AN ESTIMABLE DEMAND SYSTEM FOR A LARGE AUCTION PLATFORM MARKET

Greg Lewis (Harvard University and NBER) Joint with Matt Backus (University of Michigan)

MOTIVATION

- Auction mechanisms are used to allocate goods in many large and important markets
 - Online Marketplaces (eBay, Taobao.com)
 - Online Advertising
 - Procurement
 - Indian tea auctions, used car auctions etc
- Characteristics of these markets
 - Repeated auctions, often sequential
 - Infinite horizon
 - Persistent bidders
 - Heterogeneous goods, preferences

APPLICATIONS I

- With good models (both theory and empirics) there are interesting questions to be answered
- How much consumer surplus is generated by online auction markets?
 - Useful number for analyzing value of e-commerce
- How should we define ``markets'' when allocation is via auctions?
 - Want to evaluate which group of products are close substitutes, can get this from a demand system
 - May be useful for antitrust

APPLICATIONS II

• How should a seller dispose of a block of products?

- Products compete with each other, but delay costly
- Need a demand system to evaluate trade off
- Practical problem: Hertz and expiring leased car fleet
- How much should a seller forecast a new product will sell for?
 - Analogous to discrete choice, if can project down to characteristics, can forecast bids on new product
 - May be useful for planning in public procurement

APPLICATIONS III

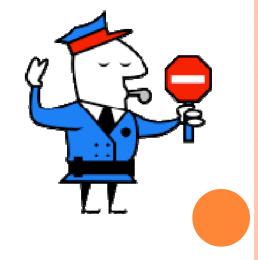
• How should a platform optimally set fees?

- Two-sided market, fees cause dynamic changes in participation
- Too costly to experiment
- How should we think about mergers between major suppliers?
 - To the extent that we think search keywords on Yahoo and Microsoft are substitutes, what effects do we think their merger should have?
 - What does ``exert market power'' even mean in an auctions context?

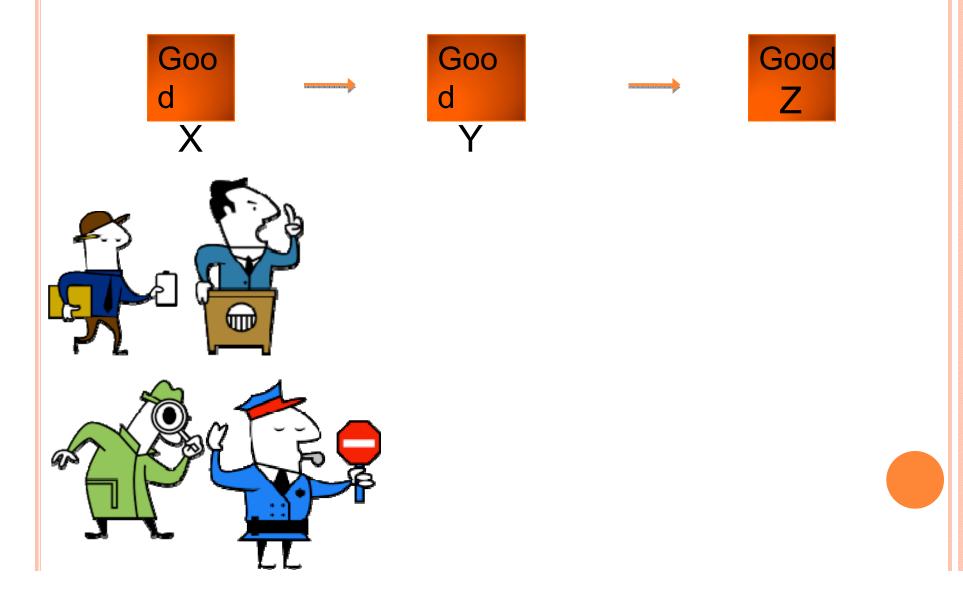
MOTIVATION

- Currently we lack good models to analyze these auction markets
- Theory
 - Huge literature on static auction mechanisms
 - Little on dynamic marketplaces, sequential auctions
 - Classic model is Milgrom and Weber (1982 / 2000)
 - Sequential auctions of k homogenous goods to n bidders
 - Turns out to be static!
 - Problem 1: Don't know how to think about multi-product systems
 - Problem 2: Dynamics matter for accurate measurement

