Cellular service demand: biased beliefs, learning and bill shock

Michael D. Grubb¹ Matthew Osborne²

¹MIT Sloan

²Bureau of Economic Analysis

November 3, 2011

Disclaimer

The views expressed herein are those of the authors and not necessarily those of the Bureau of Economic Analysis or the U.S. Department of Commerce.

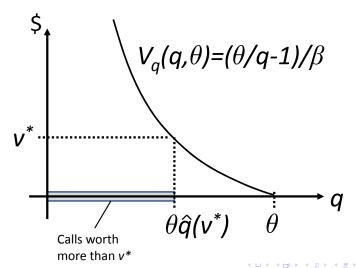
Overview

- Estimate a model of tariff & usage choice, marginal-price uncertainty, biased beliefs, and learning using cellular phone billing data.
- Consumers are aware of their own uncertainty about marginal prices.
 - Incorporate optimal threshold rule for accepting/rejecting calls
- Identifying Biased Beliefs:
 - True distribution of tastes (from usage patterns)
 - Prior beliefs & learning rate (from plan choices and switches)
 - Biases measure systematic differences between the two, and lead to predictable mistakes
- Counterfactuals
 - How costly are consumer biases?
 - FCC's bill-shock regulation in 2013?

Data Overview

- Individual cellular billing data 8/2002 7/2004
 1366 students subscribing through a major US university.
- Pricing data for all cellular phone carriers 2002-2005 (EconOne)
- Popular plan prices, Spring 2003:

Plan	M_j	Q_{j}	p_j
Plan 0	\$14.99	0	\$0.11
Plan 1	\$34.99	380	\$0.45
Plan 2	\$44.99	653	\$0.40
Plan 3	\$54.99	875	\$0.40


Illustrative Model: Timing and usage choice

- Consumers choose a plan j and a calling threshold v_{itj}^* based on beliefs about distribution of θ_{it} .
- 2 During the course of the month θ_{it} calling opportunities arise. Consumers make all calls worth more than v_{iti}^*
- **3** Fraction $\hat{q}(v^*)$ of calls valued above v^* . At the end of the month, realized usage is $q_{it} = \theta_{it}\hat{q}(v_{it}^*)$.
 - In our model $\hat{q}(v_{it}^*) = \frac{1}{1+\beta v^*}$.

Inverse Demand Curve and Calling Threshold

• Value of minutes: $V(q, \theta) = (\theta \log(q/\theta) - q)/\beta$

Projection Bias

• Taste shock θ_{it} is a latent shock censored at zero

$$\theta_{it} = \left\{ \begin{array}{cc} 0 & \tilde{\theta}_{it} < 0 \\ \tilde{\theta}_{it} & \tilde{\theta}_{it} \ge 0 \end{array} \right..$$

• Latent taste shock $\tilde{\theta}_{it} = \mu_i + \varepsilon_{it}$ is normally distributed:

Truth:
$$ilde{ heta}_{it} \sim N\left(\mu_i, \sigma_{arepsilon}^2\right)$$

Belief:
$$\tilde{\theta}_{it} \sim N\left(\mu_i, \tilde{\sigma}_{\varepsilon}^2\right)$$
, $\tilde{\sigma}_{\varepsilon} = \delta_{\varepsilon} \sigma_{\varepsilon}$

Projection Bias

• Taste shock θ_{it} is a latent shock censored at zero

$$\theta_{it} = \left\{ \begin{array}{ll} 0 & \tilde{\theta}_{it} < 0 \\ \tilde{\theta}_{it} & \tilde{\theta}_{it} \ge 0 \end{array} \right..$$

• Latent taste shock $\ddot{\theta}_{it} = \mu_i + \varepsilon_{it}$ is normally distributed:

Truth:
$$\tilde{\theta}_{it} \sim N\left(\mu_i, \sigma_{\varepsilon}^2\right)$$

Belief:
$$ilde{ heta}_{it} \sim extstyle extstyle (\mu_i, ilde{\sigma}_{arepsilon}^2)$$
 , $ilde{\sigma}_{arepsilon} = \delta_{arepsilon} \sigma_{arepsilon}$

• $\delta_{\varepsilon} < 1 \rightarrow$ consumers underestimate the volatility of their tastes month to month (projection bias).

