Price negotiation in differentiated product markets The case of insured mortgages in Canada<sup>1</sup>

> Jason Allen, Bank of Canada Robert Clark, HEC Montreal Jean-François Houde, UW-Madison

> > November 3, 2011

<sup>&</sup>lt;sup>1</sup>The views in this paper do not reflect those of the Bank of Canada.  $\mathbb{E} \to \mathbb{E}$ 

# Motivation

- In many concentrated markets, prices are negotiated and consumers incur search costs to choose among a set of differentiated products
  - Housing; consumer loans; personal insurance; new/used cars
- These markets do not fit the standard discrete-choice model used to evaluate market power
  - Consumers do not necessarily consider all available products
  - Missing counter-factual prices
    - Transaction prices  $\neq$  Bertrand-Nash
- Objective: Develop and estimate a model of search and price negotiation
  - Case study: Canadian mortgage market

# Five facts about the market

- 1. Highly concentrated
  - ▶ 8 national lenders issue 80% new mortgage contracts.
- 2. Transparent and common lending rules
  - Government backed insurance with common rules
  - Fully insure lenders against default risk
- 3. Decentralized market
  - Branch managers choose discounts
  - $\blacktriangleright$  Within week standard-deviation  $\approx$  0.5 bp
- 4. Heterogenous search effort
  - ▶ Between 45% and 55% of consumers gather only one quote
- 5. Consumer loyalty
  - ▶ 80% of consumers get a quote from their home bank
  - Over 60% remain loyal to their main FIs (75% in our data).

### Research question

- Question: How important is the market power of national banks in mortgage markets?
- Focus on two channels
  - 1. Incumbency advantage
    - Consumers differ in their ability to gather multiple quotes
    - Banks with large consumer base can discriminate between high/low search cost consumers
    - Retain a larger fraction of "non-shoppers"
  - 2. Differentiation
    - Quality of banking services raises the value of mortgage transactions
    - Extra willingness to pay for "home" bank
    - Sources: (i) complementarity, (ii) switching costs

# Outline

- 1. Market and data
- 2. Model description
- 3. Estimation method
- 4. Preliminary estimation results

### Market structure

#### Canadian banking industry

- 6 National banks: TD, Royal, Nationale, BMO,CIBC, Scotia
- 3 large regional credit-unions: Desjardins (QC), ATB (AB), Vancity (BC)
- Trust companies: Mainly in mortgage markets
- ► The rest account for less than 10% of the market
- Merger/aquisition wave: "Big 8" now controls over 80% of the mortgage market.
  - ▶ 1992 Bank Act revisions: Permitted banks to acquire trusts.
  - Chartered banks acquired the majority of trust companies during the following decade.

# Mortgage pricing and negotiation

- Two market segments
  - Insured
    - Loans are insured for the full amortization period (i.e. 25 years)
    - Government sets rules: max 95% LTV + max 40% debt ratio + min FICO
    - Assumption: Common lending criteria across banks
  - Uninsured
    - Standard lending market
    - Heterogeneous risk evaluation
  - $\blacktriangleright$  We focus on the first segment:  $\approx 85\%$  of new home-buyers
- National posted-prices / branch negotiation
  - Banks post one interest rate (per term) every week
  - Local branch managers are responsible for negotiating rate
  - No competition across branches of the same network

### Data sources

- Mortgage insurers: CMHC (70% market share) and Genworth Financial (30% market share, since 1995)
  - Raw sample: 10% random sample from CMHC + 90% of Genworth Financial
- Key variables: (i) contract terms, (ii) financial characteristics (income, fico, debt, etc), (iii) lender (confidential), (iv) house location, (v) prior relationship with lender.