CURRENT EMPIRICAL VIEW OF THE DATA



WHAT DATA OFTEN LOOKS LIKE



MOTIVATION

- Structural auctions literature designed for estimation with cross-sectional data
 - Auction observations are IID
 - Different population draw in each auction
 - Identical products, or idiosyncratic differences for all products (only the error term varies)
- Data is generally a panel
 - Observe same bidders participate in multiple auctions
 - Pattern of participation reflects preferences, says something about which goods are substitutues

SUBSTITUTION MATRIX

Product Type	Difen				Care				
Resolution Magapuels		1470	167 -	7.8	×	$\{ i_i \}_{i \in I}$	4.7	7- N	× .
Other	$ \psi_{i} _{\mathcal{G}}$	66.74	12.06	5.16	1.52	2.02	$[\cdot (\cdot)]$	$\{1,1\}$	$\{ c_i \} \in \mathbb{R}$
	~ 7	7.15	100.67	10.58	3 - 1	1.15	1.15	1.1	6.37
	-7.8	2.57	7.13	$-76.5\times$	10.22	de l'he	0.160	$= \int dF dF = 0$	$\{0, j\}\}$
	6	211	3.58	6.32	$\{N_i\}_{i=1}^{n}$	•	$\{i,j\}$	-1.65	2.00
Casa	$\{ i_{i}^{1}, i_{i}^{1} \}$	(A_{1},Q_{2})	1.24	171	-3.5	-51.48	30.42	NN1	1.58
	$\{i_i\}_{i=1}^{n}$	0.77	1.611	1.37	1100	1.63	h_{1}, μ_{1}	$\{i_1,i_2,\ldots,i_{n-1}\}$	
	(7.5)	10.20	~ 55	1.25	$\{ (x_{i},y_{i}) \}$	1.10	205	SO 12.	$\frac{1}{2}$ (16)
	- N	16.68	6.57	1.2.2	1 - 1	(1 > 1)	: 17	$\{ i_1 \} \{ i_2 \}$	$\{ N_{i}^{*} \} \in \mathbb{N}$
North de	$\{\{,i\}\}$	11.25	1.75	1.71	132	1.37	$\{ \{ i\} \}_{i \in \mathbb{N}}$	$\{i,j\} \in \mathbb{N}$	
	≤ 7	1.00	1.57	$\{ (n, n) \}_{n \in \mathbb{N}}$	$< \{ j \}$	$\sim 2\pi$	~ 2.7	~ 107	$\sim 2\pi$
	7.5	1.6	1.76	1.77	0.71	6.25	< 50	$< 7 \times 1$	0.28
	$\sim \infty$	· ·	-	7.66	1.85	1.12		1.12	1.12
Silicar Vicley Douptorals (SVD)	$7 \times$	1 11	11 i i	$(-\infty)$	1.17			1.27	1.27
	× 5	1.60	2.77	1.56	1.74	6.16	s fr	10.00	6.22

Digital Camera Auctions on eBay: pattern of participation (first vs second auction they bid on)

WHAT WE DO

1. Develop a stylized model of a large auction market

- Sequential second price sealed-bid auctions
- Many persistent buyers, dynamic entry and exit
- Exogenous supply
- Multiple products, unit demand (*)
- Multidimensional private valuations
- 2. Characterize long-run equilibrium
 - Define equilibrium concept appropriate for large anonymous markets with finite buyer/seller ratio
 - Characterize strategies, show existence

WHAT WE DO

3. Analyze resulting demand system

- Show demand is non-parametrically identified
- Provide non-parametric and semi-parametric estimation procedures
- Show how to estimate when valuations are projected onto characteristics
- Perform Monte Carlo experiments to show it works well in finite samples
- Paper is deliberately abstract: trying to walk a fine line between worrying about practical estimation issues and theoretical tractability

RELATED LITERATURE

o Theory

- Sequential Auctions: Milgrom and Weber (1982/2000)
- Long-run market equilibrium: Hopenhayn (1992), Ericson and Pakes (1996)
- Equilibrium in large auction markets: Wolinsky (1988), Jovanovic and Rosenthal (1988), Satterthwaite and Shneyerov (2007)
- Dynamic mechanisms for sequential auctions: Said (2008)
- Alternate equilibrium concepts: Krusell and Smith (1998), Weintraub, Benkard and van Roy (2008), Fershtman and Pakes (2009)
- Demand systems for discrete choice
 - Berry, Levinsohn and Pakes (1995)