Overconfidence

- ullet Consumers are uncertain about their own types: μ_i
- Each consumer has initial point estimate of her type $\tilde{\mu}_{i1} \sim N(\tilde{\mu}_0, \tilde{\sigma}_{\mu}^2)$ (which she updates over time by Bayes rule.)
- Population variance of true types among customers with the same point estimate is

$$\sigma_{\mu}^2 = Var(\mu_i|\tilde{\mu}_{i1})$$

Prior beliefs:

$$\mu_i | \Im_{i,1} \sim \mathcal{N}(\tilde{\mu}_{i,1}, \tilde{\sigma}_1^2),$$

$$\tilde{\sigma}_1 = \delta_{\mu} \sigma_{\mu}$$

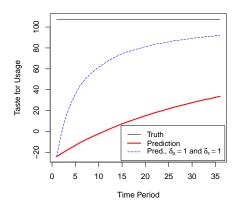
• $\delta_{\mu} < 1
ightarrow {
m O}{
m ver}{
m confidence}$, underestimate uncertainty about own type.

- Price Coefficient β : 3.4 (0.05)
 - ightarrow Increase from 0 to 11 cent/min reduces usage pprox 27%

• Price Coefficient β : 3.4 (0.05) \rightarrow Increase from 0 to 11 cent/min reduces usage \approx 27%

Т	rue	Be	lief		Bias	Comment	
_	107	~	14		0.18	Overconfidence	
σ_{μ}	(1.8)	σ_1	(1.0)	o_{μ}	(0.01)	(too risky plans)	

• Price Coefficient β : 3.4 (0.05) \rightarrow Increase from 0 to 11 cent/min reduces usage \approx 27%


-	True	Belief		Bias	Comment
	107	<u> </u>		0.18	Overconfidence
σ_{μ}	(1.8)	$\tilde{\sigma}_1$ (1.	0) δ_{μ}	(0.01)	(too risky plans)
$\sigma_arepsilon$	169	$\tilde{\sigma}_{arepsilon}$ (1)	$\delta_{arepsilon}$	0.54	Projection Bias
σε	(0.54)	$^{\circ\varepsilon}$ (1.	1) $^{\circ_{\varepsilon}}$	(0.01)	(too risky plans)

• Price Coefficient β : 3.4 (0.05) \rightarrow Increase from 0 to 11 cent/min reduces usage \approx 27%

	True	Bel	ief		Bias	Comment
σ_{μ}	107 (1.8)	$ ilde{\sigma}_1$	14 (1.0)	δ_{μ}	0.18 (0.01)	Overconfidence (too risky plans)
$\sigma_{arepsilon}$	169 (0.54)	$ ilde{\sigma}_{arepsilon}$	91 (1.1)	$\delta_arepsilon$	0.54 (0.01)	Projection Bias (too risky plans)
μ_0	107 (1.8)	$ ilde{\mu}_0$	-25 (6.7)	b_1	-132 (7.0)	Neg. Mean Bias (too small plans)

^{*} Risk-aversion ightarrow estimates of overconfidence and projection bias are a lower bound

Biases Lead to Slower Learning

 Without overconfidence or projection bias, mean bias would be reduced 70% by learning in the first year. Actual reduction is only 20%.

Impact of De-Biasing on University Plan Shares

Offered Plan	0	1	2	3	Other
Estimates	42.8	28.6	13.7	5.5	9.4
$\delta_{\mu}=1$ and $\delta_{\epsilon}=1$	39.8	25.7	17.8	7.1	9.6
No Biases	46.6	17.5	18.4	8.5	9.0

Impact of De-Biasing on Welfare (University Plans)

	Estimates	$\delta_{\mu}=1$ and $\delta_{\epsilon}=1$	
Avg. Bill	41.37	37.96	
Ovg. Prob.	0.2	0.1	
Δ Monthly Fee		1.53	
Δ Overage Fee		-4.32	
Δ Bill		-3.41	
Δ q \mid Overage		-34	
Δq		-14.5	
Δ Profit (Annual)		-40.89	
Δ Cons. Welf. (Annual)		29.9	
Δ Tot. Welf. (Annual)		-10.99	

Impact of De-Biasing on Welfare (University Plans)

