1, and t!t, a random component of costs, is uniformly distributed with support [O,e] where the 

~ey suggest that too little variability of bids could imply agreements among firms (at 25). 

4J(endricks and Porter (1989) suggest ways in which collusive behavior may be identified, but note that these 
tests depend on knowing the nature of the collusive activity. 

S For example, if bidder j indicates its intention to bid a common price on each of a series of auctions, bidder 
i could then shade 1's by a small amount in one-half the auctions, while bidding well above 1's price on the 
other half. This would result in collusively high prices, with a minimum amount of communication. The 
pattern of bids which emerges resembles the non cooperative asymmetric equilibrium described above. 
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realizations of ~ and ej are independent. 6 Thus, each bidder knows its own realization of t\:, but views its 

rival's cost as a random variable, so that the model is an independent values auction. 

On the buyers' side of the market, I assume that there is a risk-neutral buyer with two identical 

projects.7 The buyer establishes first-price sealed-bid auctions to choose among suppliers. The question for 

the buyer implicitly analyzed in this paper is whether to hold these auctions simultaneously or sequentially.8 

From the social perspective, the basic allocation problem is that given costs which increase with 

output, total production costs will (generally) be minimized by having each seller produce one project. If 

buyers use simultaneous auctions, small differences in realized costs could result in one seller winning both 

bids. For example, suppose that bids were to be entered simultaneously for two projects. If the two bidders 

have identical strategies that result in a symmetric equilibrium in pure strategies, the probability that one 

would win both is at least one half.9 

One situation in which the coordination problem may well emerge is where several proximate 

municipalities invite bids for supplying some product to schools. Generally, the bidding is held in the spring 

for the following school year, and winners are announced weeks or months after the auction. Hence, bidders 

often do not know the outcome of previous auctions when making a bid. In one specific instance which came 

6 This last assumption is not restrictive in that for a more general specification, the correlated element of the 
error term can be incorporated into the Ct and Cz terms. That is, t\: is the firm-specific element of costs. 

7 Equivalently, there might be two buyers with identical projects. 

8 If the buyer's side of the market consists of two identical firms, the analogous question is, given the auction 
date selected by buyer 1, should buyer 2 hold an auction prior to that date, after that date, or simultaneously 
with buyer I's auction. Note that simultaneously need not mean literally on the same date, but simply that 
bidders on buyer 2's project do not know the outcome of the bidding on the buyer 1's project when they make 
bids on buyer 2's project. 

9 If the two projects were for the same buyer, the buyer could avoid this problem by having each seller submit 
a schedule of bids (e.g., one price for completing one project, another price for completing both). While using 
this auction mechanism (which Bernheim and Whinston (1986) refer to as a "menu auction") eliminates the 
social cost problem, it may result in higher prices than either of the two equilibrium derived in this paper. 
Specifically, applying the results in Anton and Yao (1989 - Lemma 1), the equilibrium total price for the two 
projects will be at least c1 + Cz + 2 max(ej,e), which can be greater (in expected value) than the prices derived 
below. In this paper however, I consider circumstances under which holding menu auctions is not feasible or 
desirable (as would be the case if each project is for a different municipality). 
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to trial,tO several Baltimore-area school districts held simultanous auctions to purchase milk for the following 

school year. The Department of Justice noted the potential coordination problem in its brief "[a ]ny dairy might 

hope to win any given bid, but the range of prices competition was likely to produce was narrow enough that 

a small difference in price might bring about far more business than it could efficiently handle. Moreover, the 

cost calculations on which a competitive bid depended contained assumptions about volume of milk processed, 

over-all volume of half-pint containers processed, and volume of school milk obtained. It was easy to 

miscalculate. No dairy, not even Sealtest as it turned out, could handle [all] the school business profitably".11 

This illustrates the basic difficulty with simultaneous auctions under increasing costs. One way to 

mitigate (but not eliminate, as shown in section 3) the coordination problem is to hold the auction 

sequentially. With sequential auctions, in the second auction vendors would know whether they won the first 

auction, and hence they would know their costs of fulfilling the contract prior to bidding. While this does 

reduce expected production costs relative to a simultaneous auction, it will tend to result in higher prices than 

a simultaneous auction. 

The above discussion of the simultaneous auction was based on a pure-strategy symmetric equilibrium 

emerging. Of course, a pure-strategy symmetric equilibrium need not be the only equilibrium in a 

simultaneous auction (indeed, it may not even be an equilibrium). In part B of this section, I derive an 

asymmetric equilibrium for the simultaneous auction. In that equilibrium the social allocation problem will 

be mitigated, relative to the symmetric auction. To see how asymmetric strategies can ameliorate the 

coordination problem, suppose bidder i knows that bidder j bid the same price in each of q' auctions, although 

i is uncertain as to the level of that bid. Specifically, suppose that j's bid on all of the projects to be auctioned 

(bj) is known to be distributed on (hi min, hi maJ as in figure 2. Then, by making bids according to schedule bi 

in figure 2, i can guarantee itself at least qimin number of winning bids, and no more than qirnar Similarly, 

suppose j knows the shape of i's bid function, but does not know where the function lies on the interval 

to U.S. v. Koontz Creamery. Inc, 257 F. Supp. 1274 (1983) at 307. 

11 From Government's post-hearing brief, as cited by the court in Koontz. 
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(blmin,bi.,.J in figure 3. t2 By bidding bi, j guarantees itself at least qi min and no more than qi mar Thus, the 

asymmetric strategies mitigate the coordination problem. 

