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Abstract

Economists have developed a range of empirically tractable demand systems for

fixed price markets. But auction mechanisms also play an important part in allocating

goods, and yet existing empirical auction techniques treat each auction in isolation,

obscuring market interactions. Here we provide a framework for estimating a demand

system in a large auction platform market with a dynamic population of buyers, het-

erogeneous objects and unit demand. We construct a model of repeated second-price

auctions in which bidders have multidimensional private valuations, developing an

equilibrium concept under which strategies reflect option values. We prove existence

of this equilibrium and characterize the ergodic distribution of types. Having devel-

oped a demand system, we show that it is non-parametrically identified from panel

data. Relatively simple nonparametric and semiparametric estimation procedures are

proposed and tested by Monte Carlo simulation. Our analysis highlights the impor-

tance of both dynamic bidding strategies and panel data sample selection issues when

analyzing these markets.
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1 Introduction

Most goods and services are sold at fixed prices. Yet auctions are used as the allocation mech-

anism in a wide variety of contexts, including procurement and the granting of oil drilling

and spectrum rights. Online auction platforms, in particular, have grown substantially in

recent years. In retail eBay alone has revenues of $36 billion from its auctions business in

20071, while Google realized $21 billion in revenue from its online advertising platform in

20082. More specialized auction sites such as DoveBid and IronPlanet have sold billions of

dollars of used aviation and construction equipment respectively.

Given their importance in the modern economy, one would like to be able to estimate demand

in these platform markets. This would allow us to answer questions of broad economic

interest, such as how much welfare has been generated by these platforms; as well as narrower

strategic questions, such as how a firm with a fixed inventory should set reserves and time

sales to dynamically maximize its revenue. Demand estimation is often also a necessary first

step for the evaluation of anti-trust issues, such as the potential impact on the search-keyword

advertising market of a merger between Microsoft and Yahoo.

At first glance, auctions data is an extremely rich of information about demand. In auctions

we actually observe a continuous bid which directly reflects willingness to pay, relative to the

discrete choice we typically see in fixed price markets. Moreover, for any buyer we generally

observe all the auctions that they bid in, which provides valuable information about which

items they view as close substitutes. This is informative for demand, much in the same way

that “second-choice” data is useful in Berry, Levinsohn, and Pakes (2004). As the choice

sets available to buyers vary we may observe differing participation, which is helpful for

identifying substitution patterns.

Yet the strengths of auction market data also pose some difficulties. As Hendricks and

Porter (2007) note in their survey article, participants in auction markets are playing a

complex dynamic game, where they must continuously adapt to the changing set of available

auctions, and learn about rival’s valuations. Most of the existing tools of structural auction

econometrics are focused on independent auctions of homogenous objects, which limits their

direct applicability to auction demand estimation, where bidders repeatedly interact across

auctions, and substitution across products is important.

1Source: eBay Annual Report for 2007
2Source: Google Annual Report for 2008
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In this paper, we develop an estimable demand system for an auction platform market with

a large number of relatively short-lived, yet persistent, buyers. The first part of the paper

outlines an intuitive and empirically tractable equilibrium concept — competitive Markov

equilibrium — and characterizes the long-run distribution of bidders and their strategies.

Next, we show that demand is non-parametrically identified from panel data. In the last

part, we develop a nonparametric and a semiparametric estimation approach for backing

out demand from bid data. We also show how to estimate a characteristic-based model of

demand. These approaches are tested by Monte Carlo simulation and found to work well in

moderately sized samples.

To begin, the theory section introduces a stylized model of an auction market, in which

each period a good is sold by second-price sealed bid auction. There are a finite number

of different goods that can be sold, and supply of these goods is exogenous. Bidders have

multidimensional private valuations over the different goods. These valuations may be cor-

related. They have unit demand, and upon entry participate in every auction until they

either win or randomly exit. The stage game is played each period over an infinite horizon.

Our environment is complicated, because for any bidder the set of rival types is unknown,

and Bayes-Nash equilibrium would imply that everyone simultaneously solves a filtration

problem, using the observed history — possibly private and arbitrarily long — to infer the

distribution of types. We simplify by developing an equilibrium concept in which bidders

condition only on a coarser publicly observable state vector in forming beliefs about rival

types, and that they take the state evolution as exogenous. We call this notion competitive

Markov equilibrium, and argue that it is appropriate for large anonymous markets.

Then, if bidders have unit demand, we have a simple way to deal with dynamic concerns.

Participation has an option value: the expected surplus from future auctions conditional

on today’s state. This option value is struck when a bidder wins an auction, so she shades

her bids accordingly. The challenge of estimating private values is then estimating the long-

run option value. We show that this is non-parametrically identified from observing both

individual bidder time series and the full bid distribution across states.

The final part of the paper is concerned with estimation. We offer two approaches. One

follows the nonparametric identification logic directly, showing that by looking at the time

series of bidders who are observed bidding in every state we can back out their individual

valuations. As is common with panel data, there are selection concerns. These bidders are
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a selected sample, and to get the true distribution of valuations, it is necessary to re-weight

the estimated density. We show how to do this.

A disadvantage of the nonparametric method is that it is data intensive, since if the state

space is large, the set of bidders who bid in every state may be very small. By making a

parametric assumption on the type distribution, we can make use of the remaining data. We

first show how to estimate the bid function for any type directly from the data, and then

argue that this allows us to simulate moments given any parameter vector. We can thus

apply simulated GMM to consistently estimate the true parameter vector.

The paper is related to a number of strands of literature. In dynamic auctions, Jofre-Benet

and Pesendorfer (2003) was the first paper to attack estimation in a dynamic auction game,

though in a world with a small number of infinitely long-lived bidders. Subsequent to this,

a number of papers have looked at dynamics on the eBay platform specifically. Budish

(2008) examines the optimality of eBay’s market design with respect to the sequencing

of sales and information revelation. Zeithammer (2006) developed a model with forward-

looking bidders, and showed both theoretically and empirically that bidders shade down

current bids in response to the presence of upcoming auctions of similar objects. Ingster

(2009) develops a dynamic model of auctions of identical objects, and provides equilibrium

characterization and identification results. Sailer (2006) estimates participation costs for

bidders facing an infinite sequence of identical auctions. Relative to this literature, our main

contribution is the focus on sequential auctions of heterogeneous objects, where bidders

have multidimensional persistent private valuations. In short, we are focused on developing

a demand system. A different approach has been taken in Adams (2009), who looks at the

problem of nonparametric identification when auctions are completely simultaneous.

A second related literature is on alternative equilibrium notions for dynamic games. In coars-

ening the set of information bidders condition on, we are following the path of Krusell and

Smith (1998). Weintraub, Benkard, and Roy (2008) develops the notion of oblivious equilib-

rium where the state space is effectively null. Fershtman and Pakes (2009) also emphasizes

the importance of a finite state space. Finally, we build on the literature for estimating

demand systems in durable goods markets. (e.g. Berry, Levinsohn, and Pakes (1995)).

The next section introduces the theoretical framework, while section 3 proves non-parametric

identification. Section 4 describes our two different estimation approaches, while section 5

gives Monte Carlo simulations for those estimators. Section 6 concludes.
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2 Model

Our aim in this section is to create an abstract model of a large auction market, and analyze

it. The space of such models is vast, and we narrow in a number of ways. We consider a

market in which similar products — such as iPods and Zunes — are sold by second-price

sealed bid auctions. These auctions are held in discrete time, with one good auctioned per

period over an infinite horizon. Since our focus is on demand, we assume for simplicity that

supply is random and exogenous. Bidders are persistent with unit demand, and enter the

market with private (possibly correlated) valuations for each of the objects. Winning bidders

immediately exit, while losing bidders exit randomly. We aim at characterizing the long-run

behavior of this dynamic system.

