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Abstract

We study the relationship between market structure and innovation in the global automobile

industry for the 1982-2004 period. We use the dynamic industry framework of Ericson and Pakes

[1995] and estimate the parameters of the model using a two-step procedure proposed by Bajari

et al. [2007]. Since the industry has seen a lot of consolidation since 1982, mergers are an

important ingredient of our model.

After estimating the parameters of the model, we simulate the industry forward and study

how changing market structure (mainly due to mergers) affects innovative activity at the firm as

well as at the industry level. Our findings are the following: (1) The effect of market structure

on innovation in the global auto industry depends on the initial state. If the industry is not

very concentrated, as it was in 1982, some consolidation may increase the innovative activity.

However, if the industry is already concentrated, as in 2004, further consolidation may reduce

the incentives to innovate. (2) Mergers reduce the value of merging firms though they may

increase the aggregate value of the industry.
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1 Introduction

In this paper, we investigate how changes in industry structure interact with the innovative activity

of the incumbent firms in the global automobile industry. The question of interaction between

market structure and innovation has been the subject of intense research since Schumpeter [1950].1

However, there is hardly any study on the global automobile industry. This is surprising given the

fact that the global automobile industry has not only undergone interesting changes in its market

structure in recent years, but is also one of the most innovative industries in the global economy.

The global automobile industry has seen significant consolidation over the last few decades.

Many of the industry giants have found it beneficial to join hands with some of their former rivals.

The mergers between Daimler-Benz and Chrysler and between Hyundai and Kia, the association

between Renault and Nissan and the takeover of Mazda, Jaguar and Volvo by Ford are but a

few examples of this consolidation. On the one hand, this consolidation is the result of increased

competition, which has made it harder for smaller firms to survive on their own. On the other

hand, consolidation intensifies competition as the emerging groups are highly research intensive.

The top 13 firms in the auto industry spent more than 55 billion dollars on R&D in 2005 and have

obtained more than 50,000 patents from the US patent office between 1980 and 2004.

Producing automobiles is a highly research intensive activity: in 2003, more than 13% of all R&D

in the OECD was spent in ISIC industry 34 ‘Motor Vehicles’, more than in any other industry.

Statistics in Table 1 illustrate the comparative importance of R&D in the automotive industry

for the OECD and the three largest economic blocs. The industry is concentrated worldwide,

guaranteeing that the main firms will take actions of competitors into account when deciding on

their own innovative activities. In 2005, more than 85% of all vehicles were produced by the 13

largest firms, which are active in all major regions of the world.2

[Table 1 approximately here]

At the most fundamental level, two features are necessary for innovation to take place. First,

firms need to be able to finance innovation, i.e. there needs to be a margin between price and

marginal cost. Second, firms need to have an incentive to innovate, i.e. innovation has to increase

expected profits. Both conditions are clearly satisfied in the automobile industry. Demand estimates

for this industry—see for example Berry et al. [1995] or Goldberg [1995]—reveal that markups over

marginal costs tend to be large, consistent with the view that fixed costs are important in this
1Kamien and Schwartz [1982], Cohen and Levin [1989], Ahn [2002] and Gilbert [2006] are surveys of the relevant

literature.
2Throughout, we do not distinguish between minority share holdings and outright control. E.g. Mazda is counted

as part of the Ford group, even though Ford Motor Co. never held more than 33.4% of Mazda’s shares (achieved by

1996).
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industry. Innovation is also likely to advance a firm’s competitive position through higher product

quality and reliability, the introduction of desirable features in its products, or lower production

cost. A large number of analysts makes a living measuring these benefits for consumers and investors

alike.3

Unlike most of the studies that use reduced form regressions to study the relationship between

market structure and innovation, we do so in a strategic and dynamic environment. There are at

least two reasons for this. First, innovation is inherently a dynamic activity. Firms make R&D

investments today expecting uncertain future rewards through better products or more efficient

production. The magnitude of these benefits are intricately linked to the future market structure

and the level of innovation of competitors.4 Merging or forming strategic alliances with rivals is also

best analyzed in a dynamic framework. Mergers interact with innovation through their influence on

market structure as well as through the consolidation of the knowledge stock in the industry. The

global automobile industry seems an ideal place to study these two forces and their interaction.

Second, we now have computationally tractable methods to estimate models of dynamic com-

petition. In this study, we employ a recently developed technique in the estimation of dynamic

games that does not require one to solve for the equilibrium of the game, see Bajari et al. [2007].

Our study is one of the first to put these new techniques to a practical test, demonstrate their

usefulness and highlight some practical difficulties associated with their application.5

The principal objective of our paper is to study the response of firms in terms of their innovative

activity to changes in the level of competition — a combination of market structure and the level of

innovation of all market participants. We do so in a dynamic environment in which firms produce

differentiated products that differ in quality. Firms invest in R&D to improve the quality of their

products and to lower the cost of production. The market share of a firm depends on the relative

quality of its product and the price, which is set strategically in each period. Investments in R&D

increase the technological knowledge of the firm but the exact outcome of R&D is uncertain. On

average, higher knowledge translates into a higher quality product and lower marginal cost. The

investment in R&D is modeled as a strategic decision: a firm takes the actions of its rivals and their

possible future states into account before making its R&D decision. In addition, firms incorporate

potential future mergers into their expectations.
3To name but a few, J.D. Power and Consumer Reports measure defect rates in vehicles; numerous consumer

magazines and internet sites compare the performance and discuss the features of vehicles; and Harbour Consulting

and KPMG continuously compare productivity in the industry.
4Aghion and Griffith [2005] provide an overview of the issues involved and review some popular modeling ap-

proaches.
5Among a growing list of (working) papers using various approaches, we can point the interested reader to the

following applications: Ryan [2006], studying the effect of environmental regulation on the cement industry; Collard-

Wexler [2005], studying the effect of demand fluctuation in the ready-mix concrete industry; Aguirregabiria and Ho

[2006], studying the airline industry; and Sweeting [2006] estimating switching costs for radio station formats.
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The paper is organized as follows. The supply and demand side of the model as well as the

Markov perfect equilibrium concept we rely upon are introduced in Section 2. Section 3 introduces

the data. The two-step estimation methodology and the coefficient estimates are discussed in

Section 4. In the first step, we estimate all the static parameters and generate the value functions

using forward simulation. In the second step, we estimate the only dynamic parameter of the model.

The impact of changes in market structure on incentives for innovation, firm value and consumer

utility is in Section 5 and Section 6 concludes.

2 The Model

Our modeling strategy follows Ericson and Pakes [1995]. There are n firms, each producing a dif-

ferentiated vehicle. Firms differ in their technological knowledge, which is observed by all market

participants as well as by the econometrician, and in a firm-specific quality index, known to the

market participants but not observed by the econometrician. We denote the technological knowl-

edge of firm j (j = 1, 2, . . . , n) by ωj ∈ R+ and the quality index by ξj ∈ R. For the industry

as a whole, the vectors containing ω and ξ are denoted by sω and sξ. For later use, we define

the vectors of ω and ξ excluding the firm j as sω−j and sξ−j . We also define s = {sω, sξ,m} and

s−j = {sω−j , sξ−j}.6

Time is discrete. At the beginning of each period, firms observe s and make their pricing and

investment decisions (see below). Although the pricing decisions are static, the investment decisions

are dynamic and depend on the current as well as expected future states of the industry.

Firms invest to increase their technological knowledge. A higher level of knowledge may boost

demand, for example, by improving vehicle quality or by introducing more innovative product

features. It may also reduce marginal cost by improving the efficiency of production. Hence, the

model features both product and process innovation. The effect of R&D investment on knowledge

is the sum of a deterministic and a random component, capturing that innovation is a stochastic

process. The technological knowledge depreciates at an exogenous rate.

There is no entry or exit in our model, reflective of the evolution of the industry over the

last twenty five years or so. However, a firm may ‘exit’ by merging with another firm. Mergers

are an important component of our model as they lead to discrete changes in market structure

and force the firms to readjust their prices and investments to take new industry structure into

account. In our model, mergers take place for exogenous reasons, but firms take them into account

when forming expectations over future valuations. In the remainder of this section we describe

the demand and supply sides in some detail and then define the Markov perfect equilibrium of the

model.
6m is the number of consumers in the market.
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2.1 The Demand Side

Following Berry et al. [1995] and several others studying the automobile industry, we use a discrete

choice model of individual consumer behavior to model the demand side. There are n firms in

the industry producing differentiated vehicles. Vehicles differ in quality, which has two compo-

nents. The first component, observable to the market participants as well as the econometrician,

is positively related to the firm’s technological knowledge, g(ω), with ∂g(ω)/∂ω ≥ 0. The second

component (ξ) is unobservable to the econometrician, but firms and consumers know it and use it

in their pricing and purchase decisions.

