Estimating a Model of Strategic Network Choice: The Convenience-Store Industry in Okinawa

Mitsukuni Nishida

Johns Hopkins Univ.

Annual FTC-NU conference

Motivation: Why Model Location Choice of Chains?

- We often observe store-location choices of multi-store firms.
 - Convenience stores (Family Mart, LAWSON), discount retailers (Wal-Mart, Target), groceries (Whole Foods, Trader Joe's)
- Two features: (1) internalizing a trade-off due to clustering own stores and (2) taking a rival chain's store locations into account
- What are the underlying primitives that generate the observed store networks? Can we explain these networks as the outcomes of games?
- Can we predict new store networks after a merger (or deregulation)?

"The proposed settlement doesn't resolve the competitive problem that would lead to these higher prices." (FTC, Staples-Office Depot merger, 1997)

• This paper develops a new framework to estimate a game in which two chains choose store networks.

A Trade-off Due to Clustering Own Stores

- There is a trade-off between
 - Own Business-Stealing Effect: revenue reduction due to presence of own chain stores and
 - Ost Savings due to presence of own chain stores.
- A trade-off can be within a market (red) or across markets (pink).

Underlying Difficulties in Chain-Entry Game

- ★: Family Mart Store
- : LAWSON Store

0	1	0	0
2	1	1	0
0	0	1	0
1	0	1	0

- $N_{FM} = (0, 1, 0, 0, 0, 3, 1, 1, 0, 1, 0, 1, 0, 1, 0, 0)$
- Issues: Huge number of
 - possible store networks: $5^{16} = 1.5 * 10^{11}$
 - 2 possible outcomes of the game: $(5^{16})^2 = 2.3 * 10^{22}$

My Approach

- This paper proposes a general framework for estimating a chain-entry model.
- New features: a chain is allowed to
 - decide where and how densely to open stores and
 - Internalize a trade-off due to clustering own stores.
- Methodological improvements
 - Provide algorithms to reduce burden of solving for a Nash Equilibrium.
 - Integrate chain-entry model with post-entry outcome, correcting for selection for entrants by simulations
- Apply to convenience stores in Okinawa to evaluate hypothetical merger and deregulation
- Empirical findings
 - Trade-off due to clustering stores is important consideration for a chain.
 - Over the second seco
 - Operegulation: significantly impacts store networks.

Empirical Entry Models

• Traditional unit of analysis is the single-store firm.

- Bresnahan and Reiss (1990, 1991), Berry (1992), Mazzeo (2002a), Seim (2006)
- Markets are independent both in demand and costs
- Analysis on multi-store firms
 - ▶ Jia (2008): equilibrium store-network choice model
 - Ellickson, Houghton, and Timmins (2008), Holmes (2008)
- Integration of post-entry outcomes into entry model
 - Reiss and Spiller (1989), Berry and Waldfogel (1999), Mazzeo (2002b), Ellickson and Misra (2008)

Model Outline

- Two players $i \in \{FamilyMart, LAWSON\}$
- Complete information, simultaneous move
- Markets denoted m = 1, ..., M
- Strategy profile: $N_i = [N_{i,1}, .., N_{i,m}, .., N_{i,M}]'$
- Each player maximizes total profits:

$$\Pi_i(N_i, N_j) = \sum_{m=1}^M \pi_{i,m}(N_i, N_j)$$

Nash equilibrium: a pair of store networks that are best responses
N_{i,m} ∈ {0, 1, ..., K}

Profit Function and Revenue Equation

•
$$\underbrace{\pi_{i,m}(N_{i}, N_{j})}_{\text{Profits, market level}} = \underbrace{r_{i,m}(N_{i}, N_{j})}_{\text{Revenue}} - \underbrace{c_{i,m}(N_{i})}_{\text{Costs}}, \text{ where}$$

$$r_{i,m}(N_{i}, N_{j}) = N_{i,m} * \left[-\delta_{own, within} \log(\max(N_{i,m}, 1)) - \delta_{own, adj} \sum_{l \neq m} \frac{D_{i,l}}{Z_{m,l}}\right]$$

