Matthew Weinberg and Daniel Hosken

Introduction

Contribution

Simulations

Data

Retrospective

Reculto

ackcasts

Marginal Cost

Outside Goods

Conclusions

Using Mergers to Test a Model of Oligopoly

Matthew Weinberg and Daniel Hosken¹

November 2008

¹Federal Trade Commission, mweinberg@ftc.gov The views expressed are not necessarily those of the Federal Trade Commission or any individual Commissioners.

Matthew Weinberg and Daniel Hosken

Introduction

Continuation

Simulations

Data

Retrospectiv Estimates

Result

Backcast

Marginal Cost

Outside Goods

Conclusions

Introduction

- On average each year the FTC and DOJ conduct 75 major investigations of horizontal mergers.
- Two types of merger studies: retrospective and simulation studies.
- Retrospectives provide important information on antitrust policy, but often unclear on how this information guides decision making in specific cases.
- Simulating a merger with demand estimates for differentiated products and a static Bertrand pricing model is common practice, but results hinge on many strong assumptions.
- This paper uses retrospective evidence to evaluate merger simulation methodology.

Matthew Weinberg and Daniel Hosken

Introduction

Contributions

Jiiiuiatioi

Date

Retrospectiv Estimates

Result

Backcasts

Marginal Cost Changes

Outside Goods

Conclusions

Contributions

- Study two consumer product mergers with data that covers a period before and after the mergers occurred.
- Various demand systems are estimated on pre-merger data and used to simulate mergers with a static Bertrand model.
- Syrup merger had large simulated price changes (typically larger than 5%) and the oil merger had small price changes(less than 5%).
- We then add to the sample post-merger data and estimate the actual price effects with a difference and a difference-in-difference estimator.
- Simulations reverse the rank order of the price effects: predict a large price increase when actuals are low and vice versa.

Matthew Weinberg and Daniel Hosken

Contributions

Jiiiidiatioi

Retrospectiv Estimates

Result

Dackcasts

Marginal Cos Changes

Outside Good:

Conclusions

Contributions

- We then study different explanations for the difference between simulated and actual price changes.
 - Changes in demand: while demand changed before and after merger, doesn't explain much of difference.
 - Changes in marginal costs: must be quite large to equate simulated and actual price changes.
 - Different assumptions on substitution to outside goods.

Matthew Weinberg and Daniel Hosken

Contribution

Simulations

Data

Retrospectiv Estimates

Result

Marginal Cost Changes

Outside Goods

Conclusions

Simulations

- Using pre-merger data we estimate AIDS, Linear, and Logit demand with IV and OLS.
- AIDS example: Assuming static Bertrand pricing, pre-merger first-order conditions are:

$$\sum_{j\in\mathcal{J}_f} \left(\frac{p_j - mc_j}{p_j}\right) \epsilon_{j,i}(p_1, ..., p_J) s_j(p_1, ..., p_J) + s_i(p_1, ..., p_J) = 0$$
(1)

 Given pre-merger prices, revenue shares, and demand estimates calibrate to pre-merger data by solving for implied marginal costs.

Matthew Weinberg and Daniel Hosken

Introduction

Contribution

Simulations

Data

Retrospective

Result

Backcast

Marginal Cos Changes

Outside Goods

Conclusions

Simulations

 Assuming demand, marginal costs, and the nature of competition do not change, post-merger prices solve merged firms' first-order conditions:

$$\sum_{j \in \mathcal{J}_f} \left(\frac{p_j - mc_j}{p_j} \right) \epsilon_{j,i}(p_1, ..., p_J) s_j(p_1, ..., p_J)$$

$$+ \sum_{j \in \mathcal{J}_g} \left(\frac{p_j - mc_j}{p_j} \right) \epsilon_{j,i}(p_1, ..., p_J) s_j(p_1, ..., p_J)$$

$$+ s_i(p_1, ..., p_J) = 0$$

 Price effects are percentage difference between post and pre-merger prices.