There are m consumers in the market in each period and each of them buys one vehicle. m

grows at a constant rate that is exogenously given. The utility of a consumer depends on the

quality of a vehicle, its price and the consumer’s idiosyncratic preferences. The utility consumer i

gets from buying vehicle j is

uij = θωg(ωj) + θp log(pj) + ξj + νij , i = 1, . . . ,m, j = 1, . . . , n. (1)

We assume that the observable vehicle quality equals log(ωj + 1) and ξj is the unobservable quality

(to the econometrician). pj is the price of the vehicle produced by firm j and is adjusted for vehicle

characteristics such as size and performance characteristics. θω and θp are preference parameters.

θω shows how quality conscious the consumers are and θp is a measure of their price elasticity. νij
is the idiosyncratic utility that consumer i gets from good j. Assuming it is i.i.d. extreme value

distributed, gives the following expected market share for firm j:

σj(ωj , ξj , pj , s−j ,p−j) =
exp(θω log(ωj + 1) + θp log(pj) + ξj)
n∑
k=1

exp(θω log(ωk + 1) + θp log(pk) + ξk)

, (2)

where pj is the price charged by firm j and p−j is the price vector of all the other firms (excluding

firm j) in the industry. The expected demand for vehicle j is simply mσj(·). Each firm’s demand

depends on the full price vector in the industry, directly through the denominator of (2) and

indirectly through its own price because its equilibrium price is a function of its rivals’ prices.

2.2 The Supply Side

We begin our explanation of the supply side with the period profit function. We assume that R&D

investments only generate useful knowledge with a one period lag and that prices can be adjusted

flexibly period by period. Hence, at the beginning of each period, after observing their individual

and industry states, the firms engage in a differentiated products Bertrand-Nash game. Each firm

chooses its own price to maximize profits, taking the prices of its rivals (p−j) and industry state

(s) as given.
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The profit maximization problem of an individual firm j is

πj(ωj , ξj , s−j ,p−j ,m) = max
pj
{(pj −mcj(ωj))mσj(·)− fcj}, (3)

where mcj is the marginal cost incurred by firm j to produce a vehicle. The marginal cost is a

function of the firm’s knowledge, capturing cost reducing process innovations. fcj is the fixed cost

of operations faced by firm j. For now, the fixed cost does not play any role.

The first order condition for firm j, after some simplification, is

(pj −mcj(ωj))[1− σj(·)]θp + pj = 0. (4)

Since there are n firms, we have to solve n such first order conditions simultaneously to obtain the

equilibrium price vector p∗.7 Equilibrium profits are given by

πj(ωj , ξj , s−j ,m) = (p∗j −mcj(ωj))mσj(ωj , ξj , p∗j , s
−j ,p∗−j). (5)

Once we know the functional form and parameter values of the demand and cost functions, we can

evaluate (5) for any industry state s.

The investment in R&D is a strategic and dynamic decision. Each period, firms choose their

R&D investment based on the expected value of future profit streams. The problem is recursive

and can be described by the following Bellman equation

Vj(ωj , ξj , s−j ,m) = max
xj∈R+

{πj(ωj , ξj , s−j ,m)− cxj + βEVj(ω′j , ξ
′
j , s
′−j ,m′)}, (6)

where β is the discount factor, c is the R&D cost per unit of new technological knowledge and xj

is the addition to new knowledge. A prime on a variable denotes its next period value. c is the

only dynamic parameter in our model that we estimate. The solution to (6) is a policy function

xj(ωj , ξj , s−j ,m).

The knowledge stock of the firm evolves as follows:

ω′j = (1− δ)ωj + x(ωj , ξj , s−j ,m) + εωj , (7)

where δ is the depreciation rate of technological knowledge and is exogenously given. εω is a random

shock that represents the uncertainty involved in doing R&D. A firm that spends cx on R&D will,

on the average, increase its knowledge stock by x. We assume that εω follows a well defined and

known distribution.8

7The existence and uniqueness of equilibrium in this context has been proved by Caplin and Nalebuff [1991].
8This law of motion for the state variable is less general than the one in the main analysis in Ericson and Pakes

[1995], as depreciation is deterministic, but more general than the example they analyze in detail, as we allow x to

take on a continuum of values.
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We assume an exogenous AR(1) process for the evolution of the unobserved component of

quality (ξ).

ξ′j − ξ̄j = ρ(ξj − ξ̄j) + εξj , (8)

where ξ̄j is the average value of ξj over the sample period.

We assume that m follows a linear trend, which we estimate from the data.

2.3 Mergers

Given the recent evolution of the global automotive industry, there is no need to consider entry or

exit, but we do need to deal with mergers. During the twenty three year period we study (1982–

2004), a total of ten mergers, acquisitions and associations took place among the twenty three

initial firms in our sample. These were: Alfa Romeo-Fiat (1987); Ford-Jaguar (1989); GM-Saab

(1990); Ford-Volvo (1998); DaimlerBenz-Chrysler (1998); Hyundai-Kia (1998); Toyota-Daihatsu

(1999); Renault-Nissan (1999); Ford-Rover (2000) and GM-Daewoo (2001). Table 2 indicates how

these events have reshaped the structure of the industry.9

There is no clear pattern in the merger activity, making it nearly impossible to predict. Some-

times a merger is forced on a firm, as happened to Hyundai when the Korean government wanted it

to bail out Kia after the Asian economic crisis in 1998. In several instances, a larger firm has taken

over a smaller one, not unexpected in an industry with large scale economies. At the same time,

several smaller companies are thriving in spite of incessant merger predictions. Honda, BMW, and

Porsche are consistently among the most profitable firms in the industry. There have also been

instances of two large firms merging or joining forces in one form or another. The merger between

Chrysler and Daimler-Benz is the most recent such example and the association between Nissan

and Renault is another.

It is especially difficult to introduce mergers in our simple model with only two firm-level state

variables. The benefits of a higher level of knowledge—product and process innovations that boost

demand and reduce costs—can be captured instantaneously. This precludes as a motive for merging

the combination of a large firm that has many models and dealerships with a smaller firm that has

a higher level of technological knowledge. Given that the policy function is estimated concave in

a firm’s own knowledge (see below), gaining scale economies in R&D or product development can

also not explain mergers in our model.

In the absence of any clear pattern, it seems reasonable to assume that mergers are random

and occur with an exogenously given probability. We pick this probability to match the average

observed merger rate. To avoid reaching a monopoly state, we model the expected number of
9In 2007 Chrysler and Daimler-Benz split. In 2008 Ford sold Jaguar and Rover brands to Tata Motors. These

splits do not fall in the period that we study. Our model can easily be modified to incorporate splits. However, such

a modification will make an already hard estimation exercise even harder.

7



mergers as a declining function of n (see the calibration of the merger probability in the Appendix)

and we impose a lower threshold on the number of active firms on competition policy grounds.

This is consistent with Klepper [2002a] and Klepper [2002b], who argues that the U.S. automobile

industry has settled into a stable oligopoly. We assume that the same will happen to the global

automobile industry. An alternative solution would be to introduce entry, but it would require

more radical changes in the empirical strategy. In practice, entry has not played an important role

in the evolution of the global market structure, although this could change with the development

of the Chinese and Indian automotive industries.

Even with this simple merger technology we need to specify the state variables for the newly

created firm and how each firm incorporates possible mergers in the evaluation of its future value.

First, we assume that when two firms merge, the knowledge of the new firm is the sum of the

individual knowledge stocks. Another possibility would be to allow for complementarities in the

knowledge stock or, at the other extreme, assume some overlap in knowledge and discount the sum.

All three assumptions are equally arbitrary, but we feel that simply adding the two knowledge

stocks is closest in spirit to the state transition function for knowledge used throughout. We

further assume that the unobserved quality of the vehicle produced by the merged firm is the

average of the unobserved qualities of the vehicles produced by the original firms.