#### Sample selection:

- Period: 1999-2004
- Homogeneous contracts: 25 year amortization + 5 years fixed
- New mortgages
- Main FIs and individual contracts (i.e. drop brokers)
- Branch location data:
  - ► Proquest-Micromedia: Annual listing of branch addresses

# Distribution of discounts from posted rates

#### 5-year fixed-rates in 2000



9/23

# Summary statistics

|                     | Ν      | Mean  | SD    | Min    | Median | Max  |
|---------------------|--------|-------|-------|--------|--------|------|
| Loan (X100K)        | 47,039 | 1.39  | .548  | .425   | 1.31   | 3.16 |
| Income (X100K)      | 47,039 | .681  | .258  | .161   | .644   | 2    |
| Other debt (X1000)  | 47,039 | .862  | .527  | .00143 | .761   | 5.04 |
| LTV                 | 47,039 | .91   | .0442 | .75    | .907   | .95  |
| FICO (mid-point)    | 47,039 | .672  | .0691 | .5     | .7     | .75  |
| Switchers           | 35,560 | .187  | .39   |        |        |      |
| Renters             | 47,039 | .488  | .5    |        |        |      |
| Living with parents | 47,039 | .0709 | .257  |        |        |      |

Sample: 5-year fixed-rate contracts issued by one of the Big-12 lenders between 1999 and 2004. Contracts negotiated through brokers are excluded. The sample also excludes top and bottom 1% of the loan size and discounts distribution.

## Descriptive regressions

|                   | (1)                 | (2)                 |
|-------------------|---------------------|---------------------|
| VARIABLES         | Margin              | Switching           |
|                   |                     |                     |
| Loan/Income       | -0.18 <sup>a</sup>  | 0.043 <sup>a</sup>  |
|                   | (0.012)             | (0.0087)            |
| Renter            | -0.031 <sup>a</sup> | 0.087 <sup>a</sup>  |
|                   | (0.0075)            | (0.0044)            |
| Living w/ parents | -0.071 <sup>a</sup> | 0.053 <sup>a</sup>  |
|                   | (0.012)             | (0.0064)            |
| Switcher          | -0.076 <sup>a</sup> |                     |
|                   | (0.0093)            |                     |
| Relative network  | 0.040 <sup>a</sup>  | -0.022 <sup>a</sup> |
|                   | (0.0053)            | (0.0035)            |
| Nb. Fls in [1,7)  |                     | -0.018 <sup>a</sup> |
|                   |                     | (0.0057)            |
| Nb. Fls=7         | -0.037 <sup>b</sup> |                     |
|                   | (0.014)             |                     |
| Nb. Fls=8         | -0.081 <sup>a</sup> |                     |
|                   | (0.021)             |                     |
| Nb. Fls=9         | -0.080 <sup>a</sup> |                     |
|                   | (0.030)             |                     |
| Nb. Fls>9         | -0.11ª              |                     |
|                   | (0.057)             |                     |

# Description of the model

#### Assumptions

- 1. Consumers are affiliated with a "home" bank  $h_i$
- 2. Maximum choice-set  $N_i = 10$  KM radius around house
- 3. Consumers receive a "free" initial offer:
  - From  $h_i$  if  $h_i \in \mathcal{N}_i$
  - Randomly matched with  $j \in \mathcal{N}_i$  otherwise
- 4. Obtaining additional offers is costly:

$$\kappa_i = \bar{\kappa} + \varepsilon_i, \quad \varepsilon_i \sim \operatorname{Exp}(\sigma_\kappa)$$

and  $\varepsilon_i$  is privately observed.

### Timing

- 1. Qualifying buyers identify a house price and commit to a downpayment: Loan size is fixed (L)
- 2. Buyers get an initial quote  $p^0$
- 3. If  $p^0$  is rejected, buyers run an ascending auction among all banks in  $\mathcal{N}_i$

### Preferences

Consumers' indirect utility (net of search cost):

$$U_{ij}=\theta_{ij}-p_{ij},$$

where  $\theta_{ij}$  is the willingness to pay for bank j,  $p_{ij} = L_i r_{ij}$ . Banks' profits:

$$\pi_{ij}=p_{ij}-c_{ij}+u_{ij},$$

where  $c_{ij}$  is the lending cost (reduced-form), and  $u_{ij}$  is a private-value profit shock.

