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Abstract: In recent years, researchers have developed a number of new methods for predicting 
the price effects of hospital mergers. Though there are several variants, the basic steps are the 
same. First estimate a discrete choice model of hospital choices; then use these estimates to gen-
erate a hospital-level measure of market power (a large part of the innovation was in creating 
new market power measures that have certain attractive properties); and then use the market 
power measure as an independent variable in a hospital price regression. Finally, use the esti-
mated relationship between the market power measure and price to simulate the effects of merg-
ers. In this paper, we seek to test the accuracy of these simulation methods. To do this, we set up 
a simple model of hospital competition which can, for any given values of the parameters of the 
model, generate the “true” effects of a merger between any two hospitals. These “true” effects 
are then compared to the effects predicted by the simulation methods described above. We repeat 
this exercise 32,400 times and, using each of several market power measures, derive results re-
garding the conditions under which the simulation method does or does not generate predicted 
effects that are close to the “truth.” Our preliminary results suggest that the simulation methods 
slightly under-predict merger effects on average, and that this under-prediction becomes more 
pronounced as the diversion between the merging hospitals increases. 

                                                 
* We are grateful to Chris Garmon, Robert McMillan, David Schmidt, and Robert Town; to seminar participants at 
George Washington University, the University of Illinois, the University of Oklahoma, and the 2008 International 
Industrial Organization Conference; and to brown bag participants at the Department of Justice and at the Federal 
Trade Commission for their helpful comments. The views expressed in this paper are those of the authors and do not 
represent the views of the Federal Trade Commission or of any individual Commissioner. 
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I. Introduction 

 In recent years, researchers have developed a number of new methods for predicting the price 

effects of hospital mergers.1 These methods are mostly variations on the same theme. First they 

use patient discharge data to estimate a discrete choice model of hospital choices. Second, they 

use these estimates to construct a measure of each hospital’s market power. (As discussed in de-

tail below, these measures are cleverly designed and have some attractive properties). Third, the 

market power measures are included on the right-hand side of a hospital price regression. Fourth, 

the estimates of the effect of market power on price are used to generate predictions regarding 

the price effects of mergers. The purpose of this paper is to make a contribution to evaluating the 

accuracy of these methods. 

 One obvious way to test these methods would be to gather data on a large number of actual 

hospital mergers, apply the methods to pre-merger data to generate predictions of the merger ef-

fects, use post-merger data to measure the actual effects of each merger, and then compare. The 

problem with such an exercise is its scope: gathering good data on a sufficient number of merg-

ers that such a test would have statistical power would be a very daunting task. This problem is 

made worse by the fact that the best available price data, which is data on actual transaction 

prices, is generally proprietary and unavailable to researchers.2 

 In this paper, we take a different approach. Instead of gathering data on a large number of 

hospital mergers, we randomly generate our own “data” on the attributes of hospitals (geographi-

cal location and hospital fixed effects) and on patient attributes and preferences (location, the 

degree of their distaste for travel, and idiosyncratic preferences for each hospital). We then set up 

                                                 
1 See Town & Vistnes (2001); Capps, Dranove & Satterthwaite (2003); Gaynor & Vogt (2003); Capps & Dranove 
(2004); and Melnick & Keeler (2007). 
2 The alternative, which is used by most academic researchers, is to use publicly available “billed charges” data and 
then to estimate price by multiplying these charges by the publicly available “cost-to-charge” ratios. 
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a Nash bargaining game between each hospital and a monopoly Managed Care Organization 

(MCO). We solve the game for the equilibrium prices of each hospital and for the MCO’s profit-

maximizing premium for its insurance product, given the pre-merger market structure. We then 

change the market structure by merging two of the hospitals and re-solve the game for the new 

equilibrium prices. The difference between the two sets of prices represents what we call the 

“true” merger effect. 

We then take the “data” that would be available to a hypothetical econometrician trying to 

prospectively predict the effect of a hospital merger (pre-merger prices and patient flows) and 

apply each of the merger simulation methods. This generates predicted merger effects, which can 

then be compared to the “true” effects. The closer the match, the more accurate the methods can 

be said to be. 

The remainder of the paper is organized as follows. Section II describes the simulation meth-

odologies that have been proposed by other researchers, and that this paper’s primary purpose is 

to test. Section III lays out the bargaining model that we use to generate the “true” merger ef-

fects. Section IV contains the numerical exercise in which both the “true” and the predicted 

merger effects are calculated for each of 32,400 simulated mergers and are compared to see how 

close they are to each other. Section V discussed future extensions of the model. Section VI con-

cludes. 

 

II. The Simulation Methodologies: 

 Traditional price-concentration studies involved delineating geographic markets, calculating 

concentration in each market using the Herfindahl-Hirschman Index (HHI), and then regressing 

average price in a market on the market’s HHI. This is problematic, both because of the familiar 
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problems with the whole idea of market definition,3 and because the relationship between aver-

age concentration in a market and average price may be a poor approximation of the relationship 

of interest, which is the relationship between the market power of a given hospital and its price. 

 The market power measures developed in the more recent literature avoid these problems. 

They are designed so that the unit of analysis is a hospital rather than a market. That is, the 

analysis involves regressing hospital prices on a hospital-level measure of market power. The 

measures also have the attractive property that no a priori market definition is necessary: the 

scope of geographic competition is determined by the data themselves.4 Finally, the measures are 

able to capture the differences in the degree to which different hospitals compete with each other, 

which is important because it means that the amount by which the measures will change as a re-

sult of a (simulated) merger will depend on the degree of pre-merger substitutability between the 

merging hospitals. 

 We consider two market power measures. The first is Willingness-to-Pay (WTP), and the sec-

ond is Hospital-Specific HHI. In the remainder of this section we discuss these measures and the 

simulation methods that incorporate them. 

 

A. Willingness-to-Pay (WTP). 

The first market power measure we consider is “Willingness-to-Pay” (WTP). Although Capps, 

Dranove, & Satterthwaite (2003) were the first to use that term, the measure developed by Town 

                                                 
3 Economists have generally preferred to avoid geographic market exercises when alternatives are available, as these 
exercises have the unappealing feature that all firms that are found to be “in” the market are treated as equally com-
petitively significant (not allowing for differences in substitution patterns across different products), and firms that 
are found to be “out” of the market are treated as if they do not exist. 
4 The new market power measures are designed so that any disagreement about which geographic areas or other 
hospitals serve to constrain the market power of a particular hospital of interest can be resolved directly by simply 
including the relevant data in the calculation of that hospital’s market power measure. The disputed hospital or geo-
graphic area is competitively significant to the hospital of interest if and only if its inclusion causes the measure to 
change to a meaningful extent. 
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and Vistnes (2001) is very similar, and the differences that do exist are irrelevant for our study. 