RELATED LITERATURE

Estimation

- Static Auctions: Guerre, Perrigne and Vuong (2000)
- Dynamics: Pesendorfer and Jofre-Benet (2003)
- Dynamics on eBay: Zeithammer (2006), Sailer (2007), Ingster (2008)
- Simultaneous Auctions: Adams (2009)
- Dynamic Games: Aguirregabiria and Mira (2007), Bajari, Benkard and Levin (2007), Pakes, Ostrovsky and Berry (2007), Pesendorfer and Schmidt-Dengler (2003)

ROADMAP

- 1. Model setup
- 2. Analysis of bidder behavior and equilibrium
- 3. Identification
- 4. Estimation
- 5. Monte Carlo Results

MODEL

• Bidders and Payoffs:

- Have private valuations X defined over a finite set of J goods, distribution F has continuous density
- Risk-neutral with unit demand (*), discount future at rate δ
- Market:
 - Operates in discrete time
 - Each period an auction is held. Winning bidder exits certainly; losing bidders exit randomly at rate ρ
 - Losing bidder payoff is normalized to zero
 - New bidders then enter (# of entrant depends on how many already in market), draw valuation from F.
 - Last, seller posts a new item to be sold m periods in future

MODEL

Auctions

- Second-price sealed bid auctions
- Bidders can either bid, or not participate (*)
- Bidder Information
 - Bidders observe an anonymized history of the game for the last k periods
 - Together with the foresight over m upcoming auctions, have a window [t-k, t+m] that is public
 - Also know their private valuation
- Bidding Strategies
 - A bid strategy β(I) is a map from information set to their decision as to what to bid (or not participate)
 - Assume symmetric strategies

BELIEFS

 Bayes-Nash equilibrium requires bidders form beliefs about the opposing set of types

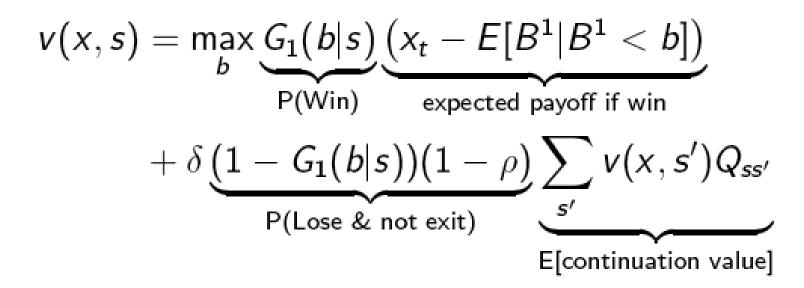
- Relevant object is a high dimensional vector of J vectors of valuations
- Solve a filtration problem given initial prior and observed history
- Implausibly complicated, so we simplify
- Assumption 1: Bidders condition beliefs on finite "state", coarser than full history
 - State variable could be the range of transaction prices in last 7 days; # of upcoming auctions in next 7
 - Believe they face a draw from long-run (stationary) distribution of types in that state

EQUILIBRIUM

- Assumption 2: Bidders believe state transitions are exogenous and first-order Markov
 - Bidders do not account for how their bids affect state
 - Reasonable approximation in large market
- Let ``coarsening function'' T partition information sets into states
- Competitive Markov Equilibrium with respect to T
 - Bidders use symmetric Markovian strategies that depend only on valuation and state
 - Take state transitions as exogenous, and correctly anticipate transition matrix
 - Have correct beliefs about the distribution of opposing types conditional on state
 - Choose strategies that maximize payoffs given these beliefs

CHARACTERIZATION

• Fix an equilibrium. Look at value function:



- Where G₁ is the distribution of highest opposing bid given state
- Q is transition matrix across states

CHARACTERIZATION

• Take a first order condition to get optimal strategies

$$\beta(x,s) = x_t - \delta(1-\rho)E[v(x,s')|s]$$

o Bid Valuation เธออ นเองงนาแอน งงานแทนสมงาา value

- Intuition:
 - Like a second-price auction where winners get object, but losers get their continuation value
 - Turn it into a static SPA by re-normalizing prizes
 - Get "prize" worth object valuation less continuation value if win, nothing if lose
 - Optimal strategy to bid value of prize

THE LONG RUN

o Buried in that expression is the long-run

- How do bidders evaluate their continuation value?
- Geometric series, but need to have beliefs about equilibrium distribution of G₁(b|s)
- Lemma 2: Fix any CME. Given any initial measure on the type space, the market converges at geometric rate to a unique invariant measure
 - Long-run makes some sense: wherever we start, we'll end up at the same set of types in market
 - Notice that in the end, the informational demands on bidders are not that strong!