The remainder of this section derives the optimal strategy of each vendor, given the other vendor's 

strategy. That is, I assume that both vendors maintain Nash conjectures about its competitor's bidding strategy 

and derive the Nash equilibrium. Part B of this section derives the asymmetric equilibrium in the simultaneous 

auction. Part C derives the Nash equilibrium in the sequential auction, generalizing the above situation to 

allow for uncertainty. Section 3 compares prices and social costs under these two equilibria. 

B. Asymmetric EquilIbrium in Simultaneous Auctions 

In this section, I derive an asymmetric equilibrium to the auction environment described above. 

Lemma 1 shows that if player j makes the same bid on both projects, and those bids are linear functions of 

ei, then i's optimal response is to bid "high" on one project, and "low" on the other. Lemma 2 shows the 

converse; if i's bids are two distinct linear functions of ei (over some relevant range), then j's optimal response 

is to bid the same amount on both projects. Hence, there exists an asymmetric Nash equilibrium in pure 

strategies. Proposition 1 explicitly solves for the equilibrium bid functions. 

The intuition is the same as that illustrated in figures 2 and 3: i's strategy insures that it wins one bid 

"most" of the time, and wins both bids only at a price above his costs of completing the second project. Given 

i's strategy, bidding the same amount on the two projects accomplishes the same thing for bidder j. 

Define btl as player i's bids on project 1, using similar notation for the i's bid on project 2, and j's bids 

on the two projects. Let P(W,L) be the probability that player i wins the first bid and loses the second (i.e., 

btl < bti and bz
i > b2i). Using the same notation for all relevant probabilities, we can write player i's maximand 

as 

~e downward slope of bi in figure 3 represents the same bidding strategy as the upward sloping function 
in figure 2. The difference is that in figure 2 the horizontal axis is the number of projects awarded to bidder 
i, while the horizontal axis in figure 3 is the number awarded to bidder j (= q' - the number won by bidder 
i). 
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Lemma 1: Let player j bid the same amount on the two projects, where j's bid is a linear function of ej (Hence, 

from i's perspective, j's bids are uniformly distributed on (1)i(o),bi(e)). Then i's optimal bids are 

(2) bt
j = (ct + e, + bi(e»/2 if e, > 2bi(O) - ct - bi(e) .::. ~ 

= bi(O) if ej!S. ~ 

(3) b2
1 = (Cz + e, + bi(e»/2 

Proof: See Appendix 

Note that ao2
j/0e1 = 1/2 and i'k>tj/Oej = 1/2 for ej > 2bi(O) - ct - bi(e), and over that range both bids 

are uniformly distnbuted, with b2
j 
- btl = (Cz - Ct)/2 .::. !1c/2 > oY Also note that an analogous result holds 

for any number of projects, as long as j bids the same amount on all projects. 

Given this strategy by i, consider j's optimal reaction. Bidder j maximizes the objective function in 

equation 4, 

(4) 7r = (bt
j 

- ct - ei) P(W,L) + (bj- Ct - ei) P(L,W) + (bti + bj- Ct - Cz - 2 ei) P(W,W). 

It is useful to note that while j's objective function resembles that of bidder i, the probabilities are 

somewhat more complex. In particular the lower of the two bids facing j (i.e., made by i), which I denote bL
j
, 

is distributed uniformly on [(Ct + J>i(e»/2,(ct + e + bi(e»/2J for e, > 2bi(O) - ct - bi(e) (= ~), while the higher 

of the two bids (bH
j
) is distributed uniformly on [(Cz + bi(e»/2,(Cz + e + J>i(e»/2J. Thus, the probability of 

j winning the bid on the first project but the losing the second will depend upon which project represents i's 

lower bid. 

Lemma 2: Let player i bid as in equations 2 and 3. Then j's optimal bid is the same amount on both projects. 

Specifically, j's optimal bids are 

13 For values of ej such that Cz + e, > bi(e), the constraint that bi(e) > b2
j 
is binding so that no interior solution 

exists. However, for values of e, such that J>i(e) < Cz + ej there is no alternative bid by i which would result 
in higher profit than the strategy in equation 3, since any winning bid would be at a price below cost. Hence, 
the strategy in (3) is weakly dominant everywhere. 
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for e < 4.:k!3. 

Proof: See Appendix 

Lemmas 1 and 2 demonstrate that firms may have asymmetric strategies even when the firms have 

identical costs and act simultaneously. Given the bidding strategies in Lemmas 1 and 2, it is possible to explicit 

solve for the equilibrium strategies. The equilibrium bid functions are derived in PropoSition 1 and depicted 

in Figure 4. 

Proposition 1: If the auctions for two projects are held simultaneously, then an asymmetric Nash equilibrium 

exists of the form 

7. A ])l(ej ) = (Cz + ct)12 + 3e/8 + ep 

B. bL
i( ei) = (Cz + 3ct)/4 + 7e/16 + e/2 

c. bHi(e;) = (3Cz + ct)/4 + 7e/16 + efl 

D. e = I1c12 - e/8 

for 411C/9 < e .$. 4I1c!3. 

Proof: Lemma 1 shows that equations 2 and 3 are best-response functions for player i, while Lemma 2 shows 

that equation 5 is j's best-response function. Combining these three equations with the identity which defines 

e constitute 4 equations in 4 unknowns (e, bHi(e), 2bL
i(e), bj(e». Solving these simultaneously yields 

])l(ej ) = (Cz + Ct)12 + 7e/8 

bLi(e) = (Cz + 3ct)/4 + 15e/16 

bH1(e) = Cz + 3e/8 

e = 11c!2 - e/8. 