We have chosen this set of assumptions to match some features of the environment on eBay,

whose platform design dominates online auctions. In any eBay category, there are many

different products sold by auction to a large number of anonymous buyers.3 Although these

auctions typically last for many days, and thus overlap — so that at any given point in time

there are many auctions occurring simultaneously — they finish at different ending times,

in sequence. As Bajari and Hortacsu (2004) and Hendricks and Porter (2007) have noted,

this timing, combined with the way the proxy bidding system works, imply that eBay is well

approximated as sequence of second-price sealed bid auctions. Yet our intent is not to model

eBay per se — and indeed we ignore some important features of the eBay environment —

but rather to develop a reasonably motivated and rich abstract model and see what we can

learn from the exercise.

2.1 Environment

We formalize the above description of the environment in what follows:

Bidders and Payoffs: Bidders have unit demand for a good in the set J , where |J | = J .

Their demand is summarized by a privately known vector of valuations x = (x1, x2 · · ·xJ),

their type. They are risk neutral, and receive a payoff of xj − p for buying a single good j

at price p, and zero otherwise. Bidders are impatient, with a common discount rate δ.

Market: Time is discrete with infinite horizon, t = 1, 2 · · · . In each period t, the following

stage game is played. First, a sealed-bid second price auction is held for the current object

3eBay hides the identity of the bidders by replacing parts of the username with asterixes.
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jt, in which all bidders present in the market may participate. Then entry and exit of bidders

takes place, and suppliers post new objects. These are described in more detail below.

Auctions: At time t, object jt ∈ J is auctioned. Bidders have the choice between not

participating (action φ), and submitting a bid. The action space is thus A = φ∪R+, where

A is totally ordered under the normal < with φ < 0. The highest bidder wins the auction

and pays the second highest bid, or zero if his is the only bid submitted. Ties are broken

randomly. If no-one participates, the item is not sold.

Entry and Exit: At the end of every period, the winner is assumed to exit with certainty.4

Losers exogenously exit the market with probability ρ ∈ (0, 1), receiving a payoff normalized

to zero on exit. Simultaneously, Et new bidders enter, where Et is random with a distribution

that depends on the total number of buyers in the previous period Nt−1. We assume that

Et|Nt−1 has strictly positive support on the finite set of integers {0, 1, 2 · · ·N −Nt−1}. This

ensures that the size of the market does not explode.5 Each entrant draws their valuation

vector x identically and independently from a distribution F with associated strictly positive

density f , and support a compact set X = [0, x̄]J .

Supply: Supply is essentially the rate at which different products appear on the auction

market. At the end of period t, suppliers list a new object to be auctioned in period t+1+kf ,

where kf is the lead-time bidders have in observing future supply. The object to be auctioned

is randomly chosen according to a multinomial distribution over the set of products J .6

Information Sets and Bidding Strategies: New entrants are assumed to be able to

view the history of the game for the last kh periods.7 Incumbent bidders may have observed

more: at time t, a bidder i who entered the market time ti can observe a ”window” of

past actions and current and upcoming auctions, from ti − kh to t + kf . The cases kh = 0

and kf = 0 correspond to no observable public history and no knowledge of future supply,

respectively. So a generic information set consists of a valuation x, the history hit and the

list of current and upcoming objects jt = (jt · · · jt+kf ). A (pure) bid strategy is a mapping

βi : X ×Hit × J kf+1 → A from any information set to the action set.

4Since they have unit demand, they are indifferent about exiting in any period following a win. But even
an ε > 0 participation cost would make exit optimal.

5With endogenous entry, one would expect a condition like this to hold: entry falls as the number of
participants in the market increases, and so surplus falls. With exogenous entry, we must impose it.

6It is easy to extend the model to allow for fluctuating total supply by letting the the object be multinomial
over J ∪∅, where ∅ is the event that nothing is listed.

7This mimics eBay, where the history of auctions held in the past 14+ days is public, though anonymized).
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2.2 Analysis

We analyze this environment in three parts. First, we motivate and define a new equilibrium

concept called a competitive Markov equilibrium (CME) that we think is appropriate for

long-run analysis of large markets. Under this equilibrium, we show that strategies take a

simple and intuitive form: bidders bid their valuation for the good under auction, less their

continuation value. Second, we characterize the long-run properties of the dynamic system

for arbitrary strategies, showing that a stationary distribution over types exists. Finally,

we combine these two pieces — equilibrium characterization and long-run dynamics — to

show existence of a CME. We also argue that as the market becomes large, while holding

the ratio of buyers to sellers fixed, the CME tends towards the anonymous equilibrium of

the continuum game.

To motivate the concept, consider the decision problem of a bidder in this environment. He

knows the recent history of the market, current supply and his own valuation. What he

doesn’t know is who else is in the market (his rivals, their valuations and their history),

nor how they will bid. In addition, he must form expectations about future demand con-

ditions, and should in principle worry about “leakage”; his bid today might reveal valuable

information to future rivals. Addressing these issues with standard equilibrium concepts is

problematic. Though Milgrom and Weber (2000) were able to provide an elegant equilibrium

characterization of sequential auctions under certain information structures, their approach

is essentially static and does not extend to the infinite horizon case.8 In this environment,

forming rational expectations about the play of opponents requires some notion of the long-

run stationary distribution of types, but without placing some structure on the admissible

strategies, the state space may grow without bound.

Technical objections aside, expecting this behavior from bidders in large markets seems

unrealistic. Bidders on eBay don’t worry about leakage, because they don’t expect their

individual bids to be tracked by rivals. Rivals don’t track them because the market is large,

turnover is rapid, and there is little to be gained from the information. Basically, bidders

expect that with this many auctions, the probability of meeting the same opponents in the

future is low.

To capture this intuition, we assume that bidders believe that now — and in the future —

8They consider the problem of auctioning k identical objects to n bidders, where n > k, and the bidders
all enter in the first period.
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they are to compete with a random draw from the long-run population of types. These beliefs

may be conditioned on some simple and publicly observable “state” variables, such as recent

prices, which may be informative as to whether demand is currently high or low. Bidders

have rational expectations, and their beliefs will be correct in equilibrium. Importantly, they

will take the state as given and its evolution as exogenous, though in fact since the market

is finite, their actions may have some impact on the state transitions.

This kind of assumption was introduced in the macroeconomics literature by Krusell and

Smith (1998) as a behavioral assumption, arguing that agents will make inferences based on

simple functionals of all the information available in the environment, at least when doing so

loses little information. The special case where agents ignore all current information and the

state is constant has a complete information counterpart in the oblivious equilibrium concept

of Weintraub, Benkard, and Roy (2008). We also provide a “large-market” justification of

the assumption in the discussion below.

Formally, for any public history of actions ht = (at−1 · · · at−kh), let hanont be the anonymized

history (i.e. where identifiers on bid identity are removed). The associated space of anonymized

histories is stationary, and denoted as Hanon ≡ Akh×N . Bidders also know the supply

jt ∈ J kf+1, implying the space of all anonymized public information is Hanon × J kf+1. De-

fine a coarsening function T as a (Borel) measurable function that finitely partitions the

space into “states” s ∈ S, where |S| = S. We require that T partitions different current

objects into different states, so that minimally the agent conditions on the object under

auction — in math, jt 6= j′t ⇒ T (hanont , jt) 6= T (hanon
′

t , jt
′).

This coarsening T defines the state space, and therefore what bidders pay attention to.

Bidders must also have a model of state transitions. Define Q as the transition matrix

between states, with typical element Qij = P(s′ = j|s = i), for s′ the state tomorrow.

Our notion of equilibrium requires that bidders correctly understand the distribution of

competing types and the state transitions, and optimize against this:

Definition 1 (Competitive Markov Equilibrium). A (symmetric) competitive Markov

equilibrium (CME) with respect to a coarsening function T consists of:

(i) Correct beliefs about the ergodic distribution of opposing types conditional on any s ∈ S;

and about the state transition matrix Q

(ii) Symmetric Markovian strategies β(x, s) that maximize expected payoffs given beliefs.
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Let us unpack this a bit. The CME is extremely similar to a Bayes-Nash equilibrium, requir-

ing that strategies are optimal given beliefs; and that beliefs are consistent with equilibrium

play. The key differences are that here bidders condition only on the state s in forming

beliefs, even when this is coarser than the public information available to them; and that

they do not account for how their actions may influence the state transitions Q. This is the

is the “competitive” part of the name, as it corresponds to the case in perfect competition

where firms do not recognize that their joint production decisions determine the price. Here,

bidders behave as though they were small, and do not endogenize the impact of their own

actions on the future states. Another important difference is that this is a long-run concept:

bidders believe they face draws from the ergodic distribution of types, which is a sensible

belief only if the market does indeed converge to a long-run distribution and has been in

operation for a while. This formulation avoids the issue of a prior on the initial type draw.

