Antitrust Contests

Michael R. Baye Federal Trade Commission & Indiana University

> Paul A. Pautler Federal Trade Commission

> > &

Joshua D. Wright Fed<u>eral Trade Commission & George Mason University</u>

This work in progress is our own and does not necessarily reflect the views of the Federal Trade Commission or any of the individual Commissioners.

Motivation

- Way Cool Data
 - FTC wins and losses in antitrust cases
 - Various measures of "effort" by FTC and defendants to win antitrust contests
 - Expenditures on experts
 - Expenditures on staff
 - Number of staff
 - And more
 - Data on other variables potentially influencing wins and losses
 - Judge training, party, age, complexity of cases
 - HSR Filings, merger activity
 - And more
- Unique opportunity to structurally estimate Tullock model of an antitrust contest
- Work in progress, comments appreciated

Roadmap

- Theoretical foundations of structural estimation
- Overview of antitrust contests in the US
- Data
- Structural estimates
- Monte Carlo results: Reliability & bias
- Conclusions

Theoretical Foundations

- Two contestants
 - □ FTC (player 1)
 - Defendant (player 2)
- Potentially different values to each of winning and losing
- Contest Success Function:

Model 1 (Generalized Tullock)

 $\Pr\left(\mathsf{FTC Wins}|X\right) = p\left(x_1, x_2\right)$

$$= \frac{\sigma x_1^r}{\sigma x_1^r + x_2^r}$$

$$= \frac{1}{1 + \frac{1}{\sigma} \left(\frac{x_2}{x_1}\right)^r}$$
$$\equiv \frac{1}{1 + \frac{1}{\sigma} z^r}$$

Model 2 (Logistic)

$\Pr\left(\mathsf{FTC}\;\mathsf{Wins}|X\right) = F\left(X\beta\right)$

where *F* is logistic:

$$F(\omega) = \frac{\exp(\omega)}{1 + \exp(\omega)}$$

Pros and Cons

- Advantage of Generalized Tullock
 - Well established theoretical literature (by all of you and others)
- Advantages of Logistic
 - Structural micro foundations (McFadden and others)
 - Empirically estimable using standard logit estimation rather than problematic binomial MLE methods

Key Result: Structural Equivalence

Model 2 structurally equivalent to Model 1 when

$$X\beta = \ln \sigma - r \ln z$$

- Can use logit estimation to structurally estimate r and σ
 - Regress binary outcomes (*FTC* win = 1, *FTC* loss = 0) on CONSTANT and ln(z)
 - Recover *r* from the coefficient of ln(z)
 - Recover $\sigma = exp(CONSTANT)$
 - Even a theorist can run this using Stata:
 - logit ftcwins lnz, robust