Second, consider the situation where A and B are the only firms in the industry and their

respective states are (ωA, ξA) and (ωB, ξB).10 There is an exogenous probability pm each period

that they will merge. Firm A will incorporate this information in the calculation of its value

functions as follow:

VA(ωA, ξA, ωB, ξB) = max
xA∈R+

{
πA(ωA, ξA, ωB, ξB)− cxA(ωA, ξA, ωB, ξB)

+ β
[
pmζA(ω′A, ξ

′
A, ω

′
B, ξ

′
B)EVA(ω′A + ω′B, (ξ

′
A + ξ′B)/2)

+ (1− pm)EVA(ω′A, ξ
′
A, ω

′
B, ξ

′
B)
]}
, (9)

where ζA(ω′A, ξ
′
A, ω

′
B, ξ

′
B) is the share of firm A in the total value of the merged firm. We assume

that it is simply the ratio of the stand alone value of A in the sum of the values of both firms in

absence of the merger:

ζA(ω′A, ξ
′
A, ω

′
B, ξ

′
B) =

EV (ω′A, ξ
′
A, ω

′
B, ξ

′
B)

EV (ω′A, ξ
′
A, ω

′
B, ξ

′
B) + EV (ω′B, ξ

′
B, ω

′
A, ξ

′
A)
.

The same idea extends to an industry with more firms, but the computations become more

involved—see the Appendix for details.

To summarize, in each period, the sequence of events is the following:
10The market size (m), which is the only industry-level state variable in our model, is implicit and we suppress it

for simplicity of notation.
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1. Firms observe individual and industry states.

2. Pricing and investment decisions are made.

3. Profits and investment outcomes are realized.

4. Individual and industry states are updated before the mergers.

5. Mergers are drawn randomly (see Appendix for details).

6. The state variables of merged firms are adjusted and the industry states are updated accord-

ingly.

2.4 Markov Perfect Equilibrium

The Markov Perfect Equilibrium of the model consists of V (ω, ξ, s), π(ω, ξ, s), x(ω, ξ, s) and Q(s′, s)

such that:

1. V (ω, ξ, s) satisfies (17) and x(ω, ξ, s) is the optimal policy function;

2. π(ω, ξ, s) maximizes profits conditional on the state of the industry;

3. Q(s′, s) is the transition matrix that gives the probability of state s′ given the current state

s.

Estimating the parameters in the period profit function—demand and supply parameters—is

fairly standard. The one dynamic parameter in the model that we estimate, c the cost of R&D,

poses a greater challenge. There are at least two ways to proceed. The first is to compute the

Markov Perfect Equilibrium (MPE), as defined above, from a starting value of c and use maximum

likelihood estimation, as in Rust [1987] or Holmes and Schmitz [1995], to fit the observed investment

decisions to the predictions from the model’s Euler equations. Having solved for the equilibrium

one can simulate the model and study the dynamics of interest. Benkard [2004] uses a similar

approach in his study of the market for wide-bodied commercial aircraft. The main disadvantage

of this approach is that the numerical solution for the MPE is computationally very intensive. This

remains a problem despite some recent innovations by Pakes and McGuire [2001], Doraszelski and

Judd [2004] and Weintraub et al. [2005].

The second is a two-step approach proposed by Bajari et al. [2007]. Their method allows for

the estimation of the policy and value functions and for the recovery of structural parameters of

the model without having to compute the MPE. They get around the problem of computing the
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equilibrium by assuming that the data we observe represent an MPE.11 This assumption is not

completely innocuous. For example, in the auto industry firms often undergo structural changes

with adjustments spread over many years. During this transition period, firms do not behave as they

would in equilibrium. A prime example would be the three-year recovery plan Renault initiated at

Nissan, when it took control of the troubled Japanese automaker. Similarly GM and Ford, having

lost a big chunk of their market share in recent years, are undergoing massive restructuring. Their

decisions during this restructuring phase are likely to be different from their decisions in a stable

equilibrium. Nevertheless, the assumption that firms always play their equilibrium strategy sounds

reasonable and, more importantly, does away with the need to compute the MPE.12

Given this assumption, the first step proposed by Bajari et al. [2007] is to estimate the state

transition probabilities and the equilibrium policy functions directly from the observed information

on investments and the evolution of the two state variables. Together with estimates of the period

profit function, these can be used to obtain the value functions by forward-simulation. In the second

step, the value function estimates from the first step are combined with equilibrium conditions of

the model to estimate the structural parameter(s). In Section 4 we elaborate on these steps in some

detail and explain how we apply them to our model. First, we describe the data set.

3 Data

We choose our sample period to be 1982–2004. This period covers most of the consolidation that

has taken place in the industry over the last few decades. We limit the sample to the largest

thirteen firms (in terms of unit sales) that were active in 2004. The industry has seen significant

consolidation over these twenty three years and working back to 1982, these thirteen groups emerged

from twenty three initially independent firms. Throughout, we do not distinguish between full and

partial ownership ties, e.g. Nissan and Renault are treated as a single firm after they initiated an

alliance in 1998, even though Renault never obtained majority control. Table 2 lists all firms in the

initial and final year of the sample. In 2004, our sample accounted for slightly more than 95% of

global automobile sales. The remaining 5% fo sales were shared by a large number of small firms.

Since patenting activity of these small firms is negligible and other information on them is spotty,
11Alternative approaches that avoid computing the MPE at each iteration include Aguirregabiria and Mira [2007]

and Pakes et al. [2005]. We follow Bajari et al. [2007] because their method allows for continuous choice variable, as

we have in our model.
12Another implication of this assumption is that one has to rule out the possibility of multiple equilibria or simply

assume that multiple equilibria may exist but the firms only play one and the same equilibrium in all periods. For

a review of the problem of multiple equilibria in these models and its possible solutions see Section 6 in Doraszelski

and Pakes [2006].
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we ignore these fringe firms.13

[Table 2 approximately here]

In order to estimate the parameters we need data on the following four variables: gross additions

to a firm’s knowledge (x); knowledge stock (ω); market share; and prices. Our measure of gross

addition to a firm’s knowledge is the number of patents applied for by a firm in a calendar year.14 We

use PATSTAT (http://wiki.epfl.ch/patstat) for patent data. We combine data on the number of new

patents applied for by each firm to the US and European patent offices. Since different subsidiaries

of the same firm might file for patents, we searched the database using several variations of the

names of each firm and manually scrolled through the results to make sure that all appropriate

patents were included. We combine the US and European patent data in the following way. For

each firm-year, we combine the observations as: xjt = max(xUSjt +λxEUjt ), where xUSjt is the number

of new patent applications by firm j in year t to the US patent office and xEUjt to the European

patent office. λ is the weight given to a European patent relative to a US patent. It is computed by

taking the ratio of US to European patents by four big firms (Daimler, Ford, Honda and Toyota)

that have significant presence in both regions. We compute this weight to be 2.2.

Our measure of the knowledge stock of a firm is its ‘patent stock’. Using the number of patents

applied for by each firm for the period 1982–2004, we construct the patent stock using the perpetual

inventory method: ωt+1 = (1 − δ)ωt + x̃t.15 The initial patent stock is given by ω0 = x0
g+δ , where

x0 is the number of new patents applied for, δ is the depreciation rate of the patent stock and g

is the growth rate of the new patent applications. We estimate g using the data for the first five

years of our sample.

Our empirical counterpart to sales is the number of vehicles sold worldwide by each firm and its

affiliates. This information is obtained from Ward’s Info Bank, the Ward’s Automotive Yearbooks,

and is supplemented by information from the online data center of Automotive News for the most

recent years. Market share of a firm is computed as the ratio of the number of vehicles sold by a

firm to the total number of vehicles sold in the global market.

[NOTE TO JO: PLEASE UPDATE THE FOLLOWING PARAGRAPH] To construct prices

for these ‘composite’ models, we estimate a hedonic price regression for all available models in the

market. The log of the list price is the dependent variable and a host of vehicle characteristics as
13The only sizeable firm in 1980 not included in our sample is Lada in the USSR. British Leyland in the U.K. was

part of the Rover Group and AMC in the U.S became 46% owned by Renault shortly after 1979.
14Patents are a widely used as a measure of innovation output. In his survey on use of patents as a measure of

technological progress, Griliches [1990] concludes: “In spite of all the difficulties, patents statistics remain a unique

resource for the analysis of the process of technical change.”[p. 1701]
15The difference between this equation and the law of motion for the knowledge stock, equation (7), is that the

firm plans to obtain xt patents, but the randomness in the innovation process yields the observed x̃t = xt + ε new

patents, with E(x̃t) = xt.
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explanatory variables—see Goldberg and Verboven [2001] for an example.16 We include a full set of

firm-year interaction dummies and these coefficients capture the relative price for each firm in each

year. The log price is relative to the base firm—GM—exactly as needed to estimate the demand

equation in (10) below. For now, we estimate the hedonic regression only for the U.S. passenger

vehicle market, updating the data set in Petrin [2002] to 2004. Figure 1 illustrates the evolution of

these prices for a number of firms.