Since e must be less than e, a necessary condition for this to be an equilibrium is I1c12 - e/8 < e, or 

e > 4I1c/9. Using the fact that at>l(ej)/Clej= abLi(ei)/Clei = abHi(ej)/Clei = 112, for ei > e 
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7. A hi(ej ) = (Cz + ct)f2 + 3e/8 + ep 

B. bL
i( e.) = (Cz + 3ct)/4 + 7e/16 + e/2 

C. bHI(ei) = (3Cz + ct)/4 + 7e/16 + e/2 

D. ~ = /lca - e/8. 

From the proof of Lemma 2, we know that a condition for this equilibrium to exist is that j does not 

have the incentive to bid below bLi(e) (and win both bids for all e.). The gain to j from shading is 

Using (7), this has the same sign as 

Note that if e < 4/lc/3, the expression in (8) is negative, implying that j does not have the incentive 

to shade. Hence, equations 7 A-D constitute an equilibrium for 4/lc/3 > e > 4/lc!9. As equation 8 is 

decreasing in ej , when e > 4/lc/3, j will have the incentive to bid below bLi(e) for ej sufficiently small .• 

Proposition 1 shows that an asymmetric equilibrium exists. The intuition behind the result can be seen 

most readily when costs are certain. Suppose bidder j bids the same amount on the two projects, and this 

common bid is hi, where Cz > hi > Ct. Then bidder i can earn hi - ct - a > 0 (a arbitrarily small) by bidding 

hi - a on one project and hi + 8 on the other (8 E (a, Cz - hi». It can be readily verified that i cannot improve 

on this strategy. 

Similarly, suppose that i bids bit, bi
2 where Cz > bl

2 > bit> Ct. Then bidder j's best strategy is to bid 

hi = bl
2 - TJ (TJ arbitrarily small) on both bids. Such a strategy guarantees a return of bi

2 - c1- TJ > O. Here 
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again, it can be readily verified that this strategy yields higher profit than any alternative. 

The reason this equilibrium requires some degree of uncertainty follows from this heuristic. Under 

certainty, bidder i's optimal lower bid is arbitrarily close to j's bid, while j's optimal bid is arbitrarily close to 

i's higher bid. Hence, i's two bids are always arbitrarily close to one another, and there is no asymmetric 

equilibrium. For the asymmetric equilibrium to exist, there must be sufficient uncertainty (relative to the slope 

of the cost curves) so that each bidder may want to win both bids, given the other bidder's strategy. 

C. Sequential Auctions 

Given the potential coordination problem associated with simultaneous auctions, one might ask 

whether buyers might be better off holding the auctions sequentially, allowing the bidders to know whether 

they had won on the first bid prior to making a second bid.14 While this solution does mitigate the problem 

of inefficient production, it may result in higher prices for the buyers. To see why, consider the sequential 

equilibrium under certainty, (i&, where both bidder's costs are simply c1 for the one project and c1 + Cz for 

two). Then the firm which lost the first auction will bid Cz minus € and earn a rent of Cz - € - c1 in the second 

auction. Of course, neither firm would bid less than Cz - € in the first auction because it would be better off 

losing. Hence the equilibrium bids will be Cz - € in both auctions. These exceed the maximum possible winning 

bids in the asymmetric equilibrium described in equation 7. 

Formally, equilibrium to the sequential auction is obtained in a recursive manner, solving first for the 

second-auction solution (Propositions 2 and 3). The equilibrium in the second auction is derived under the 

assumption that a symmetric equilibrium obtains in the first auction. This means that the loser in the first 

auction (bidder i) knows that e. > ej • Bidders in the second auction are asymmetrically situated in a second 

sense as well by virtue of the outcome of the first auction. Bidder i knows that j's costs are Cz + ej in the 

second auction, while its own are c1 + ej • For any realization of e, a bidder will know both conditional 

expected profits (i.e., those associated with either winning or losing the first auction) in the second auction. 

Bidders then calculate their first auction bids, treating the difference in expected profits as a cost of winning 

14 I assume that both auctions are conducted prior to any work on the projects, or payment by the buyer. 
Hence the only difference between simultaneous and sequential auctions is whether the seller knows the 
outcome of one auction prior to bidding on the second. 
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the first auction. 

In general, the second-auction equilibrium bids will be functions of the degree of uncertainty, as 

measured bye. When e is 'small' (as detailed in Proposition 2), the equilibrium in the second-auction results 

in the first-auction loser winning the bid regardless of e j and ej • When uncertainty is 'small' , the intuition of 

the certainty case is preserved. On the other hand when e is not 'small', different equilibrium bid functions 

emerge, and either bidder can win the second auction. 

PropoSition 2: Let bidder j be the winner of the first auction. Then if e < ac(1., a second-auction equilibrium 

is 

bj = Cz· 

Proof: Let e < a c(1., and suppose that the first-auction winner (j) bids its costs (Cz + ej ) in the second auction. 

Then bidder i chooses b j to maximize 

Given that the bidders had identical bid functions in period 1 and j won, i knows that ej < e j • Hence, ej is 

distributed uniformly on (0, e j), and if e j > bj - Cz. 

Hence, 

Setting this equal to zero and solving yields 

9) bj = (<1. + Cz)!2 + e j + ').(1. 

This constraint is binding for all e j if e < ac(1., so that bj = Cz for e j < fic(1.. Given this strategy by 

i, j cannot improve on a strategy of bidding Cz + ej • If j lowers its bid, it will bid below its costs and lose 
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money, while increasing its bid yields the same (0) profit as Cz + ej. Hence, bj = Cz + ej is weakly dominant.. 

These results imply that if A.c!2 > e, bidder j never wins the second auction, and the incremental 

return to losing the first auction is simply (Cz - c1 - e,). Thus, if e < A.c!2, there is a 'small' amount of 

uncertainty and, as in the certainty case, the first auction loser always wins the second auction. 