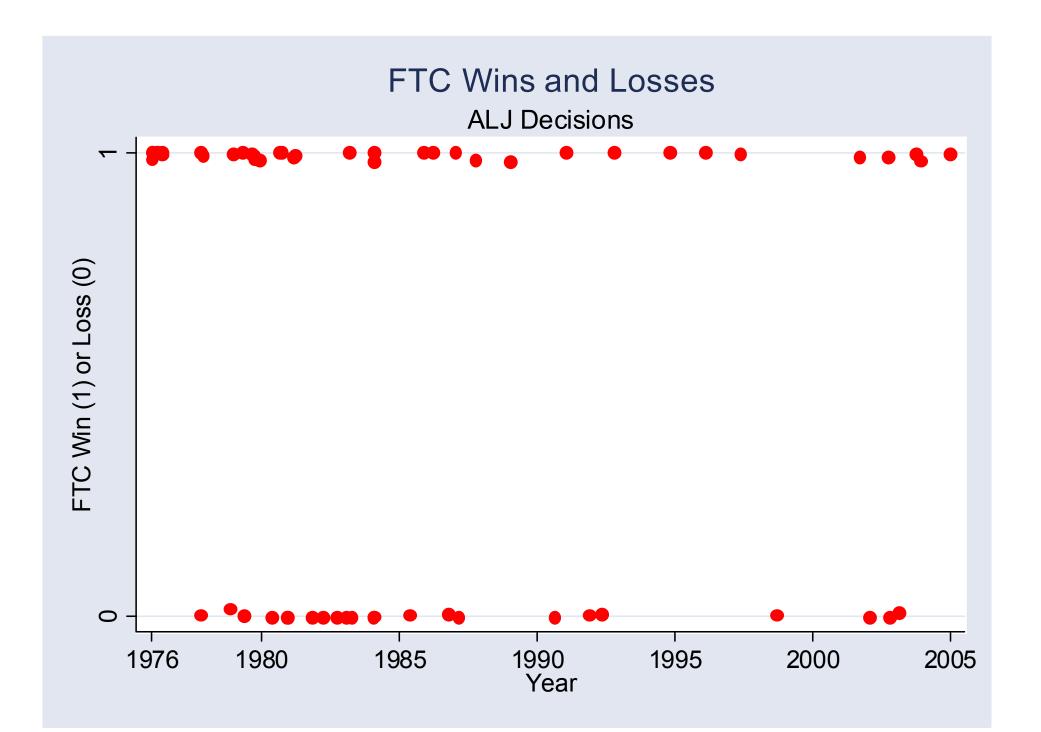
Remark 1

Can easily generalize to allow σ and r to depend on other explanatory variables

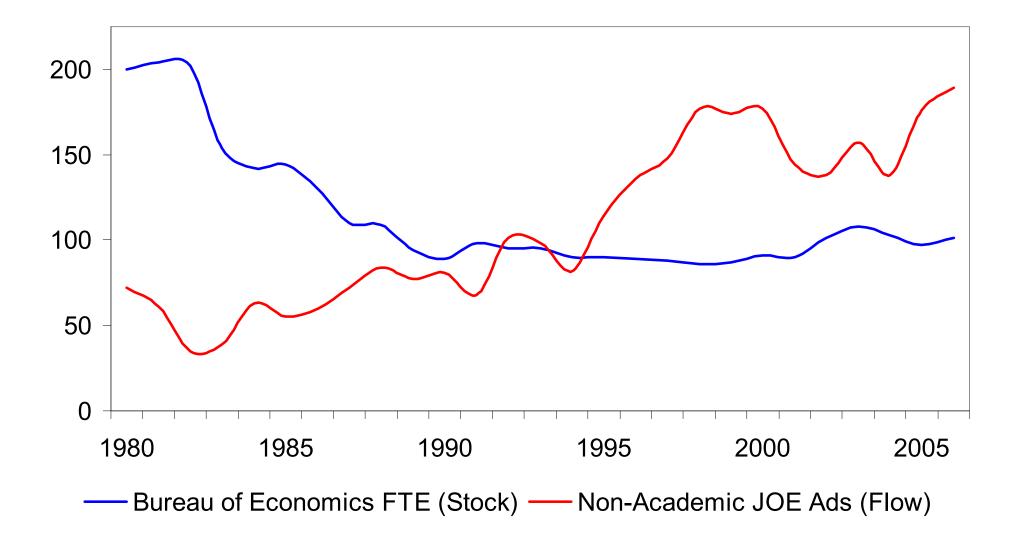
Remark 2

 Structural equivalence works for more general contest success functions, such as

$$p(x_1, x_2) = \frac{\alpha_1 x_1^r}{\alpha_1 x_1^r + \alpha_2 x_2^r}$$
$$= \frac{1}{1 + \frac{\alpha_2}{\alpha_1} \left(\frac{x_2}{x_1}\right)^r}$$
$$\equiv \frac{1}{1 + \rho z^r}$$


u But cannot separately identify α 's, only the ratio

Remark 3


- Not generally feasible to exploit additional structure
 - For $\sigma > 0$, r > 0 equilibrium in mixed-strategies guaranteed, but structure of strategies generally unknown except for specific values of σ and r
 - For some parameter configurations, equilibrium is in pure strategies, but these regions depend on *r*, *σ*, as well as the (*unknown*) values of winning and losing

Antitrust Process & Data

- Merger cases (HSR filings)
- Non-merger investigations
- Settlement/Litigation
- Data overview
 - □ 60 cases litigated before an ALJ, 1976-2005
 - $\square Pr(FTC Wins) = .62$

Economic Labor Effort (FTC vs. Outside Parties)

	Table 2: Implied Structural Parameters											
	Bas	eline	Random Effects									
	(1) Baseline	(2) Controls for Type of Case	(3) Unobserved Case Heterogeneity	(4) Unobserved Case Heterogeneity	(5) Unobserved ALJ Heterogeneity	(6) Unobserved ALJ Heterogeneity						
r	0.26	0.31	0.27	0.33	0.26	0.31						
Sigma (Pooled)			0.74		0.75							
Sigma (Merger Case)		0.51		0.49		0.51						
Sigma (Other Case)		0.79		0.78		0.79						

	Table 2: Implied Structural Parameters											
	Bas	eline	Random Effects									
	(1) Baseline	(2) Controls for Type of Case	(3) Unobserved Case Heterogeneity	(4) Unobserved Case Heterogeneity	(5) Unobserved ALJ Heterogeneity	(6) Unobserved ALJ Heterogeneity						
r	0.26	0.31	0.27	0.33	0.26	0.31						
Sigma (Pooled)			0.74		0.75							
Sigma (Merger Case)		0.51		0.49		0.51						
Sigma (Other Case)		0.79		0.78		0.79						

	Table 2: Implied Structural Parameters											
	Bas	eline	Random Effects									
	(1) Baseline	(2) Controls for Type of Case	(3) Unobserved Case Heterogeneity	(4) Unobserved Case Heterogeneity	(5) Unobserved ALJ Heterogeneity	(6) Unobserved ALJ Heterogeneity						
r	0.26	0.31	0.27	0.33	0.26	0.31						
Sigma (Pooled)			0.74		0.75							
Sigma (Merger Case)		0.51		0.49		0.51						
Sigma (Other Case)		0.79		0.78		0.79						

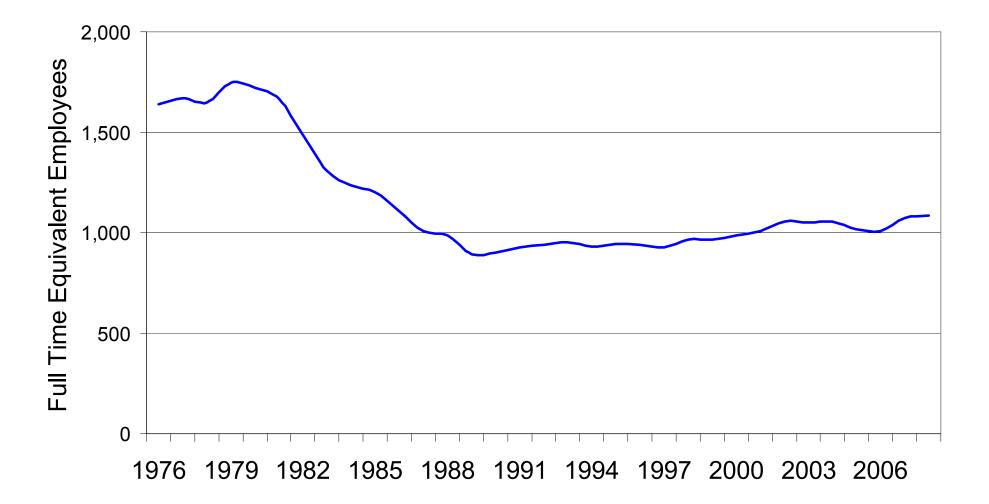
	Table 2: Implied Structural Parameters											
	Bas	eline	Random Effects									
	(1) Baseline	(2) Controls for Type of Case	(3) Unobserved Case Heterogeneity	(4) Unobserved Case Heterogeneity	(5) Unobserved ALJ Heterogeneity	(6) Unobserved ALJ Heterogeneity						
r	0.26	0.31	0.27	0.33	0.26	0.31						
Sigma (Pooled)			0.74		0.75							
Sigma (Merger Case)		0.51		0.49		0.51						
Sigma (Other Case)		0.79		0.78		0.79						