$$\underbrace{-\delta_{rival, within} \log(N_{j,m} + 1) - \delta_{rival, adj} \sum_{l \neq m} \frac{D_{j,l}}{Z_{m,l}}}_{\text{business-stealing effect, rival chain stores}}$$

$$-\delta_{local, within} \log(N_{local, m} + 1) - \delta_{local, adj} \sum_{l \neq m} \frac{D_{local, l}}{Z_{m,l}}$$

$$\underbrace{-\delta_{local, within} \log(N_{local, m} + 1) - \delta_{local, adj} \sum_{l \neq m} \frac{D_{local, l}}{Z_{m,l}}}_{\text{business-stealing effect, local stores}}$$

$$+ \underbrace{\chi_{m}\beta}_{\text{demographics}} + \underbrace{\mu_{LAWSON} * 1(i \text{ is LAWSON})}_{\text{brand fixed effect, LAWSON}} + \lambda_{1}(\sqrt{1 - \rho_{1}^{2}}\epsilon_{m}^{r} + \rho_{1}\eta_{i,m}^{r})].$$

Mitsukuni Nishida (Johns Hopkins Univ.) Estimating a Model of Strategic Network Chc Annual FTC-NU conference 8 / 29

Cost Equation

$$c_{i,m}(N_i) = N_{i,m} * \left[\underbrace{-\alpha_{saving,within} \log(\max(N_{i,m}, 1))}_{\text{cost savings from stores within a market}} \\ \underbrace{-\alpha_{saving,adj} \sum_{l \neq m} \frac{D_{i,l}}{Z_{m,l}}}_{\text{cost savings from stores in adjacent markets}} \\ + \underbrace{\mu_{dist} * Distance_{i,m}}_{\text{costs due to distance to distribution center}} + \underbrace{\gamma * 1(\text{market } m \text{ is zoned})}_{\text{fixed costs due to regulation}} \\ + \underbrace{\mu_{cost}}_{\text{fixed costs of opening a store}} + \underbrace{\lambda_2(\sqrt{1 - \rho_2^2}\epsilon_m^c + \rho_2\eta_{i,m}^c)}_{\text{cost shocks}}\right]$$

イロト イヨト イヨト イヨト

э

Motivation for Mult-Store Model

Multiple-choice model (1) has better coverage, (2) incorporates a trade-off within a market, (3) endogenizes all markets \Rightarrow enables merger simulation.

- ★ : Family Mart Store
- •: LAWSON Store

THE 1 1

 $\circ \star$

Motivation for Multi-Store Model

• Dense configuration of stores in Okinawa

Computational Challenges

Issues

- Number of possible network choices is too large to evaluate: Five choices, 834 markets $\Rightarrow 5^{834} = 8 * 10^{582}$
- ② Need to solve for a Nash Equilibrium of the game Possible outcomes: $(5^{834})^2 = 6.4 * 10^{1165}$

Use lattice theory to develop iterative algorithms under K-choice to

- search for the profit maximizing network choice and
- solve for a Nash Equilibrium.

Supermodular Game and Existence of Equilibrium

Definition (Supermodular Game)

A game is supermodular if (1) $\Pi_i(N_i, N_j)$ is supermodular in N_i for fixed N_j , and (2) $\Pi_i(N_i, N_j)$ has increasing differences in N_i and N_j .

Theorem (Topkis 1979)

The set of Nash Equilibria of a supermodular game is non-empty.

Analytical Results (1)

Lemma

The chain-entry game with K-choice is supermodular if $\delta_{own,adj} \leq \alpha_{saving,adj}$.

Remark: There are no restrictions on the within-market effect among own stores in a market. Within any given market, either positive spillover (delivery costs savings) or own business-stealing effect can dominate.

Algorithm to Calculate Nash Equilibrium

Theorem (Round-Robin Algorithm to Compute a Nash Equilibrium [Topkis 1998])

Each player proceeds to update her strategy by choosing a best response. This iterative decision-making process will converge to a Nash Equilibrium that yields the highest profits for the first mover in the algorithm.

Steps

- Given $N_{LS}^0 = (0, 0, \dots, 0)$, compute the best response of Family Mart $N_{FM}^1 = \underset{N_{FM}}{\arg \max} \sum_{m=1}^M \pi_{FM,m}(N_{FM}, N_{LS}^0)$.
- **2** Given N_{FM}^1 , compute the best response of LAWSON N_{LS}^1 .
- Solution Iterate 1 and 2 for T times until we get convergence of either N_{FM}^{T} or N_{LS}^{T} .

