AN ESTIMABLE DEMAND SYSTEM FOR A LARGE AUCTION PLATFORM MARKET

Greg Lewis (Harvard University and NBER)
Joint with Matt Backus (University of Michigan)
MOTIVATION

- Auction mechanisms are used to allocate goods in many large and important markets
 - Online Marketplaces (eBay, Taobao.com)
 - Online Advertising
 - Procurement
 - Indian tea auctions, used car auctions etc

- Characteristics of these markets
 - Repeated auctions, often sequential
 - Infinite horizon
 - Persistent bidders
 - Heterogeneous goods, preferences
APPLICATIONS I

- With good models (both theory and empirics) there are interesting questions to be answered
- How much consumer surplus is generated by online auction markets?
 - Useful number for analyzing value of e-commerce
- How should we define ``markets” when allocation is via auctions?
 - Want to evaluate which group of products are close substitutes, can get this from a demand system
 - May be useful for antitrust
How should a seller dispose of a block of products?
- Products compete with each other, but delay costly
- Need a demand system to evaluate trade off
- Practical problem: Hertz and expiring leased car fleet

How much should a seller forecast a new product will sell for?
- Analogous to discrete choice, if can project down to characteristics, can forecast bids on new product
- May be useful for planning in public procurement
APPLICATIONS III

- How should a platform optimally set fees?
 - Two-sided market, fees cause dynamic changes in participation
 - Too costly to experiment

- How should we think about mergers between major suppliers?
 - To the extent that we think search keywords on Yahoo and Microsoft are substitutes, what effects do we think their merger should have?
 - What does "exert market power" even mean in an auctions context?
Currently we lack good models to analyze these auction markets

Theory
- Huge literature on static auction mechanisms
- Little on dynamic marketplaces, sequential auctions
- Sequential auctions of k homogenous goods to n bidders
- Turns out to be static!
- Problem 1: Don’t know how to think about multi-product systems
- Problem 2: Dynamics matter for accurate measurement
CURRENT EMPIRICAL VIEW OF THE DATA
WHAT DATA OFTEN LOOKS LIKE

X

→

Y

→

Z
MOTIVATION

- Structural auctions literature designed for estimation with cross-sectional data
 - Auction observations are IID
 - Different population draw in each auction
 - Identical products, or idiosyncratic differences for all products (only the error term varies)

- Data is generally a panel
 - Observe same bidders participate in multiple auctions
 - Pattern of participation reflects preferences, says something about which goods are substitutues
Digital Camera Auctions on eBay: pattern of participation (first vs second auction they bid on)
WHAT WE DO

1. Develop a stylized model of a large auction market
 - Sequential second price sealed-bid auctions
 - Many persistent buyers, dynamic entry and exit
 - Exogenous supply
 - Multiple products, unit demand (*)
 - Multidimensional private valuations

2. Characterize long-run equilibrium
 - Define equilibrium concept appropriate for large anonymous markets with finite buyer/seller ratio
 - Characterize strategies, show existence
WHAT WE DO

3. Analyze resulting demand system
 - Show demand is non-parametrically identified
 - Provide non-parametric and semi-parametric estimation procedures
 - Show how to estimate when valuations are projected onto characteristics
 - Perform Monte Carlo experiments to show it works well in finite samples

- Paper is deliberately abstract: trying to walk a fine line between worrying about practical estimation issues and theoretical tractability
RELATED LITERATURE

- **Theory**

- **Demand systems for discrete choice**
 - Berry, Levinsohn and Pakes (1995)
RELATED LITERATURE

- **Estimation**
 - Static Auctions: Guerre, Perrigne and Vuong (2000)
 - Dynamics: Pesendorfer and Jofre-Benet (2003)
 - Simultaneous Auctions: Adams (2009)
ROADMAP

1. Model setup
2. Analysis of bidder behavior and equilibrium
3. Identification
4. Estimation
5. Monte Carlo Results
MODEL

- Bidders and Payoffs:
 - Have private valuations X defined over a finite set of J goods, distribution F has continuous density
 - Risk-neutral with unit demand (*), discount future at rate δ

- Market:
 - Operates in discrete time
 - Each period an auction is held. Winning bidder exits certainly; losing bidders exit randomly at rate ρ
 - Losing bidder payoff is normalized to zero
 - New bidders then enter (# of entrant depends on how many already in market), draw valuation from F
 - Last, seller posts a new item to be sold m periods in future
MODEL

- **Auctions**
 - Second-price sealed bid auctions
 - Bidders can either bid, or not participate (*)

- **Bidder Information**
 - Bidders observe an anonymized history of the game for the last k periods
 - Together with the foresight over m upcoming auctions, have a window [t-k, t+m] that is public
 - Also know their private valuation

- **Bidding Strategies**
 - A bid strategy $\beta(I)$ is a map from information set to their decision as to what to bid (or not participate)
 - Assume symmetric strategies
BELIEFS

- Bayes-Nash equilibrium requires bidders form beliefs about the opposing set of types
 - Relevant object is a high dimensional vector of J vectors of valuations
 - Solve a filtration problem given initial prior and observed history
 - Implausibly complicated, so we simplify

- Assumption 1: Bidders condition beliefs on finite “state”, coarser than full history
 - State variable could be the range of transaction prices in last 7 days; # of upcoming auctions in next 7
 - Believe they face a draw from long-run (stationary) distribution of types in that state
EQUILIBRIUM