Matthew Weinberg and Daniel Hosken

IIILIOGUCLIOI

Simulation

Data

Retrospectiv Estimates

Results

Marginal Cost Changes

Outside Goods

Conclusions

Data

- IRI Scanner Data
- Pennzoil/Quaker State
- Consummated in December of 1998. Data from January, 1997 until December, 2000 over 10 regions.
- Log Cabin/Mrs. Butterworth
- Consummated in July of 1997. Data from October, 1996 until March, 1998 over 49 regions.

Matthew Weinberg and Daniel Hosken

Introductio

Contribution

Simulation

Data

Retrospective Estimates

Results

Dackcasts

Marginal Cos Changes

Outside Goods

Conclusions

Actual Price Changes

Add post-merger data to the sample.

Before and after comparison:

$$\log(p_{int}) = \alpha_{in} + \sum_{m=1}^{11} \gamma_m M + \beta_d * Post + \epsilon_{int}$$
 (2)

Change in prices relative to change in private label prices:

$$\log(p_{int}) = \alpha_{in} + \sum_{m=1}^{11} \gamma_m M + \delta * Post + \beta_{dd} * Post * Branded + \epsilon_{int}$$
(3)

Matthew Weinberg and Daniel Hosken

Introduction

Contribution

Simulations

Data

Retrospectiv

Results

Rackcast

Marginal Cos Changes

Outside Goods

Conclusions

Actual Oil Percentage Price Effects

	Difference in	Difference
Products	Difference	
Pennzoil/Quaker State Merger		
Castrol GTX	8.05	6.77
	(1.78)	(1.46)
Havoline	-4.32	-6.43
	(1.54)	(1.54)
Mobil	7.48	5.45
	(1.25)	(1.11)
Pennzoil	3.71	1.95
	(1.91)	(1.79)
Private Label	-	-2.14
	-	(0.67)
Quaker State	7.65	5.63
	(1.53)	(1.45)
Valvoline	5.60	3.78
	(2.61)	(1.93)

Matthew Weinberg and Daniel Hosken

ntroduction

Contributions

Simulation

Data

Retrospectiv

Results

Rackcast

Marginal Co Changes

Outside Goods

Conclusions

Estimated and Simulated Oil Percentage Price Effects

Estimated Price Changes Simulated Price Change						
	-					
	Difference in	Difference	<u>AIDS</u>			
Products	Difference		OLS			
Pennzoil/Quaker State Merger						
Castrol GTX	8.05	6.77	1.19			
	(1.78)	(1.46)	(0.52, 1.99)			
Havoline	-4.32	-6.43	0.78			
	(1.54)	(1.54)	(0.27, 1.37)			
Mobil	7.48	5.45	0.21			
	(1.25)	(1.11)	(-0.01, 0.51)			
Pennzoil	3.71	1.95	2.59			
	(1.91)	(1.79)	(0.08, 5.68)			
Private Label	-	-2.14	1.41			
	-	(0.67)	(-0.20, 4.30)			
Quaker State	7.65	5.63	7.49			
	(1.53)	(1.45)	(2.81, 13.58)			
Valvoline	5.60	3.78	0.78			
	(2.61)	(1.93)	(0.02, 1.49)			