If the amount of uncertainty is not 'small' (i.e., if e > A.c(2) then i's optimal strategy will no longer 

be bj = Cz everywhere. To derive the Nash equilibrium for e > A.c!2, it is convenient to define ~ and e.15 

Definition 1: Let e be the maximum value of e, such that bj(e) = blO). 

Definition 2: Let ~ be the minimum value of ej such that Cz + ~ = bj(e). 

If bj is strictly increasing in ej for ej > e, then it follows that bj(ej) > bj(O) for all e, > e. That is, for 

ej < e i bids bj(O) and wins with certainty, while for e, > e i's bid is the unconstrained optimum. Similarly, 

if bj ( ej) is strictly increasing in ei, then whenever ej < ~ j's bid is sufficiently low that there is a positive 

probability it will win (Le., bi ej ) < bj(e) for all ej < ~). 

Proposition 3: For e > A.c!2, a second-auction equilibrium is 

(11) bj = (2c1 + Cz)(3 + (3ej + e)/4 for ej > e 

for ej < e 

(12) bj = (Ct + 2Cz)(3 + (ej + e)!2 

where e = e(3 + 4J9A.c, ~ = e - 2A.c(3. 

Proof: See Appendix. 

Equations (11) and (12) imply that for e < 2A.c(3, e is greater than e. Recalling definition 1, this 

15 These definitions hold for any arbitrary belief iG) has about j's (i's) bid function. That is, j takes e as given 
when choosing its optimal bid. Only in equilibrium does j's perception of i's bid function necessarily match 
i's actual bid function. 

11 



means that i bids (cl + 2ez)!3 + e!2 everywhere, and always wins the second auction. 

Propositions 2 and 3 detail the second period equilibrium. Given this equilibrium in the second 

auction, consider the first-auction equilibrium. In order to induce one of the bidders to win the first auction, 

the equilibrium in the first auction must result in returns which equal or exceed the return to losing. Let 1T'2(e.) 

represent the differential second auction profit associated with losing the first auction. As noted above, if e 

< 2/lc!3 the first-auction loser always wins the second auction and 1T'le j) is equal to second-auction profits. 

If e < /lc/2, the winning price is Cz, so 1T'2(ej) equals /lc - e j • while if /lc!2 < e < 2/lc!3, the winning price is (cl 

+ ZCz)!3 + e!2, so that 1T'2(ej) equals 2/lc!3 - e!2 + e j (>0). For e > 2/lc!3, a comparison of equatiOns (11) 

and (12) reveals that for any el, 1T'2(ej) is positive. 

Optimal bidding strategies in the first auction will reflect this equilibrium. Thus, we assume that the 

bidders are informed in the sense that they know 1T'2(ej), and make bids in the first auction that are sufficiently 

high that bidders (weakly) prefer winning to losing in the first auction. On the other hand, when e < 2/lc!3 

the first auction symmetric equilibrium cannot result in a bid which results in profits above that associated 

with these values, since it would always be in one firm's interest to undercut its rival. Hence, 

Proposition 4: If e < /lc/2, the first-auction winner wins at a price of Cz, while if /lc!2 < e < 2t::..c!3 the first­

auction winning bid is (cl + ZCz)!3 + e!2. 

Proposition 4 calculates the first-auction equilibrium when the amount of uncertainty is sufficiently 

small that each vendor always wins one auction. The first auction equilibrium looks somewhat different when 

there is more than a small amount of uncertainty. 

Proposition 5: If 5t::..c!3 > e > 2t::..c!3, there exists a symmetric equilibrium in the first auction of the form bk(~) 
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. e 4ac if ek~-+--
3 9 

. e 4ac - 2ac if -+--:ul~e---
393 

Remark: The proof of this proposition involves sOlving a differential equation. This in turn requires a 

boundary condition - specifically, the bid associated with <; = e. I make the assumption that bl;(e) - c1 - e = 

1r2(e). That is, when a bidder has the highest possible costs, its first-auction return equals the expected second 

period return. 16 

Proof: See Appendix. 

The equilibrium in Proposition 5 exists when St:.c!3 > e > 2t:.c!3. Together, Propositions 4 and 5 

completely characterize the first-auction equilibrium in the sequential auction for St:.c!3 > e. The equilibria 

derived in those propositions are relevant in the range for which the asymmetric equilibrium exists in the 

simultaneous auction. Note that for St:.c!3 < e, a different symmetric equilibrium exists in the sequential 

auction. 

3. Comparison of Prices and Welfare Under Alternative Equilibria 

The previous section derived equilibrium under two alternative auction regimes; one in which auctions 

are held simultaneously, and one in which auctions are held sequentially. These two equilibrium will differ 

16 This assumption appears to be common in the auction literature (see McAfee and MacMillan (1987) or 
Riley and Samuelson (1981». The logic is readily apparent when the distribution of e has an atom at e. In 
that case, a symmetric equilibrium must be characterized by b(e) - c1 - e = 1r2(e), if b(e) is monotonic, since 
each bidder knows the only way it can win is if the other bidder draws e as well. When both bidders have e 
as their cost parameter, a bid by j above c1 + e + 1r2(e) will always induce i to shade. Conversely, if j bids 
c1 + e + 1r2(e), i cannot win if it bids above that amount. The logic is not altered by allowing the atom to 
become arbitrarily small. 
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both in the prices charged and in the resulting production cost. The price comparison would naturally be of 

interest to a buyer with multiple projects. A buyer who knew that one of these two equilibrium would emerge, 

depending on which regime it chose, would of course select the one which resulted in lower prices. As shown 

is section 3.A, if the buyer knows the asymmetric equilibrium will emerge, it will prefer simultaneous auctions, 

as the expected bids are lower in that regime than in the sequential one. 