EXISTENCE

• Theorem 1: For any T, a CME exists. If there is only one product, the equilibirum is unique.

• Proof Sketch (1-product case):

- Restrict to increasing strategies; then any two strategies produce same ergodic distribution
- So can fix ergodic distribution, and look for optimal strategies
- Policy iteration works out here
- So e.g. start with all bidders bidding type: $\beta(x) = x_t$
- Simulate economy forward, and update everyone's continuation value v(x, s)
- Update according to $\Gamma(\beta) = x v(x, s)$
- Show Γ a contraction mapping
- Apply Banach fixed point theorem ! done!

- Have equilibrium, return to demand estimation
- Remember: demand is willingness to pay = distribution of valuations
- But which distribution of valuations: the entry distribution F, or the steady-state F^{*} ?
- Show that both are identified from panel data
- o Data
 - Observe a sequence of bids for each bidder
 - Observation = [auction, product, bidder, bid]
 - Assume econometrician knows how to classify public history into states, so state known as well
 - Assume discount rate known or can be calibrated

Game is to get willingness to pay x from bids b

- Sketch identification with 1 product / 1 state
 - Bidder bids according to:

$$\beta(x) = x - v(x)$$

• Where we have:

$$\begin{aligned} v(x) &= G_1(b) \left(x - E[B^1 | B^1 < b] \right) \\ &+ \delta (1 - \rho) (1 - G_1(b)) v(x) \end{aligned}$$

0

• Substitute in from bidding function to eliminate x:

$$\begin{split} v(x) &= G_1(b) \left(b + v(x) - E[B^1|B^1 < b] \right) \\ &+ \delta(1-\rho)(1-G_1(b))v(x) \end{split}$$
 Re-

- This identifies stationary distribution F* pointwise : for each bid, ``invert'' to get valuation
- This gives us demand
- Result extends to more products and more states: turns out to be a linear system
- Data requirements are stronger though: can only do the inversion on "complete observations"
- Complete observation = a bid in every state by the same bidder

THE SELECTION PROBLEM

- If observations were IID, we could call it a day
- Treat as cross section: take each bidder and get back their valuation gives us F*
- Treat as panel data: must account for the fact that same bidders may show up multiple times
- If we count each guy only once (on entry), get F
- Correcting for this sort of "selection problem" gets more difficult as we have more products and more states (can't just restrict to bid on entry)
- Can only use complete bid observations, must reweight resulting valuations to account for selection

ESTIMATION

• Three cases:

- Case 1: Few producsts / states (relative to data)
 - Follow identification argument to nonparametric estimator

• Case 2: Moderate number of products / states

- Need complete observations for nonparametric approach to work well; this is a tough data requirement
- Instead show that for any type, can solve for optimal bidding function based on ``first-stage'' estimates
- Given parametric model, can simulate bid distributions and match simulated and observed distributions

ESTIMATION

• Case 3: Large number of products / states

- Project down to characteristics space
- Assume linear relationship between characteristics z and valuations x

$$x_{it} = z_t \alpha_i + \gamma_i$$

- Type is now a random coefficient on characteristics z
- Show that in this case, distribution of types is estimable by OLS!
- Intution: data is much better than discrete choice
- Show approaches work via Monte Carlo simulations (N = 500 auctions, 2 products)

CONCLUSIONS

- Paper has focused on long-run equilibrium and demand estimation in auction markets
- Theory side: tractable equilibrium concept, intutive characterization of bidder strategies
- Empirics: identification, relatively simple estimation strategies that work in finite samples
- Plan to extend the model to allow for small suppliers, participation fees charged by platform
- Although stylized, hope this framework will be useful for economists analyzing these markets