Matthew Weinberg and Daniel Hosken

ntroduction

Contributions

Simulation

Data

Retrospectiv

Results

Rackcast

Marginal Co

Outside Goods

Conclusions

Estimated and Simulated Oil Percentage Price Effects

Estimated Pr	ice Changes	Simulated	Price Changes	
Difference in	Difference	AIDS		
Difference		OLS	IV	
8.05	6.77	1.19	-1.36	
(1.78)	(1.46)	(0.52, 1.99)	(-37.95, 11.43)	
-4.32	-6.43	0.78	-27.82	
(1.54)	(1.54)	(0.27, 1.37)	(-116.00, -4.67)	
7.48	5.45	0.21	3.12	
(1.25)	(1.11)	(-0.01, 0.51)	(-9.30, 25.37)	
3.71	1.95	2.59	216.17	
(1.91)	(1.79)	(0.08, 5.68)	(25.19, 3272.03)	
	-2.14	1.41	24.49	
-	(0.67)	(-0.20, 4.30)	(3.25, 167.30)	
7.65	5.63	7.49 115.79		
(1.53)	(1.45)	(2.81, 13.58)	(26.14, 1094.64)	
5.60	3.78	0.78	32.75	
(2.61)	(1.93)	(0.02, 1.49)	(1.02, 169.87)	
	8.05 (1.78) -4.32 (1.54) 7.48 (1.25) 3.71 (1.91) - - 7.65 (1.53) 5.60	Difference 8.05 6.77 (1.78) (1.46) -4.32 -6.43 (1.54) (1.54) 7.48 5.45 (1.25) (1.11) 3.71 1.95 (1.91) (1.79) - -2.14 - (0.67) 7.65 5.63 (1.53) (1.45) 5.60 3.78	Difference in Difference Difference old 8.05 6.77 1.19 (1.78) (1.46) (0.52, 1.99) -4.32 -6.43 0.78 (1.54) (1.54) (0.27, 1.37) 7.48 5.45 0.21 (1.25) (1.11) (-0.01, 0.51) 3.71 1.95 2.59 (1.91) (1.79) (0.08, 5.68) - -2.14 1.41 - (0.67) (-0.20, 4.30) 7.65 5.63 7.49 (1.53) (1.45) (2.81, 13.58) 5.60 3.78 0.78	

Matthew Weinberg and Daniel Hosken

Introductio

Contribution

Simulations

Data

Retrospective

Results

Backcast

Marginal Cos

Outside Good

Conclusio

Estimated and Simulated Oil Percentage Price Effects

	Estimated Price Changes Simulated Price Changes							
	Difference in	Difference	4	AIDS		Linear		git
Products	Difference		OLS	IV	OLS	IV	OLS	IV
Pennzoil/Quaker State Merger								
Castrol GTX	8.05	6.77	1.19	-1.36	0.26	0.05	0.00	0.00
	(1.78)	(1.46)	(0.52, 1.99)	(-37.95, 11.43)	(0.01, 0.58)	(-0.23, 0.41)	(0.00, 0.00)	(0.00, 0.00)
Havoline	-4.32	-6.43	0.78	-27.82	0.36	-0.67	0.00	0.00
	(1.54)	(1.54)	(0.27, 1.37)	(-116.00, -4.67)	(0.04, 0.82)	(-2.84, 1.13)	(0.00, 0.00)	(0.00, 0.00)
Mobil	7.48	5.45	0.21	3.12	0.16	0.11	0.00	0.00
	(1.25)	(1.11)	(-0.01, 0.51)	(-9.30, 25.37)	(0.02, 0.34)	(-0.14, 0.50)	(0.00, 0.00)	(0.00, 0.00)
Pennzoil	3.71	1.95	2.59	216.17	0.40	1.55	0.05	0.04
	(1.91)	(1.79)	(0.08, 5.68)	(25.19, 3272.03)	(-0.16, 1.04)	(0.58, 3.86)	(0.04, 0.06)	(0.03, 0.05)
Private Label	-	-2.14	1.41	24.49	0.16	-0.01	0.00	0.00
	-	(0.67)	(-0.20, 4.30)	(3.25, 167.30)	(-0.99, 1.58)	(-0.79, 0.73)	(0.00, 0.00)	(0.00, 0.00)
Quaker State	7.65	5.63	7.49	115.79	4.12	5.10	0.16	0.15
	(1.53)	(1.45)	(2.81, 13.58)	(26.14, 1094.64)	(1.60, 7.21)	(1.02, 12.15)	(0.14, 0.19)	(0.12, 0.17)
Valvoline	5.60	3.78	0.78	32.75	0.42	0.47	0.00	0.00
	(2.61)	(1.93)	(0.02, 1.49)	(1.02, 169.87)	(0.07, 0.79)	(0.10, 1.46)	(0.00, 0.00)	(0.00, 0.00)