▶ Total surplus from transaction (*i*, *j*):

$$V_{ij} = \theta_{ij} - c_{ij} + u_{ij}$$

### Auction stage

- Ascending auction with differentiation:
  - Demand:
    - One if  $\theta_{ij} p_j > \theta_{ik} p_k$  for all  $k \neq j$ .
    - **Zero** if  $\theta_{ij} p_j < \theta_{ik} p_k$  for all  $k \neq j$ .
  - Nash equilibrium:
    - Firms bid at most  $p_{ij} = c_{ij} u_{ij}$  (i.e.  $\pi_{ij} = 0$ )
    - Efficient allocation: Highest total surplus option wins

$$V_{(1)} = \max_{k \in \mathcal{N}} V_{ik}$$

Winning bank pays the equivalent utility of the second highest surplus bank:

$$\theta_{ij} - Lr_{ij}^* = \max_{k \neq j} V_{ik} = V_{(2)}$$

Transaction price:

$$p_{ij}^* = r_{ij}^* L_i = \theta_{ij} - V_{(2)}$$

14/23

### Initial quote

- Home bank = Monopolist with random demand
- Initial quote p<sup>0</sup> maximizes expected profit:

$$\max_{p^0} \qquad (p^0 - c_{ih} + u_{ih}) \left( 1 - H(p^0 | V_{ih}) \right) + \\ H(p^0 | V_{ih}) \Pr(V_{ih} > V_{(2)}) \left[ E\left( p_{ih}^* | V_{ih} > V_{(2)} \right) - c_{ih} + u_{ih} \right],$$

where  $H(p^0|V_{ih})$  is the search probability.

▶ **Special case:** Full information about {*u<sub>ij</sub>*}

$$p_{ih}^{0} = \begin{cases} c_{ih} - u_{ih} + \sigma_{\kappa} & \text{If } V_{ih} \leq V_{(2)} \\ \theta_{ih} - V_{(2)} + \sigma_{\kappa} & \text{Otherwise.} \end{cases}$$

• **General case:** (i)  $p^0(u_{ih})$  is decreasing in  $u_{ih}$ , (ii)  $p^0(u_{ih}) \lim_{u_{ih} \to \infty} \overline{p}_i^0$ 

# Functional form and distribution assumptions

- Willingness to pay and cost functions
  - θ<sub>ij</sub> is function of local network size (Q<sub>ij</sub>), and prior experience (E<sub>ij</sub>):

$$\theta_{ij} = \alpha Q_{ij} + \lambda \mathbf{1}(E_{ij} > 0)$$

► c<sub>ij</sub> is function of lender/borrower characteristics (Z<sub>ij</sub>), 5-year bond rate (b<sub>i</sub>), and unobserved borrower attribute (e<sub>i</sub>):

$$c_{ij} = \beta L_i b_i + \gamma' Z_{ij} + \epsilon_i, \quad \epsilon_i \sim N(0, \sigma_{\epsilon}^2)$$

 Distribution assumption for match values (Brannman and Froeb [2000]):

$$u_{ij} \sim \mathrm{EV}(\mathbf{0}, \sigma_u)$$

- Additional unobservable: Home bank identity (for switchers)
  - Estimate distribution of main FIs separately using survey data
  - Conditioning: province, year, income group.

# Likelihood function

- Endogenous outcomes:  $\{p_i, b_i, M_i\}$ , where  $M_i$  is a latent state
- Under the timing assumption
  - Conditional LLF for loyal consumers:

 $L(p_i, b_i | \mathcal{I}_i) = L(p_i, b_i, M_i = a | \mathcal{I}_i) + L(p_i, b_i, M_i = n | \mathcal{I}_i)$ 

Conditional LLF for switchers:

$$L(p_i, b_i | \mathcal{I}_i) = L(p_i, b_i, M_i = a | \mathcal{I}_i)$$

where  $\mathcal{I}_i = (X_i, \epsilon, h, E_h)$ .

Unconditional likelihood integrates unobservables:

$$L(p_i, b_i | X_i, \theta) = \int \sum_{h \in \mathcal{N}_i, E \in \{0,1\}} L(p_i, b_i | X_i, \epsilon, h, E) \Pr(h, E | X_i) \psi(\epsilon; \sigma_{\epsilon}) d\epsilon$$

Extra component: Match aggregate probability of getting more than one quote (from annual survey).

### Conditional likelihood functions

• Switcher prices  $p_i = \theta_{i,b_i} - V_{(2)}$  identify  $f_{(2)}(\cdot)$ :

$$L(p_i, b_i, M_i = a | \mathcal{I}_i) = \Pr(p_i, b_i | M_i = a, \mathcal{I}_i) \Pr(M_i = a | \mathcal{I}_i)$$
  
=  $f_{(2)}(\theta_{i, b_i} - p_i) \int_{V_h \le \theta_{i, b_i} - p_i} H(V_h) dF_h(V_h)$ 

Note: Equilibrium search probability adjusts for selection.