The other question of interest is which auction regime is likely to result in lower production costs. 

Perhaps surprisingly, the sequential auction will yield lower production costs than the simultaneous auction. 

The intuition can be seen most readily when 4Llc/9 .s. e < 2Llc!3. When the amount of uncertainty falls in this 

range, it is always efficient to have each vendor win one bid. As detailed in Propositions 2 and 3, the 

equilibrium to the sequential auction implies that each vendor will win one bid each whenever e < 2Llc!3. 

Conversely, as long as e ~ 4Llc/9, the probability is non-zero that one vendor will win both bids in the 

simultaneous auction. Hence, for e in this range, efficient production always occurs in the sequential auction, 

but not necessarily in the simultaneous auction. Within the framework presented in section 2, this implies that 

welfare is higher under the sequential auction than the simultaneous auction, although a buyer would choose 

the simultaneous auction. In that framework, buyers have inelastic demand, so that price does not affect the 

number of projects chosen. More generally, if the buyer had a downward-sloping demand for projects (e.g., 

a reservation value), there may be a welfare trade-off (productive vs. allocative efficiency) in choosing between 

the auction regimes. 

One unusual feature of the equilibrium in the simultaneous auction equilibrium is that similarly­

situated individuals behave asymmetrically. As the equilibrium is not unique (there are at least two 

asymmetric equilibria - i.e., one with j bidding a common amount, and one with i bidding a common amount), 

it is possible that a symmetric equilibrium exists as well. In fact, a recent paper by Lang and Rosenthal (1991) 

develop a mixed-strategy equilibrium in a similar context. 

The Lang and Rosenthal model differs from that of this paper in that there is no uncertainty regarding 

cost, but there is a cost of making a bid. In their model, a mixed strategy symmetric equilibrium emerges in 

which each bidder randomizes its lower bid, and makes a second bid if its lower bid is above some value. For 
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the range of lower bids where a second bid is made, the second bid is a decreasing function of the first bid. 

This helps solve the coordination problem since the bidder with the lower first bid cannot win the second bid. 

On the other hand, there is the potential that neither bidder makes a second bid, and in that case, there is a 

50% probability that one project does not get produced. 

The costliness of bidding is essential to their model; without some cost to make a bid the equilibrium 

will not be as described. In fact, there may be no equilibrium if bidding is costless. Conversely, all of the 

equilibria in this paper are contingent on costless bidding. Hence, the results of Lang and Rosenthal cannot 

readily be compared to those in this paper. 

A. Prices Under Alternative Auctions Regimes 

As discussed above, prices will be higher in a sequential equilibrium than in the asymmetric 

simultaneous equilibrium. The intuition for this result can be seen most clearly when 4ac;9 < e < 2ac/3. 

Let player 2's realization of the uncertainty parameter Ct, be lower than player l's (Le., ~ < e1). When 4ac/9 

.:S. e .:S. 2ac/3, there is no real uncertainty in the sequential auction, since bidder 1 always wins the second 

auction. When e < 2ac/3, bidder 1 possesses a cost advantage, in that it knows it will be the lower-cost bidder 

(given that the bidder 2 already won one auction). As a result, bidder I's winning bid in the second auction 

is equal to the minimum potential value of player 2's bid for a second project, as shown in Propositions 2 and 

4. 

Conversely, in the simultaneous auction when e is in this range, neither bidder knows how many bids 

it will win. Consequently, the bid functions reflects the possibility that a higher bid may result in a lower 

probability of winning. When ac/2 < e < 2ac/3, the sum of the winning bids in the sequential auction is (~ 

+ Zc,)/3 + e, while the maximum possible value in the simultaneous auction is (5c1 + ~)/4 + (29/16) e, 

which is less than (~ + 2c1)/3 + e for e < 28/37 ac.17 Hence the sum of the bids in the simultaneous 

auction is less than in the sequential auction for e < 2ac/3. 

For values of e greater than 2/lc/3, the expression for the sum of the winning bids in the sequential 

17 When 4/le/9 < e < ae/2, the same conclusion holds. 
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auction becomes more complicated. Nonetheless, the conclusion holds that prices are higher in the sequential 

equilibrium. The expressions in Table 1 represent the sum of the winning bids in the sequential equilibrium 

minus the sum in the asymmetric simultaneous equilibrium, for alternative values of e, and ej" In each case, 

the expression can be shown to be positive for all relevant value of e (Le., for 2tJ.c{3 < e ~ 4tJ.c(3).18 

This analysis implies that !f the buyer knew that the asymmetric equilibrium would emerge, it would 

choose to use simultaneous auctions instead of sequential ones. However, as noted, the asymmetric 

equilibrium is not unique as there are at least two asymmetric equilibria and perhaps a symmetric one as well. 

Thus, the conclusion that buyers choose simultaneous auctions because they know lower prices will emerge 

rests on the assumption that a specific equilibrium will emerge. 

One justification for this assumption is the empirical observation of the bids portrayed in figure 1, 

along with evidence that increasing costs do appear relevant to the industries in question. Although it is not 

clear how such an equilibrium emerged, both bidders and the buyer will have their expectations confirmed if 

they believe the equilibrium will persist 

A perhaps more satisfying justification could be based on introducing a dynamiC element to the model. 

For example, suppose that there is a single incumbent seller facing an entrant. If possible, the incumbent will 

attempt to commit to a bid function featuring identical bids on the two projects.19 If such a commitment is 

credable, the asymmetric equilibrium will emerge after entry. 