	T	able 1: Res	ults of Logistic S	tructural Estima	tion				
	Bas	eline	Random Effects						
	(1) Baseline	(2) Controls for Type of Case	(3) Unobserved Case Heterogeneity	(4) Unobserved Case Heterogeneity	(5) Unobserved ALJ Heterogeneity	(6) Unobserved ALJ Heterogeneity			
LN(z)	-0.256	-0.309	-0.269	-0.327	-0.258	-0.311			
	(0.72)	(0.84)	(0.65)	(0.78)	(0.68)	(0.80)			
MERGER DUMMY		-0.435		-0.458		-0.432			
		(0.79)		(0.77)		(0.79)			
CONSTANT	-0.281	-0.231	-0.297	-0.247	-0.287	-0.238			
	(0.26)	(0.21)	(0.25)	(0.20)	(0.25)	(0.20)			
Observations	60	60	60	60	60	60			
Number of ALJ's					17	17			
Number of Cases			60	60					
Note: Robust z statistics in	parentheses								

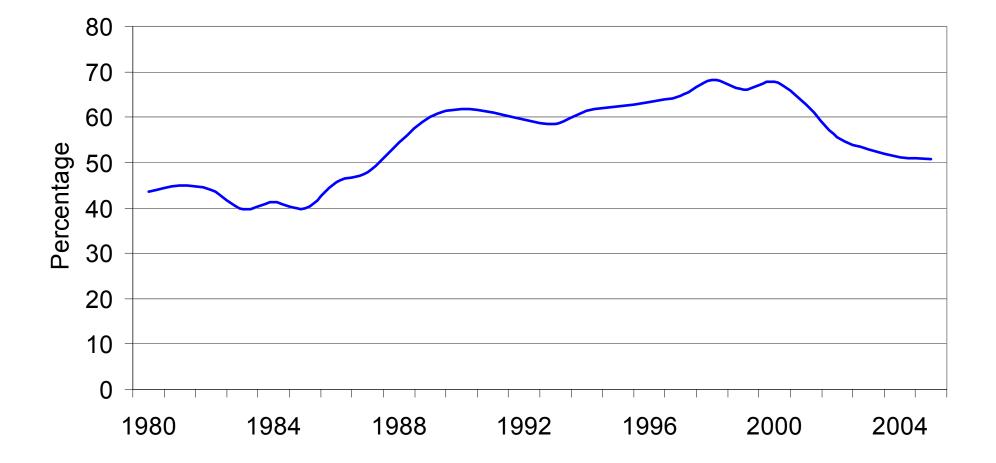
	T	able 1: Res	ults of Logistic S	tructural Estima	tion				
	Bas	eline	Random Effects						
	(1) Baseline	(2) Controls for Type of Case	(3) Unobserved Case Heterogeneity	(4) Unobserved Case Heterogeneity	(5) Unobserved ALJ Heterogeneity	(6) Unobserved ALJ Heterogeneity			
LN(z)	-0.256	-0.309	-0.269	-0.327	-0.258	-0.311			
	(0.72)	(0.84)	(0.65)	(0.78)	(0.68)	(0.80)			
MERGER DUMMY		-0.435		-0.458		-0.432			
		(0.79)		(0.77)		(0.79)			
CONSTANT	-0.281	-0.231	-0.297	-0.247	-0.287	-0.238			
	(0.26)	(0.21)	(0.25)	(0.20)	(0.25)	(0.20)			
Observations	60	60	60	60	60	60			
Number of ALJ's					17	17			
Number of Cases			60	60					
Note: Robust z statistics in	parentheses								

	T	able 1: Res	ults of Logistic S	tructural Estima	tion				
	Bas	eline	Random Effects						
	(1) Baseline	(2) Controls for Type of Case	(3) Unobserved Case Heterogeneity	(4) Unobserved Case Heterogeneity	(5) Unobserved ALJ Heterogeneity	(6) Unobserved ALJ Heterogeneity			
LN(z)	-0.256	-0.309	-0.269	-0.327	-0.258	-0.311			
	(0.72)	(0.84)	(0.65)	(0.78)	(0.68)	(0.80)			
MERGER DUMMY		-0.435		-0.458		-0.432			
		(0.79)		(0.77)		(0.79)			
CONSTANT	-0.281	-0.231	-0.297	-0.247	-0.287	-0.238			
	(0.26)	(0.21)	(0.25)	(0.20)	(0.25)	(0.20)			
Observations	60	60	60	60	60	60			
Number of ALJ's					17	17			
Number of Cases			60	60					
Note: Robust z statistics in	parentheses								

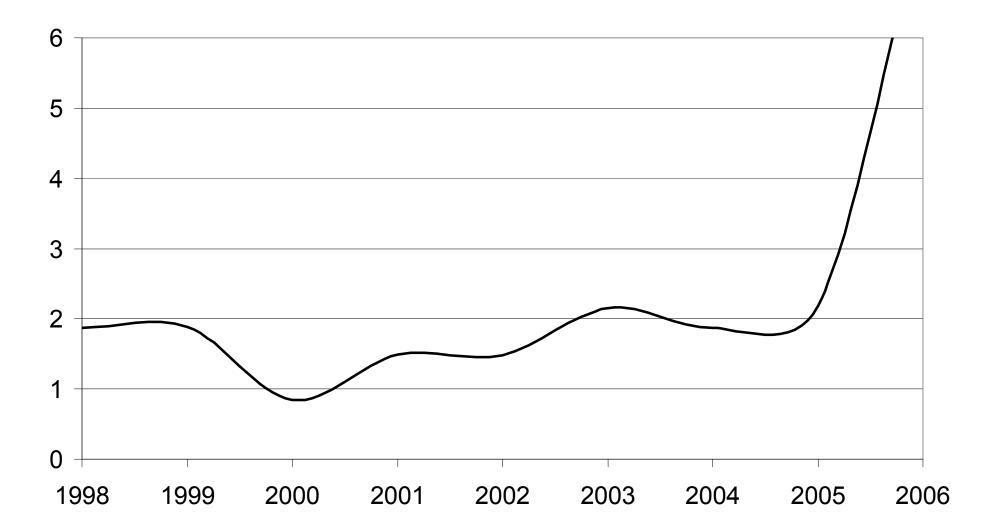
	Та	able 1: Resu	Its of Logistic St	tructural Estima	tion				
	Base	eline	Random Effects						
	(1) Baseline	(2) Controls for Type of Case	(3) Unobserved Case Heterogeneity	(4) Unobserved Case Heterogeneity	(5) Unobserved ALJ Heterogeneity	(6) Unobserved ALJ Heterogeneity			
LN(z)	-0.256 (0.72)	-0.309 (0.84)	-0.269 (0.65)						
MERGER DUMMY	· · · · · ·	-0.435	(0.00)	-0.458	· · · · · ·	-0.432			
		(0.79)		(0.77)		-0.79			
CONSTANT	-0.281	-0.231	-0.297	-0.247	-0.287	-0.238			
	(0.26)	(0.21)	(0.25)	(0.20)	(0.25)	(0.20)			
Observations	60	60	60	60	60	60			
Number of ALJ's					17	17			
Number of Cases			60	60					
Note: Robust z statistics in	parentheses								