It turns out that under these assumptions, the equilibrium bidding strategy β(x, s) has a

intuitive and simple form. Temporarily putting aside questions of stationarity and existence,

fix a CME. Bidders have well-defined beliefs about the distribution of types in any state, and

given the equilibrium bid strategies, can also work out the distribution of highest opposing

bids (i.e. the bid they need to beat to win). They also have rational expectations about

state transitions. This allows us to define an (ex-post) value function for a type x in state s:

v(x, s) = max
b∈A

G1(b|s)
(
xt − E[B1|B1 < b, s]

)
+ (1−G1(b|s))δ(1− ρ)

S∑
s′=1

v(x, s′)Qss′ (1)

where G1(·|s) is the distribution of the highest opposing bid today given the state; xt is the

bidder’s valuation of the object currently under auction, and Q is the equilibrium transition

matrix. The first term in the value function is the probability of winning — the probability

that the highest opposing bid is lower — times the surplus conditional on winning, equal

to current valuation less expected payment. The second term is the probability of losing

times the continuation value in that event. Non-participation (φ) implies certain loss, so

G1(φ|s) = 0 ∀s.

Now let ṽ(x, s) = δ(1 − ρ)
∑S

s′=1 v(x, s′)Qss′ denote the discounted ex-ante value function

(i.e. before exit and state transitions are determined). Maximizing the value function above,

we get the optimal strategies:

Lemma 1 ( Equilibrium Strategies). In a symmetric CME, bidders bid their valuation
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less their ex-ante continuation value if it is positive; otherwise they don’t participate:

β(x, s) =

xt − ṽ(x, s) , xt − ṽ(x, s) ≥ 0

φ , otherwise
(2)

Think about this process as a single auction, where the winner gets the object, and the losers

are awarded a prize with value equal to the continuation value. Re-normalizing the prizes,

it’s like a standard second-price auction where the winner gets the object less continuation

value, and losers get nothing. Then the weakly dominant strategy is to bid the value of the

prize, which is just the value of the object less the continuation value. In the case where the

“prize” has negative value, there is no reason to participate.

The intuitive appeal of this characterization is that it reduces the bidder problem to forming

some expectation of their continuation value, which should be informed by the state of the

market (recent history and future supply). Under a CME, we require these expectations to

be correct in the sense of matching the long-run behavior of the system.

Our next step is to analyze these dynamics. Since bidders enter and exit every period over

an infinite horizon, if we kept track of specific identities the state-space would grow without

bound. So for the long-run analysis, we ignore identity, and keep track of an anonymous

N -vector xt of types currently in the market.9

We let the “true state” of the market ωt ∈ Ω ≡ XN ×S be defined by the anonymized vector

of types xt and the state st. For any symmetric strategy β, the true state evolves as a first

order Markov process, with the type transitions governed by the entry and exit rules. The

state transitions are determined by the exogenous supply and the actions taken by the types

in accordance with the strategies. Denote by F the Borel σ-field over Ω.

Lemma 2 (Ergodic Distribution of True States). For any strategy β, there is a unique

invariant measure µβ on the measurable space (Ω,F), strongly converged to at uniform geo-

metric rate from any initial measure µ0. The conditional ergodic distribution of x−i given s

exists and is well-defined for any s ∈ S.

9We use 0 as a placeholder when there are fewer than N bidders in the market. Type transitions occur first
by removing exiting bidders and replacing them with the placeholder, and then adding entrants sequentially,
starting from the first open placeholder. For example, suppose we have N = 3, and there are two bidders
with (unidimensional valuations) 1 and 2 respectively. Then we have xt = (1, 2, 0); and if at the end of the
period bidder 1 exits and two new bidders with values 3 and 4 respectively enter, we will have xt+1 = (3, 2, 4).
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This says that the market “settles down” to a steady-state, regardless of the initial conditions,

with a unique stationary distribution of types in each state. The intuition for this is that entry

and supply are exogenous, and only the exit of winning bidders is endogenously determined.

This has a limited influence on the long-run evolution of the market.10 An implication of

this is that in the long-run, given any strategies, agents have well-defined beliefs about the

population of bidders they face. We can now look for a fixed point: strategies that are optimal

given long-run beliefs; and beliefs that are consistent with the ergodic distributions induced

by these strategies. We will call a strategy β(x, s) monotone if in every state bids increase in

the valuation of the good under auction, and decrease in the valuations of other objects. We

say it is strictly monotone if the monotonicity is strict except for non-participating types.11

Theorem 1 (Existence). For any coarsening function T , there exists a CME in continuous

strictly monotone pure strategies. If there is only one product, the CME is unique.

The proof is non-trivial.12 The easy case is when there is only one product, and hence a

unidimensional type space. Then any two increasing bidding functions produce the same

winners and hence the same state transitions. We can then exploit the characterization of

the bidding strategies in (2) to show that the operator Γ(β) = xt − ṽβ(x, s) is a contraction

mapping. This implies a unique equilibrium via the Banach fixed point theorem.

On the other hand, if J > 1, different strategies may imply different ergodic distributions of

types, and Γ is no longer a contraction map. Nor is Γ continuous, because payoffs are not

continuous in actions. So here we take a different and well-trodden approach, discretizing

the action space, and then applying the methodology of Reny (2008) based on contractible

mappings to show a fixed point of the finite action game. Since whether bids increase or

decrease in the valuations depends on the state, we cannot directly apply his results, and

must modify some parts of the proof.13 A limiting argument as in Athey (2001) yields an

equilibrium for the continuous action game.

Finally, to conclude this section, we wish to argue (informally) that for large markets, this

10The formal proof uses a renewal argument, based on the idea that the mean hitting time to the “null
set” where everyone has exited the market is finite.

11That is, β(x, s) is strictly increasing in xt except possibly where β(x, s) = φ.
12Duffie, Geanakoplos, Mas-Colell, and McLennan (1994) establish existence for a broad class of stochastic

games, but strategies may be mixed and a public coordination device is required.
13Reny (2008) allows for arbitrary partial orders on both the type and action spaces, but requires that

under those orders, increasing types must take increasing actions. In our case, increasing types (e.g. a higher
valuation for object 1) take some higher actions (bid higher in states where 1 is auctioned) and lower actions
(bid lower in states where 2 is auctioned).
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concept is a sensible approximation to a more standard equilibrium concept, anonymous

equilibrium. One way to do this is to show that as the markets become arbitrarily large,

the set of equilibria coincide. So consider a modification of this model in which instead of

one auction being held in each period, we instead had n auctions of the same good, and nρ

times as many entrants. This implies that as n → ∞ the buyer/seller ratio converges to

a constant. As in the classic paper of Wolinsky (1988), assume that bidders are randomly

assigned to each of the n auctions.14

We must show that in any limiting CME, no bidder can improve their payoff by instead

employing an anonymous strategy. Notice that as as n → ∞, by the usual abuse of the

law of large numbers, the distribution of types in every period will be exactly the stationary

distribution. Then since supply is exogenous, the CME assumption that individual bidders

cannot affect the state transitions becomes exact. It is then easy to show that optimal bidding

strategies still take the form of valuation less continuation value. Now any anonymous

strategy cannot condition on identity, and so since the stationary distribution is realized

every period, there is no value to conditioning on the past. This implies that both the

limiting CME and anonymous strategies will not vary with past play. Then provided the

CME strategy does not coarsen away information about future auctions (i.e. T is such that

bidders use all the information available about future supply), the CME and anonymous

strategies will coincide. The limiting CME will be an equilibrium of the corresponding

anonymous discounted sequential game, in the language of Jovanovic and Rosenthal (1988).