In the remainder of this section, we will use the Capps, Dranove, & Satterthwaite (CDS) formu-

lation of the market power measure. (We briefly discuss the Town & Vogt (TV) measure, and 

why for our purposes the two measures do not meaningfully differ, in the appendix). Though the 

two measures are the same for our purposes, there is an important difference in how the two sets 

of researchers actually perform their simulations. This difference is discussed below, and we will 

include both the CDS and the TV approaches in our analysis.  

WTP is a way of capturing the value-added of a hospital or hospital system to the provider 

network of a Managed Care Organization (MCO). To see how it does this, begin by considering 

a standard discrete choice problem in which consumer i’s preferences over each hospital j in a 

choice set G are given by: 

(1) ,ij ij ijU V j G     

where Vij is a linear-in-parameters index of hospital characteristics and interactions of hospital 

and consumer characteristics, and εij is an independently and identically distributed Extreme 

Value error term. Consumer i’s actual hospital choice will depend on the realization of the εij 

terms. But it is also possible to calculate how much consumer i values having access to all the 

hospitals in G before the realization of the εij terms. This will be the expected value of the maxi-

mum utility: each hospital has some probability of providing more utility than any other (and so 

of being chosen), and each has an expected utility conditional on being chosen, and from this it is 

possible to calculate the utility that consumer i expects to receive from whichever hospital turns 

out to provide the highest utility. Because the εij terms are distributed extreme value, there is a 

simple and familiar expression for the expected value of the maximum: 
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(2) [ { }] ln ijV

j G ij ij
j G

E MAX V e  


     

where γ ≡ E[εij], which is known as Euler’s constant (approximately 0.5772) and is the mean of 

the unconditional Extreme Value distribution. 

 The expected value of the maximum in (2) can be calculated for any choice set. So a measure 

of the value that consumer i places on a particular hospital k would be the difference between the 

expected value of the maximum for choice sets G and G\k. This turns out to have the following 

neat closed-form solution: 

 (3) 
\

\

1
ln ln ln ln

1

ij

ij ij

ij

V

V V j G
ik V

j G j G k ik
j G k

e

WTP e e
probe

  

 


 
      

                  
 


  

 

where 

(4) Pr[ , ]
ik

ij

V
G
ik ik ij V

j

e
prob U U j k

e
    


 

The WTP of consumer i for hospital k is a straightforward function of probik, which comes di-

rectly out of the choice model in (1) above. The total WTP for Hospital k (WTPk) is: 

 (5) 
1

ln
1k ik

i i ik

WTP WTP
prob

 
    
   

The expression in (5) is what CDS put on the right-hand side of their price regressions. They hy-

pothesize that WTPk should be positively related to prices, ceteris paribus. 

         As described above, WTPk is a hospital-level measure since it is determined solely by the 

valuation of the choice set that excluded only Hospital k. As such, it is unaffected by the industry 

market structure, and so cannot be the basis for simulating a merger. However, WTP can also be 

defined at the level of a hospital system s as follows: 
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(6) 
1 1

ln ln
1 1s

i iis is
j s

WTP
prob prob



 
         

 

 
 

 While for our purposes there is no meaningful difference between TV and CDS in the con-

struction of their market power measures, there is an important difference in how they generate 

predicted merger effects. To see this, consider a merger between hospitals k and l. In TV, the ef-

fect of the merger on the market power of Hospital k is equivalent to: 

(7) 
11 1

ln ln ln
1 1 1

ik

i i iik il ik ik il

prob

prob prob prob prob prob

     
               

    

In TV, the change in the market power of Hospital k as a result of the merger with Hospital l is 

the simple change in the relevant right-hand side variable. The change for Hospital l is calculated 

similarly, and the change will not be the same for both hospitals. In general, the increase in bar-

gaining power is inversely related to relative pre-merger bargaining power. This is true because 

the bargaining power measure is constant across all members of the post-merger system. Hence, 

the change in bargaining power due to a merger will be larger for the hospital (or system) with 

the lower level of pre-merger bargaining power. 

    In contrast, CDS derive their simulating merger effects by taking the difference between the 

WTP of the merged system and the sum the pre-merger WTP. Hence: 

(8) 1 1 1
ln ln ln

1 1 1

(1 )(1 )
ln

1

k l kl k l

i i iik il ik il

ik il

i ik il

WTP WTP WTP WTP WTP

prob prob prob prob

prob prob

prob prob

     

     
               

  
    

  



 

In CDS, the change in the market power variable is defined at the post-merger system level and 

there appears to be no well-defined way to back out different price effects for k and l. However, 
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the CDS definition has the intuitive property that the change in bargaining power is close to zero 

if consumers do not view k and l as substitutes, i.e., probik < d or probil < d from some positive d 

arbitrarily close to zero for all i. The TV definition does not have this intuitive property. 

     In this study, we consider both approaches. That is, we regress prices on the CDS measure 

WTP and evaluate the predicted price changes based on the TV approach in (7) and on the CDS 

approach in (8). In the CDS approach, we simply assume that the predicted price increase will be 

the same for both k and l. 

 Two final notes on both the TV and CDS approaches should be made. First, both have the un-

attractive property that the bargaining power measures do not change for non-merging hospitals. 

Hence, the models predict no price effect for these hospitals even if they are close competitors of 

the merging firms. Second, in their frameworks, the bargaining power of a hospital system is 

based on its threat to exclude the entire system. Hence, “all-or-nothing bargaining” while not ex-

plicitly considered in TV or CDS, is nonetheless built into the derivation of both market power 

measures. As our model will show below, however, mergers can have price effects even if the 

merged entities continue to bargain separately. In that case, the TV and CDS measures can still 

be used as measures of market power, as they are still based on the choice model in (1), but they 

cannot be interpreted exactly the way that TV and CDS describe them.  

 The WTP measure has the desirable property that hospitals and hospital systems have higher 

WTP if they face fewer competitors, or if they have some attribute that makes them more desir-

able.5 It also has the unfortunate property that a hospital system will have higher WTP just by 

virtue of “pure” size. For example, a large hospital system comprised of non-competing hospitals 

will have a very high WTP. This is problematic because there is little reason to think that a hospi-
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tal system that is large by virtue of a pure size effect will command a particularly high price.6 

This represents a problem for the estimation: a large hospital system with a very high WTP but a 

not-particularly-high price will cause the regression of price on WTP to have a poor fit. This is 

not much of an issue in the current version of the paper, but will likely become an issue in future 

revisions that will allow for large pre-merger systems.  