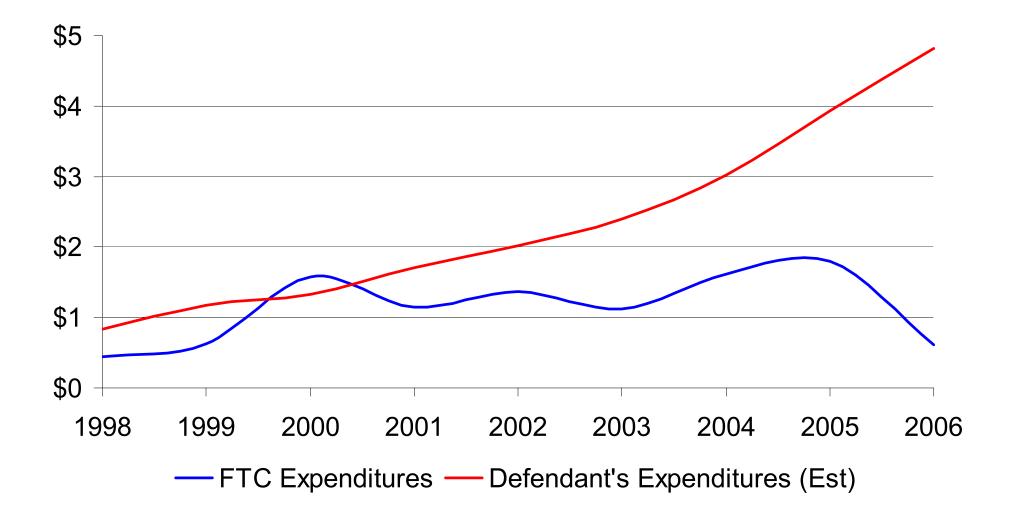

	T	able 1: Res	ults of Logistic S	tructural Estima	tion				
	Bas	eline	Random Effects						
	(1) Baseline	(2) Controls for Type of Case	(3) Unobserved Case Heterogeneity	(4) Unobserved Case Heterogeneity	(5) Unobserved ALJ Heterogeneity	(6) Unobserved ALJ Heterogeneity			
LN(z)	-0.256	-0.309	-0.269	-0.327	-0.258	-0.311			
	(0.72)	(0.84)	(0.65)	(0.78)	(0.68)	(0.80)			
MERGER DUMMY		-0.435		-0.458		-0.432			
		-0.79		-0.77		-0.79			
CONSTANT	-0.281	-0.231	-0.297	-0.247	-0.287	-0.238			
	(0.26)	(0.21)	(0.25)	(0.20)	(0.25)	(0.20)			
Observations	60	60	60	60	60	60			
Number of ALJ's					17	17			
Number of Cases			60	60					
Note: Robust z statistics in	parentheses								

	T	able 1: Res	ults of Logistic S	tructural Estima	tion				
	Bas	eline	Random Effects						
	(1) Baseline	(2) Controls for Type of Case	(3) Unobserved Case Heterogeneity	(4) Unobserved Case Heterogeneity	(5) Unobserved ALJ Heterogeneity	(6) Unobserved ALJ Heterogeneity			
LN(z)	-0.256	-0.309	-0.269	-0.327	-0.258	-0.311			
	(0.72)	(0.84)	(0.65)	(0.78)	(0.68)	(0.80)			
MERGER DUMMY		-0.435		-0.458		-0.432			
		-0.79		-0.77		-0.79			
CONSTANT	-0.281	-0.231	-0.297	-0.247	-0.287	-0.238			
	(0.26)	(0.21)	(0.25)	(0.20)	(0.25)	(0.20)			
Observations	60	60	60	60	60	60			
Number of ALJ's					17	17			
Number of Cases			60	60					
Note: Robust z statistics in	parentheses								


Better Data?

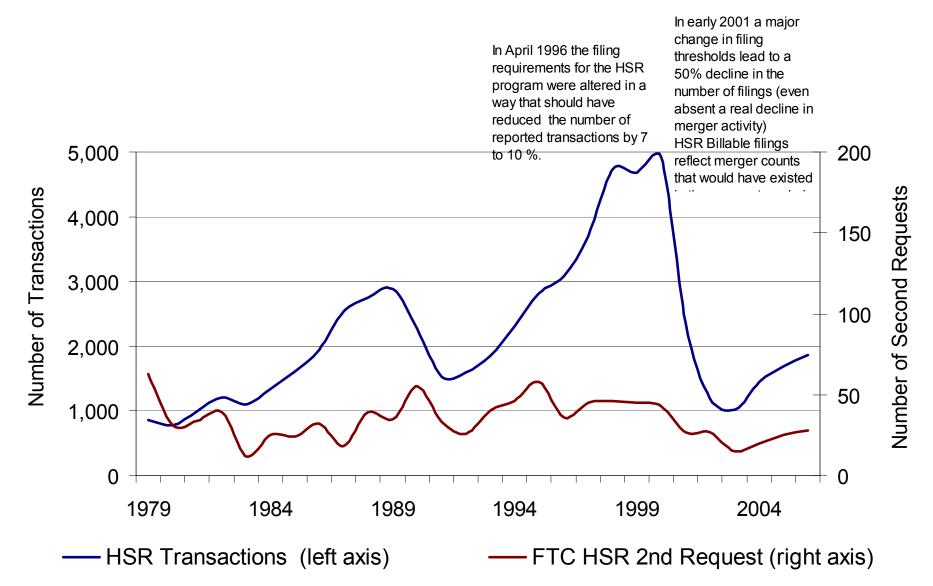
- Include other inputs (attorneys)
- Adjustments for time on antitrust versus other activities (consumer protection or advocacy)
- Expenditures on experts