Finally, recall that the asymmetric equilibrium only exists if the amount of uncertainty is small relative 

to the slope of costs. Hence, one prediction of the model is that even when costs are increasing, sequential 

auctions will tend to be used when costs are subject to considerable uncertainty. One would expect more 

uncertainty for projects which are complex, such as those procured by the military, rather than the type 

procured by local governments or building contractors. 

18 For example, when e < ei < tJ.c(2 - e/8 and e < ej < e, the difference can be written 4tJ.c!9 + e{3 + 3 em.J4 -
emin - ej2. Since emax ~ emin' this expression is greater than 4tJ.c!9 + e{3 - emiJ4 - ej2, which is positive since 

both emin and ej are less than e (= 4tJ.c!9 + e(3). 

19 In the equilibrium of Proposition 1, bidder j's profits exceeds those of bidder i. 
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B. Production Costs Under Alternative Equilibria 

The Introduction discussed how the existence of increasing costs led to a type of coordination 

problem. While total production costs may be minimized by one bidder winning one-half the projects, each 

bidder cannot know how many projects he will win. If a symmetric, pure strategy equilibrium emerges, where 

bids are increasing functions of costs, a small difference in costs will lead to one bidder winning both bids with 

a probability of one-half. 20 

In section 2, I derived two alternative equilibria which might alleviate the coordination problem. One 

way of seeing the impact of alternative equilibria is to compare the likelihood that production cost is not 

minimized. Suppose that e1 > ~ so that bidder 1 has a cost schedule which lies above that of bidder 2. 

Social cost is minimized by vender 2 winning both auctions if and only if ac < e1 - Cz. When e < ac, this 

condition cannot be satisfied, and it is always efficient to have each vendor produce one project. 

The probability that one bidder wins both projects under the sequential auction is 

In the asymmetric equilibrium, let x = ej - ej • Using equation 7A - 70, one player wins both auctions 

when ac(2 + e/8 < x < e/8 - aC(2, so that the probability of inefficient production is 

dx+ 

20 As we have not demonstrated the existence of a symmetric equilibrium, the symmetric case can be view as 
a benchmark with which to compare the alternative equilibrium" 
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Table 2 compares the probability that one bidder wins both auctions under these two equilibria for 

alternative values of e « ac). Note that the probability of inefficient production is always lower for the 

sequential equilibrium, but the asymmetric equilibrium still results in probability well below the 50% 

probability associated with the symmetric equilibrium. 

This suggests the sequential equilibrium results in lower production costs than the asymmetric 

equilibrium, which in tum is lower than the symmetric equilibrium. These conclusion remain when expected 

costs are explicitly calculated. Table 3 calculates the difference in expected costs between those resulting from 

the equilibria to the auction in question and those that minimize production costs. For example, if e = .85 

and ac = 1, the expected excess costs (above those that minimize production costs) associated with the 

asymmetric equilibrium are .078, while the excess costs associated with the sequential equilibrium are .004. 

Figures 5 and 6 show the excess production costs for each auction for alternative values of e. 

4. Conclusion 

This paper developed a model of bidding for multiple projects under increasing costs. Such a model 

appears applicable to certain products regularly purchased through auctions by government agencies. When 

bidders have increasing costs, it will generally be desirable to allocate projects evenly across bidders. The 

results of this paper suggest that any auction mechanism may fail to optimally allocate projects. Further, the 

analysis suggests that the auction regime rationally chosen by buyers may result in higher expected production 

costs than alternative regimes available to them. 

These results, as well as other recent work, suggest that noncooperative behavior can lead to bids that 

may appear to result from collusion. Further, this paper modeled the simplest type of interdependency across 

projects. The noncooperative equilibrium may consist of more complicated bids when cost interdependencies 

are related to optimal routing of delivery trucks or lumpiness in production facilities. Absent a clear notion 

of what the non cooperative equilibrium looks like, antitrust enforcement based on finding "suspicious" bidding 

patterns seems ill-advised. 
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APPENDIX 

Proof of Lemma 1: To derive i's optimal bid functions, I first calculate the probabilities in equation 1. Since 

player j bids the same amount on both projects, and those bids are linear functions of ej (see Lemma 2), bi 

= bil = bi2, will be uniform as well. Without loss of generality let bi
l < biz. Then 

mfII(bJ(t),b1~ 

J j{b')dbJ =(min(b;.hJ(e» - bt)/(bJ(e) -bJ(O». 
b ' 1 

~bJ(;). b~ 

and P(L,W) = O. 

J j{b')dbJ=(max (bJ(e),bz)-bz)/(bJ(e)-bJ(O». 
,,; 

Using these probabilities bidder i's objective function is 

(AI) 'Tr = l/(bi(~) - bi(o» [(bl
i 

- ~ - ei) (bi2 - bi
I) + (bl

i + bZ
i 

- C1 - Cz - 2ei) (bj(~) - bi2)] + ).,1 (b\ - bi(O» + 

).,2 (bi(~) - biz) 

For values of ei which satisfy the two constraints, the first-order conditions are 

so that player i chooses bl
i and b2

i to satisfy 

(A4) bl
i = (cI + ei + bi(e))/2 

(AS) bz
i = (Cz + ej + bi(e»/2. 
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Note that if e, < 2bi(0) - ci - bi(e), A2 implies bl; < bi which violates the first constraint. Hence i's 

optimal bids are 

(2) bl
l = (ci + e, + bi(e»/2 if el > 2bi(0) - ci - bi(e) .=. e 

= bi(O) if ei < e 

(3) b2
i = (~ + e, + bi(e»/2 .• 

Proof of Lemma 2: Bidder j's objective function is 

(A6) 1T = (bli - ci - ei) P(W,L) + (bi - ci - ei) P(L,W) + (bli + bi - ci - ~ - 2 ei) P(W,W) 

Since i's bids are both increasing in ei, the probability of j winning a bid is not independent of the 

outcome in the other auction. In fact since the difference between i's higher and lower bid will be Ilc/2 over 

some range, the probability in (A6) will depend on whether j's bids are more or less than Ilc/2 apart. In what 

follows I assume that j's bids are less than Ilc/2 apart. It can be shown that j's profit from bids less than Ilc/2 

apart (i.e., equations 5 and 6) are higher than the profit from optimal bids when those bids are constrained 

to be more than Ilc/2 apart. 