So we learn that the fundamental simplification that we make — even in the limit — is

that bidders do not keep track of identity; for if they did, they could perhaps profitably

condition on recent history if they happened to be randomly matched with other incumbent

bidders. Our intuition for why anonymity is a reasonable assumption comes from large online

markets, where bidders rarely expect to meet the same opponents again, and even when they

do, are typically not aware of it. If you believe, as we do, that the anonymity assumption

is reasonable in large markets, then the CME concept is attractive because it preserves the

limiting properties of other concepts while allowing for strategies that respond to endogenous

fluctuations in state. On the other hand, if bidders pay attention to the specific actions of

other bidders — as would be the case in a small or concentrated market — it is less sensible.

Lemmas 1 and 2 provide the main take homes from this section. First, in equilibrium

14The random assignment assumption is common in the theory literature: see also Satterthwaite and
Shneyerov (2007).
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bidders shade their bids down from their values, where the extent of shading depends on

their continuation value in the current state. Notice immediately that this is starkly different

from the “usual” model of second-price sealed bid auctions, where bids may be interpreted

as valuations. Indeed, valuations are strictly higher than bids, implying that nonparametric

estimates of the value distribution obtained by treating auctions as independent will be

systematically biased upward. Second, the stationary distribution of types exists, but is

different from the valuation distribution F , due to selection: bidders with low valuations

will persist in the market for longer. So again, treating the auction data as a cross-section

would be misleading. In the next section we develop nonparametric identification results for

large auction markets that correct for both of these problems.

3 Nonparametric Identification

Equilibrium play implies a precise data generating process, with bidders entering, making

bids and exiting according to the model. Suppose that one were to observe all the data

produced in the course of equilibrium play, essentially consisting of the object auctioned in

each period, the bids placed and the associated bidder identities. Could one then identify

the underlying distribution of valuations, and thus recover demand?

We give a nonparametric identification result in the spirit of Athey and Haile (2002).15 We

think this is useful because it makes explicit the assumptions that are needed to identify

the primitives of the dynamic game, as well as providing some guidance as to a sensible

estimation strategy. To provide the reader with some intuition, we will first work through a

simple two good example.

3.1 Example

Suppose there are two goods, so J = {j1, j2}. The exit probability ρ is constant across

states. Supply is binomial and independent of state, with q the probability of good 1.

Bidders coarsen the public information so that they condition only on the product identity

in the current and next auction, implying four states: 1 = {1, 1}, 2 = {1, 2}, 3 = {2, 1} and

4 = {2, 2}. Recall that an equilibrium bid strategy for a type x is a bid in each state, and

15A similar identification argument was made in a different context by Pesendorfer and Schmidt-Dengler
(2003).
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let the equilibrium bids for a fixed type be b1 · · · b4. Then the interim continuation value in

state i, vi, is given by:

vi = G1(bi|i) (xi − E[B1|B1 < bi, i]) + δ(1− ρ)(1−G1(bi|i))
4∑
j=1

Qij vj

where Q is the transition matrix between states. From the bidding function, we substitute

out xi as bi + ṽi, where ṽi is the ex-ante continuation value. Rearranging terms yields:

vi − δ(1− ρ)
4∑
j=1

Qij vj = G1(bi|i) (bi − E[B1|B1 < bi, i]) (3)

Let v = [v1, v2, v3, v4]T , and let u be given by:

u ≡


G1(b1|1) (b1 − E[B1|B1 < b1, 1])

G1(b2|2) (b2 − E[B1|B1 < b2, 2])

G1(b3|3) (b3 − E[B1|B1 < b3, 3])

G1(b4|4) (b4 − E[B1|B1 < b4, 4])


i.e. the expected difference between bid and payment in any one period. Then (3) can be

represented as the linear system:

(I − δ(1− ρ)Q) v = u

where I is an S × S identity matrix. Next standard results imply that (I − δ(1 − ρ)Q)

is invertible, and therefore the existence of a unique solution for v (Stokey, Lucas, and

Prescott 1989). Thus we have:

v = (I − δ(1− ρ)Q)−1 u

Up to now, we have just been manipulating mathematical expressions. We now turn to the

question of identification. Suppose that the econometrician knows the coarsening function

T (i.e. the mapping from the public information, which is observed, to the state variables).

Then each of the auctions can be correctly classified into the four states. Now fix a particular

bidder in the dataset, who is observed participating in every state. For such a bidder, we

can construct an S-length bid vector b = b1 · · · b4 corresponding to their bid in each of the
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four states.16 We shall call such bid vectors “complete”. Plugging this vector into the above

expression for u, we can recover the expected difference between payment and bid.

The transition matrix Q and exit probability ρ are identified directly from the data. So if

the econometrician also knows the discount factor ρ, then the interim continuation values v

of any type who bids b is identified. Now, we can move from v to the actual valuations x by

again using the bid function expression:

x1 = b1 + δ(1− ρ) (qv1 + (1− q)v2) = b2 + δ(1− ρ) (qv3 + (1− q)v4)

x2 = b3 + δ(1− ρ) (qv1 + (1− q)v2) = b4 + δ(1− ρ) (qv3 + (1− q)v4)

where the expressions reflect the fact that good 1 is auctioned in states 1 and 2, while good

2 is auctioned in states 3 and 4. Thus for any bid vector b, we have identified the underlying

valuation x = (x1, x2), which is unique. In fact you can see that in this case, where |J | < |S|,
the valuations are over-identified. This provides a potential test of the theory.

Given a random sample of complete bid-vectors, one could thus identify the valuation dis-

tribution F . But in the actual data the set of complete bid vectors is a selected sample, as

some types will never participate in some states, and some types will persist longer, thus

potentially being over-sampled. Assume for simplicity that all types participate in all states.

So the key is to address the selection issue. As we show in the appendix, once the type

x is identified for bid vector b, the probability that the bid vector is complete can also be

identified.17 Thus by inverting individual complete bid vectors to valuation vectors, and

then re-weighting the density of these valuations by the inverse of the probability that they

would be complete, we can identify the type density. This gives us demand.

3.2 Formal Result

The formal result simply summarizes what we have learnt from the example. The only

difference is that we need to be a little careful about what we can identify for bidders who

don’t participate. Clearly, if a type never bids on product one, say, regardless of what the

state is, then we cannot identify their valuation for product one. Thus for each subset B

of J , partition the type space X into 2J − 1 sets of types who bid only on products in B,

16Of course, in the data they may have made many more than four bids; but as long as they have bid in
every state, this construction is feasible.

17The idea is to recursively define the probability of being seen only in state 1, then in states 1 and 2....
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regardless of the state. Let XB be the |B|-dimensional random variable defined by restricting

valuations X to products in B, with distribution function FB(xB) ≡ P (XB ≤ xB|X ∈ B).

Then we have the following result:

Theorem 2 (Identification). If the discount rate δ and the coarsening function T are

known, the distribution FB is non-parametrically identified for all B ⊆ J . Moreover, the

private valuation of any bidder observed bidding in every state s ∈ S is identified.

The conditions for identification are slightly stronger than is usual in these dynamic settings.

Typically, it is necessary to know the discount rate. But here the econometrician must

also know the coarsening function. This is because the CME concept does not nail down

bidder beliefs; it can accommodate a variety of models about which variables bidders pay

attention to. The downside with this is that the econometrician must actually work out what

those variables are in order to identify demand. Given these assumptions, we get pointwise

identification for complete observations, via the same argument as in the example. We also

get identification of the distribution of types who make a positive bid on every object.

In fact, if bidders are sufficiently forward looking, all types will make positive bids on every

object in some state. To see this, notice that what causes a bidder to never bid on product

j is the lost future surplus from winning other objects in future auctions. But if product j

is to be auctioned every period for a long time — an event that will eventually happen —

then the discounted future surplus from other objects will be very small, implying that they

will bid on product j. Intuitively, variation in the set of upcoming auctions can be used to

identify the valuations of bidders who may generally not participate.