Total FTC Employees


Percentage Allocation of Economist Time for Antitrust

Example of Alternative z Measure: Estimated Defendant Expenditures on Economic Experts Relative to that of the FTC

Estimates of FTC and Defendant's Expenditures on Economic Experts (Antitrust)


Results From These Data

- Similar sorts of estimates
- No more reliable

What About Endogeneity?

- Merger activity
- Selection issues
- Endogenous effort
 - Impose restrictions on z implied by PSNE and use proxies for values of winning

Hart-Scott-Rodino Transactions & Second Requests

Accounting for Endogeneity

Doesn't help!

What's going on?

Monte Carlo

Generated data from a "true" model

$$r \in \{.25, 1, 1.5\}$$

 $\sigma \in \{.25, 1, 1.5\}$

- Low, medium, high cross sectional variation in z (measured by coefficient of variation)
- 20 obs, 60 obs, 400 obs
- Replicated 10,000 times each

Table 5a: Monte Carlo	Table 5a: Monte Carlo Results for Structural Estimation, CV(z) = 14%, Sample Size = 60										
Parameter or		True Parameters									
Summary Statistic		σ = .25	5		<i>σ</i> = 1			$\sigma = 1.5$	5		
	r = .25	r = 1	r = 1.5	r = .25	r = 1	r = 1.5	r = .25	r = 1	r = 1.5		
r-hat	0.30	1.09	1.57	0.25	1.07	1.61	0.30	1.05	1.58		
bias(r-hat)	0.05	0.09	0.07	0.00	0.07	0.11	0.05	0.05	0.08		
sd(r-hat)	2.55	2.57	2.65	1.97	1.99	2.00	2.01	2.05	2.03		
pseudo t-statistic	0.12	0.43	0.59	0.13	0.54	0.81	0.15	0.51	0.78		
min(rhat)	-17.61	-11.52	-12.84	-7.48	-6.37	-6.13	-8.13	-7.86	-7.45		
max(rhat)	12.79	14.36	31.47	12.15	9.43	9.97	9.45	14.31	11.87		
σ-hat	0.25	0.25	0.25	1.04	1.03	1.04	1.58	1.58	1.58		
bias(σ-hat)	0.00	0.00	0.00	0.04	0.03	0.04	0.08	0.08	0.08		
sd(σ-hat)	0.08	0.09	0.09	0.28	0.29	0.29	0.46	0.46	0.46		
pseudo t-statistic	2.93	2.89	2.90	3.66	3.61	3.57	3.47	3.43	3.42		
min(σ-hat)	0.01	0.02	0.01	0.35	0.33	0.35	0.61	0.51	0.55		
max(σ-hat)	0.71	0.83	0.80	3.28	2.88	3.05	5.03	5.27	5.03		

Table 5a: Monte Carlo	Table 5a: Monte Carlo Results for Structural Estimation, CV(z) = 14%, Sample Size = 60										
Parameter or		True Parameters									
Summary Statistic	σ = .25				σ = 1			$\sigma = 1.5$	5		
	r = .25	r = 1	r = 1.5	r = .25	r = 1	r = 1.5	r = .25	r = 1	r = 1.5		
r-hat	0.30	1.09	1.57	0.25	1.07	1.61	0.30	1.05	1.58		
bias(r-hat)	0.05	0.09	0.07	0.00	0.07	0.11	0.05	0.05	0.08		
sd(r-hat)	2.55	2.57	2.65	1.97	1.99	2.00	2.01	2.05	2.03		
pseudo t-statistic	0.12	0.43	0.59	0.13	0.54	0.81	0.15	0.51	0.78		
min(rhat)	-17.61	-11.52	-12.84	-7.48	-6.37	-6.13	-8.13	-7.86	-7.45		
max(rhat)	12.79	14.36	31.47	12.15	9.43	9.97	9.45	14.31	11.87		
σ-hat	0.25	0.25	0.25	1.04	1.03	1.04	1.58	1.58	1.58		
bias(σ-hat)	0.00	0.00	0.00	0.04	0.03	0.04	0.08	0.08	0.08		
sd(σ-hat)	0.08	0.09	0.09	0.28	0.29	0.29	0.46	0.46	0.46		
pseudo t-statistic	2.93	2.89	2.90	3.66	3.61	3.57	3.47	3.43	3.42		
min(σ-hat)	0.01	0.02	0.01	0.35	0.33	0.35	0.61	0.51	0.55		
max(σ-hat)	0.71	0.83	0.80	3.28	2.88	3.05	5.03	5.27	5.03		

Table 5a: Monte Carlo	Results	for St	ructural	Estima	tion, C	V(z) = 14	l%, San	ple Si	ze = 60			
Parameter or	True Parameters											
	σ = .25				σ = 1			σ = 1.5	5			
Summary Statistic	r = .25	r = 1	r = 1.5	r = .25	r = 1	r = 1.5	r = .25	r = 1	r = 1.5			
r-hat	0.30	1.09	1.57	0.25	1.07	1.61	0.30	1.05	1.58			
bias(r-hat)	0.05	0.09	0.07	0.00	0.07	0.11	0.05	0.05	0.08			
sd(r-hat)	2.55	2.57	2.65	1.97	1.99	2.00	2.01	2.05	2.03			
pseudo t-statistic	0.12	0.43	0.59	0.13	0.54	0.81	0.15	0.51	0.78			
min(rhat)	-17.61	-11.52	-12.84	-7.48	-6.37	-6.13	-8.13	-7.86	-7.45			
max(rhat)	12.79	14.36	31.47	12.15	9.43	9.97	9. <mark>4</mark> 5	14.31	11.87			
σ-hat	0.25	0.25	0.25	1.04	1.03	1.04	1.58	1.58	1.58			
bias(σ-hat)	0.00	0.00	0.00	0.04	0.03	0.04	0.08	0.08	0.08			
sd(σ-hat)	0.08	0.09	0.09	0.28	0.29	0.29	0.46	0.46	0.46			
pseudo t-statistic	2.93	2.89	2.90	3.66	3.61	3.57	3.47	3.43	3.42			
min(σ-hat)	0.01	0.02	0.01	0.35	0.33	0.35	0.61	0.51	0.55			
max(σ-hat)	0.71	0.83	0.80	3.28	2.88	3.05	5.03	5.27	5.03			

