

Testing Theories of Scarcity Pricing and Price Dispersion in the Airline Industry

Discussion Remarks Nancy L. Rose MIT & NBER

FTC and Northwestern University First Annual Conference on Microeconomics November 6, 2008

Why study airline price dispersion?

- Airline price dispersion is substantial and ubiquitous
 - Mean Gini coefficient in these data is 0.28:
 - May be influenced by competition on a route
- Ongoing debate over source of this dispersion
 - Stochastic peakload pricing in the face of uncertain demand, perishable product
 - Price discrimination across heterogenous customers
 - Self-selective third degree price discrimination implemented by ticket restrictions correlated with demand elasticity
- Diffusion of pricing techniques to other industries
 - with similar heterogeneity and perishable product characteristics

Goal of this paper

Provide evidence distinguishing alternative theories of price dispersion in airline markets

- <u>Stochastic peakload pricing</u>: Efficient allocation of perishable seats given uncertain demand and possible customer heterogeneity
- Price discrimination: (Stigler) Differential mark-ups of price over marginal (opportunity) cost, based on heterogeneity across customers in demand elasticities/willingness to pay.

– Identified with "revenue management" model—maybe?

Disclosure: My [Strong] Prior

- Many pricing institutions are difficult to reconcile with stochastic demand management and readily explained as segmenting demand along willingnessto-pay or elasticity dimensions
 - Advanced purchase, Saturday night stays: "Single best restriction of them all" (Northwest Airlines Internal Pricing Memo)
 - Initiatives to make discount tickets explicitly less attractive to business flyers (reduced exchange option, fee for standby, etc): reduce arbitrage opportunity across fare classes.
 - Efforts airlines put into preventing resale (unlike earlier papers in this session)
 – a strong suggestion that price discrimination is at work?
- But <u>both</u> stochastic demand management and price discrimination seem likely to play important roles (& revenue management systems pursue both)

There is more going on than realized demand for a given flight

Boston – Detroit: Northwest \$686 (\$457 in 2008)
– Depart: Mon, Oct 18, 6 am, Northwest flight 1831
– Return: Wed, Oct 20, 4:58 pm, Northwest flight 332

- Boston Chicago (via Detroit): Northwest \$357 (\$411 in 2008)
 - Depart Mon, Oct 18, 6 am,
 - Northwest flight 1831 BOS-DTW
 - Connect: Northwest flight 1237 DTW-ORD
 - Return Wed, Oct 20, 1:46 p.m
 - Northwest flight 1421 ORD-DTW
 - Connect: Northwest flight 332 DTW-BOS

There is more going on than realized demand for a given flight

Boston – DTW Northwest

One-way fare: \$811

Oct 20: BOS – DTW Northwest 371

RT fare : **\$457**

Oct 20: BOS – DTW Northwest 371

Oct 22 return

Approach

Careful construction of comparative static implications of models of stochastic peak load pricing

- Prescott model
 - Post fixed price schedule, consumers arrive over time, sell from lowest to highest P tickets as demand is realized
- Dana (1999) model
 - Extension of model for monopoly, competition, heterogenous consumers. Maintain fixed price schedule, multiple potential demand states
- Gale & Holmes (1992,1993)
 - Airline use limited number of discounted AP tickets to shift lowtime cost consumers to offpeak flights (before they learn which flight they otherwise prefer)
- Careful construction of ticket restrictions and mapping into fares ("revenue management" model)

Implementation

Terrific new data set: CRS transactions over 2004:Q4

- About 1/3 of all tickets sold for domestic US flights this quarter
- Detailed data on ticket characteristics (apart from fare basis codes, which would provide ideal information on restrictions)
- Match to historical data on fare basis codes/\$ fares to attempt to infer restrictions (about 1/3 match using relatively conservative match standard)
- Compute implied load factors at a point in time from observed ticket sales
 - Scaling by mean [Sales in this channel/Total sales]
 – this channel may be large enough to make this a reasonable estimate, though ex post load factors aren't demand
 - Could use T100 to get better mean? (includes non OD pax)

Potentially significant missing information: Corporate discounts (may account for some apparent anomalies)

The Tests

- Compare predictions of peakload pricing models with observed (dynamic) ticket patterns
 - Especially across flights with varying likelihood of departing full
- Compute the predictive power of ticket restrictions for fares
 - Assuming restrictions are motivated by "fencing" or selfselective 3rd degree price discrimination
- Conclude that variation due to predictions of peakload pricing models is insufficient to explain degree of dispersion; additional role of restrictions suggests substantial contribution of price discrimination

Comments?

A few suggestions

- Treatment of load factors/demand
- Corporate discounts
- Calibration of revenue

Load Factors and Demand

Many tests rely on identifying potential demand for a flight using realized load factors (to measure ex ante expected and/or ex post revealed demand).

- But if ticket restrictions were perfect and revenue management systems were ideal, [most?] flights would depart completely full
- Using mean within-quarter load factors for a given weekday-flight number as "expected load factor"/demand neglects information that the airlines use in setting allocations ("booking curves")

Could the study get some leverage from

- Time of day/week (e.g. Friday afternoon)
- The holiday periods they exclude?
 - We know that the two days before Thanksgiving are peak demand periods (though the nature of customers is different than for other Tuesdays and Wednesdays); maybe similar days could be identified from when Christmas falls.
 - Airlines know there is excess demand for seats on pre-Thanksgiving flights (at what price?), so no mark-up for expected perishability should be embedded in prices.

Corporate Discounts

- These may explain why fares don't perfectly match restrictions (e.g., within 5-8%).
- More significantly, these may look like low price restricted tickets when they aren't
 - Last minute unrestricted (fully refundable) corporate shuttle fare BOS-DCA \$230 (v. \$448 unrestricted walkup fare)
- This may muddy some of the tests (esp. for 0-6 day AP tickets)
- May be able to do something with hub carriers, nonhub carriers to explore this
 - Hub carriers are the ones most likely to offer corporate discounts on routes out of their hub

- (Some?) Stochastic peakload pricing models have predictions for expected revenue per seat–
 - Can constructed revenue per flight (scaled for CRS coverage) be compared across flights and/or to last ticket sold on a given flight to yield insights into these models?
- Comparison to revenue management projections:

Sophisticated revenue management systems are argued to increase total revenues ~5% relative to naïve reservation systems

- Combines effect of demand management and potential price discrimination (holding open seat for last minute high WTP passenger)
- This may suggest that we wouldn't expect huge differences in low v. high price tickets across different flights/demand states

This is an interesting and innovative paper– you should read it!