4 Estimation Strategy

Suppose that the conditions of the Theorem 2 are met, and the econometrician knows or can

determine the discount rate and coarsening function. He also has a panel dataset, consisting

of all the bids placed in each auction and bidder identify. Assume also for simplicity that

all types bid on every good.18 How should estimation proceed? We propose two different

approaches. The first approach is nonparametric, following the logic of the identification

18Where this fails, the estimation results presented here can be adapted with more work to account for
non-participation; but it is important that non-participation is observable.
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section by inverting from observed bids to valuations. We look directly at the individual-

level micro-data, treating the record of all bids placed by a given bidder as an observation.

The individual-level data may differ in its dimensions: for some bidders, we may only see

a single bid, while for others we may see many bids. The structural model implies that at

most we should see S distinct bids by any one bidder, a different bid for every state. In the

language of the section above, these S length bid vectors are “complete observations”.

For complete observations, we can invert from the bid vector to a valuation vector via the

first order condition provided we have estimates of the transition matrix and the distribution

of opposing bids. This is very much like the approach of Guerre, Perrigne, and Vuong (2000).

One important difference is that the set of complete observations is a selected sample of the

bidders — bidders with high valuations are more likely to win and exit quickly, and therefore

less likely to be observed bidding in every state. For this reason, it is necessary to re-weight

the density of the estimated valuations in order to get an estimate of the type density.

The nonparametric approach is very clean and makes no parametric assumptions, but re-

quires a fair number of complete observations. This may be impractical in markets with

many states and high turnover in participants. Many bidders on eBay, for example, par-

ticipate in only one or two auctions before either winning or giving up. We therefore also

outline two additional approaches, where we impose successively more stringent parametric

assumptions. First, we outline a semiparametric estimation approach based on simulated

generalized method of moments, as is used elsewhere for demand estimation in industrial

organization and marketing. There we assume a parametric structure on the distribution of

types, and then choose parameters to match moments implied by the structural model with

those observed in the data.

Even in that case, if there are a large number of products the model quickly becomes un-

wieldy. So, following the literature (e.g. McFadden (1974)) we consider projecting product

valuations onto characteristics. Instead of types being valuations for products, types are now

random coefficients indicating the marginal value of product characteristics. In the standard

specification we consider, this implies a linear structure for valuations in characteristics. Un-

der reasonable distributional assumptions on the random coefficients, this linearity can be

exploited and a very simple estimation procedure can be used.

Regardless of the approach — nonparametric, semiparametric or characteristic-based —

there is a common first step in which a number of primitives are estimated.
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4.1 Step 1: Estimate transitions, exit and payments

In the first step, we non-parametrically estimate the probability of winning with a bid of

b in state s, G1(b|s); the expected payment conditional on winning, E[B1|B1 < b, s]; the

Markov transition matrix Q; the invariant measure over states π; and the probability of exit

conditional on losing, ρ = [ρ1, ρ2 · · · ρS]. This first step can be summarized as estimating

elements of the per period payoffs and the transition probabilities, and is similar to that of

both Bajari, Benkard, and Levin (2007) and Pakes, Ostrovsky, and Berry (2007) in their

papers on dynamic games estimation.

All of these are conditional moments, and provided the conditioning variable is discrete —

as the state variable is — we can consistently estimate the conditional moment from the

relevant empirical analogue. So for example, to estimate an element of the transition matrix

Qij, we have:

Q̂ij =

∑T
t=1 1(st−1 = i)1(st = j)∑T

t=1 1(st−1 = i)

where t = 1 · · ·T indexes auctions and 1(·) is an indicator function. The only “difficult”

object to estimate is E[B1|B1 < b, s] because for fixed s the conditioning variable b is con-

tinuous. This can be done state-by-state using any nonparametric approach, such as kernel

density or sieve estimation.

4.2 Nonparametric Approach Step 2: Recover valuations

The key to the non-parametric approach is to treat the data as a sequence of (short) time

series, one for each bidder. We restrict attention to complete observations, a subset of our

dataset consisting of S-dimensional bid vectors bi = (bi1 . . . biS).

For each observation i, we can use the first-stage estimates to construct a vector ûi =

(ûi1, ûi2 . . . ûiS), where ûis = bis − Ê[B1|B1 < bis, s]. Then the interim continuation value

for bidder i, v̂i = (v̂i1 . . . v̂iS), is the solution to the linear system v̂i = (I − δ(1− ρ)Q̂)−1ûi.

Moreover, we have from (2) that given a J-length sub-vector b̃i of bi consisting of bids on

different objects, an associated sub-vector ρ̃ of ρ, and an associated J × S submatrix Q̃ of

Q consisting of the transitions associated with the bids in b̃i, we get xi = b̃i + δ(1 − ρ̃)Q̃vi.

Substituting in our estimates on the right hand side of this expression, we get an estimate

x̂i of the valuation of each bidder.
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The set of bidders with complete observations is a selected sample, and we need to correct for

this. In the appendix, we derive an expression for P (A, x), the probability that a type x is

observed bidding only in the set of states in A, for A ⊆ S. This expression is identified from

previously estimated objects. Now, the probability that a given type generates a complete

observation is P (S, x). We can thus correct for the selection bias by assigning a weight equal

to 1/P̂ (S, x̂i) to each x̂i, and then use weighted kernel density estimation to back out the

type density f(x).

We omit a formal analysis of the asymptotic properties of this estimator, both because it

takes us into the realm of non-parametric estimation with dependent data and because we

suspect that the semiparametric approach outlined below is more likely to be used in practice.

Yet intuitively Lemma 2 guarantees that the data generating process quickly converges to

an ergodic distribution, and so the asymptotics should be well-behaved. This is supported

by the estimator’s performance in our Monte Carlo experiments, below.

4.3 Semiparametric Approach Step 2a: Estimate bid function

The semiparametric approach proceeds in the opposite direction. Instead of inverting bids

to valuations we take draws from a parametrized type distribution, simulate bids, and match

the moments of the simulated bid distribution with those observed in the data. This places

weaker demands on the data, since we need not observe a large sample of complete bid

vectors.

The first part of the second step is working out how to simulate bids for a given type.

Our idea is to solve for the optimal biding function in this environment. Bidders in this

environment face a Markov Decision Problem (MDP): they need to choose a bid in each

state to maximize their payoff. As is the case in other environments, policy iteration will

suffice to find the optimal bid vector for a type x.

To be more concrete, start with any initial strategy β0, such as bidding the object’s valuation

(β0(x, s) = xt). Then from (1), one can solve for the ex-ante continuation value given that

strategy by plugging in this bid into the probability of winning, expected payment on winning

etc. From this estimated continuation value v0(x, s), we can define a new strategy β1(x, s) =

xt−v0(x, s) and compute a new continuation value. Iterating in this way, we quickly converge

to the optimal policy, since the iteration process obeys a contraction mapping.19

19Here, for example, we see the benefit of assuming that bidders assume state transitions are exogenous.
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4.4 Semiparametric Approach Step 2b: Match Moments

Once we have bidding strategies, we are close to being able to calculate moments of the bid

distribution in each state. Of course, we need to know not only how the types will bid, but

also the stationary distribution of types. To close the model then, we form a parametric

model for the type distribution Fθ ≡ F (X|θ), where θ is a finite dimensional parameter. Let

F̃ be the stationary distribution of types. Fθ and F̃θ will typically be quite different. Our

aim is to identify the true parameter vector θ0, as this identifies demand.

A generic estimation approach is to simulate data from the structural model under θ, and

compare the simulated and sample moments. Any minimum distance estimator that chooses

θ to minimize the distance between thoughtfully chosen functionals of the observed and

actual bid distributions will converge to the true θ0, provided it is identified. To take a

specific example, consider comparing a moment like E[b|S = 1] — the mean bid in state 1 —

across the sample and the parametric model. Dropping repeated bids in the same state by

the same bidder, we can form the sample moment as a simple average. On the model side,

we need to calculate Eθ[β(X, 1)], where the expectation is over the stationary distribution

of types who bid in state 1, which we can estimate for fixed θ. The easiest way to do this is

to simulate draws from Fθ, and compute the relevant bids using the estimated bid function.

