Estimating a Model of Strategic Network Choice: The Convenience-Store Industry in Okinawa

discussion by Paul B. Ellickson

¹Simon GSB
University of Rochester

November 19, 2009
Overview

- Understanding how chains (networks) compete is important.
- Modeling/estimating this interaction is very difficult.
 - Firms make high dimensional choices knowing rivals do the same.
 - Even "small-ish" problems (enter/don’t enter in 2000 locations) lead to choice sets with many more elements than atoms in the universe.
- "Full-solution" methods that use exhaustive search are infeasible.
- Two options
 1. Stick with full solution but find a way to narrow the search (Jia, 2008).
 2. Work with inequalities instead (Pakes et al. (2006), Fox (2007)).

1 Full disclosure: I have a paper (Ellickson, Houghton, and Timmins (2007)) that uses this approach.
Nishida follows Jia in using ‘lattice’ structure to narrow search.

- If game is supermodular, it has a greatest and least element.
- Tarski’s theorem \implies upper and lower bounds.
- Then use exhaustive search for fixed point between the bounds.

Restrictions needed to ensure supermodularity

1. Spillovers (net effect of business stealing and density economies) must be positive.
2. Only two firms compete.

For this reason, Jia focused on Wal-Mart/Kmart and only included small markets with at most one outlet per firm (no cities).

- But cities are probably key for many retailers...
- Also introduces selection & endogeneity problems, and limits scope for counterfactuals.
Nishida’s Contribution

- Nishida relaxes assumption 1 to allow for multiple outlets per market
 - This *greatly* expands the applicability of the full solution approach
 - Spillovers *across* markets still positive (smaller issue)
 - He’s working on relaxing 2!
- Nishida also provides a mechanism for incorporating post-entry revenue information
 - Useful for breaking up net density/business stealing effect
 - Provides additional moments to match
 - Might aid in identification
Questions & Suggestions

- Should provide some intuition for why local spillovers don’t need to be signed (right now it’s just equations in the appendix)
- How much is revenue data really helping? (or could it be hurting?)
 - No data on individual revenue (just market aggregates + censoring) so parametric structure must play a big role here
 - Even with store-level revenue data, hard to know what to put in (and leave out) of this reduced form
 - Some discussion of identification would help
- Suggestion: Report merger counterfactual without revenue data
Simultaneous move static games generally exhibit multiplicity

“Solutions”
- Focus on something that’s unique or change the timing
- Impose (or estimate) a selection rule
- Estimate using preference inequalities (may yield sets)

Nishida uses a selection rule (most profitable eqbm for firm 1)

Putting aside estimation, how should we think about performing and reporting counterfactuals in these models?

A particular selection rule is pretty arbitrary, reporting several is probably better, but we know we can’t find them all.

What’s most useful for policy analysis?