

Creating an Innovation Ecosystem

Thomas W. Peterson Assistant Director for Engineering National Science Foundation

Presented to the FTC Microeconomics Conference 20 November 2009

Innovation

• There are numerous innovative definitions of Innovation There are multiple elements in the **Innovation Process** • For purposes of THIS presentation: Focus on NSF-funded research that has led to direct, quantifiable economic benefit (a product, process, practice, service, social change)

Science of Science and Innovation Policy (SciSIP)

• UC Davis

How the DOE can accelerate the rate of progress in energy innovation

• UNC Greensboro

Assessing the Innovative performance of University Research Parks

• U Georgia

Impact of programmatic university resource investments on innovation

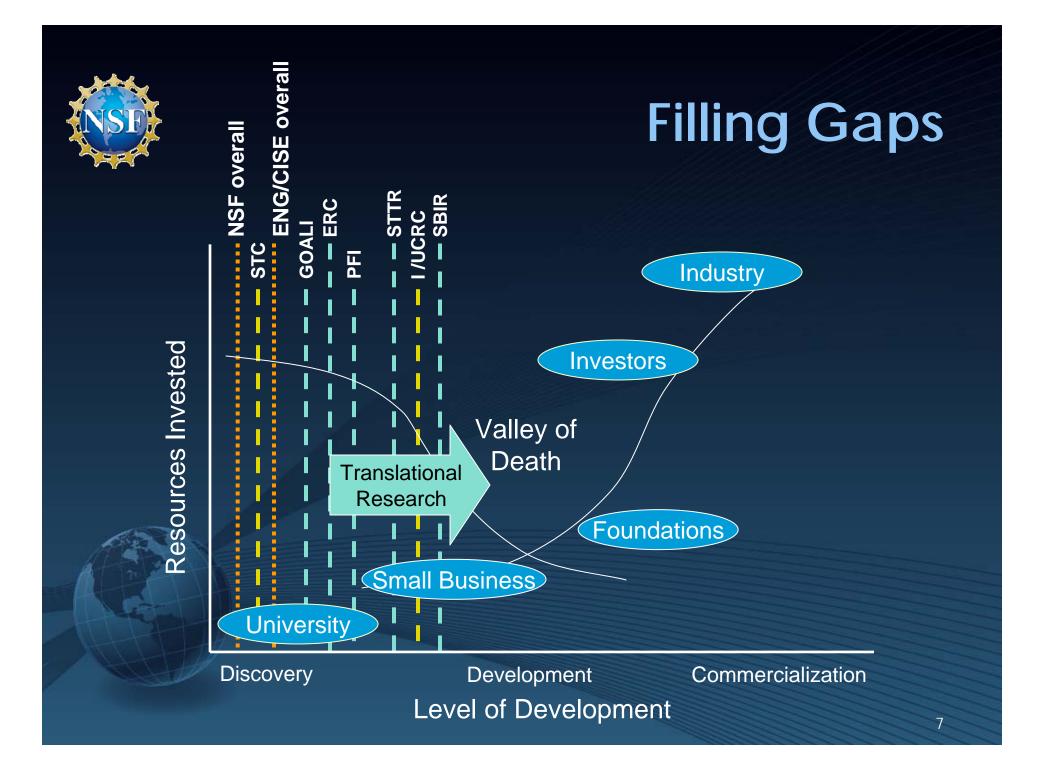
• U Kansas

Contributions of foreign students to knowledge creation and diffusion

• Arizona State U

Innovation as characterized by public values contribution

Innovation Through Translational Research


Translational Research

- Is interdisciplinary by nature
- Involves a team
- Relies on partnerships
- Results in clear benefit to society