 An alternative specification of willingness-to-pay that addresses this problem is to define a 

“per-person” WTP (denoted by WTP_PP) which is equal to: 

(9) _ s
s

is
i

WTP
WTP PP

prob



 

That is, the WTP_PP is simply the WTP divided by the predicted total consumers who choose 

system s. This has the effect of assigning willingness to pay on the basis of consumer valuation 

of the hospital’s characteristics, rather than by the sheer size of the system. 

 Having calculated the WTP, the next step is to estimate the price-concentration equation. The 

simplest version of this equation is: 

(10) 0 1j j jprice WTP      

 

B. Hospital-Specific HHI. 

An alternative measure of concentration is known as Hospital-Specific HHI, and is used by 

Capps & Dranove (2004) and Melnick & Keeler (2007). As with the WTP measures, the first 

step is to estimate a choice model like (1) and then derive, for each consumer, the probability of 

                                                                                                                                                             
5 This means that it is possible for small independent hospitals to have higher WTP, and so to command higher 
prices, than do larger hospitals if they face few competitors or have some attractive attribute such as a desirable lo-
cation. 
6 The mechanism by which pure size can influence price is if one party to the negotiation has a payoff function that 
is more concave than the other. It seems intuitive that the magnitude of this effect should be small, and there is em-
pirical evidence of this in Sorensen (2003). 
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choosing each hospital. With this in hand, it is possible to regard each consumer as a “market” 

with “shares” that correspond to the choice probabilities.7 It is then possible to calculate an HHI 

for each consumer using the familiar formula: 

(11) 2
i ij

j

HHHI prob  

We refer to the measure in (11) as HHHIi because it is calculated using “hospital probabilities,” 

meaning that it ignores any joint ownership of hospitals. Below this will be contrasted with 

SHHIi which is calculated using “system probabilities.” 

Having calculated the HHHIi for each consumer i, the next step is to calculate a Hospital-

Specific HHIj for each hospital. This is done by calculating a weighted sum of the HHHIi, where 

the weights are defined as follows: the weight given to consumer i in calculating the Hospital-

Specific HHIj for hospital j is the total contribution of consumer i to hospital j’s total expected 

patients. That is: 

(12) ij
j i

i ij
i

prob
Hospital Specific HHI HHHI

prob


 

The intuitive interpretation of a Hospital-Specific HHIj is that a hospital for which a large pro-

portion of its patients are drawn from consumers with high HHHIi can be thought of as operating 

in a generally concentrated environment, and vice-versa. 

The definition described above is applicable if all hospitals are independent, and must be 

modified if some hospitals are part of multi-hospital systems. That is, a “System-Specific” HHIj 

must be calculated instead. This can be calculated in one of two ways. Both begin in a manner 

                                                 
7 An alternative to treating each patient as a “market” is to divide the patient population into discrete “bins” (for ex-
ample a bin could be a zip-code/diagnostic code combination), and then to apply (11) and (12) to these bins. This is 
the actual approach taken by Capps & Dranove (2004) and by Melnick & Keeler (2007).  



 10

similar to (11), but these use the system shares probis and are denoted SHHIi instead of HHHIi. 

That is: 

(13) 2
i is

s

SHHI prob  

 Like the Hospital-Specific HHIj, the System-Specific HHIj are calculated by taking a 

weighted average of the individual SHHIj. The weights can either be the system weights or the 

individual hospital weights. If hospital weights are used, then the System-Specific HHIs for hos-

pital system s is calculated as: 

(14) ij
s i

i ij
i

prob
System Specific HHI SHHI

prob


 

If system weights are used, then the System-Specific HHIs are calculated as: 

(15) is
s i

i is
i

prob
System Specific HHI SHHI

prob


 

If system weights are used, then the System-Specific HHIs will be the same for all of the hospi-

tals in a system, whereas this is not the case if the hospital weights are used. 

 Having calculated the System-Specific HHI, the next step is to estimate the price-

concentration equation. The simplest version of this equation is: 

(16) 0 1j j jprice System Specific HHI      

One advantage of the System-Specific HHI approach is that, unlike in the case of WTP above, a 

merger affects the predicted prices of the non-merging hospitals. 
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III. The Bargaining Model: 

A. Setup. 

 There is a set of hospitals G with a cardinality of g. A monopoly managed care organization 

(MCO) enters into separate and simultaneous bargaining with each hospital in G. A deal between 

the MCO and a hospital, if a deal is reached, consists of a linear per-patient price. With its net-

work and its negotiated prices in place, the MCO sets the profit-maximizing premium for its in-

surance product. Given this premium, consumers choose whether to purchase insurance from the 

MCO. Consumers who purchase insurance become sick with some probability, and seek care at 

their most preferred hospital in the MCO’s network (people with no insurance do not use any 

hospital). For convenience, we set this probability equal to one, in order to abstract from the is-

sue of risk-aversion. The MCO, as we model it, is an assembler of a network and not an insurer. 

The out-of-pocket costs faced by consumers are the same for all hospitals in the network, regard-

less of the price negotiated with each hospital by the MCO. In other words, the MCO cannot 

“steer” consumers by giving them incentives to use hospitals with which the MCO has a lower 

contracted price. 

 

B. Insurance Premiums. 

 The valuation of patient i for the MCO’s insurance product is determined as follows. Follow-

ing TV and CDS, we assume that consumers do not know the realization of their idiosyncratic 

preference shocks εij when they are deciding whether to buy insurance. Rather, they know the 

distribution of those shocks, and their valuation for insurance is equal to the expected value of 

the maximum of the utilities from using each hospital, which is equal to ln ijV

j

e   . Consumer i 

also has an idiosyncratic valuation for having insurance coverage ζi, which is also assumed to be 
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distributed Type 1 Extreme Value and is assumed to be unknown to both the MCO and the hos-

pitals. This valuation is still in utils, and must be converted to dollars, which we do as follows: 

(17) 1 2 ln ijV

i i
j

Valuation e      

 The MCO calculates the g+1 optimal premiums for a candidate vector of hospital prices price, 

taking expectations over the distribution of both idiosyncratic components, ζi and εij. This seems 

to be a reasonable approach in that the MCO will not know exactly who will buy insurance and 

who will go to which hospital when bargaining with hospitals. In addition, the idiosyncratic 

component ζi also ensures that the MCO’s objective function is differentiable in the premiums in 

that it avoids the use of step functions. This simplifies solving the MCO’s optimization problem 

significantly without sacrificing any basic intuition. 