[Figure 1 approximately here]

4 Estimation Methodology and Results

4.1 Step 1

We now describe the estimation methodology, which closely follows Bajari et al. [2007]. In the

first step, we estimate the demand and cost of production parameters, the transition probabilities

and policy functions and use them to evaluate the value functions using forward simulations. We

present the results immediately following the relevant piece of the model.

4.1.1 Estimation of Demand Parameters

The demand side in our model is static and we do not need the full model to estimate the demand

parameters.17 Following Berry [1994] we can write the log of the market share of firm j relative to

a base firm 0 as

log[σj(·)/σ0(·)] = θω log[(ωj + 1)/(ω0 + 1)] + θp log[pj/p0] + [ξj − ξ0]. (10)

Using the observed market shares and with data on ω’s and prices, we can estimate the above

equation by OLS to get the estimates for θω and θp. However, as producers use information about

the unobserved vehicle quality (ξ) in their pricing decisions, prices will be correlated with the error

term and OLS estimates will be inconsistent. In particular, we expect the price coefficient to be

upwardly biased. We use an IV estimator and follow the instrumenting strategy of Berry et al.

[1995]: the sum of observable characteristics of rival products is an appropriate instrument for own

price. In our case, this boils down to just the sum of rivals’ knowledge. The residuals from (10)

are our empirical estimates of ξ relative to GM.
16Bajari and Benkard [2005] discuss the performance of hedonic pricing models when some product characteristics

are unobservable.
17We estimate demand, cost, and policy functions pooling data across all years; time subscripts are omitted.

Throughout, we use GM as the base firm.
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The demand parameters using three different estimation methods—least squares (OLS), in-

strumental variables (IV) without and with time fixed-effects—are in Table 3. The impact of

knowledge, θω, is estimated similarly under all three specifications: it has a positive impact on

sales, as expected, and is estimated very precisely.

The price coefficient is estimated negatively, even with OLS, which ignores the correlation

between price and unobserved product characteristics. Often, OLS estimates of product level

discrete choice demand systems produce a price coefficient that is positive or close to zero. A firm’s

patent stock seems to control for a lot of the usually unobserved quality variation that can lead to

an upward bias in the price coefficient. Note that we do not observe any other characteristic; the

price variable controls for any observable differences in the products offered by each firm.

NOTE TO JO: PLEASE UPDATE THIS PARAGRAPH. Instrumenting for price with the

knowledge stock of competitors leads to an estimated demand curve that is more elastic; again

in line with expectations (see for example Berry et al. [1995], Table III). Including time dummies

increases the elasticity further. Using the estimates in the third column, the price elasticity varies

between -7.2 and -1.96. Without enforcing the first order conditions for optimal price setting, all

firms are estimated to price on the elastic portion of demand, consistent with oligopoly theory.

The price-marginal cost markups implied by these estimates are below those obtained in other

studies that estimate demand systems for car models (see, for example, Berry et al. [1995]). This is

reasonable because we work at a much higher level of aggregation. At the firm level, a much larger

fraction of costs will be variable than at the model level. At the same time, the residual demand

for a firm will be less elastic than for an individual model.

[Table 3 approximately here]

For the results in the third column, a 1% price decrease has the same effect on demand as a

13% increase in the knowledge stock. A value of 0.56 for θω means that a firm with a patent stock

that is half of GM’s patent stock, will on average have a market share that is 39% (= 0.56× ln(0.5))

lower than GM’s, holding price constant.

4.1.2 Estimation of Production Cost Parameters

We do not observe marginal cost, but once we have the estimates for θω, θp, and the vector ξ

from the demand system, we use the system of first order conditions (4) to recover marginal costs.

Assuming firms are setting prices optimally, we solve for the marginal costs that rationalize the

observed prices and market shares. While it is possible to impose optimal price setting in the

demand estimation to increase precision, we chose not to as it would force the price elasticity

to exceed unity. We denote this new variable by mc. While the marginal costs we recover vary

by firm and year, we need to be able to predict marginal costs at any possible state in order to
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calculate the value function. To get some idea about the relationship between marginal cost and

the state variables, we plot the marginal cost against the patent stock (ω) and unobserved product

characteristics (ξ) in Figure 2.

[Figure 2 approximately here]

In part (a) of the figure, for low values of the patent stock, an increase in patent stock appears

to be associated with higher marginal cost. For higher values of patent stock, the relationship is

negative. This suggests a quadratic relationship between the marginal cost and the patent stock.

In part (b) of the figure, there is clearly a positive relationship between the marginal cost and

the unobserved product characteristics. Motivated by these pictures we specify the marginal cost

function as:

mcj = γ0 + γ1(ωj/ω0) + γ2(ωj/ω0)2 + γ3ξj + γ4ξ
2
j + εmc

j . (11)

In addition, we use two alternative specifications: (i) we impose that γ1 = γ2 = γ3 = γ4 = 0,

to study the case in which marginal cost is constant and does not vary with the technological

knowledge of the firm; (ii) we use log(ωj + 1) instead of ωj , to impose diminishing returns to

knowledge in terms of cost savings. The parameter estimates are in Table 4.

[Table 4 approximately here]

The estimates in the table show that all three specifications fit the data well. We use the

specification in (11) in the rest of the paper. We also briefly comment on the effect of the other

two specifications on our results.

4.1.3 Estimation of the Policy Function

The next task is to characterize the policy function from the observed investment decisions. Ideally,

the control variable x should be modeled as a completely flexible function of a firm’s own state and

the full vector of its rivals’ states that are contained in the vector s. Bajari and Hong [2005] discuss

the resulting distribution of the estimator if this step is carried out nonparametrically. Before

specifying the policy function, we plot the number of new patent applications against the two state

variables separately in Figure 3. There is a clear positive relationship between patent applications

and patent stocks in Part (a) of the figure: firms with higher patent stocks tend to file more patent

applications. Moreover, the relationship appears to be concave: as patent stock grows, the number

of applications does not grow as fast. Apparently there is no clear relationship between patent

applications and unobserved product characteristics in Part (b) of the figure. However, a closer

look will reveal an inverted-saucer shaped relationship.
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Keeping these pictures in mind, we try many different specifications for the policy function and

finally adopt the following.

xj = α0 + α1ωj + α2ω−j + α3ξj + α4ω
2
j + α5(ω−j)2 + α6ξ

2
j + α7ω−j

+α8ωjξj + α9ξjω−j + α10ξj(ω−j)2 + α11ξ
2
jω−j + α12ωj(ω−j)2 (12)

+α13ω
2
jω−j + α14ωjξ

2
j + α15ω

2
j ξj + +α16ωjξjω−j + εxj ,

where ω−j =
∑

k 6=j ωk. Under our assumption that firms always play their equilibrium strategy,

the OLS estimate of the above equation will in effect give us the equilibrium policy of the firm

as a function of its own and the industry state. The error term in equation (12) captures the

approximation error between the true policy function x(ωj , ξj , s) and the one we estimate. The

policy function estimates are in Table 5.

[Table 5 approximately here]

Our desire to have a flexible policy function results in most of the coefficients being statistically

insignificant. Still we can explain most of the variation in the number of new patent applications

(R2 = 0.90). The coefficient on own patent stock (ωj) is negative but when ωj is interacted with ξ,

ω−j and ξ2, the coefficients are positive. The coefficients on the sum of rivals’ patent stocks (ω−j)

and the unobserved product characteristics (ξj) are both negative but the presence of so many

interaction terms makes their interpretation difficult. Our main objective, as stated above, is to

get a flexible policy function and the one reported here serves that purpose very well. This is the

policy function we use for forward simulations to get the value function (see below).