Matthew Weinberg and Daniel Hosken

Introductio

Contribution

Cimulations

Data

Retrospectiv

Results

Marginal Cos

Outside Good

Conclusions

Estimated and Simulated Syrup Percentage Price Effects

	Estimated Pr	ice Changes	Simulated Price Changes					
	Difference in	Difference	l 4	AIDS		Linear	_ Lo	git
Products	Difference		OLS	IV	OLS	IV	OLS	- IV
Log Cabin/Mrs Butterworth Merger								
Aunt Jemima	-0.35	0.80	4.84	44.81	0.67	1.97	0.15	0.15
	(0.94)	(0.57)	(2.55, 8.22)	(-143.35, 125.98)	(0.31, 1.23)	(-44.03, 45.68)	(0.14, 0.18)	(0.13, 0.18
Hungry Jack	-0.28	1.25	2.51	62.85	0.63	21.90	0.06	0.06
	(0.90)	(0.53)	(0.18, 6.19)	(-194.18, 190.444)	(-0.73, 2.67)	(-51.69, 54.87)	(0.05, 0.06)	(0.05, 0.07
Log Cabin	1.40	2.74	23.50	-63.60	2.73	-60.21	5.92	5.78
	(1.40)	(0.74)	(14.84, 36.24)	(-152.90, 364.84)	(1.46, 4.35)	(-105.83, 98.37)	(5.25, 6.78)	(4.99, 6.89
Mrs Butterworth	-2.08	-0.74	21.58	-235.18	4.42	-89.75	7.56	7.38
	(1.22)	(0.63)	(12.95, 34.53)	(-384.56, 798.41)	(3.03, 6.54)	(-172.50, 159.21)	(6.70, 8.65)	(6.37, 8.79
Private Label	-	1.11	6.65	-62.41	1.41	-32.85	0.54	0.53
	-	(0.29)	(2.81, 10.29)	(-287.64, 344.23)	(0.48, 2.73)	(-56.20, 65.69)	(0.48, 0.62)	(0.46, 0.63

Matthew Weinberg and Daniel Hosken

Introduction

Contribution

Simulations

Data

Retrospectiv

Result

Backcasts

Marginal Cos

Outside Goods

Conclusions

Simulated Percentage Price Effects Using Post-Merger Data

	Estimated Pr	ice Changes	Simulated Price Changes					
	Difference in	Difference	<i></i>	NDS_		Linear	L	ogit
Products	Difference		OLS	IV	OLS	IV	OLS	IV
Pennzoil/Quaker State Merger								
Pennzoil	3.71	1.95	6.28	2.41	2.23	1.06	0.07	0.27
	(1.91)	(1.79)	(4.19, 9.49)	(0.98, 3.93)	(1.78, 3.49)	(0.34, 2.11)	(0.06, 0.08)	(-0.59, 1.10)
Quaker State	7.65	5.63	11.75	6.14	5.04	4.30	0.26	1.10
	(1.53)	(1.45)	(6.29, 21.56)	(3.60, 8.83)	(2.32, 7.77)	(1.70, 5.69)	(0.23, 0.31)	(-2.37, 4.38)
Log Cabin/Mrs Butterworth Merger								
Log Cabin	1.40	2.74	20.31	2.65	3.34	-0.20	6.72	7.08
	(1.40)	(0.74)	(13.65, 30.85)	(-41.69, 86.23)	(2.54, 7.56)	(-47.80, 84.05)	(5.84, 7.82)	(5.98, 8.74)
Mrs Butterworth	2.08	-0.74	15.78	-2.08	3.50	7.13	8.48	8.94
	(1.22)	(0.63)	(10.47, 23.26)	(-121.96, 329.38)	(2.55, 8.03)	(-166.06, 141.98)	(7.38, 9.88)	(7.55, 11.03)