The MCO’s optimal premium will depend on the probabilities of patient insurance take-up 

and hospital choices of the marginal patient. Specifically, the MCO solves the maximization 

problem: 

(18) 

1

1 2max 1 exp ln ij

G

VG G G
j ij

prem i j j

prem price prob prem e 
                         

    

The interpretation of (18) is as follows. For a candidate premium premG, the first term in the pa-

rentheses represents the expected margin that the MCO will receive for patient i. This margin 

will only be realized conditional on patient i actually purchasing insurance (i.e., having a valua-

tion greater than the premium). Since the MCO does not know the idiosyncratic component ζi, 

the MCO takes expectation over its distribution and multiplies the expected margin by the prob-

ability of insurance take-up (the term in the second parentheses). The expected number of pa-

tients who use hospital j is equal to: 
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(19) 

1

1 21 exp ln ijVG G G
j ij

i k G

n prob prem e 




       
  

   

Similarly, for a given hospital k, the MCO finds the premium that maximizes its profit if hospital 

k is excluded by solving: 

(20) 
\

1

\ \ \
1 2

\

max 1 exp ln ij

G k

VG k G k G k
j ij

prem i j j G k

prem price prob prem e 




                         
         

where \G k
ijprob denotes the probability that patient i would choose hospital j given that hospital k 

was not available. Note that in this case, the marginal valuations are taken over the choice that 

excludes hospital k: 

(21) \
1 2

\

ln ijVG k
i j

j G k

Valuation e  


    

The expected number of patient admitted to hospital j under the exclusion of hospital k is: 

(22) 

1

\ \ \
1 2

\

1 exp ln ilVG k G k G k
j ij

i l G k

n prob prem e 




       
  

   

 

C. Bargaining. 

Prices are set by G separate Nash bargains: each of the g hospitals in G has a separate negotia-

tion with a representative of the MCO. Negotiation proceeds under the standard Nash assump-

tions that: (i) all negotiations happen simultaneously; (ii) no party to any negotiation observes or 

is in any way affected by what happens in any of the other negotiations; (iii) both parties to each 

negotiation believe that all the other negotiations will be successful (i.e., that all other hospitals 

will be included in the MCO’s network); and (iv) both parties to each negotiation have beliefs 

(which turn out to be correct in equilibrium) about the prices agreed to in the other negotiations. 

The bargaining equation between the MCO and an independent hospital k is as follows: 
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(23) 

1

\ \

\

max ( ( ) 0) ( ) ( )
k

G G G G k G k
k k j j j j

price
j G j G k

n price c n prem price n prem price







 

  
      
   

   

 As is standard in Nash bargaining, the equilibrium negotiated price for hospital k (pricek) is 

the product of the increase in hospital k’s payoff if a deal is reached times the increase in the 

MCO’s payoff if a deal is reached.8 The payoff to hospital k if it reaches a deal with the MCO 

is ( )G
k kn price c , where G represents the complete set of hospitals or the “network of the whole,” 

and G
kn is the expected number of consumers who buy insurance and choose hospital k when the 

network offered by the MCO is the network of the whole, and pricek is the price that hospital k 

negotiates with the MCO. The payoff to hospital k if it fails to reach a deal with the MCO is zero. 

The parameter α denotes the division of joint surplus between the hospital and MCO. For exam-

ple, it could capture the relative skill of the negotiators involved in the bargaining.  

 The payoff to the MCO if it reaches a deal with hospital k is as follows. Since, by assumption, 

both parties to the negotiation believe that all the other hospitals will be in the MCO’s network, 

the premium if a deal is reached between the MCO and hospital k will be Gprem , which is the 

premium that maximizes the MCO’s profits given that its network is the network of the whole. 

For each hospital jœG in the network of the whole, there are G
jn consumers who buy insurance 

and choose hospital j, and each of these consumers will generate a profit for the MCO of Gprem  

minus hospital j’s price pricej. Similarly, the payoff to the MCO if it fails to reach a deal with 

hospital k is as follows. G\k represents the set of all hospitals except k. For each hospital jœG\k in 

the network, there are \G k
jn consumers who buy insurance and choose hospital j. For each of these 

                                                 
8 An equivalent way to describe the solution to a Nash Bargaining game is to identify the total joint surplus accruing 
to the parties if a deal is reached, and then splitting that deal-specific joint surplus between the two parties according 
to the bargaining power of each side (i.e., the hospital would get a share α and the MCO would get a share 1-α). 
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consumers, the MCO receives a margin equal to \G kprem (which will be lower than Gprem ) mi-

nus the negotiated price pricej. 

 

D. Equilibrium. 

From the above discussion, we see that the equilibrium Nash bargain price for hospital k is a 

function of all the other g-1 prices, both directly and via the premiums Gprem and \G kprem , and 

of consumer choice, given those premiums, of whether to buy insurance and of which hospital to 

use conditional on buying insurance. Solving the system is complicated by the fact that the g+1 

profit-maximizing premiums Gprem and \G jprem each depend not only on the price vector, but 

also on G
jn and \G j

jn for each set of candidate premiums. The profit-maximizing premium, in turn, 

depends not only on the individual hospital prices, but also on the hospital choice of the marginal 

consumer. To see this, suppose that the MCO, given a vector of hospital prices, is trying to de-

cide whether it is profitable to cut the premium by enough to attract one more consumer to buy 

insurance. Whether or not doing so is profitable will depend on which hospital that marginal 

consumer would choose if he/she bought insurance, which in turn depends on the negotiated 

price with that hospital. 

A proposed vector price is an equilibrium if the following is true: (i) the set of g+1 premiums 

Gprem and /G jprem are each profit-maximizing for the MCO given price; (ii) price is a solution 

to the system of Nash bargaining equations given those g+1 premiums and given consumer be-

havior (i.e., given the choices that consumers make about whether to buy insurance given the 

premiums and which hospital to use conditional on buying insurance). 

                                                                                                                                                             
The joint surplus from reaching a deal is equal to: (hospital’s payoff if a deal is reached - hospital’s payoff if no 
deal is reached) + (MCO’s payoff if a deal is reached - MCO’s payoff if no deal is reached). 
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D. Mergers. 

Now suppose that formerly independent hospital k merges with formerly independent hospital 

l into a joint hospital system. The Nash bargaining equations of the remaining g-2 hospitals will 

remain unchanged. The bargaining equations for the merged hospitals will depend on whether 

the merged hospitals continue to bargain independently or they bargain on an “all or nothing” 

basis.9 We consider each of these possibilities in turn. 

 

i. The Merged Hospitals Continue to Negotiate Independently. 

We first consider the case where the merged hospitals continue to negotiate independently. 

That is, in this sub-section we assume that negotiators for hospitals k and l continue to engage in 

separate negotiations with the MCO, but that in their negotiations they each internalize the fact 

that they have a profit stake in the other. An intuitive way to interpret the post-merger payoff to 

hospitals k and l is to imagine that the pre-merger owner of each hospital remains in charge of 

negotiating that hospital’s price, but now gets half of the merged entity’s profits.10 If a deal is 

reached with hospital k, then the payoff is half of the profits of a two-hospital network. The bar-

gaining equations for this case are as follows.  