An important feature, which is not so obvious from the estimation results, of this policy function

is that as we forward simulate the industry, the estimated number of new patent applications does

not increase without bound. Instead, there is invariably an upper bound for each firm, though

the bound is different for different firms. This is an important feature of the policy function and

ensures that patent stocks reach a finite stochastic steady state in finite time. In absence of this

feature, the number of new patent applications and hence the patent stocks will increase without

bound. This will make the problem of finding numerical estimates of the value function intractable.

4.1.4 Estimation of the State Transition Function

The state transition function for the knowledge stock ω is given by (7). It is measured as the

accumulated stock of past patents, which decreases exogenously in value because of economic obso-

lescence of knowledge and expiration of patent rights and increases with newly acquired knowledge

captured by patent applications (x).18

18This idea of patent stock is similar to the one used by Cockburn and Griliches [1988].
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The only parameters in the state transition function are the depreciation rate (δ) and the

parameters of the distribution of εω. We do not estimate these parameters from the data, but

assign them values that we believe are reasonable.

We assume a depreciation rate of 15% (i.e. δ = 0.15).19 This is the same depreciation rate used

in Cockburn and Griliches [1988] to construct R&D stock. It captures both patent expirations and

the economic obsolescence of older knowledge. The standard deviation of εω is set to 10% of x.

Given the assumption of a normal distribution with mean zero for εω, a firm that chooses to have

100 new patents in a particular year has a 67% probability of ending up with 90 to 110 patents.20

An alternative approach would be to let the control x be the value of R&D and estimate a

patent production function ∆ωt = f(ωt−1, x, ε) from the data. The stock of knowledge would then

evolve according to ωt = (1 − δ)ωt−1 + ∆ωt. In our model, the cost of innovation is estimated at

cx and we will compare this with observed R&D expenditures as a reality check.

We do not observe ξ’s. We recovered them as residuals from the demand equation. Using these

recovered ξ’s as data, we estimate the AR(1) model in (8). Our estimate of ρ is 0.6 with a standard

error of 0.04. The estimated residuals (ε̂ξj) are almost normally distributed with mean zero and

the standard deviation is 0.44. Hence for simulation purposes we assume that each firm’s ξ follows

an AR(1) process with an error term draw from a normal distribution with zero mean and 0.44

standard deviation. When two firms merge, we simply assign the average of individual firm ξ’s to

the merged firm.

We estimate the law of motion of the only industry level state variable (m) as a linear trend.

The estimated equation is:

m = 4.14E7 + 7.81E5 · t (13)

(8.72E5) (6.23E4),

where t is the year (e.g. 1982), and the numbers in parentheses are standard errors.

4.1.5 Computation of the Value Function

We can put the previous four building blocks together to obtain a numerical estimate of the value

function starting from any state (ωj , ξj , s−j ,m), given the structural parameter vector θ. For the

simple model described above, θ consists of a single parameter: c – the R&D cost required to obtain

one new patent in expectation. For now, the evaluation of the value function will be conditional
19Of course, we use the same value of δ to construct the patent stock from patent data.
20Although we choose the standard deviation of εω arbitrarily, our estimate of the structural parameter c is hardly

affected by this choice. This is because of zero mean assumption.
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on a starting value for this parameter (c0). In step 2 below we use the equilibrium conditions of

the model to derive a minimum distance estimator for this parameter.

To evaluate the value function we use forward simulation. We first explain our forward sim-

ulation procedure for the case when there are no mergers. For an initial industry state s0, the

estimated demand model and cost equation give us the equilibrium period profit vector over all

active firms in the industry according to (5).21 The initial state directly determines optimal inno-

vation, according to the estimated policy function, giving the net profit vector: π0(s0)− c0x0(s0).

Next, we use the state transition function to find the next period’s state and denote it by s1. In

order to do this, we draw a vector of εω values, one for each active firm, which enter equation (7).

We draw a similar vector for εξ. Following the same steps as above we can compute the expected

net profit in period 1 as π1(s1)− c0x1(s1), which we discount back to period 0 using an appropriate

discount factor β. We continue this process for a sufficiently large number of periods T until the

discount factor βT gets arbitrarily close to zero. In other words, we evaluate the following equation:

V (s0|θ) = E

[
T∑
t=0

βt[(πt(st)− c0xt(st)]

]
, (14)

where the expectation is over future states. We run these forward simulations a large number of

times, using different draws on εω, the only source of uncertainty in the model, and take their

average as a numerical estimate of V (s0|θ).22

The forward simulation of the value function becomes somewhat more complicated in the pres-

ence of mergers. At the end of each period, all firms receive a draw from the uniform distribution

over the unit interval. If in some period two firms receive a draw below p (this value is calculated

in the Appendix) they merge.23 The ω of the merged firm is the sum of ω’s of individual firms and

ξ of the merged firm is the average of individual ξ’s. This changes the state of the industry in all

calculations from that point onwards.

In order to allocate the future profits of the merged firm to the value functions of each of the

formerly independent firms, we calculate the share of each firm in their combined value should

they have remained independent—according to equation (18). This still requires the calculation of

future patent stocks for all firms and the profits for the two merging firms as if the merger had

not taken place in all future periods. As a result, the computational burden rises substantially.

Starting from twenty three firms, the first merger at time τ requires the calculation of additional
21This subsumes the calculation of the equilibrium price vector by solving the system of first order conditions for

all firms.
22The error term in equation (11) is fixed at zero throughout the simulations.
23If only one firm draws a merger, no merger takes place. If two firms draw a merger, they merge. If three firms

draw a merger, we merge two of them randomly and the third remains unmerged. If four firms draw a merger,

we merge two of them randomly and then merge the remaining two. And a similar procedure is used if more than

four firms draw a merger. The probability to draw a merger (i.e. p) is different from the probability of actually

experiencing a merger (i.e. pm). We further clarify this distinction in the Appendix.
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value functions for twenty two firms, although only T − τ future periods will be considered, and so

forth. NOTE TO AAMIR: ADD HERE WHAT WE ACTUALLY DO

The only other parameter we need is the discount rate β, which is set at 0.92. Given the

static parameter estimates, an initial state of the industry, and a starting value for the dynamic

parameter c0, we simulate forward the evolution of the industry state and calculate profits for all

firms as we go along. We simulate forward for 150 periods—β150 = 3.70E-06—and construct the

value functions as the present discounted value of the profit streams.24

4.2 Step 2

In step 2 we use the results from the first stage together with the equilibrium conditions on the

MPE to recover the dynamic parameter(s) of the model (θ). The following steps assume that the

model is identified and there is a unique true parameter vector θ0. Bajari et al. [2007] propose

a minimum distance estimator for this true parameter vector. Let x(s) be the equilibrium policy

profile. For this to be a MPE policy profile, it must be true that for all firms, all states, and all

alternative policy profiles x′(s)

Vj(s,x(s), θ) ≥ Vj(s,x′(s), θ), (15)

where x′ 6= x only at the jth element, as all other firms play their Nash strategy. Equation (15)

will hold at the true value of the parameter vector θ0.

The minimum distance estimator for θ0 is constructed as follows. For each firm j and each

state s we observe in the sample, we use the forward simulation method to calculate Vj(s,x(s), θ).

We do the same calculations using a number of alternative policy profiles x′(s) and compute the

difference Vj(s,x(s), θ) − Vj(s,x′(s), θ). We denote this difference by d(j, s,x′|θ). We then find d

for all j, s and x′(s) for a given value of θ and compute the sum of the squared min{d(j, s,x′|θ), 0}
terms. This only penalizes the objective function if the alternative policy x′ leads to a higher value

function, which should not happen if x is the MPE profile. The θ with the smallest sum is our

estimate of θ0, i.e.

θ̂0 = arg min
∑
j,s,x′

[
min{d(j, s,x′|θ), 0}

]2
. (16)

The only dynamic parameter in the model is the (average) R&D cost of a obtaining a new

patent (c). Each period, a firm chooses the number of patents it would like to add to its knowledge

stock, denoted by x. The R&D expenditure this requires upfront is c · x and the firm will obtain

x+ εω new patents by the next period.
24The values and subsequent estimates of parameter c are vitually unchanged if T is increased beyond 150. Since

the size of T is an important contributor towards the computation burden, we use T = 150. A smaller value of T

does affect the firm values and estimate of c.
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The minimum distance estimator as defined in (16) gives us an estimate of c. To evaluate the

objective function we have to specify alternative policies that differ from the equilibrium Nash

policy. For each firm j and each industry state s we specify two alternative policies as: x′(s) =

(ι+aej)′x(s), where ι is a vector of ones, ej a vector of zeroes with a single one at position j (both

vectors are of length n) and a ∈ {−0.01, 0.01}.