Yet as noted earlier, the stationary distribution of bids in state 1 is not the type distribution

F . So we need to re-weight the draws to consistently estimate Eθ[β(X, 1)]. As we show in

the appendix, one can use the first stage estimates to solve for the probability that in the

stationary distribution any type x will be observed bidding in any subset of states A ⊆ S.

So the probability we see a bid in state 1 is just the complement of the probability of seeing

only bids in Ac, and we can use to correctly re-weight and account for the selection issue.

Although any minimum distance estimator will do — and indeed in the Monte Carlo we

use a particularly simple approach based on comparing the mean and variance of bids in a

state, and the covariance across pairs of states — for the asymptotics it is easiest to appeal

to standard results from the literature on GMM. Treat the data as a time series of auction

observations t = 1 · · ·T . Then we can construct moment conditions based on the fact at the

truth, sample and simulated moments should coincide. The asymptotic theory of Hansen

(1982) applies, showing that provided the true parameter is identified and the environment

is strictly stationary, the GMM estimation approach will recover the truth asymptotically.

For if not, one would need a model of the counterfactual state transitions had another strategy been followed.
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Note that Lemma 2 proves the stationarity of the environment, so that is satisfied. But we

need also appeal to the results of Pakes and Pollard (1989) to argue that the simulation error

has no impact on the asymptotic distribution of the estimator as the number of simulations

grows large; and to either Andrews (1994) or Ai and Chen (2003) to argue that the non-

parametric first stage does not preclude
√
N consistency.

From a computational point of view, there are ways to speed up the estimation. One im-

portant bottleneck is that for every new parameter update and sample of bidders, we must

solve a dynamic optimization problem for a large sample of simulated types. We can speed

this up using an importance sampling approach. Instead of drawing the types anew on each

iteration and solving out for their bidding strategies, instead choose a set of R types initially

to uniformly span some plausible region of X and compute their optimal bids. The choice

of initial region is up to the researcher: one suggestion might be to regress prices on states,

and then take the region of types spanned by the coefficient estimate plus four standard

deviations on either side. This need only be done once. Then, to compute the simulated

moments, we weight the types according to their relative likelihood under θ and compute

the simulated moments as weighted sums.

4.5 Characteristic Space Approach

At the end of the day, we are trying to estimate the distribution of valuations over different

products. As in the more general demand literature, this can be overly demanding of the data

if the product space is large. Even after imposing a multivariate normal parametric structure,

for example, we need to estimate a variance covariance matrix with J(J + 1)/2 parameters.

Given this, we may want to project valuations down onto product characteristics.

To do this, we assume that valuations depend on the characteristics of the goods zt ∈ Rk,

as well as on tastes for the characteristics and an unobserved utility shock:

xit = ztαi + γi (4)

where we index individuals by i and auctions by t as before. The pair (αi, γi) ∈ Rk+1 are

the individual’s type, reflecting tastes for the product characteristics and for buying a good

relative to the outside option. This is similar to the random coefficients demand specification

familiar from the discrete choice literature. The main differences are that γi replaces the
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totally idiosyncratic shock εit; and that there is no unobserved heterogeneity term ξt. In an

auction setup it makes sense to think of agents varying in their willingness to pay in a way

that does not depend on the characteristics, and so we add γi; whereas in discrete choice this

has no testable implications and so is omitted. Including also an idiosyncratic shock εit in

our specification would create few problems for us. By contrast, unobserved heterogeneity

presents more of a challenge, and we will not discuss it here.20

It is not hard to see that provided there remains a finite number of products (i.e. character-

istic bundles), nothing from our previous semiparametric approach need change. Carrying

out steps 1 and 2a, we can compute the bid strategy for any type, where a type is now a

pair (α, γ). Then given a parametric assumption on the joint distribution of (α, γ), we can

simulate moments as before and match them with sample moments.

Yet under stronger assumptions we can use a considerably simpler estimation procedure.

Suppose that agents condition only on the characteristics of the object under auction, so

that z is the state variable.21 Suppose also that we make the parametric assumption that

the types are joint normal, with mean µ and variance-covariance matrix Σ. Now, since supply

is exogenous and random, the states evolve as a random walk, and the bidding function is:

β(α, γ, z) = x− ṽ(x) = αz + γ − ṽ(α, γ)

where the first equality follows because the ex-ante continuation value is independent of the

state, and the second follows by substituting in for the valuation. Let γ̃ = γ − ṽ(α, γ), and

define µ̃ = (µα, µeγ) and Σ̃ as the mean and variance-covariance matrix respectively of (α, γ̃).

Then we can construct formulae for the conditional mean and variance of bids made by types

randomly drawn from the entry distribution. For example, if k = 1 so that Σ can be written

as [σ2
α, σα,eγ;σα,eγ, σ2eγ], we have:22

E[b|z] = µαz + µeγ
V ar[b|z] = σ2

αz
2 + 2σα,eγz + σ2eγ

20But see Li and Vuong (1998) for a measurement error approach that would allow deconvolution of bids
into common and idiosyncratic components if the unobserved heterogeneity ξt was iid over time and not
known by the agents in advance of period t.

21Provided there are a finite number of products, and therefore characteristic bundles, the state space
remains finite.

22The approach extends to arbitrary k at the cost of increased notation and summations.
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Notice that the conditional mean E[b|z] is linear in z, which implies that if we restrict

attention to a sample of new bidders, a simple OLS regression of bids on z is enough to

consistently estimate µα and µeγ. The restriction is to new bidders because they are draws

from F , rather than F̃ . Similarly, regressing the squared residuals from that regression on

z2, z and a constant, we get estimates of σ2
α, σα,eγ and σ2eγ.23 This immediately gives us some

of the primitives (µα and σ2
α), while the others can be obtained by moment matching, using

step 2a to get the value functions at different parameter vectors and separate the γ̃ term.

One might wonder why such a simple approach is possible here and not elsewhere. The key

is that a characteristic-based model places strong and linear restrictions on the relationships

between the valuations. Whereas in the general product space model we had to look at joint

bids on objects A and B for inference, implying a need to understand the dynamic selection

process driving bidders into that pair of auctions, here we can just look at bids on A and

infer the valuation for B from their taste for the common characteristic z. This means that

it suffices to look only at the initial bids of new bidders — which is a sample of types directly

from F — and completely abstract from dynamic selection concerns.

5 Monte Carlo

We perform a simple Monte Carlo exercise to test both our nonparametric and parametric

estimation approaches in small samples. In the simple case there are two goods, and bidders

condition their bids only on the identity of the good and their private information, so there

are two corresponding public states. In each period, each of these goods is equally likely to

be listed. The number of entrants k is always 3 each period, but exit is random with losing

bidders exiting with probability ρ = 0.25 and winning bidders exiting with certainty. The

discount rate δ is set to 0.99. We consider alternative parameterizations for k and ρ. Bidders’

private valuations are distributed bivariate normal with mean µ and covariance matrix Σ,

which we also allow to vary in different Monte Carlo experiments.

Data is generated by first solving for the bidding function via policy iteration – though we

have only been able to prove this converges in general for |S| = 1 (see Theorem 1), it has

converged in all of our experiments to date. Then for each Monte Carlo iteration we simulate

a dataset of 500 auctions, after discounting an initial 10,000 auctions as a ”burn in”. This

23In practice, since we have conditional heteroscedasticity, using a feasible generalized least squares (FGLS)
approach will be more efficient than OLS. This may be very important in small samples.
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amounts to, in expectation, 250 auctions per product, which seems like a moderate amount

of data, especially given the volume of transactions online.

We run both estimation routines assuming that the econometrician knows the entry process,

the discount rate δ and that the transitions between states are random rather than Markov.

In the common first stage, we estimate the probability of exit ρ, and the probability of

good one being listed, q. Then in the nonparametric second stage approach, we estimate

the marginals of the type density using a Gaussian kernel density estimation approach with

automatic bandwidth choice by cross-validation. In the parametric estimation, we (correctly)

specify a multivariate normal distribution for the types, and take a minimum distance (MD)

approach by matching the mean and variance of bids for each state in which a bidder may be

observed, as well as the covariance between bids in each state for bidders observed in both.

