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BLP (1995) Demand Estimation

Berry, Levinsohn and Pakes (1995) or “BLP” consists of an
economic model and a GMM estimator
Demand estimation with a large number of differentiated
products

Product characteristics approach
Requires only aggregate market share data
Flexible substitution patterns / price elasticities
Controls for price endogeneity

Computational algorithm to construct moment conditions from
nonlinear model
Useful for measuring market power, welfare, optimal pricing,
etc.
Used extensively in industrial organization and marketing

Nevo (2001), Petrin (2002), Sudhir (2002), ...
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Computational concerns of BLP users and non-users

Method, if it delivers, is clearly very useful
Not tons of good alternatives
Useful in antitrust, consulting, in addition to academic research

Takes time to learn how to correctly code and use
Typical applied user: no formal training in implementation?

BLP (1995) somewhat dense
Nevo (2000) has some advice

Concern: reliability of empirical results
No point in using fancy estimator if you are going to report
wrong estimates
Knittel & Metaxoglou (2008) alarmist message
New research on dynamic demand, up to four inner loops

Gowrisankaran & Rysman (2008), Lee (2008), Schiraldi (2008)

Our broad goal: document some (computational) concerns
and offer some solutions
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BLP’s estimation algorithm

Nested Fixed Point (NFP) approach

Nest fixed point calculation (inner loop) into parameter search
(outer loop)

Propose contraction mapping to calculate fixed point
Our concerns

Trade off inner loop numerical error versus speed
Error in inner loop propagates into outer loop
Wrong parameter estimates

Concern regards NFP algorithm, not actual statistical
properties of BLP
Our solution is MPEC

Mathematical program with equilibrium constraints
MPEC & NFP are statistically the same estimator (Berry,
Linton & Pakes 2004)
See Su & Judd (2008) for non-demand applications
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Our contributions

1 Analyze numerical properties of the NFP algorithm
2 Poor implementation can lead to wrong parameter estimates
3 MPEC: alternative computational method

Impossible to have same numerical errors as NFP
Can execute faster than NFP
Applies to models where contraction mapping does not exist

Richer static models, Gandhi (2008)
Many forward-looking, dynamic demand models
Even models with multiple demand shocks to satisfy market
shares?

4 Issues with NFP more severe in dynamic demand applications

Multiple nested loops
Bellman iterations more computationally expensive
MPEC’s advantage may be even greater in these cases
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Discrete choice demand model

ui ,j ,t = β0
i + x ′j ,tβ

x
i − β

p
i pj ,t + ξj ,t + εi ,j ,t

Consumer i , choice j ∈ J, market t ∈ T
Product characteristics xj ,t , pj ,t , ξj ,t

ξj,t not in data

β0
i , β

x
i , β

p
i random coefficients

Distribution Fβ (β; θ)
BLP’s statistical goal: estimate θ in parametric distribution

εi ,j ,t extreme value shock (logit)
i picks j if ui ,j ,t ≥ ui ,k,t∀ k ∈ J, k 6= j
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Market shares

sj (xt , pt , ξt ; θ) =

ˆ
{βi ,εi |ui,j≥ui,j′ ∀ j′ 6=j}

dFβ (β; θ) dFε (ε)

With logit errors

sj (xt , pt , ξt ; θ) =

ˆ
β

exp
(
β0 + x ′j,tβ

x − βppj,t + ξj,t

)
1 +

∑J
k=1 exp

(
β0 + x ′k,tβx − βppk,t + ξk,t

)dFβ (β; θ)

Simulate numerical integral

ŝj (xt , pt , ξt ; θ) =
1
ns

ns∑
r=1

exp
(
β0,r + x ′j,tβ

x,r − βp,rpj,t + ξj,t

)
1 +

∑J
k=1 exp

(
β0,r + x ′k,tβx,r − βp,rpk,t + ξk,t

)
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Inner loop of NFP approach

Compute ξ numerically

ξ (θ) = s−1 (S ; θ)

BLP propose a contraction-mapping

For each guess θ iterate on

ξh+1
t = ξht + log St − log s

(
ξht ; θ

)
, t = 1, . . . ,T

Stop when
∥∥ξht − ξh+1

t
∥∥ ≤ εin

Guaranteed to find a solution from any starting value

Why other nested methods (Newton’s method, etc) not
popular
Davis (2007)
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Moment Condition

Assume E [ξj ,tzj ,t ] = 0 for some instruments zjt
Empirical analog

g (ξ (θ)) =
1
T

T∑
t=1

J∑
j=1

ξj,t (θ)′ zj,t =
1
T

T∑
t=1

J∑
j=1

s−1
j,t (S ; θ)′ zj,t

Data
{

(xj ,t , pj ,t , sj ,t , zj ,t)J
j=1

}T

t=1

Dubé, Fox and Su Numerical Performance of BLP



Two Approaches to GMM Estimator

NFP: Inner loop

min
θ

g
(
s−1 (S ; θ)