	Estimates	$\delta_{\mu}=1$ and $\delta_{\epsilon}=1$	No Biases
Avg. Bill	41.37	37.96	36.3
Ovg. Prob.	0.2	0.1	0.05
Δ Monthly Fee		1.53	0.51
Δ Overage Fee		-4.32	-5.76
Δ Bill		-3.41	-5.07
Δ q \mid Overage		-34	-12
Δq		-14.5	-12.2
Δ Profit (Annual)		-40.89	-60.79
Δ Cons. Welf. (Annual)		29.9	51.3
Δ Tot. Welf. (Annual)		-10.99	-9.49

Impact of De-Biasing on Welfare (Public Plans)

	Estimates	$\delta_{\mu}=1$ and $\delta_{\epsilon}=1$	
Avg. Bill	49.24	41.77	
Ovg. Prob.	0.23	0.12	
△ Monthly Fee		1.21	
Δ Overage Fee		-8.68	
∆ Bill		-7.47	
Δ q \mid Overage		-41	
Δq		-28.1	
Δ Profit (Annual)		-89.66	
Δ Cons. Welf. (Annual)	64.83		
Δ Tot. Welf. (Annual)		-24.84	

13

Impact of De-Biasing on Welfare (Public Plans)

	Estimates	$\delta_{\mu}=1$ and $\delta_{\epsilon}=1$	No Biases
Avg. Bill	49.24	41.77	40.73
Ovg. Prob.	0.23	0.12	0.06
Δ Monthly Fee		1.21	3.18
Δ Overage Fee		-8.68	-11.69
Δ Bill		-7.47	-8.51
Δ q \mid Overage		-41	-10
Δq		-28.1	-20.4
Δ Profit (Annual)		-89.66	-102.12
Δ Cons. Welf. (Annual)		64.83	86.64
Δ Tot. Welf. (Annual)		-24.84	-15.48

Equilibrium Price Response to Bill-Shock Regulation

			Est, Bill Shock	
		Est	(fixed prices)	Est, Bill Shock
		(1)	(2)	(3)
Plan 1	М	28.46	28.46	28.36
	Q	0	0	0
	р	50	50	50
	Share	63	63	72
Plan 2	М	61.28	61.28	73.99
	Q	295	295	374
	р	50	50	50
	Share	37	37	28
Pro	ofit	915	882	919
Cons V	Velfare	5497	5515	5465
Total V	Velfare	6413	6396	6384

Equilibrium Price Response to Bill-Shock Regulation

		$\delta_{\mu}=1$	
		and $\delta_arepsilon=1$	No Biases
		(4)	(5)
Plan 1	М	29.26	78.07
	Q	0	∞
	р	50	N/A
	Share	64	49
Plan 2	Μ	78.95	78.07
	Q	∞	∞
	р	N/A	N/A
	Share	36	51
Pro	ofit	925	937
Cons V	Velfare	5501	5695
Total V	Velfare	6425	6632

Conclusion

- We estimate a model of tariff & usage choice, marginal-price uncertainty, biased beliefs, and learning using cellular phone billing data
- Estimates
 - Overconfidence: underestimate uncertainty about mean usage by 82%
 - Projection Bias: underestimate monthly volatility in usage by 46%
- Biases significantly decrease consumer welfare
 - Overconfidence and projection bias hurt consumers \$30/year (6% avg. bill)
 - All biases hurt consumers \$51/year (10% avg. bill)

Conclusion

- We estimate a model of tariff & usage choice, marginal-price uncertainty, biased beliefs, and learning using cellular phone billing data
- Estimates
 - Overconfidence: underestimate uncertainty about mean usage by 82%
 - Projection Bias: underestimate monthly volatility in usage by 46%
- Biases significantly decrease consumer welfare
 - Overconfidence and projection bias hurt consumers \$30/year (6% avg. bill)
 - All biases hurt consumers \$51/year (10% avg. bill)
- Bill shock regulation...
 - helps consumers if prices are fixed
 - may hurt consumers if prices vary

Predictable Mistakes and Savings Opportunities

- Customers beliefs are biased, so make predictable mistakes.
- Evidence from "arbitrage opportunities"
 - University acts as a reseller, charging a fixed \$5 fee per month
 - University could bill students for their chosen plan, but sign them up for an alternative plan, and pocket the difference in charges.

