Patent Pools & Product Development: Perfect Complements Revisited

Thomas D. Jeitschko & Nanyun Zhang
U.S. Department of Justice & Towson University

4th Annual FTC Microeconomics Conference

November 3–4, 2011

1The views expressed are those of the authors. They are not purported to reflect the views of the U.S. Department of Justice.
The Recent Debate

The “Patent Thicket” and Stifled Innovation

- In particular in
 - business methods
 - software
 - electronics
 - bio-tech
- calls for the abolition of IP in these areas
- calls for increased cross-licensing and **patent pooling**
Definition (Patent Pool)

A collection of distinct patents held by separate entities that are pooled for purposes of joint licensing.
Historical Background in the U.S.

► 1856: 1st patent pool (sewing machines)
 ▶ freedom of contract: “patent law trumps antitrust law”
► 1912: Standard Sanitary Mfg. v. U.S. (“the bathroom trust”)
 ▶ beginning of antitrust scrutiny of pool practices
► 1915: MPPC (“Edison Trust” of 1908)
 ▶ found in violation of Sherman Act
► 1929–: Standard Oil Co. v. U.S. and subsequent case law
 ▶ “blocking patents”
 ▶ complements v. substitutes (viz. “competing” patents)
Conventional Wisdom

Cournot-Shapiro (1838/2001) argument for perfectly complementary patents:

1. Independently set royalty rates for perfectly complementary inputs leads to (horizontal) double-marginalization (a.k.a. royalty stacking), reducing consumer and producer surplus.

2. Internalizing the pricing externality by pooling increases welfare.
Incompleteness of Patents

Previous literature on patent pooling:

- access to IP is sufficient for entering downstream market
- product market is either monopolized or perfectly competitive

In contrast to the stylized models, patents are incomplete inputs in product development:

- further development is often necessary before commercialization can take place, and
- the nature of product market competition feeds back into the development process
A More Complete Picture

Our aim is to develop a more comprehensive model with which to

1. revisit the conventional wisdom in light of subsequent
development and commercialization

2. evaluate how pooling may affect subsequent development and
commercialization

3. determine when pooling may not be desirable, even when
patents are perfect complements
Set-Up

1. Two upstream patent holders with
 ▶ perfectly complementary patents
 ▶ who need to decide on pool formation

2. Two downstream developer/retailers
 ▶ have differentiated products & compete in prices
 \[P_i = A_i - Q_i - \gamma Q_j, \quad \text{degree of prod. diff.: } \gamma \in (0, 1) \]
 ▶ which require initial (non-cooperative) development efforts
 \[A_i = a + e_i + \beta e_j, \quad \text{extent of spillovers: } \beta \in (0, 1) \]
Costs

No production costs, only licensing costs:

1. **Fees** (treated as fixed costs)
 hence: the incentive to pool is tied to market profit

2. **Royalties** (common form of licensing)

 Pool: \(R_p \times 2Q(R_p)^* \) \(\Rightarrow \) \(R_p^* = \frac{a}{2} \)

 No Pool: \(r_k (Q_i(r_k + r_l)^* + Q_j(r_k + r_l)^*) \) \(\Rightarrow \) \(r^* = \frac{a}{3} \).

\[
R_p^* = \frac{1}{2}a < \frac{2}{3}a = 2r^* = R_n^*
\]
Theorem (Generalized Conventional Wisdom)

Pooling increases all measures of welfare when there are royalty contracts, even when products are differentiated and there are spillovers in development:

\[W_p > W_n, \quad \forall \gamma, \beta \text{ and } W \in \{ CS, \Pi, V, TW \} \]
The Generalized Conventional Wisdom holds, provided that pooling doesn’t affect spillovers or differentiation.
Patents and Tacit Knowledge

- Many patents are tied to ‘tacit knowledge’ (human capital) that is not automatically disclosed and may not be fully revealed in a licensing process.
- This leads to possible collaboration between IP-holders and developers, constituting knowledge transfer.
- Knowledge transfer may be augmented by pool formation.
The Impact of Pooling on Development and Product Differentiation

Patent pools can, thus, be viewed as information sharing institutions.