(24a)
1

\
\ \

\

( ) ( ) ( )
max ( ) ( )

2 2k

G G G k
G G G k G kk k l l l l
j j j j

price
j G j G k

n price c n price c n price c
n prem price n prem price

 

 

            
     

   

(24b) 
1

\
\ \

\

( ) ( ) ( )
max ( ) ( )

2 2l

G G G l
G G G l G ll l k k k k
j j j j

price
j G j G l

n price c n price c n price c
n prem price n prem price

 

 

            
     

   

                                                 
9 The decision of which form the negotiations should take may itself be reflective of the relative bargaining power of 
the two sides. We ignore the means by which the form of bargaining was chosen and simply lay out the implications 
of each of the two possibilities. 
10 An alternative, equivalent assumption is that the merged entity assigns a negotiator to each negotiation, and then 
provides those negotiators with incentives such that they act as if they get half of the profits of the merged entity.  
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Note that the terms in the right-hand sets of parentheses are the same as in (23) above. What 

changes after the merger is the payoff to each hospital if no deal is reached. In the pre-merger 

situation, the payoff to hospital k if no deal was reached was zero. In the post-merger situation, 

the payoff is half of the profits hospital l. To see the effect of the merger on the equilibrium 

price, we begin by considering the case where there was no pre-merger competition between k 

and l. That is, we consider the case where nobody who would choose l if k was not in the net-

work would choose k if it were in the network, and vice-versa (i.e., \G G k
l ln n and \G G l

k kn n ). In 

this case, the terms in the left-hand set of parentheses in each bargaining equation will be the 

same as in (23) and the merger will have no effect.11 

If there is pre-merger competition between k and l, then the merger will have an effect. The 

reason is that if \G G k
l ln n and/or \G G l

k kn n , then each hospital’s negotiator internalizes the fact that 

if they fail to reach a deal, some of the patients that will be lost as a result will use the other 

merged hospital instead, and so some of those lost profits will be recaptured. This causes each 

side to bargain more aggressively, and to get a higher equilibrium price. The magnitude of the 

merger effect is determined by the magnitude of this diversion. This, of course, is a variation on 

the standard intuition in which diversion is the source of price increases resulting from mergers 

between substitutes. 

As discussed above, the derivation of the WTP measures depends on the assumption that fol-

lowing the merger the negotiations will proceed on an “all or nothing” basis. This may call into 

question the appropriateness of using WTP as a measure of market power for analyses in which 

the merging firms continue to negotiate separately even post-merger. Nevertheless, we do in-

clude WTP in our independent-bargaining analyses. We do this because WTP, regardless of how 

                                                 
11 The term will be multiplied by a constant of ½, but this will have no effect on the bargaining outcome. 
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it is derived, can also be thought of simply as a measure of market power (since it is based on 

choice probabilities), and as such can be tested for how well it predicts merger effects.  

  

ii. The Merged Hospitals Negotiate on an “All or Nothing” Basis. 

 The merged entity might instead merge their negotiations and offer their hospitals on an all-

or-nothing basis. In this case, the post-merger bargaining equation for the MCO and the merged 

entity will be: 

(25)  
1

\ \

,
\

max ( ) ( ) 0 ( ) ( )
k l

G G G G G kl G kl
k k l l j j j j

price price
j G j G kl

n price c n price c n prem price n prem price






 

  
        
   

   

Under all-or-nothing bargaining, the MCO and the merged entity are bargaining over two prices 

(pricek and pricel), but there is only one bargaining equation because both parties care only about 

the total payment from the MCO to the merged entity if a deal is reached. There are infinitely 

many combinations of pricek and pricel to reach any given total payment. 

 The difference between (25) and (23) above is that in (25), both the merged entity and the 

MCO are bargaining over two hospitals instead of one. This means that if the negotiations fail, 

the merged entity will lose two hospital contracts instead of one, and the MCO will suffer a two-

hospital hole in its network instead of a one-hospital hole. This doubling of the stakes will not 

necessarily result in a price increase: if the payoff functions of both the hospitals and the MCO 

are linear, then the doubling of what the hospitals stand to lose will be exactly offset by the dou-

bling of what the MCO stands to lose, and there will be no price effect. However, if the two 

merged hospitals are substitutes for each other, then the MCO’s payoff function will be concave 

and not linear: the loss to the MCO from losing two hospitals will be more than twice as large as 

the loss from losing one hospital, and this effect will be greater the substitutability between the 
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two hospitals, and the less substitutable are the other hospitals.12 As shown by Chipty & Snyder 

(1999), a negotiator with a concave payoff function is made worse when its opponent is larger.13 

The simulations currently included in the paper do not yet include any all-or-nothing bargaining 

cases. These will be added in the next revision. 

 

IV. Numerical Analysis and Merger Simulation: 

A. Generating the Data. 

The first step in the numerical analysis is to generate our “data.” In each simulation, we gen-

erate data on ten hospitals. For each hospital j, we take three random draws on U[0,1] and call 

them rjF, rjX, and rjY. We draw a fixed effect ηj for each hospital j, which is the 100rjF percentile 

of N(0,1.2). We also choose two locations for each hospital. For the first location, the x-

coordinate of hospital j’s location is the 100rjX percentile, and the y-coordinate is the 100rjY per-

centile, of U[-6,6]. For the second location, the x-coordinate of hospital j’s location is the 100rjX 

percentile, and the y-coordinate is the 100rjY percentile, of N(0,16). That is, we draw one set of 

hospital locations from a distribution in which hospitals are equally likely to be located in any 

location in the support, and another set from a distribution in which hospitals are more likely to 

be located closer to the center.  

                                                 
12 The reason is that the reduction in consumer valuation of the MCO’s insurance product if one hospital is excluded 
is mitigated by the fact that the other, competing hospital is included and is a close substitute for at least some con-
sumers. Post-merger if both hospitals are excluded from the network, then consumers who regard the two merging 
hospitals as roughly equally satisfactory, but who regard the other hospitals as much less satisfactory, will have a 
larger reduction in their valuation of insurance, and so the MCO will have a larger reduction in its payoff. 
13 There are other factors that could cause the payoff functions of the hospitals or of the MCO to be concave rather 
than linear, such as risk aversion. To the extent that this is true, the merger may result in a price increase or a price 
decrease for reasons that have nothing to do with competition, but simply are a result of the fact that the stakes of the 
negotiation have increased. However, Sorensen (2003) shows that this effect is modest: hospitals can command 
slightly higher prices simply by virtue of being larger, but this benefit is much smaller than the benefit from facing 
less competition. 
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In each simulation, we generate data on 100,000 patients. For each patient i, we take two ran-

dom draws on U[0,1] and call them μiX, and μiY. We choose two locations for each patient. For 

the first location, the x-coordinate of patient i’s location is the 100μiX percentile, and the y-

coordinate is the 100μiY percentile, of U[-10,10]. For the second location, the x-coordinate of pa-

tient i’s location is the 100μiX percentile, and the y-coordinate is the 100μiY percentile, of N(0,36). 