Table 5a: Monte Carlo	Results	for St	ructural	Estima	tion, C	V(z) = 14	I%, San	ple Si	ze = 60			
Parameter or	True Parameters											
	σ = .25				σ = 1			$\sigma = 1.5$	5			
Summary Statistic	r = .25	r = 1	r = 1.5	r = .25	r = 1	r = 1.5	r = .25	r = 1	r = 1.5			
r-hat	0.30	1.09	1.57	0.25	1.07	1.61	0.30	1.05	1.58			
bias(r-hat)	0.05	0.09	0.07	0.00	0.07	0.11	0.05	0.05	0.08			
sd(r-hat)	2.55	2.57	2.65	1.97	1.99	2.00	2.01	2.05	2.03			
pseudo t-statistic	0.12	0.43	0.59	0.13	0.54	0.81	0.15	0.51	0.78			
min(rhat)	-17.61	-11.52	-12.84	-7.48	-6.37	-6.13	-8.13	-7.86	-7.45			
max(rhat)	12.79	14.36	31.47	12.15	9.43	9.97	9.45	14.31	11.87			
σ-hat	0.25	0.25	0.25	1.04	1.03	1.04	1.58	1.58	1.58			
bias(σ-hat)	0.00	0.00	0.00	0.04	0.03	0.04	0.08	0.08	0.08			
sd(σ-hat)	0.08	0.09	0.09	0.28	0.29	0.29	0.46	0.46	0.46			
pseudo t-statistic	2.93	2.89	2.90	3.66	3.61	3.57	3.47	3.43	3.42			
min(σ-hat)	0.01	0.02	0.01	0.35	0.33	0.35	0.61	0.51	0.55			
max(σ-hat)	0.71	0.83	0.80	3.28	2.88	3.05	5.03	5.27	5.03			

Table 5a: Monte Carlo	Results	for St	ructural	Estima	tion, C	V(z) = 14	I%, San	ple Siz	ze = 60			
Parameter or	True Parameters											
	σ = .25				σ = 1			$\sigma = 1.5$	5			
Summary Statistic	r = .25	r = 1	r = 1.5	r = .25	r = 1	r = 1.5	r = .25	r = 1	r = 1.5			
r-hat	0.30	1.09	1.57	0.25	1.07	1.61	0.30	1.05	1.58			
bias(r-hat)	0.05	0.09	0.07	0.00	0.07	0.11	0.05	0.05	0.08			
sd(r-hat)	2.55	2.57	2.65	1.97	1.99	2.00	2.01	2.05	2.03			
pseudo t-statistic	0.12	0.43	0.59	0.13	0.54	0.81	0.15	0.51	0.78			
min(rhat)	-17.61	-11.52	-12.84	-7.48	-6.37	-6.13	-8.13	-7.86	-7.45			
max(rhat)	12.79	14.36	31.47	12.15	9.43	9.97	9.45	14.31	11.87			
σ-hat	0.25	0.25	0.25	1.04	1.03	1.04	1.58	1.58	1.58			
bias(σ-hat)	0.00	0.00	0.00	0.04	0.03	0.04	0.08	0.08	0.08			
sd(σ-hat)	0.08	0.09	0.09	0.28	0.29	0.29	0.46	0.46	0.46			
pseudo t-statistic	2.93	2.89	2.90	3.66	3.61	3.57	3.47	3.43	3.42			
min(σ-hat)	0.01	0.02	0.01	0.35	0.33	0.35	0.61	0.51	0.55			
max(σ-hat)	0.71	0.83	0.80	3.28	2.88	3.05	5.03	5.27	5.03			

Table 5a: Monte Carlo	Results	for St	ructural	Estima	tion, C	V(z) = 14	I%, San	ple Siz	ze = 60			
Parameter or	True Parameters											
	σ = .25				σ = 1			$\sigma = 1.5$	5			
Summary Statistic	r = .25	r = 1	r = 1.5	r = .25	r = 1	r = 1.5	r = .25	r = 1	r = 1.5			
r-hat	0.30	1.09	1.57	0.25	1.07	1.61	0.30	1.05	1.58			
bias(r-hat)	0.05	0.09	0.07	0.00	0.07	0.11	0.05	0.05	0.08			
sd(r-hat)	2.55	2.57	2.65	1.97	1.99	2.00	2.01	2.05	2.03			
pseudo t-statistic	0.12	0.43	0.59	0.13	0.54	0.81	0.15	0.51	0.78			
min(rhat)	-17.61	-11.52	-12.84	-7.48	-6.37	-6.13	-8.13	-7.86	-7.45			
max(rhat)	12.79	14.36	31.47	12.15	9.43	9.97	9.45	14.31	11.87			
σ-hat	0.25	0.25	0.25	1.04	1.03	1.04	1.58	1.58	1.58			
bias(σ-hat)	0.00	0.00	0.00	0.04	0.03	0.04	0.08	0.08	0.08			
sd(σ-hat)	0.08	0.09	0.09	0.28	0.29	0.29	0.46	0.46	0.46			
pseudo t-statistic	2.93	2.89	2.90	3.66	3.61	3.57	3.47	3.43	3.42			
min(σ-hat)	0.01	0.02	0.01	0.35	0.33	0.35	0.61	0.51	0.55			
max(σ-hat)	0.71	0.83	0.80	3.28	2.88	3.05	5.03	5.27	5.03			