THIS AND THE NEXT PARAGRAPHS WILL BE UPDATED ONCE WE HAVE NEW ES-

TIMATES OF c AND THEIR STANDARD ERRORS. Our results indicate that the specification

of the marginal cost function is important for the estimate of c. Assuming that the marginal cost

is a linear function of the patent stock as in equation (11), leads to an estimate of c that is 17.2

million dollars.25 This specification makes patents valuable. To fit the observed rate of patenting,

the model estimates a relatively high R&D cost per patent.

In contrast, assuming a constant marginal cost, which shuts down the productivity benefit

of knowledge, the estimate falls to 14.8 million dollars. Including the logarithm of the patent

stock instead of the linear term leads to an intermediate estimate of 16.7 million dollars. As a

comparison, the median R&D-per-patent ratio we observe in the sample is 14.9 million dollars,

suggesting the estimate is plausible. R&D expenditures per patent are highly dispersed. Even

omitting the European firms that patent infrequently in the U.S. the standard deviation is $12.5m.

The median R&D-per-patent ratio has been increasing over time, reaching $18.1m in 2004.NOTE

TO AAMIR: ADD A SECTION ON ROBUSTNESS

5 Findings

Thus far, we have estimated the structural parameters of the model which gave us some insights into

the importance of innovation in the automotive industry. We found evidence of product and process

innovation affecting both the demand and cost sides in plausible ways. Firms’ optimal innovation

policy depends on the state of the industry and the model produces a plausible estimate for the

R&D cost of new patents. In this section, we use the model to study the interaction between

innovation and market structure. First, we compare some predictions of the model with data.

Second, we study the key question: how do changes in market structure interact with innovation?

5.1 Model Predictions and Data

First, we confront some model predictions with the data. The results in Table 6 compare for a

number of important variables the predictions with the observed values for the three largest firms

(by market share) in the sample: GM, Ford, and Toyota. The market share as predicted by the

model is influenced by the patent stock. The model predicts lower than actual market shares for
25This number is based on a normalized price of $10,000 for a GM vehicle.
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GM, and more so in 2004 than in 1982, because GM had a lower patent stock compared to the other

big firms in the industry. The market share for Ford is under-predicted for 1982 and over-predicted

for 2004. The reason is that the patent stock of Ford was not so high in 1982 but was reasonably

high (compared to other large firms) in 2004. The market share of Toyota is over-predicted because

it had very high relative levels of innovation both in 1982 and 2004.

The predicted price is the solution to n (number of firms) simultaneous equations. There is no

simple interpretation for it but the model predicts the actual price fairly closely except for Toyota

in the year 2004.

The model’s predictions of the new patents are qualitatively similar to the actual data. For

example, both Ford and Toyota have a much higher number of new patents in 2004 than in 1982.

However, for GM the model predicts a higher number of new patents in 2004 but in the data it

had fewer. This data point itself is at the lower end. We see in Figure 3(a) that for a firm with

the patent stock of 2200 the actual number of new patents ranges between 200 and 800. Based on

these data, the estimated new patents of 500 for GM are a reasonable prediction.

[Table 6 approximately here]

The model also predicts the evolution of industry state reasonably well.26 In Figure 4 we plot

the mean and the standard deviation of ω by year as in the data and as predicted by the model.

The predicted means and standard deviations evolve more smoothly, but track the data fairly well.

5.2 Market Structure and Innovation

The question how market structure affects innovation has been extensively studied in the literature

and evidence is mixed. Examining the evidence, Cohen and Levin [1989] (p.1075) cite several studies

that found a negative relationship, but also others that found a positive relationship, and even

one that found an inverted-U relationship. They conclude that “the empirical results concerning

how firm size and market structure relate to innovation are perhaps most accurately decribed as

fragile.”(p.1078)

More recently, Aghion et al. [2005] predict an inverted-U relationship between competition and

innovation in a general equilibrium setting and also find empirical support for it in the manufac-

turing sector of the U.K. In their model, competition is exogenous. An increase in competition will

lead to more innovation if firms are technologically close to one another and less innovation if they

are technologically far apart. The net aggregate effect depends on the steady state distribution of

the technology gap across industries. In their model, there is no reverse feedback from innovation

to competition. Although we are interested in the same question, our model differs from theirs
26By industry state we mean sω because sξ does not evolve endogenously.
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in two fundamental ways. First, we focus on a single industry and hence do not consider general

equilibrium issues. Second, in our dynamic structural model there is a feedback from innovation to

the level of competition firms face: innovation today affects the industry state in the next period.

Having estimated the parameters of the model, we are now in a position to examine how market

structure and innovation interact in our model of the global automobile industry.

The market structure of the global auto industry can most appropriately be classified as an

oligopoly and has been so for a long time. However, the extent of competition faced by firms in this

industry has changed over time as the industry consolidated. We use two definitions of competition:

the inverse of the degree of concentration in the industry and the ratio of marginal cost to price.

Innovation is measured by the R&D intensity, the ratio of R&D expenditures to sales. In our model,

competition and innovation are determined simultaneously and evolve together. Random mergers

reduce the extent of competition exogenously and change the incentives to innovate. Innovation,

in turn, changes the (knowledge) states of the industry and influences the nature of competition.

To study this relationship we begin with the actual state of the global auto industry in 1982.

Given the state of the industry, firms make their pricing and R&D investment decisions. We record

these decisions and compute the statistics of interest for individual firms as well as for the industry

as a whole. We then draw mergers randomly and update industry state based on firms’ R&D

investments and the outcome of merger draws. We continue this process until the number of firms

is down to five.27 Figure 5 plots the results based on a random merger sequence, which is reported

in Table 7.28

In Figure 5(a), the X-axis indicates firm level competition as measured by the ratio of marginal

cost to price.29 Innovation intensity, R&D expenditures to sales, is plotted on the Y-axis. Barring

some outliers, the relationship between competition and innovation turns out to be inverted-U

shaped. As the degree of competition increases, firms increase their innovative activity, but only

up to a point. When competition becomes too intense, the innovative activity declines. In this

example, the innovative activity is at its maximum when mc/p ratio is around 0.85. The same

holds in Figure 5(b) when competition is measured by the cumulative market share of a firm’s

competitors. Innovation peaks when a firm controls about 10% of the market. In Figure 5(c) we

average the mc/p ratios and innovation intensities over all firms for each time period. The inverted-

U pattern still holds. Figure 5(d) is similar to Figure 5(c), but competition is measured by one

minus the Herfindhal’s index.30

27We set the lower limit at five to allow for the industry to become highly concentrated. The results would be

similar if we fixed the minimum number of firms at ten.
28We report the results based on a single merger sequence here, but the conclusions are robust when we use another

sequence or average over several sequences.
29This is just one minus the Lerner’s Index. The Lerner’s Index is defined as p−mc

p
.

30Herfindhal’s Index =
∑n
j=1 s

2
j . Where sj is the market share of firm j.
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In Figure 6 we depict various components that generated Figure 5(b). Mergers make the market

more concentrated over time and we illustrate how several industry variables evolve. The price-cost

margin increases (6(a)); sales continue to grow along a linear trend (6(b)); aggregate R&D in the

industry first increases and then flattens out (6(c)); which is mirrored in R&D intensity (6(d)).

The first two effects follow directly from our assumptions on competition and the absence of an

outside good. The trend in aggregate R&D owes its shape to concave policy function and mergers.

As the industry evolves, smaller firms tend to innovate a lot. They do so because, due to the

steep value function, marginal addition to knowledge adds a lot to their value. However, in our

estimated model there are decreasing returns to knowledge. As firms’ knowledge increases, benefits

from further innovation decline and they innovate less. Mergers tend to expedite this process of

decreasing returns by causing discrete increases in the knowledge stock of market participants.

The previous analysis started from the initial state of the industry in 1982. At that time,

there were twenty three firms in the industry and almost half of them had a very small knowledge

stock.31 Initially, R&D grew rapidly, faster than sales, and innovation intensity increased in the

earlier periods. Once these firms grew bigger and merged, the decreasing returns caused R&D to

flatten while the sales continued to grow along their linear trend and R&D intensity fell. Combining

both episodes in Figure 5 gave rise to the inverted-U relationship.