Note that the parameters of both the uniform and the normal distributions were chosen so that 

hospitals are more likely to have relatively central locations compared to the patient population.14 

The distributions of these hospital and patient characteristics are summarized in table 1 below. 

 

Table 1: Distributions of Simulated Hospital and Patient Characteristics 
 

Characteristics Distribution 
Hospital Location U[-6,6] x U[-6,6], 

N(0,16) x N(0,16) 
Hospital Fixed Effect N(0,1.2) 

Patient Location U[-10,10] x U[-10,10], 
N(0,36) x N(0,36) 

      
 
 

We define consumer preferences as: 

(26) 2
1 2ij ij ij j ijU dist dist         

where distij denotes the distance from consumer i to hospital j, ηj denotes a hospital-specific fixed 

effect which captures hospital quality, and εij denotes the idiosyncratic component and is as-

sumed to be distributed Type 1 Extreme Value. We use three sets of values for (γ1, γ2) to reflect 

low, medium, and high travel costs. The values we choose are (0.3, 0.003), (0.5, 0.005), and (0.7, 

0.007). 

                                                 
14 We allowed the location of the hospitals to be determined randomly, rather than as the result of profit-maximizing 
location, quality investment, and entry/exit decisions. This is partly for simplicity, but it is the case that many hospi-
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We calibrate the model parameters as follows. We set the bargaining power α of each hospital 

to ½.15 The parameters λ1, λ2, c, the travel cost parameters, and the parameters of the location dis-

tributions and hospital fixed-effect distribution are chosen based on the follow criteria. 

1) Generate pseudo-R2 values that we typically observed in real-world data (0.40 – 0.60). 

     2) The variation in the component of hospital valuation that varies across consumers (loca-

tions) explains about twice as much of the observed hospital choices (conditional on insurance 

take-up) as the variation in hospital valuation that does not vary across consumers (the hospital 

fixed-effect). This is the rough proportion that we have observed in real-world data. 

3) Generate reasonable insurance take-up rates (0.85 - 0.95). 

     4) Generate reasonable hospital price-cost margins (0.12 - 0.17). 

 

To generate data with the above characteristics, in addition to the aforementioned location and 

fixed-effect distributions and travel cost parameters, we choose the following parameter values: 

λ1 = 22, λ2 = 0.4, and c = 4. 

 

B. Numerical Solution of the Model. 

The next step is to solve the model using these generated data. The search algorithm used to 

solve for the equilibrium vector price* employs a straightforward Newton-based approach. The 

only complication in this application is that for a candidate vector price, a series of searches must 

be carried out to find a set of optimal premiums for the MCO. The solution algorithm proceeds 

as follows: 

                                                                                                                                                             
tals were built many years ago, and so their original locations might no longer be optimal. Moreover, in many states 
entry decisions are complicated by the existence of “certificate of public need” regulations. 
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1) Choose a starting price vector price0. 

2) Given price0, solve the optimal g+1 MCO premiums. Since this is a single variable prob-

lem, we use a straightforward bisection method. 

3) Given the premiums from step (2), evaluate the derivatives of the vector of Nash bargain-

ing problems with respect to own-prices. Update guesses of the price vector using a New-

ton-Raphson method. Convergence occurs when the Euclidean norms of the vector of de-

rivatives and the price update are within a tolerance of zero. Here, we use 10-12.  

4) Repeat (2) and (3) to convergence. Convergence occurs when, for a given price vector 

price* and a given premium vector ( Gprem , \1Gprem ,…, \G Jprem ), the Nash bargaining 

problems in step (3) and the MCO optimization problems in step (2) are simultaneously 

solved. 

 

 Note that we do not re-solve for the optimal premiums for each updated guess of the price 

vector. We re-solve for the optimal premiums only after the derivatives are solved for prices 

given a set of premiums. This saves a great deal of computation time. A reasonable and natural 

alternative would be to simply code the derivatives of the optimal premiums with respect to price 

and incorporate that into the Newton search. While we may ultimately use this approach, our 

current approach avoids more the complicated coding associated with this alternative and the bi-

section method approach to solving the MCO’s problem is very inexpensive and reliable. 

As noted above, the inclusion of ζi in the consumer’s insurance valuation ensures that the 

MCO’s objective function is differentiable in its premiums. By extension, this ensures that the 

Nash bargaining problems are differentiable in prices. At this time, we do not have a formal 

                                                                                                                                                             
15 We also ran the same set of simulations for α = .6 and for α = .4. As expected, merger effects are larger when hos-
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proof that the Nash bargaining problems are globally concave in prices, or more generally, that 

the joint bargaining problem is convex. However, we have tested for convexity using 2000 ran-

domly chosen starting values for the price vector. In this test, the minimums and maximums at 

the solution for each hospital’s price deviated by no more than 10-8. Hence, at the present time, 

we are reasonably sure that the joint Nash bargaining problem has a unique solution.  

 It is important to note the solving the model does not require that the uncertainty represented 

by ζi and εij be resolved. This is true both before the merger and after, which means that measur-

ing the “true” merger effect does not depend on the uncertainty being resolved. As will be made 

clear below, the same is not true for the simulated merger effect.  

 

C. Merger Simulations. 

The “true” effect of a merger can be simulated by re-solving the model after changing the 

bargaining according to (24a) and (24b) above. We do 120 merger simulations. As discussed 

above, each simulation contains six configurations: two sets of hospital/patient locations (one 

from the uniform distributions and one from the normal distributions), times three sets of travel 

cost coefficients. Each simulation includes every possible merger (Hospital 1 merging with Hos-

pital 2, Hospital 1 merging with Hospital 3, etc.). Since there are ten hospitals, the total number 

of possible mergers is 45. For each merger, there are two price effects, one for each of the merg-

ing firms.16 So altogether, we simulate 120 x 2 x 3 x 45 = 32,400 mergers. Since each merger 

involves two firms, this gives us a total of 64,800 separate sets of prices (with each set contain-

ing a pre-merger price, a simulated post-merger price, and a “true” post-merger price).  

                                                                                                                                                             
pitals have more bargaining power. Furthermore, the tendency of the simulation methodologies to under-predict the 
true merger effects is greater the larger is α. 
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D. Estimating the Price-Market Power Relationships. 