Our results for the simple case are presented in Table 1 for a variety of parameterizations.

Experiment A is a baseline case with k = 3, ρ = 1/4, and symmetric µ and Σ. Experiment

B slowed the rate of entry and random exit, allowing for fewer, but longer-lived bidders.

Experiments C and D add positive and negative correlation between valuations, respectively,

and finally experiment E adds positive correlation as well as significant asymmetry in the

means and variance terms. Estimates from the structural models proposed in this paper

appear in panel 1 for each experiment. Panel 2 presents, for comparison, estimates from

a naive approach that treats each observed bid as a draw from the distribution of private

valuations.

The supply parameter p and exit probability ρ are precisely estimated. Estimates of µ and

Σ come from the parametric approach, and are found to be accurate and encouragingly

precise for all parameterizations of the model. The naive approach gets both the means and

the variances wrong in a statistically significant way. This bias derives from three sources

that we have dealt with in our model: repeat bidding, selection by type, and bid shading

according to the option value of losing.

In the far-right hand columns appear estimates of the mean integrated squared error (MISE),

which is a measure of goodness-of-fit for our nonparametric approach.24 We report MISE for

the marginal distributions of types in both dimensions. In comparing these numbers, note

that MISE is not a normalized measure, and is therefore not comparable across specifications.

We can, however, compare the MISE generated by the structural approach with the MISE

24For a candidate distribution fn(x) and a true distribution f(x) this is calculated according to MISE =∫
(fn(x)− f(x))2dF (x)
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Figure 1: Monte Carlo Simulation The figure shows the true and estimated marginal density of
valuations for product 1 for a randomly chosen Monte Carlo simulation of 500 auctions with specification E.

generated by the naive approach, and we see substantial improvement, with the structural

model often doing a full order of magnitude better. For a graphical intuition of the fit

achieved, Figure 1 depicts the true and the estimated marginal distribution of types for

good 1 from experiment E of the simple model.

We also run a parallel set of Monte Carlo experiments for a forward-looking model, which

is based on the identification example presented earlier in the paper. Now bidders pay

attention to the good being auctioned in the next period, which means we now have four

public states. Results are presented in Table 2. While the more complicated structure of

the model has a cost in precision, both estimators continue to dramatically outperform the

naive approach under all specifications. Note that the cost in precision is much more severe

for the nonparametric approach– this is because, with four states instead of two, the sample

of bidders for which we observe bids in every state is much smaller.

Finally, we run the same set of experiments for a backwards-looking variation on the model.

In this version, the public state variable consists of the product being auctioned today as

well as a dummy for whether there were more than 9 bidders in the previous auction. This

is meant to capture inference regarding the level of demand. Results are presented in Table

3. It turns out that the level of demand only affects the bidding strategies of a small fraction

of types significantly. Estimation performs roughly on par with that in the forward-looking

model. As in that case, however, while estimates of σ12 are within two standard deviations

of the truth, when the truth is nonzero the results consistently exhibit attenuation.
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6 Conclusion

We have developed an estimable demand system for a large auction market. By defining

and focusing on competitive Markov equilibria, we obtained a characterization of bidder

strategies that was both intuitive and tractable. We also showed existence of equilibrium,

demonstrating that regardless of the initial conditions of the market, there is strong con-

vergence to a stationary type distribution. Leveraging the Markov structure of the game,

we showed that demand is identified from panel data, in which the same bidder is observed

repeatedly bidding in different states.

Turning to estimation, we outlined two different approaches for recovering the distribution of

types. These were tested by Monte Carlo simulation. From these exercises, we learned that

accounting for dynamics and allowing for multiple products turns out to be important. Näıve

estimates based on treating the data as a cross-section are systematically biased downwards,

and are unable to account for correlation in the valuations for different products.

Understanding these basic empirical problems will be helpful for future research. We hope

also that this is a first step towards obtaining satisfying models for other markets: those

where bidders have market power, or non-unit demand. In future work, we would like to

take this model to data and see how it performs.
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Appendix

Proof of Lemma 1: Conditional on a positive bid, the expected payoff function π(b, s) has

the form:

π(b, s) =

∫ b

0

(xt −B1)g(B1|s)dB1 +

(∫ ∞
b

g(B1|s)dB1

)
(1− ρ)δ

S∑
s′=1

v(x, s′)Qss′

since we show in Corollary 1 below that the highest bid has a density on R+. Writing

ṽ(x, s) for (1 − ρ)δ
∑S

s′=1 v(x, s′)Qss′ , and taking an FOC in b, we get (xt − b)g(B1|s) −
g(B1|s)ṽ(x, s) = 0, which has unique solution bt = xt − ṽ(x, s). If this is negative, then the

corner solution bt = 0 delivers the highest payoff conditional on a positive bid; and it is easily

shown that non-participation φ does better still because the probability of winning with a

bid of zero is positive (e.g. there may be no other bidders in the market).

Proof of Lemma 2: By Theorem 11.12 in Stokey, Lucas, and Prescott (1989), uniform

geometric convergence in total variation norm will be achieved if their “condition M” holds:

there exists ε > 0 and N ≥ 1 such that for all A ∈ F , either PN(ω,A) ≥ ε ω ∈ Ω

or PN(ω,Ac) ≥ ε ∀ω ∈ Ω, for PN the N -step transition probability. Let s0 = T (0,1) and

ω0 = (0, s0) (i.e. ω0 is a superset of the true state where there are no current participants, nor

have been for the observable history; and upcoming supply is entirely of object 1). Let p0 =

P(Et = 0|Nt−1 = 0) > 0, by assumption; let q0 = P(jt = 1); and let N0 = max{kf , kh} + 1.

Then PN0(ω, ω0) ≥ ρN̄(p0q0)N0 > 0 ∀ω ∈ Ω. Choosing N = N0 and ε = ρN̄(p0q0)N0−1,

condition M holds since either ω0 ∈ A or ω0 ∈ Ac. Next, consider the marginal ergodic

distribution on X N̄−1×S produced by integrating out the first non-zero element of the type

vector. Since S is finite, there is a well-defined conditional distribution of x−i given s.

Proof of Theorem 1: We adopt two different proof strategies for the cases J = 1 and J > 1.

Case (J = 1): A strategy is β(x, s) : X×S → A . Let B be the set of increasing continuous

functions on X × S. B is a Banach space under the sup norm. Define an operator on B by

Γ(β)(x, s) = x − ṽβ(x, s) . A fixed point β∗ = Γ(β∗) is an equilibrium, by Lemma 1. Now,
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Γ is a contraction mapping, since for any β, β̃ ∈ B:

‖Γ(β)− Γ(β̃)‖ = max
s∈S

sup
x∈X
|ṽβ(x, s)− ṽeβ(x, s)|

≤ max
s∈S

sup
x∈X
|G1 (β(x, s)) (x− E[B1|B1 ≤ β(x, s), s])

−G1

(
β̃(x, s)

)(
x− E[B1|B1 ≤ β̃(x, s), s]

)
|

≤ max
s∈S

sup
x∈X

G1 (β(x, s))
∣∣∣E[B1|B1 ≤ β(x, s), s]− E[B1|B1 ≤ β̃(x, s), s]

∣∣∣
≤ ‖β − β̃‖

where in the third line we use the fact that G1 (β(x, s)) = G1

(
β̃(x, s)

)
for all x and s, which

holds since both β and β̃ are increasing in s and thus they induce the same ordering over

types. Then applying the Banach fixed point theorem, we obtain the result.

Case (J > 1): This is much harder. We cannot apply the approach above, because the

types are not totally ordered, and so different increasing strategies may induce different

probabilities of winning for the same type. Discontinuities in the payoff function rule out a

direct approach. Instead we will discretize the action space, and modify the argument of Reny

(2008) for our purposes to get existence for the finite game; and then argue as in Athey (2001)

that the limiting strategies constitute an equilibrium. Let the action space Ak be a finite

grid {φ, 0, x̄
k
, 2x̄
k
· · · x̄}S, with each dimension totally ordered as written. Endow Ak with the

Euclidean metric denoted d, where φ is treated as having value −x̄
k

. Here, we define strategies

as mappings from type to actions, β : X → Ak, and write β(x) = (β1(x), β2(x) · · · βS(x)).