To derive j's optimal reactions, it is necessary to develop expressions for the probabilities in (A6). 

Since bidder j does not know which project has the lower bidder i bid, the likelihood that j is bidding against 

i's lower bid is the same on the two projects. Hence the probability that j wins both bids is 

P(W,W) = 1/2 P(W,W I bl
i < b2

i
) + 1/2 P(W,W I bl

l > bz
i
) = 1/2 P[(bli < bl

i
), (bzi < bz;) I bl; < bz

i
] + 1/2 P[(b! 

< bl
l
), (bi < bZ

I
) I bl

l > bz
l
]. 

Evaluating the two conditional probabilities separately, first suppose that bl
i < b2

i 

i) If bl
i < bz

i then since bzi < bli + Ilc/2, j's winning the first bid implies it wins the second bid so that P(W,W) 

= P[(bI
J < bl

i
) .=. P[(bli < bL

i
). 

If bIi(O) > bl;(e) (as shown in Proposition 1, this requires e < 4Ilc!3), then j can only win when ei > 

e, and this probability becomes 

Since bL
i is a linear function of ei for el > e with abLi/Oej = 1/2, this equals 2(bL

i(e) - bIi)/e. 
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- bi(e) 1- , 

P(W,W) =P(b/<bi) = e:i f f(bjdb1 = _b:::...L(_e>_-_b;:.l. -I __ e_-_i_t -
e b' e bL(e)-bii> 

I 

e 

Since the two cases are equally likely, P(W,W) = 

In calculating P(W,L), the sign of b1
i- b2

i is again relevant. P(W,L) = p[b1
i < b1

i and b2
i < bi]. 

relationship between b1
i and b2

i
, j will win the first bid but lose the second if b1

i < bH
i < b2

i + lle/2 for e j > 

~. Similarly, for e. < ~ (assuming bAO) < b2i(~», j will win the first bid and lose the second if b1
i < bH', so 

that 

e-e 
bz' + Ilc -bl' 2 + i blAe)-b/ 

e blAi)-blAO) e e 
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ii) if bl
i < bZ

i , and bi < bj + ilcl2, P(W,L) = O. 

Since it is equally likely that bl
i < bZ

i or bl
i > bZ

i, P(W,L) equals 

e 

Symmetrically, P(L,W) equals 

e 

Given these probabilities, differentiating equation A6 with respect to b l
j and bz

j yields the following 

first-order conditions: 

A7) (bt
j 

- cI- ej)(-2) + (bz
j + ilcl2 - 2bl

j+ bH\e» + (bj- ci - ej) 

- (bl
j + b2

j 
- ci - Cz - 2ej ) + (2bL

i(t!) - bl
j 

- bh = 0 

A8) (blj - ci - ej ) + (bl
j + ilcl2 - 2bj + bHi(e» - 2(bj- ci - ej ) 

- (b t
J + bj - ci - Cz - 2ej ) + (2bL

i(t!) - bl
j 

- bz
j
) = 0 

(5) bl
j = (ci + Cz)/4 + ej2 + (bHi(e) + 2bL

i(t!»)/6 

(6) b2
J = (ci + Cz)/4 + ej2 + (bHi(e) + 2bL

i(t!»/6. 

Thus, if bi and bj are constrained to be at most ilcl2 apart, j's optimal strategy is to be bid the same 

amount on both projects. When the bids are constrained to be at least ilcl2 apart, the optimal bids turn out 

to be exactly ilcl2 apart. Since this same profit is available when j's bids are constrained to be at most ilcl2 

apart, the profit resulting from identical bids (as in 5 and 6) is greater than that associated with bids ilcl2 

apart .• 

Proof of Proposition 3: Given t! > ilcl2, the first-auction winner, j solves 
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For ej < ~, the probability that bj < bi is 

Where ft is the density of bi(ei) for ei < ~ and f2 is the density of blei) for ei >~. If i bids as in equation 11 

Since bi is distributed uniformly for t1 > ~, this can be written 

Hence, j's maximization becomes 

max IT} - T] 
=(b -c -e J(b.(e)-b J._ b ) 2 f' I f'-

} e-~ 

and the first-order condition for a maximum is 

for ej < ~. 

By construction, for ej > ~ there are no profitable bids for bidder j. Hence, a computationally-simple 

assumption is that j plays the weakly dominant strategy of bidding as in equation A9 for all ej • 

The first-auction loser, bidder i maximizes 
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bJeJ 

Prob (b/<b)= f j(b)dbj 
bl 

Given j's strategy, bj is a linear function of ej so this probability becomes 

= b/.e~-bi 
bie~-biO) 

Hence, i's maximization can be rewritten 

and the first-order conditions for a maximum are 

AlO) bi = (c1 + ei + ble.»!2 + A 

and b i > bJ(O). 