Given the solution to the Nash bargaining problems in the pre-merger world, price* , the next 

step is to estimate the relationships between these “true” prices (which correspond to the pre-

merger prices than a merger analyst would observe) and the market power variables according to 

(10) and (16) above. Since the market power measures are based on actual patient choices, this 

requires that the uncertainty represented by ζi and εij be resolved. To do this, we randomly draw 

values of ζi and εij from the Type 1 Extreme Value distribution.17 This allows us to determine the 

set of consumers who would buy insurance from the MCO given the optimal premium that 

emerges from the solution of the Nash bargaining problem, and which patients will choose which 

hospitals. We then estimate the conditional logit model, construct the competition measures, and 

run the price regressions using only the consumers who buy insurance. In this way, we replicate 

discharge data that a researcher would use in this type of analysis in that real-world discharge 

data are drawn after the consumers’ insurance decisions have already been made. 

 

E. Simulation Results. 

 The results are summarized in Figures 1-4. The x-axis in the figures represents the “diversion” 

between each hospital and its merger partner. That is, it represents the fraction of those insured 

patients whose first choice would have been Hospital k (if Hospital k had been in the MCO’s net-

work), who would choose its merger partner Hospital l if Hospital k were omitted.18 The y-axis 

                                                                                                                                                             
16 The WTP measures (unrealistically) constrain rival effects to be zero. The Hospital-Specific HHI measure allows 
for rival effects to be positive, but there is no economical way to present these given our large number of simula-
tions.  
17 Implicitly, there is an Extreme Value draw associated with not buying insurance as well. So, more precisely, ζi is 
drawn as a difference of independent Extreme Value random variables. 
18 We could have done this calculation in such a way as to take account of the fact that the number of people who 
buy insurance will be different if a hospital is actually omitted from the network, but instead we do it in the way that 
it would have to be done in a real merger investigation. Specifically, we take the patients in the dataset as the uni-
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represents the quantity (predicted post-merger price – “true” post-merger price)/pre-merger 

price. That is, the y-axis represents the percentage point difference between the estimated merger 

effect and the true one.19 

 As can be seen in Figure 1 (which compares the true effect to the effect predicted using the 

“willingness-to-pay per person” simulation method), the predicted effects tend to be below the 

true ones, and this effect is greater the larger the diversion.20 An alternative graphical representa-

tion of these same results can be found in Figure 5, which shows a kernel density estimate of the 

results for all mergers, for those in which diversion ¥ .2, and for those in which diversion ¥ .4. 

Yet another representation of the same result can be found in Table 2, which shows that the pre-

dicted effect is on average 0.01 percentage points lower than the true effect, but is 1.1% lower 

for mergers in which diversion ¥ .2, and is 2.1% lower for mergers in which diversion ¥ .4. The 

probability that the simulation will over-predict the true merger effect by at least five percentage 

points is correspondingly small: 2.2% for the full sample of mergers, 1.4% for mergers in which 

diversion ¥ .2, and 0.9% for mergers in which diversion ¥ .4. In other words, our results suggest 

that the probability of a substantial Type II error is very small. 

 Table 2 and the remaining figures contain results for the other three concentration measures: 

“Willingness-to-Pay” (WTP) as used by Town & Vogt (TV), WTP as used by Capps, Dranove, & 

Satterthwaite (CDS), and Hospital-Specific HHI. The results are broadly similar across the dif-

ferent concentration measures. They all under-predict the true merger effects on average, and in 

all of them this tendency is more pronounced the greater the diversion.21 The CDS version of 

                                                                                                                                                             
verse, estimate the conditional logit model on that universe of patients, and then see how many patients have Hospi-
tal k as their first choice and Hospital l as their second.  
19 For example, if the predicted merger effect was 10% and the true effect was 15%, the y-axis value would be -.05. 
20 Figure 1 should have 64,800 “dots” on it. However, the graphing software that we used only permits 32,000 dots. 
For this reason, Figure 1 contains 32,000 dots randomly drawn from the 64,800. The same is true for Figures 2-4. 
21 Note that in Figures 3 and 4, the difference between the predicted effect and the true effect is very close to zero for 
low levels of diversion, but this is not the case in Figures 1 and 2. The reason is as follows. When diversion is zero, 
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WTP has the greatest tendency to under-predict the true effect (it under-predicts by an average of 

4.7 percentage points for mergers in which diversion ¥ .4), and WTP_PP has the least tendency 

(2.1%). 

 Table 3 contains the same information as Table 2, but includes only those merger simulations 

in which the estimated relationship between price and the concentration measures is positive and 

has a p-value < .10. It is noteworthy that this involves throwing out quite a lot of observations 

(for example, in the case of Hospital-Specific HHI it causes the number of observations to fall 

from 64,800 to 36,270. However, it should be kept in mind that these relationships are each esti-

mated with only ten data points (one for each hospital), so it is perhaps not too surprising that a 

positive and significant relationship is not always estimated. As one would expect, throwing out 

those observations in which the estimated relationship between price and concentration is nega-

tive or slightly positive increases the average prediction of the merger effect, and so reduces the 

degree to which the predicted effects are smaller than the actual effects. 

 At this stage, we are not certain whether this tendency to under-predict the true merger effects 

is a robust result, or whether it is an artifact of the particular simulations that we have run so far. 

We expect that this will be clarified as we run more simulations (see below). One factor that may 

be contributing to this result is the fact that, at present, there are no hospitals that are already 

jointly owned before the mergers that we study. This means that for mergers where diversion is 

high, the post-merger values of the concentration measures are out-of-sample: no hospital in the 

pre-merger data had values of WTP or Hospital-Specific HHI as high as some post-merger hospi-

                                                                                                                                                             
the bargaining model will always return a “true” merger effect of zero. The CDS version of WTP and Hospital-
Specific HHI have the property that when diversion is zero, a merger does not change the concentration measure at 
all, and so the predicted merger effect will be zero, and hence the percentage point difference between the two will 
also be zero. The TV version of WTP (and the WTP_PP measure that is based on it) does not have this property. For 
this reason, the percentage point difference between the true effect and the predicted effect need not be zero.  
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tals did. Since the estimation of the relationship between price and the concentration measures is 

done on pre-merger data, this might bias the estimate, and lead to inaccurate predictions. 

  

V. Extensions 

 The primary goal of this paper is to test the accuracy of the merger simulation methodologies 

based on Willingness-to-Pay and Hospital-Specific HHI. However, it should also be possible to 

use our bargaining model to simulate specific mergers directly. That is, it should be possible to 

set up the model in such a way that the locations of the relevant hospitals, populations, geo-

graphic barriers, and so on reflect the actual realities of the case in question. The model parame-

ters could then be calibrated to match the observed pre-merger prices, and the merger could be 

simulated directly. This approach has advantages and disadvantages relative to the approach out-

lined in this paper, and we leave it as a subject for future research. 