- Assumption 2: Bidders believe state transitions are exogenous and first-order Markov
 - Bidders do not account for how their bids affect state
 - Reasonable approximation in large market
- Let "coarsening function" T partition information sets into states
- Competitive Markov Equilibrium with respect to T
 - Bidders use symmetric Markovian strategies that depend only on valuation and state
 - Take state transitions as exogenous, and correctly anticipate transition matrix
 - Have correct beliefs about the distribution of opposing types conditional on state
 - Choose strategies that maximize payoffs given these beliefs
CHARACTERIZATION

- Fix an equilibrium. Look at value function:

\[v(x, s) = \max_b G_1(b|s) \left(x_t - E[B^1|B^1 < b] \right) \]

\[+ \delta (1 - G_1(b|s))(1 - \rho) \sum_{s'} v(x, s') Q_{ss'} \]

- Where \(G_1 \) is the distribution of highest opposing bid given state
- \(Q \) is transition matrix across states
CHARACTERIZATION

- Take a first order condition to get optimal strategies

\[\beta(x, s) = x_t - \delta(1 - \rho)E[v(x, s')|s] \]

- Bid valuation less discounted continuation value

- Intuition:
 - Like a second-price auction where winners get object, but losers get their continuation value
 - Turn it into a static SPA by re-normalizing prizes
 - Get “prize” worth object valuation less continuation value if win, nothing if lose
 - Optimal strategy to bid value of prize
THE LONG RUN

- Buried in that expression is the long-run
 - How do bidders evaluate their continuation value?
 - Geometric series, but need to have beliefs about equilibrium distribution of $G_1(b|s)$

- **Lemma 2:** Fix any CME. Given any initial measure on the type space, the market converges at geometric rate to a unique invariant measure
 - Long-run makes some sense: wherever we start, we’ll end up at the same set of types in market
 - Notice that in the end, the informational demands on bidders are not that strong!
EXISTENCE

- **Theorem 1:** For any T, a CME exists. If there is only one product, the equilibrium is unique.

- **Proof Sketch (1-product case):**
 - Restrict to increasing strategies; then any two strategies produce same ergodic distribution
 - So can fix ergodic distribution, and look for optimal strategies
 - Policy iteration works out here
 - So e.g. start with all bidders bidding type: $\beta(x) = x_t$
 - Simulate economy forward, and update everyone’s continuation value $\nu(x, s)$
 - Update according to $\Gamma(\beta) = x - \nu(x, s)$
 - Show Γ a contraction mapping
 - Apply Banach fixed point theorem! done!
DEMAND

- Have equilibrium, return to demand estimation
- Remember: demand is willingness to pay = distribution of valuations
- But which distribution of valuations: the entry distribution F, or the steady-state F^*?
- Show that both are identified from panel data

Data
- Observe a sequence of bids for each bidder
- Observation = [auction, product, bidder, bid]
- Assume econometrician knows how to classify public history into states, so state known as well
- Assume discount rate known or can be calibrated
DEMAND

- Game is to get willingness to pay x from bids b
- Sketch identification with 1 product / 1 state
 - Bidder bids according to:
 \[
 \beta(x) = x - v(x)
 \]
 - Where we have:
 \[
 v(x) = G_1(b) \left(x - E[B^1 | B^1 < b] \right) \\
 + \delta (1 - \rho)(1 - G_1(b)) v(x)
 \]
DEMAND

- Substitute in from bidding function to eliminate x:

$$v(x) = G_1(b) \left(b + v(x) - E[B^1|B^1 < b] \right)$$

$$+ \delta (1 - \rho) (1 - G_1(b)) v(x)$$

- Re-arrange terms:

$$v(x) = \frac{G_1(b) \left(b - E[B^1|B^1 < b] \right)}{(1 - G_1(b)) (1 - \delta (1 - \rho))}$$

- The RHS is identified from data, so have $v(x)$.

- Also gives us x, since we can just add $v(x)$ to bid.
DEMAND

- This identifies stationary distribution F^* pointwise: for each bid, "invert" to get valuation
- This gives us demand
- Result extends to more products and more states: turns out to be a linear system
- Data requirements are stronger though: can only do the inversion on "complete observations"
- Complete observation = a bid in every state by the same bidder
THE SELECTION PROBLEM

- If observations were IID, we could call it a day
- Treat as cross section: take each bidder and get back their valuation gives us F^*
- Treat as panel data: must account for the fact that same bidders may show up multiple times
- If we count each guy only once (on entry), get F
- Correcting for this sort of “selection problem” gets more difficult as we have more products and more states (can’t just restrict to bid on entry)
- Can only use complete bid observations, must re-weight resulting valuations to account for selection
ESTIMATION

- Three cases:
 - Case 1: Few products / states (relative to data)
 - Follow identification argument to nonparametric estimator
 - Case 2: Moderate number of products / states
 - Need complete observations for nonparametric approach to work well; this is a tough data requirement
 - Instead show that for any type, can solve for optimal bidding function based on "first-stage" estimates
 - Given parametric model, can simulate bid distributions and match simulated and observed distributions
ESTIMATION

- Case 3: Large number of products / states
 - Project down to characteristics space
 - Assume linear relationship between characteristics z and valuations x
 \[x_{it} = z_t \alpha_i + \gamma_i \]
 - Type is now a random coefficient on characteristics z
 - Show that in this case, distribution of types is estimable by OLS!
 - Intuition: data is much better than discrete choice
- Show approaches work via Monte Carlo simulations (N = 500 auctions, 2 products)
CONCLUSIONS

- Paper has focused on long-run equilibrium and demand estimation in auction markets
- Theory side: tractable equilibrium concept, intuitive characterization of bidder strategies
- Empirics: identification, relatively simple estimation strategies that work in finite samples
- Plan to extend the model to allow for small suppliers, participation fees charged by platform
- Although stylized, hope this framework will be useful for economists analyzing these markets