Matthew Weinberg and Daniel Hosken

Introduction

Contribution

Simulations

Data

Retrospectiv

Result

Backcast

Marginal Cost Changes

Outside Goods

Conclusions

Percentage Changes in Marginal Costs Necessary to Equate Simulated and Actual Price Changes

	Simulation Model						
	_AI	DS	Lin	ear	Lo	git	
Products	OLS	IV	OLS	IV	OLS	IV	
Pennzoil/Quaker State Merger							
Pennzoil	-1.27	-75.25	2.67	5.37	2.99	2.78	
Quaker State	-5.14	-67.17	-0.03	-1.50	9.01	8.36	
Quarter State	-5.14	-01.11	-0.05	-1.50	9.01	0.50	
Log Cabin/Mrs Butterworth Merger							
Log Cabin	-22.44	315.06	1.33	153.02	-10.02	-9.29	
Mrs Butterworth	-23.81	599.74	-11.74	250.25	-18.46	-17.63	

Matthew Weinberg and Daniel Hosken

Introductio

Contribution

Simulations

Data

Retrospectiv

Results

Backcast

Marginal Cos

Outside Goods

Conclusions

Simulated Percentage Price Changes with Different Overall Elasticities of Demand and OLS AIDS at Bottom Stage

Products	e = -2	e = -1.67	e = -1.33	e = -1
Pennzoil/Quaker State Merger				
Pennzoil	0.08	0.53	1.27	2.59
	(-1.50, 1.15)	(-0.92, 1.77)	(-0.28, 3.26)	(0.08, 5.68)
Quaker State	2.14	2.92	4.32	7.49
	(-0.22, 4.46)	(0.83, 5.55)	(1.64, 8.20)	(2.81, 13.58)
	e = -2	e = -1.67	e = -1.33	e = -1
Log Cabin/Mrs Butterworth Merger				
Log Cabin	6.47	11.18	16.99	23.50
	(2.17, 12.37)	(5.04, 18.09)	(11.33, 29.16)	(14.84, 36.24)
Mrs Butterworth	6.31	10.39	15.45	21.58
	(1.97, 11.03)	(5.29, 16.64)	(9.72, 24.35)	(12.95, 34.53)

Matthew Weinberg and Daniel Hosken

Introduction

Contribution

Simulations

Data

Retrospectiv

Result

Backcast

Marginal Cos

Outside Goods

Conclusions

Simulated Percentage Price Changes with Different Outside Shares for IV Logit

Products	2 ¹ / ₃ Quarts per Month	$1\frac{2}{3}$ per Month	1 per Month	½ per month
Pennzoil/Quaker State Merger				
Pennzoil	0.008	0.024	0.040	0.056
	(0.007, 0.01)	(0.021, 0.029)	(0.034, 0.048)	(0.048, 0.068)
Quaker State	0.027	0.083	0.139	0.195
	(0.023, 0.034)	(0.071, 0.101)	(0.119, 0.167)	(0.166, 0.236)
	1 Serving per Day	4 per Month	2 per Month	1 per Month
Log Cabin/Mrs Butterworth Merger				
Log Cabin	0.19	1.43	2.89	5.78
	(0.17, 0.22)	(1.30, 1.67)	(2.60, 3.36)	(4.99, 6.89)
Mrs Butterworth	0.22	1.66	3.42	7.38
	(0.20, 0.25)	(1.51, 1.94)	(3.07, 3.96)	(6.37, 8.79)

Matthew Weinberg and Daniel Hosken

IIILIOGUCLIOII

Continuation

Silliulation

Data

Retrospectiv

Results

Backcast

Marginal Cost Changes

Outside Goods

Conclusions

Conclusions

- Simulations reverse the rank order of price changes.
- Large simulated price changes for competitively benign merger, small simulated price changes for merger that resulted in moderate price increases.
- However, oil simulations are similar to actual price changes in magnitude and rank order of merging brands.
- Results are similar to Peters (2007) in reversing rank order of price effects.