We now repeat the same experiment but start from the industry state in 2004. At that time,

mergers had reduced the number of firms in the sample to just thirteen. This was already a

concentrated industry. Most of the firms had large patent stocks compared to what they had in

1982.32 We plot the results of this experiment in Figures 7 and 8, which are comparable to Figures

5 and 6. Figure 7 suggests a positive relationship between competition and innovation, i.e. as

industry becomes more concentrated, innovation falls.33 The reason, as Figure 8 shows, is that

now the industry is already concentrated at the start and we never observe any ‘high competition’

situations. This makes R&D grow more slowly than sales and R&D intensity declines throughout.

To sum up, forward simulations based on our estimated model of global auto industry show that,

in general, competition is good for innovation. If an innovation-intensive industry is too fragmented

(as the auto industry was in 1982), some consolidation is likely to increase innovative activity.

However, as the industry becomes highly concentrated, further consolidation will negatively affect

the intensity of innovation in the industry. Our results suggest that the global auto industry has

already consolidated enough and any further big mergers (like the one recently proposed between

GM and Nissan-Renault) would reduce innovation. These results depend on the decreasing returns

to knowledge stock reflected in the concave policy function that we estimated.
31The median patent stock was just 25.
32The median patent stock in 2004 was 2519.
33The random merger sequence used in this experiment is reported in Table 8
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6 Concluding Remarks

We construct a dynamic game-theoretic industry model of the global automobile industry that

allows for random mergers but does not feature entry or exit. We estimate the structural parameters

of the model using a new method proposed by Bajari and Benkard [2005]. Our application illustrates

the usefulness of their method in terms of saving in computation time and highlights some of the

problems faced by us while employing their methodology.

We then use the model to study the interaction between market structure and innovation. Our

principal finding is that, in the global auto industry, the effects of market structure on innovation

depend on the initial state of the industry. If the industry is very fragmented, an increase in concen-

tration (brought about by random mergers in our model) promotes innovative activity. However, if

the industry is already concentrated, a further increase in concentration will discourage innovation.

A general implication of our findings is that observations for an industry may span only a subset

of the space, exhibiting a monotone positive or negative relationship.

The policy message of this study is clear. The global automobile industry has consolidated suf-

ficiently to provide good incentives for innovation. Any further consolidation is likely to be harmful

for innovation and diminish competition. However, mergers between small firms (or between a

small and a medium-sized firm) may still be beneficial.

In its present form the model has an unrealistic implication: mergers are always value destroying

for the merging parties. The reason is twofold: Decreasing marginal returns to knowledge and the

loss of an independent firm. However, depending on the size of merging firms, mergers can have

positive or negative effects on aggregate industry value. Specifically, the bigger the size of the

merging firms the better it is for rival firms’ values and hence for the aggregate industry value.

NOTE TO AAMIR/JO: ADD MORE DISCUSSION HERE AND LINK IT TO POTENTIAL

FUTURE WORK

The above limitations notwithstanding, we believe that dynamic models of competition provide a

fruitful modeling environment to study how market structure and innovative activity are related. In

line with earlier surveys, we also believe that this relationship is industry specific and generalization

are unlikely to be very useful for policy purposes. Nevertheless, the current framework provides a

flexible and general approach to study oligopolistic-dynamic interactions and has wide applicability.
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A Appendix: The Merger Technology

When there are more than two firms in the industry and we allow for mergers, the value function

of firm j is somewhat more complicated. pm(n) denotes the probability that a firm experiences

a merger at the end of the current period and will be calibrated below. This probability is an

increasing function of n and constant across firms. k indexes a firm that j is randomly matched

with to merge and s′−jk is the industry state excluding firms j and k after the merger. The value

function of firm j can then be written as

Vj(ωj , ξj , s−j) = max
xj∈R+

{
πj(ωj , ξj , s−j)− cxj(ωj , ξj , s−j)

+ β
[ pm
n− 1

∑
k 6=j

ζj(·)EVj(ω′j + ω′k, (ξ
′
j + ξ′k)/2, s

′−jk)

+ (1− pm)EVj(ω′j , ξ
′
j , s
′−j)

]}
, (17)

where

ζj(ω′j , ξ
′
j , ω
′
k, ξ
′
k, s
′−jk) =

Vj(ω′j , ξ
′
j , s
′−j)

Vj(ω′j , ξ
′
j , s′

−j) + Vk(ω′k, ξ
′
k, s
′−k)

. (18)

The value is the sum of the period profit, the continuation value should a merger take place (summed

over all rival firms k, and the continuation value in the case no merger takes place. As discussed

earlier, we set a lower bound on the number of firms in the industry, denoted by n. When n = n,

pm = 0 and (17) reduces to (6).

We now show how we can impute the probability that a firm will be involved in a merger (pm),

from the observed number of mergers in the data. Let there be n > 1 firms in the industry and

let p be the probability (same for all firms) that a firm will be up for merger this period. This

probability p differs from the merger probability pm, because mergers only take place if at least

two firms are up for merger.

With only two active firm, pm = p2. With more active firms, the probability that two firms

merge at the end of the period is the sum of the following probabilities (if more than two firms are

up for merger, we pick two at random):

Pr(The firm is up for merger and 1 other firm is also up) = pPn−1
1

Pr(The firm is up for merger and 2 other firms are up) =
2
3
pPn−1

2

Pr(The firm is up for merger and 3 other firm are up) = pPn−1
3

Pr(The firm is up for merger and 4 other firms are up) =
4
5
pPn−1

4

... =
...

where Pnk is the binomial probability that out of n firms exactly k are up for mergers and is given

by
(
n
k

)
pn(1− p)n−k. The last term in the above series of probabilities depends on whether n is an
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odd or an even number. If n is odd, the last term would be n−1
n Pn−1

n−1 and if n is even, the last term

would simply be Pn−1
n−1 . Adding these terms together, we can write the sum as

pm(n, p) =
[ ∑
i∈O,i<n

Pn−1
i +

∑
i∈E,i<n

i

i+ 1
Pn−1
i

]
· p, (19)

where O = {1, 3, 5, . . .} and E = {2, 4, 6, . . .}. We have derived an expression for pm in terms of

n and p. Our next task is to impute p from the data. In our sample we observe 10 mergers in 23

years. We shall assume for the sake of simplicity that these mergers are evenly spread over the

entire sample period. Then the expected number of mergers in any period is 10
23 . We make this

expected number of mergers depend on n in a simple way. Let n be the average number of firms

in the industry per period. Then we may write the expected number of mergers as

E(M) =
10
23
· n
n
. (20)

If the actual number of firms in the industry is equal to the average over the sample period, we

expect 10
23 mergers to take place in that period (or we expect 1 merger in every 23

10 such periods). If

the actual number of firms is above the average we expect more mergers and vice versa. The simple

idea behind (20) is that as n declines, we reduce the expected number of mergers that we want to

match by choosing an appropriate p. In other words, we want to make p small as n declines.

So far we have been trying to get a reasonable number of expected mergers from the data. But

if we know p and n, we can easily derive the expected number of mergers by using the following

equation

E(M) =
bn

2
c∑

M=1

M · P (M), (21)

where P (M) is the probability that M mergers take place. If M = 1 then P (M) = (Pn2 + Pn3 ).

In words, the probability that one merger will take place is simply the sum of the probabilities that

out of n firms 2 or 3 are up for merger. If 3 firms are up for merger, we shall pick 2 at random and

the third will not merge and remain independent. Equation (21) can explicitly be written as

E(M) =


∑bn

2
c−1

i=1 i(Pn2i + Pn2i+1) + bn2 c(P
n
2bn

2
c + Pnn ) if n is odd∑bn

2
c−1

i=1 i(Pn2i + Pn2i+1) + n
2P

n
n if n is even.