Issue

• Calculating the best response is burdensome.

イロト イポト イヨト イヨト 二日

Best Response Algorithm: Tarski's Fixed Point Theorem

Theorem (Fixed Point Theorem [Tarski 1955])

A set of fixed points of an increasing function V that maps a lattice into itself is a lattice and has a greatest point and a least point.

• Consider the profit maximizing vector: $N_i^* = \arg \max_{N_i} \prod_i (N_i, N_j)$.

According to Tarski's FPT, we know

$$N_i^{UB} \geq N_i^* \geq N_i^{LB}$$
,

where N_i^{UB} and N_i^{LB} are, respectively, the greatest and least fixed points of increasing function V.

• Define a mapping $V : N_i \to N_i$ that updates $N_{i,m}^0$ given $N_{i,l\neq m}^0$ and N_i^0 :

$$N_{i,m}^{1} = V_{m}(N_{i}^{0}) = \underset{N_{i,m} \in \{0,1,...,4\}}{\operatorname{argmax}} \Pi_{i}(N_{i,i}^{0}, N_{i,m}, N_{j}^{0}).$$

• The profit maximizing vector N_i^* satisfies $V(N_i^*) = N_i^*$.

Analytical Results (2)

Lemma (Nondecreasing Coordinatewise Optimality Condition) $V_i(N_i)$ is nondecreasing in N_i if $\delta_{own,adj} \leq \alpha_{saving,adj}$.

Algorithm to Find Best Response: Example

- Two markets, up to 4 stores: How do we find the maximizer?
 - Brute force: check all 5*5=25 possibilities
 - Or we can narrow down to 4 by calculating lower and upper bound: $N_i^{UB} = (3,3), N_i^{LB} = (2,2)$ $\Rightarrow N^*$ is one of $\{(2,2), (2,3), (3,2), (3,3)\}.$

Data

- Market definition: 1km² grid, 834 markets in total
- Cross-sectional market-level data
 - # of Convenience Stores: Convenience Store Almanac, 2001
 - Aggregate sales: Census of Commerce, 2002
 - Oistance to distribution center
 - # of people living: Census of Population, 2000
 - # of people working: Establishment Census, 2001
 - Land-use regulation status: Ministry of Land, Infrastructure and Transport, 2005

- A TE N - A TE N

Estimation Methodology: Method of Simulated Moments

• Construct population and sample moment conditions:

$$g_{i,store}(\theta) \equiv E[(N_{i,m} - E[N_{i,m}(X,\epsilon,\theta|X)]) * f_m(X)|X]$$
$$g_{i,store,M}(\theta) \equiv \frac{1}{M} \sum_{m=1}^{M} (N_{i,m} - E[N_{i,m}(X,\epsilon,\theta)|X]) * f_m(X).$$

Use a simulator for number of stores to obtain

$$\hat{g}_{i,store,M}(\theta) = \frac{1}{M} \sum_{m=1}^{M} (N_{i,m} - \frac{1}{S} \sum_{s=1}^{S} N_{i,m}^{s}(X, \epsilon^{s}, \theta)) * f_{m}(X).$$

Parameter estimates are obtained by solving

$$\hat{ heta}_{MSM} = rg\min_{ heta} \left[\hat{ extbf{g}}_M(heta)
ight]' \mathbf{W} [\hat{ extbf{g}}_M(heta)],$$

where **W** is a weighting matrix.