- **Spillover Effects:**
 - Pooling increases spillovers in development: $\beta_p > \beta_n$.

- **Differentiation Effects:**
 - Pooling increases product homogeneity: $\gamma_p > \gamma_n$.
The Structure of Innovation and Competition

Stage I: Patent holders k and l make pooling decision.

Stage II: Firms i and j exert efforts, e. Spillovers β occur.

Stage III: Firms compete in market. Product differentiation is given by γ.
Spillover Effects

Equilibrium effort is increasing in the amount of spillovers if products are strongly differentiated, but decreasing if products are similar.

\[
\frac{de^*}{d\beta} \geq 0 \iff \gamma \leq S_e.
\]

When products are sufficiently homogenous, increased spillovers reduce the market size.

\[
\frac{dA^*}{d\beta} \geq 0 \iff \gamma \leq S_A.
\]
Figure: Impact of the Spillover Effect on Effort and Market Size
If products are sufficiently homogenous, then the spillover effect can make pooling undesirable:

Figure: Impact of the Spillover Effect on Payoffs

Note subscripts: $1 \rightarrow R, 0 \rightarrow F$
Differentiation Effects

Equilibrium effort, and hence equilibrium base market size, is decreasing in the degree of product homogeneity, i.e.,

$$\frac{de^*}{d\gamma} < 0 \quad \Rightarrow \quad \frac{dA^*}{d\gamma} < 0, \quad \forall \beta, \gamma.$$

Increases in the degree of product homogeneity adversely affect fee-charging patent-holders’ and firms’ interests. That is,

$$\frac{dV^*_{I=0}}{d\gamma}, \quad \frac{d\Pi^*}{d\gamma} \leq 0, \quad \forall \beta, \gamma.$$
But consumers may benefit from the increased competition of reduced product differentiation:

\[\gamma \]
\[\Delta CS \]
\[\beta \]
\[\Delta V \]
\[\Delta TW \]

Figure: Impact of the Differentiation Effect on Royalty Revenue and Consumer Surplus
Given Differentiation and Spillover Effects: Can Pooling of Perfectly Complementary Patents be Inefficient?
Fees:

Theorem

If the intrinsic degree of product differentiation is small (i.e., large γ_n); and spillovers in development are sufficiently high (large β_n), then firms, consumers, and patent holders are all worse off by the formation of a pool.

But: Here patentholders/firms would never choose to pool
Pooling is undesirable, even for initially very differentiated goods, when spillover effects are small (i.e., β_n/β_p large) and differentiation effects are large (i.e., γ_n/γ_p small). In contrast, if differentiation effects are small, then all parties prefer the pooling outcome.

Figure: Pooling and Non-Pooling with Fees; $\beta_n = .7$, $\gamma_n = .2$.

Note: Here, if firms pool, this is welfare increasing.
Figure: A Case of Profit-Maximizing Pooling that Reduces Total Welfare

Cause for policy concern:
Despite patents being perfect complements, there are constellations in which patent pools would be expected to form, yet pool formation is against the consumers’ interests and also lowers total welfare.
Royalties:

Theorem (Partial Corroboration of Cournot-Shapiro)

Given per-unit-of-output royalties, the pooling of perfectly complementary patents always generate an increase in consumer surplus, i.e.,

\[CS_p > CS_n, \quad \forall \beta_n, \beta_p, \gamma_n, \gamma_p. \]
Sufficient Condition for Efficient Pooling:
Since consumers always prefer pooling, a sufficient condition for efficient pooling is that industry desires to pool (in contrast to the example found with fees).
Conclusion

▶ The notion of welfare-enhancing patent pools for perfectly complementary patents is a powerful one.

▶ However, once one considers how pooling may adversely affect subsequent development efforts, it becomes clear that the insight is not universal.

▶ This suggests that in some industries, notably bio-tech, patent pooling may not be as desirable as is often claimed.