Table 5a: Monte Carlo	Results	for St	ructural	Estima	tion, C	V(z) = 14	I%, San	ple Si	ze = 60		
Parameter or	True Parameters										
	σ = .25				σ = 1			σ = 1.5	5		
Summary Statistic	r = .25	r = 1	r = 1.5	r = .25	r = 1	r = 1.5	r = .25	r = 1	r = 1.5		
r-hat	0.30	1.09	1.57	0.25	1.07	1.61	0.30	1.05	1.58		
bias(r-hat)	0.05	0.09	0.07	0.00	0.07	0.11	0.05	0.05	0.08		
sd(r-hat)	2.55	2.57	2.65	1.97	1.99	2.00	2.01	2.05	2.03		
pseudo t-statistic	0.12	0.43	0.59	0.13	0.54	0.81	0.15	0.51	0.78		
min(rhat)	-17.61	-11.52	-12.84	-7.48	-6.37	-6.13	-8.13	-7.86	-7.45		
max(rhat)	12.79	14.36	31.47	12.15	9.43	9.97	9.45	14.31	11.87		
σ-hat	0.25	0.25	0.25	1.04	1.03	1.04	1.58	1.58	1.58		
bias(σ-hat)	0.00	0.00	0.00	0.04	0.03	0.04	0.08	0.08	0.08		
sd(σ-hat)	0.08	0.09	0.09	0.28	0.29	0.29	0.46	0.46	0.46		
pseudo t-statistic	2.93	2.89	2.90	3.66	3.61	3.57	3.47	3.43	3.42		
min(σ-hat)	0.01	0.02	0.01	0.35	0.33	0.35	0.61	0.51	0.55		
max(σ-hat)	0.71	0.83	0.80	3.28	2.88	3.05	5.03	5.27	5.03		

Table 5a: Monte Carlo	Results	for St	ructural	Estima	tion, C	V(z) = 14	I%, San	ple Si	ze = 60		
Parameter or	True Parameters										
	σ = .25				σ = 1			σ = 1.5	5		
Summary Statistic	r = .25	r = 1	<i>r</i> = 1.5	<i>r</i> = .25	r = 1	r = 1.5	r = .25	<i>r</i> = 1	<i>r</i> = 1.5		
r-hat	0.30	1.09	1.57	0.25	1.07	1.61	0.30	1.05	1.58		
bias(r-hat)	0.05	0.09	0.07	0.00	0.07	0.11	0.05	0.05	0.08		
sd(r-hat)	2.55	2.57	2.65	1.97	1.99	2.00	2.01	2.05	2.03		
pseudo t-statistic	0.12	0.43	0.59	0.13	0.54	0.81	0.15	0.51	0.78		
min(rhat)	-17.61	-11.52	-12.84	-7.48	-6.37	-6.13	-8.13	-7.86	-7.45		
max(rhat)	12.79	14.36	31.47	12.15	9.43	9.97	9.45	14.31	11.87		
σ-hat	0.25	0.25	0.25	1.04	1.03	1.04	1.58	1.58	1.58		
bias(σ-hat)	0.00	0.00	0.00	0.04	0.03	0.04	0.08	0.08	0.08		
sd(σ-hat)	0.08	0.09	0.09	0.28	0.29	0.29	0.46	0.46	0.46		
pseudo t-statistic	2.93	2.89	2.90	3.66	3.61	3.57	3.47	3.43	3.42		
min(σ-hat)	0.01	0.02	0.01	0.35	0.33	0.35	0.61	0.51	0.55		
max(σ-hat)	0.71	0.83	0.80	3.28	2.88	3.05	5.03	5.27	5.03		

Punch Line for estimating r with 60 obs...

- Small bias...
- But unreliable estimates (high variance)

What About Estimates of σ ?

Table 5a: Monte Carlo	Results	for St	ructural	Estima	tion, C	V(z) = 14	l%, San	ple Si	ze = 60		
Parameter or	True Parameters										
	σ = .25				σ = 1			σ = 1.5	;		
Summary Statistic	r = .25	r = 1	r = 1.5	r = .25	r = 1	r = 1.5	r = .25	r = 1	r = 1.5		
r-hat	0.30	1.09	1.57	0.25	1.07	1.61	0.30	1.05	1.58		
bias(r-hat)	0.05	0.09	0.07	0.00	0.07	0.11	0.05	0.05	0.08		
sd(r-hat)	2.55	2.57	2.65	1.97	1.99	2.00	2.01	2.05	2.03		
pseudo t-statistic	0.12	0.43	0.59	0.13	0.54	0.81	0.15	0.51	0.78		
min(rhat)	-17.61	-11.52	-12.84	-7.48	-6.37	-6.13	-8.13	-7.86	-7.45		
max(rhat)	12.79	14.36	31.47	12.15	9.43	9.97	9. <mark>4</mark> 5	14.31	11.87		
σ-hat	0.25	0.25	0.25	1.04	1.03	1.04	1.58	1.58	1.58		
bias(σ-hat)	0.00	0.00	0.00	0.04	0.03	0.04	0.08	0.08	0.08		
sd(σ-hat)	0.08	0.09	0.09	0.28	0.29	0.29	0.46	0.46	0.46		
pseudo t-statistic	2.93	2.89	2.90	3.66	3.61	3.57	3.47	3.43	3.42		
min(σ-hat)	0.01	0.02	0.01	0.35	0.33	0.35	0.61	0.51	0.55		
max(σ-hat)	0.71	0.83	0.80	3.28	2.88	3.05	5.03	5.27	5.03		