 

VI. Conclusion 

In recent years evidence has mounted that some hospital mergers can be expected to result in 

substantial price increases. As a consequence, researchers have become interested in developing 

new methods of predicting the effects of hospital mergers. The purpose of this paper is evaluate 

two of those methods by comparing their predicted post-merger price increases with the “true” 

price increases for a hypothetical merger using simulated data. 

 This research can be extended by collecting more results from numerous variations in the en-

vironment. The obvious adjustments to our methodology would allow us to test the performance 

of these merger simulation methodologies allowing some of the non-merging hospitals to be 

jointly owned, allowing multi-hospital system acquisitions of independent hospitals, and allow-
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ing mergers between multi-hospital systems, varying travel costs, the locations of the hospitals 

and the distribution of the populations, the relative bargaining power of the hospital and the 

MCOs, and so on. The ultimate goal is to arrive at a situation where it will be possible to identify 

which version of the price-concentration analysis is most appropriate for a given fact pattern of a 

merger under consideration. That is, we intend for this work to be of direct use to practitioners of 

hospital merger analysis (like us). 

 



 29

Appendix 

 In this appendix, we discuss the differences between the TV and CDS market power measures 

and why they are irrelevant for our study. The way that CDS construct their WTP measure is de-

scribed in the text. TV construct their market power measure slightly differently (and do not use 

the term WTP). Specifically, TV construct their measure as follows. Like CDS, they begin by 

estimating a discrete choice model as in (1). Also like CDS, the valuation of a hospital for con-

sumer i is equal to the expected value of the maximum as in (2). Both methods then aggregate 

these individual valuations to generate a measure of the market power of the hospital.  For TV, 

the market power of hospital k is defined as the difference between the mean valuation for the 

network G, and the mean valuation for the network G\k.  

(A1) \

\
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In their price regressions, TV include only WG\k (the second term in A1) as a right-hand side vari-

able since the first term (the average valuation of the whole choice set G) will be the same for all 

observations and so will just be swept into the intercept. In the framework that we use in this pa-

per, this will produce exactly the same estimate of the effect of the relationship between price 

and the market power variable as we get using the CDS measure (though the sign will be re-

versed), since the two are linear transformations of one another. The two methods will produce 

different intercepts, but that does not matter for our purposes. 

 Note that the two measures would not produce the same estimates if we did our analysis using 

logs of the market power variables instead of levels. And TV do use logs, whereas CDS use lev-

els. This is not an issue for us, however, as we follow CDS and run our regressions in levels.  

 There several other differences between TV and CDS. First, TV define WG\k under two cir-

cumstances: (i) the mean expected welfare of hospital k is defined on the set G\k; and (ii) the 
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mean expected welfare of hospital k is defined on the set {G\k,k’}, where k’ denotes the best sub-

stitute for k of the currently excluded hospitals. TV then use a switching regression framework to 

incorporate the uncertainly (from the perspective of the researcher) about which state is generat-

ing the data, (i.e., which network is the most relevant in constraining the price of hospital k). 

CDS do not observe network exclusions, and so this is irrelevant for their study. In our study, the 

equilibrium network is always the network of the whole. Hence, the switching regression frame-

work employed by TV is irrelevant for us as well. 

 The second difference is that TV use DRG weights from Medicare’s Prospective Payment 

System to weight utilities defining WG\k over various clinical conditions. The rationale is that 

more serious conditions should be given more weight in defining consumer valuation of a net-

work. CDS do not use this approach and state in their appendix that TV do not apply the weights 

correctly. In our study, there is, in effect, only one clinical condition, so the weights are irrele-

vant. 

 The third difference is that TV use price as a dependent variable while CDS use profits. Since 

we are primarily interested in price effects, we use prices as our dependent variable. 
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Table 2: Summary Statistics
Deviation from Truth as a percent of Pre-Merger Price

0.0050.7650.3000.0290.034Div > 0.4

0.0020.9280.5770.021-0.019Div > 0.2

0.0000.9870.9210.012-0.006AllHSHHI

00.6660.0210.021-0.047Div > 0.4

00.9020.3710.018-0.029Div > 0.2

00.9820.8840.013-0.009AllWTP 
(CDS)

0.0230.8140.3260.032-0.025Div > 0.4

0.0300.9160.5930.028-0.010Div > 0.2

0.0330.9570.8330.0210.003AllWTP 
(TV)

0.0090.9070.4060.024-0.021Div > 0.4

0.0140.9560.6710.022-0.011Div > 0.2

0.0220.9710.8580.018-0.001AllWTP_PP

1- F(0.05)F(0.05) –
F(-0.05)

F(0.02) –
F(-0.02)

St DevMean



Table 3: Summary Statistics
Deviation from Truth as a percent of Pre-Merger Price

Coefficient Estimate > 0 and p-value < 0.10 Only

0.0100.8640.3820.028-0.022Div > 0.4

0.0030.9620.7110.019-0.012Div > 0.2

0.0000.9930.9460.010-0.004AllHSHHI
N=36,270

00.6900.0380.020-0.045Div > 0.4

00.9120.3880.017-0.023Div > 0.2

00.9840.8890.012-0.008AllWTP 
(CDS)
N=32,760

0.0440.8750.4470.031-0.013Div > 0.4

0.0570.9200.6470.028-0.000Div > 0.2

0.0620.9330.7890.0240.008AllWTP

(TV)
N=32,760

0.0100.9200.4340.023-0.019Div > 0.4

0.0160.9580.6770.020-0.009Div > 0.2

0.0240.9680.8500.019-0.000AllWTP_PP
N=57,960

1- F(0.05)F(0.05) –
F(-0.05)

F(0.02) –
F(-0.02)

St DevMean



Figure 1: (WTP_PP Estimate - Truth)/Pre-Merger Price on 
Diversion
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Figure 2: (WTP(TV)- Estimate - Truth)/Pre-Merger Price on Diversion
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Figure 3: (WTP(CDS) Estimate - Truth)/Pre-Merger Price on 
Diversion
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Figure 4: (HSHHI Estimate - Truth)/Pre-Merger Price on Diversion
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Figure 5: Kernal Densities of
 (WTP_PP ‐ Truth)/Pre‐Merger Price
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Figure 6: Kernal Densities of
 (WTP(TV) ‐ Truth)/Pre‐Merger Price
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Figure 7: Kernal Densities of
 (WTP(CDS) ‐ Truth)/Pre‐Merger Price
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Figure 8: Kernal Densities of
 (HSHHI ‐ Truth)/Pre‐Merger Price
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