The last equation implicitly defines p in terms of n and E(M). But in (20) we have already

defined E(M) as a function of n. Hence, given n we can use (20) to solve for E(M) and then use

the last equation above to solve for p. Once we have p, we can use (19) to get pm.
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Table 1: R&D expenditures by industry in selected countries for 2003 (in PPP $m)

Industry ISIC Rev.3 OECD1 USA EU Japan

Motor vehicles 34 76,199 17,034 21,258 12,765

(13.2%) (8.3%) (16.9%) (15.1%)

Radio, television, telecom. equipment 32 71,623 22,399 13,812 11,081

Total business sector 15-99 577,316 204,004 125,591 84,676

Pharmaceuticals 24.2 57,541 15,962 16,850 6,363

Medical, precision, optical instruments 33 38,440 20,400 6,782 3,619

Computer and related activities 72 38,189 19,854 6,990 1,814

Aircraft and spacecraft 35.1 34,065 15,731 8,518 385

Wholesale & retail trade; repairs 50-52 30,066 26,580 1,039 578

Office, accounting, and computing mach. 30 24,136 7,664 2,568 10,764

R&D2 73 22,417 12,460 4,951

Note: The five most R&D intensive sectors in each of the three country are included and sorted

by total R&D expenditure.
1 We only observe statistics from the following countries: USA, EU, Japan, Canada, Korea, Norway,

Poland, Czech Republic.
2 For the EU, R&D is included in other sectors.

Source: OECD ANBERD database, Version 2, 2006.
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Table 2: Firms in the sample with market share (worldwide unit sales)

1982 2004

(n = 23) market share (%) (n = 13) market share (%)

BMW 1.01 BMW 2.08

Chrysler 3.77 Daimler-Chrysler 8.12

Daimler-Benz 1.88

Fiat 4.27 Fiat 3.59

Ford 14.50

Jaguar 0.06

Volvo 0.97 Ford 13.05

Rover Group 1.34

Alfa Romeo 0.55

Daewoo 0.06

Saab 0.29 General Motors 15.46

General Motors 17.31

Honda 2.72 Honda 5.49

Hyundai 0.24 Hyundai-Kia 5.72

Kia 0.16

Mitsubishi 2.71 Mitsubishi 2.31

Peugeot-Citroen (PSA) 4.40 Peugeot-Citroen (PSA) 5.80

Nissan 6.98 Renault-Nissan 9.95

Renault 5.43

Suzuki 1.62 Suzuki 3.22

Daihatsu 1.24 Toyota 11.54

Toyota 8.79

Volkswagen 6.57 Volkswagen 8.74

Total 86.87 Total 95.07

Source: Ward’s Automotive Yearbook (various years) and Ward’s AutoBank
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Table 3: Demand Parameter Estimates

The dependent variable is log market share

OLS IV IV

Knowledge (ln(1 + ω)) 0.42∗∗∗ 0.42∗∗∗ 0.56∗∗∗

(0.01) (0.02) (0.08)

Price (ln p) −2.31∗∗∗ −2.19∗∗∗ −7.30∗∗

(0.19) (0.63) (2.86)

Time Fixed-Effects No No Yes

R2 0.69 0.69 -

No. of observations 414 414 414

Notes: (1) The only instrument in columns (2) and (3) is the

sum of all rivals’ knowledge. All variables are normalized by GM.

(2) Significance at 1%, 5% and 10% levels is shown by ∗∗∗, ∗∗ and ∗.

Table 4: Parameter Estimates for the Marginal Cost Function

Dependent variable is marginal cost (MCGM = 1)

OLS OLS OLS

Constant term 1.07∗∗∗ 1.03∗∗∗ 0.61∗∗∗
(0.01) (0.01) (0.04)

Relative Knowledge (ωj/ω0) 0.26∗∗∗
(0.04)

(ωj/ω0)2 −0.16∗∗∗
(0.02)

Unobserved Product Characteristics (ξ) 0.11∗∗∗
(0.01)

ξ2 0.01
(0.01)

log[(ωj + 1)/(ω0 + 1)] 0.02∗∗∗
(0.00)

log[ξ −min(ξ) + 1] 0.35∗∗∗
(0.03)

R2 - 0.39 0.34

No. of observations 405 405 405

Note: Significance at 1%, 5% and 10% levels is shown by ∗∗∗, ∗∗ and ∗.
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Table 5: Policy Function Estimates

Dependent variable is the number of new patents awarded

Ind. Variable OLS Ind. Variable OLS

Constant 98.42 ξj · ω−j 0.01
(77.96) (0.01)

ωj −0.01 ξj · (ω−j)2 -2.60E-7
(0.07) (2.58E-7)

ω−j −0.01 ξ2j · ω−j -9.1E-4
(0.01) (1.9E-3)

ξ −49.44 ωj · (ω−j)2 -7.11E-10∗∗∗
(63.28) (2.37E-10)

ω2
j -3.57E-5 ω2

j · ω−j 7.07E-10
(2.73E-5) (1.20E-9)

(ω−j)2 2.79E-7 ωj · ξ2j 0.01
(2.73E-7) (0.01)

ξ2 4.93 (ωj)2 · ξj -1.30E-6
(19.92) (9.91E-6)

ωj · ω−j 2.92E-5∗∗∗ ωj · ξj · ω−j -8.09E-7
(7.79E-6) (2.55E-6)

ωj · ξ 0.04 R2 0.90
(0.04) Observations 368

Notes: (1) ωj = Own Knowledge.

(2) ω−j =
∑

k 6=j ωk = Sum of Rivals’ Knowledge.

(3) ξ = Unobserved Product Characteristics.

(4) Significance at 1%, 5% and 10% levels is shown by ∗∗∗, ∗∗ and ∗.

Table 6: Model predictions for top firms

GM Ford Toyota

1982 2004 1982 2004 1982 2004

Market share (actual)* 0.17 0.15 0.15 0.13 0.09 0.11

Market share (predicted) 0.12 0.03 0.10 0.15 0.18 0.35

Price (actual) 1.00 1.00 0.98 0.88 0.99 0.92

Price (predicted) 1.00 1.00 1.03 0.88 1.04 0.83

New patents (actual) 278 205 185 658 348 1082

New patents (predicted) 158 501 141 841 184 968

Patent stock (actual) 1221 2217 801 4122 1534 4918

Note: Prices are relative to GM
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Table 7: Merger Sequence 1

Period Merging Firms Period Merging Firms

2 HYU(0), KIA(0) 11 ROV(0), DSU MTB

3 JAG(0), PSA(548) 15 VOL REN , ROV DSU MTB

4 DSU(3), MTB(25) 16 FIA SAB , VOL REN ROV DSU MTB

5 BMW(283), FRD(801) 17 CHR(6), HND(966)

6 GMS(1221), BMW FRD 21 ALR(40), GMS BMW FRD

6 NSN(0), TYO(1534) 24 VOW(47), CHR HND

7 SZK(0), DBZ(186) 30 DWO(0), JAG PSA

7 FIA(51), SAB(19) 54 SZK DBZ , FIA SAB VOL REN ROV DSU MTB

11 VOL(1), REN(569)

Notes: (1) Numbers in parenthesis are the first period (i.e. 1982) knowledge stocks.

(2) Names in boxes are the firms that had merged before the current period.

(3) ALR = Alfa Romeo; GMS = General Motors; REN = Renault; BMW = Bayerische

Motoren Werke; HND = Honda; ROV = Rover Group; CHR = Chrysler; HYU = Hyundai;

SAB = Saab; DBZ = Daimler-Benz; JAG = Jaguar; SZK = Suzuki; DSU = Daihatsu; KIA

= Kia; TYO = Toyota; DWO = Daewoo; MTB = Mitsubishi; VOL = Volvo; FIA = Fiat;

NSN = Nissan; VOW = Volkswagon; FRD = Ford; PSA = Peugeot-Citrion.

Table 8: Merger Sequence 2

Period Merging Firms Period Merging Firms

3 FIA(1589), GMS(2217) 35 SZK(311), FIA GMS

6 DBZ(3516), HND(4277) 48 BMW(2519), VOW(2816)

7 MTB(327), REN(2553) 51 HYU(687), TYO(4918)

Notes: (1) Numbers in parenthesis are the first period (i.e. 2004)

knowledge stocks.

(2) Names in boxes are the firms that had merged before the

current period.
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Figure 1: Hedonic prices for a number of firms (relative to GM)
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Figure 2: Marginal Cost, Patent Stock and Unobserved Product Characteristics
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Figure 3: New Patents, Patent Stock and Unobserved Product Characteristics
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Figure 5: Competition and Innovation at the Firm and Industry Level
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Figure 6: Competition and Innovation over time
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Figure 7: Competition and Innovation at the Firm and Industry Level
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Figure 8: Competition and Innovation over time
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