- Both mechanisms are feasible for **loyal** consumers:
  - Negotiation price density obtained by inverting  $p_h^0(V_{ih})$ :

$$L(p_i, b_i, M_i = n | \mathcal{I}_i, \theta) = f_h\left(p_h^{0^{-1}}(p_i); \sigma_u\right) \left(1 - H\left(p_h^{0^{-1}}(p_i)\right)\right) \frac{1}{|p_h^{0'}|}$$

Loyal consumers opting for the auction:

$$L(p_i, b_i, M_i = a | \mathcal{I}_i, \theta) = f_{(2)}(\theta_{ih} - p_i) \int_{V_{ih} > \theta_{ih} - p_i} H(V_h) f_h(V_h) dV_h$$

18/23

| Variables                                   | Parameters |            |  |
|---------------------------------------------|------------|------------|--|
|                                             | Full       | Incomplete |  |
|                                             | Info.      | Info.      |  |
|                                             |            |            |  |
| Negotiation cost                            |            |            |  |
| Intercept $\bar{\kappa}$                    | 0.233      | 0.175      |  |
|                                             | (0.008)    |            |  |
| Mean private-value ( $\sigma_{\kappa}$ )    | 0.328      | 0.312      |  |
|                                             | (0.007)    |            |  |
| Differentiation                             |            |            |  |
| Quality ( $\alpha$ )                        | 0.030      | 0.048      |  |
|                                             | (0.012)    |            |  |
| Home bank premium ( $\lambda$ )             | 0.429      | 0.249      |  |
| ,                                           | (0.007)    |            |  |
| <b>Cost function</b> (controls omitted)     |            |            |  |
| Idiosyncratic profit shock $(\sigma_{\mu})$ | 0.101      | 0.204      |  |
|                                             | (0.001)    |            |  |
| Residual ( $\sigma_{\epsilon}$ )            | 0.564      | 0.59       |  |
|                                             | (0.003)    |            |  |

# Parameter estimates (preliminary)

Asymptotic standard-errors in parenthesis. Control variables in the profit function: Loan size, income, FICO score, previous owner. The utility and profit functions are expressed in 100 dollars units. Sample size: 5,000.

### Interpretation of the parameters

- Search cost is important and heterogeneous:
  - Common component (i.e. lower bound): \$23.3
  - Distribution of total search cost:

| Mean   | $Q_{25}$ | $Q_{50}$ | $Q_{75}$ |  |
|--------|----------|----------|----------|--|
| \$54.5 | \$38.7   | \$61.01  | \$98.55  |  |

- The average monthly payment is \$960.
- Home-bank premium translates into a switching cost of \$44 (full info) or \$24.9 (incomplete info)
- Marginal utility of network size (i.e. quality) is relatively small
- There is relatively little dispersion in the unobserved match values to banks
  - ► Most of the dispersion is coming from the common lending profit shock: sd(e<sub>i</sub>) = \$56.5
  - Differences in idiosyncratic profits across lenders is much smaller: sd(u<sub>ij</sub>) = \$7.09 or \$20.

### Conclusion

A lot of things to do...

- Model improvements: Heterogeneous choice-set and richer controls.
- > Financial intermediaries: Brokers and mortgage-specialists.

### Distribution of distances from home to closest branch



## Description of local markets

|                       | Mean | Min  | P25  | P50  | P75  | Max  |
|-----------------------|------|------|------|------|------|------|
| Nb. contracts         | 455  | 11   | 29   | 169  | 410  | 4288 |
| Nb. Fls (in 10 KM)    | 6.09 | 2    | 5.18 | 6.12 | 7.03 | 8.12 |
| HHI-Branch (in 10 KM) | 2240 | 1527 | 1874 | 2089 | 2325 | 5370 |
| C1-Contract           | 41.4 | 21.6 | 29.2 | 36.8 | 48.5 | 90   |
| HHI-Contract          | 1304 | 338  | 517  | 762  | 1424 | 7300 |
| Relative network size | 1.58 | .831 | 1.11 | 1.28 | 1.52 | 10.6 |

Markets are defined as census-divisions (130 obs.). Sample excludes market with less than 10 contracts between 1999 and 2004, and only includes contracts with Big-12 lenders.