Solving A9) and AlO) simultaneously yields 

A9') bj = (c1 + 2~)/3 + (ej + e)!2 

AlO') bi = (2c1 + ~)/3 + (3e j + e)/4 for e j > e 

Hence, the second-auction equilibrium is 

11) bi = (~ + ~)/3 + (3e j + e)/4 for e. .2:. e 

where e = e/3 + 4A.c!9, e = e - 2A.c/3 .. 

Proof of Proposition 5 

Given the second-auction equilibrium, player k (=i,j) maximizes 

where Tr/ (> 0) is the difference in second-auction profits between lOSing and winning the first auction. The 

probability term in the objective function can be rewritten 

24 



where B is k's bidding function. If a symmetric equilibrium is to hold in the first auction, bk = B(eJ, so that 

the Objective function can be rewritten 

Taking the derivative with respect to ~ yields the bidding function, 

A12) d1T/d~ = (F(~) - 1) (1 + Orr21:/0eJ 

To solve this first-order differential equation, note when ~ < 5fl.c/3, ~ < ~, so that equations (11) and 

(12) imply that 1T/(eJ = 

fl.c/3[2 - (~ - eJ/(~ - ~)] + (~ - ~ - ~)!2 for ~ < ~ 

2fl.c/3 + ~!2 - ~ for ~ < el: < ~ 

[fl.c/3 - (~ - eJ/4][3(~ - ~)!2 + 2 fl.c/3)]1~ for ~ >~. 

a) For ~ ~~, the solution to the differential equation in A12) equals 

- -e e 

f dlI f 2fl.C de dx= (F(x) -1)(1--_ ) dx 
e It 3e 

e 

=> A..13) n(e)-n(e)=f(F(x)-1) (1- 2fl._C)dx. 
e 3e 

The assumption that 1T(e) .=. [bk(e) - c1 - e - 1T2k(e)] = 0 means that equation A13) can be rewritten 

e 

A.14) n(e) = f(1-F(X» dx(l- 2fl._C). 
It 3e 

and using equation Al1, 

Since 1 - F(x) = (~ -x)/~, the integral on the right-hand side equals 
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~ 

j 2L\c 
(l-F(x»dt(I--::-) 

e 3e 
(I-F(e» 

t j{e-x)dx 
(i-e;/ 

using the fact that j(1-F(x»)dx--'-~--
e ie 

Hence, using the definitions of F(x) and Tr/, 

b) When ~ < e.:s. e, a-rrNae ... = 1, so that the right-hand side of equation AI2) equal zero. That is, the sum 

of the production cost and the opportunity cost of winning (Trl) is the same for all e in this range. To 

calculate the equilibrium bids, we note that since the total cost the same for all e, it must be the case that the 

expected profit is the same for all e in that range. In particular, 

<=> 

since e... + Tr2(e...) = e + Tr/(e). From equation A16) we know 

Hence 

26 



A.. 17) 

Such a bid represents an equilibrium since no alternative bid yields higher profits (although for most 

e in this range, small increases or decreases from this strategy yield equal profits). 

c) For t\ < e, the solution to AI2) equals 

Using AI7 and the definition of '7T2(t\) 
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SOCIAL LOSS UNDER SEQUENTIAL AUCTION REGIME 
WHEN DELTA C = 1 
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Difference Between Bid Prices Under Sequential and Simultaneous Auctions 
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PROBABILITY THAT ONE 
BIDDER WINS BOTH AUCTIONS 

e 

0.47 
0.52 
0.57 
0.62 
0.67 
0.72 
0.77 
0.82 
0.87 
0.92 
0.97 

1 

ASYMMETRIC 
SIMULTANEOUS 

EQUILIBRIUM 

(ilc = 1) 

TABLE 2 

1.6% 
1. 6% 
2.4% 
4.3% 
6.9% 
9.7% 

12.7% 
15.6% 
18.5% 
21. 3% 
24.0% 
26.6% 

SYMMETRIC 
SEQUENTIAL 
EQUILIBRIUM 

0.0% 
0.0% 
0.0% 
0.0% 
0.0% 
0.1% 
0.4% 
1.0% 
1. 6% 
2.4% 
3.3% 
4.0% 



e 
---------

0.05 
0.1 

0.15 
0.2 

0.25 
0.3 

0.35 
0.4 

0.45 
0.5 

0.55 
0.6 

0.65 
0.7 

0.75 
0.8 

0.85 
0.9 

0.95 
1 

1.05 
1.1 

1.15 
1.2 

1.25 
1.3 

(6.c = 1.) 

COMPARISON OF EXPECTED SOCIAL LOSS 
UNDER ALTERNATIVE AUCTION REGIMES 

SIMULTANEOUS 
SEQUENTIAL ASYMMETRIC SYMMETRIC 

----------- -------------------------
0.000 0.000 0.492 

0.000 0.000 0.483 

0.000 0.000 0.475 

0.000 0.000 0.467 

0.000 0.000 0.458 

0.000 0.000 0.450 

0.000 0.000 0.442 

0.000 0.000 0.433 

0.000 0.000 0.425 

0.000 0.004 0.417 

0.000 0.012 0.408 

0.000 0.022 0.400 

0.000 0.034 0.392 

0.000 0.046 0.383 

0.001 0.058 0.375 

0.003 0.069 0.367 

0.004 0.078 0.358 

0.005 0.086 0.350 

0.007 0.093 0.342 

0.008 0.099 0.333 

0.008 0.103 0.325 

0.008 0.107 0.317 

0.008 0.109 0.309 

0.008 0.110 0.301 
0.008 0.111 0.293 

0.007 0.111 0.286 

TABLE 3 