Table 5a: Monte Carlo	Results	for St	ructural	Estima	tion, C	V(z) = 14	I%, San	ple Si	ze = 60		
Parameter or	True Parameters										
	σ = .25				σ = 1			σ = 1.5	5		
Summary Statistic	r = .25	r = 1	r = 1.5	r = .25	r = 1	r = 1.5	r = .25	r = 1	r = 1.5		
r-hat	0.30	1.09	1.57	0.25	1.07	1.61	0.30	1.05	1.58		
bias(r-hat)	0.05	0.09	0.07	0.00	0.07	0.11	0.05	0.05	0.08		
sd(r-hat)	2.55	2.57	2.65	1.97	1.99	2.00	2.01	2.05	2.03		
pseudo t-statistic	0.12	0.43	0.59	0.13	0.54	0.81	0.15	0.51	0.78		
min(rhat)	-17.61	-11.52	-12.84	-7.48	-6.37	-6.13	-8.13	-7.86	-7.45		
max(rhat)	12.79	14.36	31.47	12.15	9.43	9.97	9.45	14.31	11.87		
σ-hat	0.25	0.25	0.25	1.04	1.03	1.04	1.58	1.58	1.58		
bias(σ-hat)	0.00	0.00	0.00	0.04	0.03	0.04	0.08	0.08	0.08		
sd(σ-hat)	0.08	0.09	0.09	0.28	0.29	0.29	0.46	0.46	0.46		
pseudo t-statistic	2.93	2.89	2.90	3.66	3.61	3.57	3.47	3.43	3.42		
min(σ-hat)	0.01	0.02	0.01	0.35	0.33	0.35	0.61	0.51	0.55		
max(σ-hat)	0.71	0.83	0.80	3.28	2.88	3.05	5.03	5.27	5.03		

- Punch line for estimating σ with 60 obs: More reliable estimates, but critically depends on the presence of "good" data on effort
 - Scaling of x_i distorts interpretation of σ
 - Unreliable if true effort is $\theta_i x_i$ plus noise
 - Both are likely problems in real data

Tullock's *r* : The Ugly

- Unlikely to be able to obtain reliable structural estimates of r in antitrust contests
 - 400 obs not generally enough
 - Also a problem in other contest environments where sample sizes are not huge
- But...substantial variation in z can help
 - Value of *r* accentuates/dampens variation in *z*, making in easier/harder to reliably estimate *r*

Table 4b: Mo	nte Carl	o Resu	Its for S	structur	al Estin	nation:	r = .25, (σ = 1				
		Variation in Effort										
Parameter or	CV(z) = 1.5%			CV	(z) = 14	.2%	C	√(z)= 68	%			
Summary Statistic	20 Obs	60 Obs	400 Obs	20 Obs	60 Obs	400 Obs	20 Obs	60 Obs	400 Obs			
r-hat	-0.38	0.74	0.21	0.32	0.25	0.25	0.31	0.26	0.25			
bias(r-hat)	-0.63	0.49	-0.04	0.07	0.00	0.00	0.06	0.01	0.00			
sd(r-hat)	43.25	19.82	7.15	4.27	1.97	0.70	0.99	0.44	0.16			
pseudo t-statistic	-0.01	0.04	0.03	0.08	0.13	0.36	0.32	0.60	1.60			
min(rhat)	-355.00	-82.36	-27.00	-30.38	-7.48	-2.27	-7.06	-1.63	-0.33			
max(rhat)	361.65	92.71	25.31	59.31	12.15	2.99	15.66	2.17	0.86			
σ-hat	1.15	1.04	1.01	1.16	1.04	1.00	1.16	1.04	1.00			
bias(σ-hat)	0.15	0.04	0.01	0.16	0.04	0.00	0.16	0.04	0.00			
sd(σ-hat)	0.78	0.29	0.10	0.81	0.28	0.10	0.94	0.29	0.10			
pseudo t-statistic	1.48	3.63	9.91	1.43	3.66	10.02	1.24	3.57	9.87			
min(σ-hat)	0.03	0.33	0.68	0.04	0.35	0.65	0.06	0.30	0.67			
max(σ-hat)	26.53	3.04	1.45	35.18	3.28	1.48	53.63	3.04	1.52			

Tabl	e 6b: Mo	nte Carlo	Resul	ts for St	ructural	Estimati	on: r = 1.5, c	σ = 1			
Beremeter er				Va	ariation i	n Effort	· · · ·				
Parameter or	CV	′(z) = 1.5	%	CV	CV(z) = 14.2%			CV(z)= 68%			
Summary Statistic	20 Obs	60 Obs	0 Obs 400 Obs 20		60 Obs	400 Obs	20 Obs	60 Obs	400 Obs		
r-hat	1.77	1.92	1.46	1.95	1.61	1.52	2.02	1.62	1.51		
bias(r-hat)	0.27	0.42	-0.04	0.45	0.11	0.02	0.52	0.12	0.01		
sd(r-hat)	43.00	1 <u>9.</u> 98	7.19	4.39	2.00	0.71	2.05	0.59	0.20		
pseudo t-statistic	0.04	0.10	0.20	0.44	0.81	2.12	0.99	2.75	7.55		
min(rhat)	-351.48	-98.98	-26.76	-18.70	-6.13	-1.59	-2.12	-0.11	0.80		
max(rhat)	386.27	78.61	28.88	52.35	9.97	4.05	84.85	6.56	2.38		
σ-hat	1.17	1.03	1.00	1.26	1.04	1.00	3.48E+06	1.05	1.01		
bias(σ-hat)	0.17	0.03	0.00	0.26	0.04	0.00	3.48E+06	0.05	0.01		
sd(σ-hat)	0.99	0.28	0.10	9.43	0.29	0.10	3.47E+08	0.32	0.11		
pseudo t-statistic	1.17	3.66	9.87	0.13	3.57	9.82	0.01	3.24	8.94		
min(σ-hat)	0.04	0.33	0.63	0.01	0.35	0.71	0.00	0.27	0.67		
max(σ-hat)	43.79	2.99	1.44	936.14	3.05	1.47	3.47E+10	3.32	1.50		

Concluding Remarks

- Structural estimation of Tullock's r problematic, unless:
 - Have large sample, true underlying model has large r and large variation in z
- Structural estimation of *σ* requires exceptionally good measures of effort
- Suggests utility of developing alternative contest models more amenable to structural estimation
- Monte Carlo tests of alternative existing models
- Tullock framework still potentially useful for testing predictions via reduced form estimation

Concluding Remarks (Continued)

- Best estimate of *r* in antitrust contests brought by the FTC between 1976-2005:
 r ≈ ¼
- Monte Carlo simulations suggest estimate is unbiased, but unreliable (high variance)