Use of Revenue Data: Moment Conditions for Revenue

• Construct population and sample moment conditions:

$$g_{rev}(\theta) \equiv E[(I_m R_m^* - E[I_m R_m^*(X, \epsilon, \theta | X)]) * f_m(X) | X]$$

$$g_{rev,M}(\theta) \equiv \frac{1}{M} \sum_{m=1}^{M} (I_m R_m^* - E[I_m R_m^*(X, \epsilon, \theta) | X]) * f_m(X).$$

Use a simulator for aggregate revenue at the market level to obtain

$$\hat{g}_{rev,M}(\theta) \equiv \frac{1}{M} \sum_{m=1}^{M} (I_m R_m^* - \frac{1}{S} \sum_{s=1}^{S} I_m^s R_m^{*,s}(X, \epsilon^s, \theta)) * f_m(X).$$

Avoiding Selectivity Problem

- Post-entry outcome is available only for the market where a firm decided to open
- Example: a revenue function

$$(\mathit{\textit{Total revenue}})_{\it m}= heta_{\it a}+ heta_{\it b} N_{\it i,m}+ heta_{\it m}$$

• My approach uses (1) and (2) jointly to estimate $heta=(heta_1, heta_2)$

outcome
$$\mathbf{E}[g_1(heta_1)] = 0$$
 (1)

selection
$$\mathbf{E}[g_2(\theta_1, \theta_2)] = 0$$
 (2)

Revenue Equation (thousand USD)

Variable	Estimate	SE
Nighttime Population (βpop)	69.1	26.3
Daytime Population (β bus)	46.7	14.4
Business-Stealing Effect by Own Chain Store, within a Market (δ own within)	280.1	133.4
Own Chain Store, Adjacent Markets (δ own adj)	33.0	111.0
Rival Chain Store, within a Market (δ rival within)	364.2	180.0
Rival Chain Store, Adjacent Markets (δ rival adj)	1.1	11.9
Local Store, within a Market (δ local within)	24.4	81.8
Local Store, Adjacent Markets (δ local adj)	0.1	1.41
LAWSON Store (µ LAWSON)	4.7	38.5
Constant in Revenue Equation (μ revenue)	512.5	475.9
Correlation Parameter in Revenue Shocks (ρ_{\perp})	0.89	0.31
Standard Deviation of the Unobserved Revenues (λ_{J})	215.3	76.5

Cost Equation & Model Fit (thousand USD)

Variable		Estimate	SE
Cost-Savings Effect by Own Chain Store, within a Market (α saving w	vithin)	125.3	127.5
Own Chain Store, Adjacent Markets (α saving	37.6	122.8	
Distance from the Distribution Center (μ distance))	16.2	42.3
Zoned Area (y)		41.4	45.4
Constant in Cost Equation ($\mu \ cost$)		1,038.7	255.0
Correlation Parameter in Cost Shocks (ρ_2)		0.02	0.25
Standard Deviation of the Unobserved Costs (λ_2)		229.6	118.6
Model Prediction	Data	Prediction	Std.Dev
Number of Stores Family Mart LAWSON	139 100	139.9 97.1	8.7 9.8
Number of Stores in Adjacent Markets Family Mart LAWSON Sales (thousand USD)	1041 725 169,334	1023.4 705.6 173,992	67.4 80.0 11,506

Differences in # of Stores and Population Density

Why Increase in # of Stores after Merger?

Marginal profits from one more store, before merger:

$$\Delta \pi_{5,before} = 3 * (spillovers) - 1 * (business stealing)$$

After merger:

$$\Delta \pi_{\mathsf{5}, \mathsf{after}} = \mathsf{6} * (\mathit{spillovers}) - 1 * (\mathit{business stealing})$$

Increase in # of Stores: before and after Deregulation

Family Mart LAWSON

→ Ξ →

Conclusion

This paper

- Develops a new framework to solve and estimate a general class of chain-entry games.
- **2** Applies the model to the convenience-store industry in Okinawa.
- Answers merger and deregulation exercises, which cannot be dealt with otherwise.

Findings

- The chain-entry model with *K*-store openings allows for a trade-off due to clustering being positive or negative.
- Trade-off due to clustering stores is important for a chain.
- Merger: Acquirer increases the total number of stores in city centers but decreases the total number of stores in rural markets.

Conclusion

This paper

- Develops a new framework to solve and estimate a general class of chain-entry games.
- ② Applies the model to the convenience-store industry in Okinawa.
- Answers merger and deregulation exercises, which cannot be dealt with otherwise.

Findings

- The chain-entry model with *K*-store openings allows for a trade-off due to clustering being positive or negative.
- Trade-off due to clustering stores is important for a chain.
- Merger: Acquirer increases the total number of stores in city centers but decreases the total number of stores in rural markets.