For each s, let λ(s) ∈ J be the object under auction in state s; the mapping is well defined

because of restriction (i) on the coarsening T. As in the text, we call β monotone if βs(x) is

increasing in xj if j = λ(s) and decreasing otherwise. Following Reny (2008), let M denote

the space of monotone functions from X to Ak, and define a metric δ on M by:

δ(β, β′) =

∫
X
d(β(x), β′(x))dµ(x)

As shown there, (M, δ) is a compact absolute retract. Define the payoff function u(a, t, β−i),

equal to the value of the game for type t when playing action vector a, everyone else follows

strategy β−i, and the invariant measure over true states is determined as though everyone

plays β−i. As Reny (2008) shows, the interim payoff function U(β, β−i) =
∫
X u(β(t), t, β−i)dµ(x)

is continuous in both arguments since the type distribution is atomless.
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Let Γ(β−i) be the best response correspondence; by the theorem of the maximum it is non-

empty valued and upper-hemicontinuous. A fixed point of the correspondence, β∗, will be

a CME, since then strategies will be optimal given that the invariant measure over types is

generated by play of β∗. The existence of such a fixed point is guaranteed by the fixed point

theorem due to Eilenberg and Montgomery (1946) if we can show that Γ is contractible-

valued and Γ(β−i) ∈M whenever β−i ∈M .

Fix β−i ∈ M and x ∈ X , and let ṽ(x, s) still denote the ex-ante continuation value given

optimal actions. Then we can look at the optimal action state by state, and we have

b∗s = arg maxb∈Ak G(b|s)(xλ(s) −E[B1|B1 ≤ b, s]) + (1−G(b|s))ṽ(x, s). Define bls = maxb{b :

xλ(s) −E[B1|B1 ≤ b, s]− ṽ(x, s) > 0} and bus = minb{b : xt −E[B1|B1 ≤ b, s]− ṽ(x, s) < 0}.
Comparing their payoffs directly, we see that bls yields higher payoff than bus ; this proves that

these two bids could not both be best responses. Next, at least one of these must be a best

response — suppose b < bls is optimal, then xt−E[B1|B1 ≤ b, s]− ṽ(x, s) > 0; but since the

payoff function is a weighted sum of xt−E[B1|B1 ≤ b, s] and ṽ(x, s), and G(b|s) is (weakly)

increasing in b for β−i ∈ M , bls must be weakly better still, and also a best response. The

same argument holds on the other side. In sum, either bls or bus (but not both) is part of the

optimal strategy, and the best response is unique unless G(b|s) is constant over actions in

some state (i.e. β−i assigns no mass to these actions).

Two results follow. First, since als and aus are increasing in xλ(s) and decreasing in x−λ(s)

— since v increases in x−λ(s) — the best response to any β−i ∈ M is also in M . Second,

given best responses a and a′, the join a∨ a′ is also a best response, since the probability of

winning must be constant over those actions, and so taking the coordinate-wise max doesn’t

change payoffs at all. Γ is thus join-closed and non-empty for β−i ∈M .

Finally, then, we need to construct a contraction on the best reply correspondence. We

slightly adapt Reny (2008) because actions are not increasing in type in all states. Fix β−i

and (β, β0) ∈ Γ(β−i). Let Fi(x) be the marginal distribution of valuations for product i, and

define functions Φs(x) =
Fλ(s)(x)−F̄−λ(s)(x)+1

2
, where F̄−λ(s)(x) is the average valuation quantile

of objects not auctioned at s. Then define

hs(τ, β)(x) =


βs(x), if Φs(x) ≤ |1− 2τ | and τ < 0.5

βs0(x), if Φs(x) ≤ |1− 2τ | and τ ≥ 0.5

βs0(x) ∨ βs(x), if Φs(x) > |1− 2τ |
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Define h(τ, β)(x) = (h1(τ, β)(x), h2(τ, β)(x) · · ·hS(τ, β)(x)). It can be verified that h(τ, β)

is monotone, continuous and a best reply almost everywhere. This proves Γ contractible

valued, and hence it has a fixed point on M , showing existence for the finite action game.

To complete the proof, it suffices to show that there is a limiting set of strategies in which

no positive measure of types makes a bid b ∈ R+ in any state s (a positive measure of types

bidding φ presents no problems). But we showed earlier that for any grid fineness k, either

bls or bus is played by every type x against the equilibrium strategy β∗k ; taking a limit as

k → ∞, we get that strategy β∞(x) = b for b solving xλ(s) − ṽ(x, s) = 0 is played in some

limit equilibrium for all x. Fix this equilibrium, some state s and some bid b ∈ R+. Since

β∞(x) is strictly increasing in xt, the set of types bidding b must be of dimension J − 1 and

thus Lebesgue-negligible. Finally, since the type distribution is absolutely continuous with

respect to Lebesgue measure, this implies the measure of types bidding b is zero.

Corollary 1. In equilibrium the distribution G(b|b > 0, s) is absolutely continuous for all s.

Proof: Since the equilibrium bid function is strictly monotone on b ≥ 0, and the max

operator selecting the highest bid is continuous, it will suffice to show that the invariant

measure on the type space µx is absolutely continuous with respect to Lebesgue measure.

So fix a Lebesgue-negligible set A on X N̄ , and let C = A×S. Following Meyn and Tweedie

(2009), let L(x,C) = limN→∞ P
N(x,C). It suffices to show L(x,C) = 0. But to reach

C, one must draw a sequence of types from A, and since the distribution of entrants F is

absolutely continuous with respect to Lebesgue measure, if A is negligible, the probability

of those draws is zero. Thus L(x, c) = 0, completing the proof.

Proof of Theorem 2: Following precisely the logic of the identification example, we can write

the vector of continuation values of a bidder who bids b as the solution to a linear system

V = (I − δ(1 − ρ)Q)−1u, where Q is the transition matrix, ρ = ρ1, ρ2 · · · ρS is the vector

of exit probabilities and u = [u1, u2 · · ·uS] is the S-length vector with terms of the form

us = G1(bs|s)(bs − E[B1|B1 < bs, s]). Notice that since bs = φ is possible, we may have

us = 0 for some s. Q and ρ are identified from the data, δ is assumed known and u is

identified for any bidder observed bidding in every state. Also (I − δQ)−1 exists for δ < 1.

Given these objects, the ex-ante continuation value is identified for all complete observations.

Now fix any set B ⊂ J . Then to get the valuation vector restricted to B, xB, we simply

add the continuation value to the bid for each of |B| states where distinct products in B

are auctioned, where the bids are positive on B by assumption. Moreover, any type in the

32



interior of the support of FB has a positive probability of generating a complete observation.

So by re-weighting the density of valuations for complete observations, we recover FB. The

correct re-weighting factor is P (S, x), identified from the data and defined in (6) below.

Selection Correction Probabilities: Let A be a subset of S. We want to get the probability

that any type x ends up submitting bids in the states in A. Define p(x, s) = G1(β(x, s)|s) +

(1−G1(β(x, s)|s)) ρ(s), which is just the probability that a type x will exit the sample in

state s, whether by winning or losing. Also define P (B, x, s) to be the probability of a bidder

x who enters the sample in state s being observed bidding only in states B ⊆ S. We can

express this recursively:

P (B, x, s) = 1(s ∈ B)

[
p(x, s) + (1− p(x, s))

∑
s′∈B

Qss′P (B, x, s′)

]
(5)

Then the probability of observing a bidder x in group A can be defined implicitly as:

P (A, x) =
∑
s∈A

π(s)P (A, x, s)−
∑
B⊂A

P (B, x) (6)

where π is the invariant measure over states. The idea is simply that the probability of

seeing bids for every state s in A is equal to the probability that the bidder stays within A

less the probability that he stays in a strict subset of A.
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