	First Opportunity	Second Opportunity
Dates	10/02-8/03	9/03 onwards
Enrollment Change	plan 1-3 $ ightarrow$ plan 0	plan $1 o$ plan 2
Affected Customers	251 (34%)	445 (55%)
Additional Revenue		
Total	\$20,840 (47%)	\$7,942 (28%)
Per Affected Bill	\$8.76	\$2.64
Per Affected Cust.	\$83.03 (149%)	\$17.85 (46%)

17

Debiasing Counterfactuals: (with University Plans)

Table: Dollar values in percentage terms

Estimates	$\delta_{\mu}=1$ and $\delta_{\epsilon}=1$	No Biases
	0.04	0.01
	-0.1	-0.14
	-0.08	-0.12
	-0.08	-0.12
	0.06	0.1
	-0.02	-0.02
	Estimates	0.04 -0.1 -0.08 -0.08

Debiasing Counterfactuals: Public Plan Shares

Offered Plan	0	1	2	3	Other
NA	0.0	23.2	11.7	4.9	60.2
NA	0.0	20.9	13.9	5.6	59.6
NA	0.0	15.5	16.6	8.9	59.0

Illustrative Model: Consumer Utility

- Each date t, consumer i chooses a plan j, and then a quantity q_{it} .
- Consumer utility is

$$u_{itj} = V(q_{it}, \theta_{it}) - \alpha P_j(q_{it}) + \eta_{itj}$$

 $V\left(q_{it}, \theta_{it}\right)$ is the value of consuming q_{it} units given taste shock θ_{it} ,

$$V\left(q_{it}, \theta_{it}
ight) = rac{1}{\gamma} \left(heta_{it} ln(q_{it}/ heta_{it}) - q_{it}
ight)$$

 $P_{j}(q_{it})$ is the payment for usage q_{it} on plan j,

$$P_{j}\left(q_{it}\right) = M_{j} + p_{j} \max\left\{0, q_{it} - Q_{j}\right\}$$

and η_{itj} is an iid logit error.

Illustrative Model: Consumer Demand

• Let $q(p, \theta_{it})$ be consumer demand given constant marginal price p:

$$q(p, \theta_{it}) \equiv \arg\max_{q} V(q, \theta_{it}) - pq,$$

• Define $\beta = \alpha \gamma$. Then

$$q(p, \theta_{it}) = \theta_{it}\hat{q}(p)$$

 $\hat{q}(p) = 1/(1+\beta p)$

Interpretation:

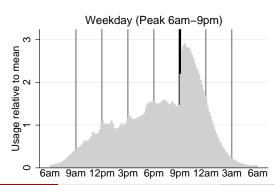
- ullet $heta_{it}$ call opportunities arise in billing period
- $\hat{q}(p)$ is the fraction of calls worth more than p

Illustrative Model: Timing and usage choice

- Consumers choose a plan j and a calling threshold v_{itj}^* based on beliefs about distribution of θ_{it} .
- ② During the course of the month consumers do not track usage, but simply make all calls valued above v_{it}^* :1

$$v_{itj}^* = p_j \Pr\left(\theta_{it} \ge Q_j/\hat{q}(v_{itj}^*)\right) \frac{E\left[\theta_{it} \mid \theta_{it} \ge Q_j/\hat{q}(v_{itj}^*); \ \Im_{it}\right]}{E\left[\theta_{it} \mid \Im_{it}\right]}$$

3 At the end of the month, realized usage is $q_{it} = \theta_{it} \hat{q}(v_{it}^*)$.


¹Optimal strategy for an inattentive consumer who does not keep track of past usage.

Identification Overview

- **1** True tastes: σ_{ε} , and population distribution of μ_i .
 - usage patterns
- **②** Beliefs: $\tilde{\sigma}_{\varepsilon}$, $\tilde{\sigma}_{1}$, and population distribution of $\tilde{\mu}_{i1}$.
 - Initial plan choice shares and switching
- **3** Price coefficient β
 - 9pm usage increase

Identification Overview

- **1** True tastes: σ_{ε} , and population distribution of μ_i .
 - usage patterns
- **②** Beliefs: $\tilde{\sigma}_{\varepsilon}$, $\tilde{\sigma}_{1}$, and population distribution of $\tilde{\mu}_{i1}$.
 - Initial plan choice shares and switching
- **3** Price coefficient β
 - 9pm usage increase

