Exploding Offers and Buy-Now Discounts

Mark Armstrong and Jidong Zhou
Oxford University and New York University

Federal Trade Commission: 2011
Exploding Offers and Buy-Now Discounts I

- Relatively little work in economics about sales techniques
- One technique involves forcing a customer to decide to buy quickly, before she knows what other offers are available
- Attempts to ban this practice under EU’s *Unfair Commercial Practices Directive*

Exploding offer: customer cannot return to buy later

- photography studio tells customers they must decide what pictures to buy that day (since negatives are destroyed)
- salesman may say he is in the area for that day only, or it’s his last day in that job
- life insurance firm may give quote valid for 10 days, but it takes more than 10 days to generate another quote
- (law) journal offers to publish author’s paper, but requires immediate agreement
Buy-now discount: seller promises to raise price if customer does not buy immediately
- car dealer offers extra $500 off so (as he claims) he can make his monthly quota
- landlord offers $100 reduction in monthly rental if tenant agrees straightaway
- kitchen firm offers long-term quote, together with discount if customer signs immediately

“Surprise” price hike: seller implements unannounced price rise when customer returns to buy
- when browsing for air tickets, customer may find price has risen on returning to previously-visited website
- consulting firm may raise fee if prospective client comes back after finding other consultants are unsuitable
We consider two scenarios:

1. Monopoly model, in which consumers have uncertain—and initially unknown—outside option
2. Oligopoly search model, where consumers search sequentially for good product and/or low price

We assume firm(s) can distinguish first-time from returning visitors

- e.g., job offers, home improvements, doorstep sellers, life insurance, time-share companies, car dealers, “cookies” on computer

Firm(s) then often have incentive to discriminate against returning visitors

- either by making exploding offer, by offering a buy-now discount, or with a surprise price hike
- **Strategic benefits**
 - by making it difficult for a new visitor to return, seller makes continued search less attractive
 - but may also harm seller by reducing the demand from those customers who would wish to buy later
 - applies when seller can commit to its selling policy

- **Information benefits**
 - when seller knows customer has returned after investigating rivals (or outside option), this suggests she likes its offer best
 - when seller cannot commit to selling policy, seller often has incentive to surprise returning buyer with a price hike
Monopoly Analysis

- Single firm supplies product at zero cost
 - its strategy is an initial price and—where relevant—a “buy-later” policy

- Consumers:
 - surplus from buying firm’s product at price p is $u - p$
 - u is idiosyncratic match value: fraction of consumers with $u \geq p$ is $Q(p)$
 - we call $Q(\cdot)$ the “demand curve”
 - the firm does not observe u

- If consumer does not buy seller’s product, her uncertain outside option is $v \geq 0$
 - she does not know v when she first visits the monopolist
 - u and v are independent
 - possibly has to pay search cost s to discover v (otherwise just gets zero)
 - no intrinsic cost of returning to monopolist (until later)
 - consumers are risk neutral
For simplicity set $s = 0$ (doesn’t affect result)

Free recall:
- consumers always investigate outside option
- with price p, consumer buys if $u - p \geq v$
- expected demand is $\mathbb{E}_v[Q(p + v)]$

Exploding offer:
- with price p, consumer buys if $u - p \geq \mathbb{E}_v[v]$
- expected demand is $Q(p + \mathbb{E}_v[v])$

Proposition: From Jensen’s Inequality
- firm makes exploding offers if demand curve is concave
- firm allows free recall if demand curve is convex

This result also holds without commitment if some consumers are “credulous”
For given price p, use of exploding offers harms consumers.

Impact of sales tactic on price depends on elasticity (not levels) comparison between $\mathbb{E}_v [Q(p + v)]$ and $Q(p + \mathbb{E}_v [v])$

- ambiguous, but "typical case" (eg., if Q' concave) is that exploding offer involves higher price
- in this case, exploding offers cause two kinds of harm: poor matching and higher price
Monopoly Analysis: Buy-now Discounts

- Instead of extreme policy of refusing to sell to returning buyer, suppose firm offers a discount for immediate purchase.

- Proposition: If the demand curve is strictly log-concave, the firm has incentive to offer a buy-now discount.

- Thus, car salesman (say) has incentive to offer discount to a potential customer visiting for the first time (but if returning later she pays the regular price).

- Introducing buy-later premium:
 - boosts immediate demand
 - reduces returning demand
 - boosts revenue from returning demand [extra effect relative to exploding offer case]

- Sometimes neither price falls when firm engages in this form of price discrimination.
Suppose consumers anticipate firm’s price will be same on return visit
 - does firm have incentive to raise its price to those consumers who buy later?

With no search frictions, answer is clearly “no”

With $s > 0$ but no intrinsic cost of returning to seller after seeing outside option, answer is ambiguous (so far, we have no clear sufficient condition either way)

With $s > 0$ and some small intrinsic cost of return $r > 0$, answer is clearly “yes”...
Suppose p is firm’s initial price (which is also the price anticipated by consumer if she returns to buy later)

- if consumer decides to return to buy then her preferences are such that $u - p - r > v$
- seller can raise price to $p + r$ and not drive any such consumers back to outside option

Same argument shows there is no equilibrium buy-later price which induces any consumers to return

- equilibrium outcome without commitment is as if firm makes an exploding offer
- result is akin to Diamond’s (1971) Paradox
Monopoly analysis useful to obtain economic understanding of individual firm’s incentives

But has some strange features

- all consumers have same distribution of outside option
- no consumer has alternative offers already “in the bag”

Model with sequential search overcomes these problems

Use Wolinsky’s (1986) market model

- consumers search sequentially for a single item
- $n < \infty$ symmetric firms supply differentiated products
- surplus from buying firm i’s product at price p_i is $u_i - p_i$
- i.i.d. match values (across consumers and products): probability $u_i \geq p$ is $Q(p)$
- consumer discovers any seller’s match utility, price and buy-later policy by incurring search cost $s \geq 0$
- outside option has zero surplus
Then just as in monopoly model:

Proposition

- firms use exploding offers if demand curve is concave
- firms allow free recall if demand curve is convex

Proposition

- suppose the demand curve is strictly log-concave
- then starting from Wolinsky’s free-recall equilibrium a firm has incentive to offer a buy-now discount
Suppose the demand curve is $Q(p) = 1 - p$

Suppose there are no intrinsic search frictions ($s = 0$; p is buy-now price; \hat{p} is buy-later price):

<table>
<thead>
<tr>
<th></th>
<th>p</th>
<th>\hat{p}</th>
<th>immediate</th>
<th>returning</th>
<th>excluded</th>
</tr>
</thead>
<tbody>
<tr>
<td>free recall</td>
<td>0.41</td>
<td>0.41</td>
<td>41%</td>
<td>41%</td>
<td>17%</td>
</tr>
<tr>
<td>buy-now discount</td>
<td>0.45</td>
<td>0.51</td>
<td>66%</td>
<td>11%</td>
<td>23%</td>
</tr>
<tr>
<td>exploding offer</td>
<td>0.45</td>
<td>n/a</td>
<td>73%</td>
<td>0%</td>
<td>27%</td>
</tr>
</tbody>
</table>