NSF Programs for Translational Research

- Science and Technology Centers (STC)
- Engineering Research Centers (ERC)
- Materials Research Science and Engineering Centers (MRSEC)
- Grant Opportunities for Academic Liaison with Industry (GOALI)
- Industry/University Cooperative Research Centers (I/UCRC)
- Partnerships for Innovation (PFI)
- Small Business Technology Transfer (STTR)
- Small Business Innovation Research (SBIR)
- Nanoscale Science and Engineering Center (NSEC)
- Nanoscale Interdisciplinary Research Teams (NIRT)
- Emerging Frontiers of Research and Innovation (EFRI)
- Other ENG programs

Some concrete examples

SBIR
ERC
I/UCRC
STC
GOALI
Single PI Awards
CISE

Disclaimer

 NSF doesn't claim SOLE responsibility for these successes, but
 NSF played a clear and definable role in the intellectual evolution of all these innovations.

SBIR Support of Qualcomm

- In 1985, Andrew Viterbi and 6 colleagues formed "QUALity COMMunications"
- In 1987–1988 SBIR provided \$265,000 for single chip implementation of Viterbi decoder
 - Led to high-speed data transmission via wireless and satellite
- Now the \$78B company holds more than 10,100
 U.S. patents, licensed to more than 165
 companies

Engineered Yeast Produce the Anti-Malarial Drug Artemisinin

- Synthetic Biology ERC, Univ. of California, Berkeley, director Jay Keasling
- Artemisinin is 90% effective against the malarial parasite, but it is naturally produced in small quantities and expensive to extract.

Sanofi-aventis is scaling up the engineered yeast cells, with drug production expected in 2010.

The leaves of *Artemisia annua*, the sweet wormwood tree, are the source of artemisinin. *Lawrence Berkeley National Laboratory*

Industry/University Cooperative Research Centers

I/UCRC for Engineering Logistics and Distribution (CELDi)

- Collaboration between Univ. of Arkansas and Sam's Club
- Created an Excel-based simulator to replicate the functionality of the Sam's Club inventory and logistics software
- Resulted in more than 4% reduction in inventory costs in categories where applied
- Expected savings of approximately \$10M in annual cost-of-inventory.

Sam's Club: When complete, cost savings from inventory reductions could be as much as **\$70M annually**.

Science and Technology Centers

Magnetic Resonance Imaging

- STC for Magnetic Resonance Technology for Basic Biological Research at UIUC established in 1991
- PI Paul Lauterbur discovered the possibility of creating a two-dimensional image by producing variations in a magnetic field

Lauterbur was awarded a **Nobel Prize** in 2003 for discoveries leading to magnetic resonance imaging.

Individual Awards

Membranes for Purification of Gases and Water

Benny Freeman, UT Austin

 NSF (0515425) partially supported research used for the Polaris[™] line of membranes, now sold by Membrane Technology and Research, Inc.


 Results from an NSF Graduate Fellowship and a CBET grant (0554109, 0637040) were the basis for Advanced Hydro, Inc., a start-up focusing on water purification membranes with improved fouling resistance.

Polaris[™] membranes remove CO2 from Syngas. *Credit: MTR*

Nanopatterning and Detection Technologies

- Chad Mirkin, Northwestern Univ.
- NSEC for Integrated Nanopatterning and Detection Technologies (0647560)
- Mirkin holds more than 350 patents
- Nanolnk (founded in 2001) offers Dip Pen Nanolithography (DPN) tools for fabricating MEMS and other nanoscale devices.
- Nanosphere (founded in 2000) offers nanotechnology-based molecular diagnostic testing.

Dip Pen Nanolithography for nanofabrication. *Credit: Nanolnk*

Nanosphere is now valued at **\$164.5M**.

Characteristics of the Innovation Ecosystem

- University research is key, often driven by industrial needs.
- Faculty are involved along the innovation continuum, working with industry at all stages.
- A focus on translational research smoothes the handoff of technology from universities to industry—resulting in rapid, efficient innovation.

NSF Resources for the Innovation Ecosystem

Grow the existing portfolio and strengthen the translational phase
Extend the reach of industry-driven research initiatives
Educate to innovate
Better understand the social dimensions of innovation (SciSIP)