Applications to Other Contexts

- **•** ATM location choice
- **Product-line decision**: Extend Moorthy (1984) to duopoly setting.

28 / 29

Extensions

Strategic pricing in the U.S. airline industry

- A market is a city pair (e.g., New York to Chicago).
- Pricing in a market can depend on pricing in other markets (spillovers):

$$P_{United} = [P_{u,1}, ..., P_{u,M}]$$
$$P_{American} = [P_{a,1}, ..., P_{a,M}].$$

- Research questions: Is the industry competitive or collusion? Predicted pricing after merger?
- Relaxing the "# of players ≤ 2" restriction
 - In reality, we observe more than two players.
 - Will exploit other classes of games.

Summary Statistics

Variable	Mean	Std. Dev.	Min	Max	Total
Number of Stores					
Family Mart	0.17	0.55	0	7	142
LAWSON	0.12	0.43	0	6	102
Number of Stores in Adjacent Market	s				
Family Mart	1.248	2.675	0	19	1,041
LAWSON	0.869	1.923	0	15	725
Geographical Distance to Its Distribut	ion Cente	r (kilometer)			
Family Mart	29.7	20.8	0.35	84.86	-
LAWSON	30.8	21.0	0.55	86.18	-
Nighttime Population	1,434	2,588	0	18,977	1,195,787
Daytime Population	580	1,612	0	32,776	484,097

Store-level Sales (=Total Sales / # of Stores), thousand US dollars

Family Mart	1,430
LAWSON	1,456

Before and after Merger (million USD)

	Baseline	No Costs		Closing: US \$100K Remodeling: US \$50K	
Variable	Prediction	Prediction	%Δ	Prediction	% Δ
Total Number of Stores	237.0	207.9	-12.3%	215.4	-9.1%
Number of Stores to:					
Maintain (Own Chain)				139.9	
Open (Own Chain)				25.3	
Close (Own Chain)				0.0	
Close (Rival Chain)				46.9	
Remodel Rival Stores				50.2	
Total Sales	\$234.6	\$209.9	-10.5%	\$214.6	-8.5%
Sales per Store	\$0.97	\$1.01	4.2%	\$1.00	2.8%
Total Profits	\$58.7	\$65.9	12.3%	\$58.5	-0.2%
Profits per Store	\$0.24	\$0.32	34.1%	\$0.27	15.0%

(日) (同) (三) (三)

Robustness Check: Costs(left) & LAWSON(right)

1968 Urban Planning Law

- Permission system for developing a store in zoned area
- Procedures:
 - Submit preliminary application [applicant]
 - Peceive application, send to civil engineering bureau [city]
 - Review application, conduct a field survey [prefecture]
 - Notify the applicant of the outcome and issues, if any [prefecture]
 - Submit final application [applicant]

Zoned Areas (Red)

A B F A B F

Before and after Deregulation (million USD)

	Baseline	No Zoning		Zoning in All Markets	
Variable	Prediction	Prediction	%Δ	Prediction	%Δ
Number of Stores					
Family Mart	139.9	143.2	2.3%	123.2	-11.9%
(in originally zoned 140 markets)	11.9	15.0	26.9%	11.8	-0.5%
LAWSON	97.1	99.2	2.2%	86.0	-11.4%
(in originally zoned 140 markets)	8.3	10.4	26.2%	8.2	-0.3%
Sales					
Family Mart	\$135.6	\$137.9	1.7%	\$124.0	-8.6%
(in originally zoned 140 markets)	\$10.1	\$12.5	23.1%	\$10.1	-0.3%
LAWSON	\$99.0	\$100.6	1.7%	\$90.9	-8.2%
(in originally zoned 140 markets)	\$7.5	\$9.1	22.6%	\$7.4	-0.2%
Total Profits					
Family Mart	\$33.1	\$33.6	1.6%	\$29.1	-11.9%
LAWSON	\$25.6	\$26.0	1.5%	\$22.7	-11.5%
Costs of Zoning					
All Stores	-\$2.1	\$0.0	-100%	-\$17.5	742.6%
Family Mart and LAWSON	-\$0.8	\$0.0	-100%	-\$8.7	940.5%

< □ > < ---->

- < ∃ →

Convenience-Store Industry in Okinawa

- 一司