)′Wg
(
s−1 (S ; θ)

)
For each guess of θ, need to find implied ξj,t (θ)

MPEC: Constrained optimization

min
θ,ξ

g (ξ)′Wg (ξ)

subject to s(ξ; θ) = S
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Contraction Mapping Theorem
Some details skipped

Assume that T is a contraction mapping:∥∥∥T (ξ)− T (ξ̃)
∥∥∥ ≤ L (θ)

∥∥∥ξ − ξ̃∥∥∥
L < 1 is called a Lipschitz constant

The multidimensional equation ξ = T (ξ) has a unique solution
ξ∗

Solution can be obtained by the convergent iteration process
ξh+1 = T (ξh), for h = 0, 1, . . .
Convergence from “any” starting value.

The error at the hth iteration is bounded∥∥∥ξh − ξ∗∥∥∥ ≤ ∥∥∥ξh − ξh−1
∥∥∥ L (θ)

1− L (θ)
≤
∥∥ξ1 − ξ0∥∥ L (θ)h

1− L (θ)
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Lipschitz constant for BLP contraction mapping

can show it’s related to Jacobian of iteration operator

L = max
ξ∈D
‖I −∇ (log s (ξ; θ))‖,

where ∂(log sjt(ξ;θ))
∂ξlt

is, for j = l and j 6= l respectively

nsX
r=1

264
0@ exp

“
x ′jtβ

r − αrpjt + ξjt

”
1 +

PJ
k=1 exp

`
x ′ktβ

r − αrpkt + ξkt
´
1A−

0@ exp
“
x ′jtβ

r − αrpjt + ξjt

”
1 +

PJ
k=1 exp

`
x ′ktβ

r − αrpkt + ξkt
´
1A2375

nsX
r=1

exp
“
x ′jtβ

r − αrpjt + ξjt

”
1 +

PJ
k=1 exp

`
x ′ktβ

r − αrpkt + ξkt
´

−
nsX

r=1

240@ exp
“
x ′jtβ

r − αrpjt + ξjt

”
1 +

PJ
k=1 exp

`
x ′ktβ

r − αrpkt + ξkt
´
1A exp

`
x ′ltβ

r − αrplt + ξlt
´

1 +
PJ

k=1 exp
`
x ′ktβ

r − αrpkt + ξkt
´!
35

nsX
r=1

exp
“
x ′jtβ

r − αrpjt + ξjt

”
1 +

PJ
k=1 exp

`
x ′ktβ

r − αrpkt + ξkt
´
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Theorems in Paper
Primarily using Taylor series / local analysis

Use ξ (θ, εin), programmed objective function with nonzero
tolerance and ξ (θ, 0), hypothetical inner loop with no
numerical error
Gradient, objective function numerical error is O

(
L(θ)

1−L(θ)εin

)
For the outer-loop GMM minimization to converge, the
outer-loop tolerance εout should be chosen to satisfy
εout = O

(
L(θ)

1−L(θ)εin

)
If εin = 10−6, the numerical error in parameter estimates is
around 10−3

Numerical error does not go away in large samples
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Loose inner loop + numerical derivatives = bad news
Application of Lemma 9.1 in Nocedal & Wright (2006)

Most scholars use smooth optimizers, which use gradient
information
Gradient often approximated by numerical derivatives

∇dQ (ξ (θ, εin)) =

{
Q (ξ (θ + dek , εin))− Q (ξ (θ − dek , εin))

2d

}|θ|
k=1

Gradient error bounded

‖∇dQ (ξ (θ, εin))−∇Q (ξ (θ, 0))‖∞ ≤ O
(
d2)+ 1

d
O
(

L (θ)

1− L (θ)
εin

)
Search algorithm could go in wrong direction because of
numerical error!
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Simulated data setup

T = 50, J = 25 (large T needed to identify intercept) x1,j ,t
x2,j ,t
x3,j ,t

 ∼ N

 0
0
0

 ,
 1 −0.8 0.3
−0.8 1 0.3
0.3 0.3 1


ξj ,t ∼ N (0, 1)

pj ,t =
∣∣∣0.5 · ξj ,t + ej ,t + 1.1 ·

∑3
k=1 xk,jt,t

∣∣∣
zj ,t,d ∼ U

(1
4pj ,t − 0.5 · ξj ,t , 1

)
, D = 6 instruments

Fβ (β; θ): 5 independent normal distributions (K = 3
attributes, price and the intercept)
βi =

{
β0

i , β
1
i , β

2
i , β

3
i , β

p
i
}
: E [βi ] = {0.1, 1.5, 1.5, 0.5,−3} and

Var [βi] = {0.5, 0.5, 0.5, 0.5, 0.2}
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Simulation draws

Goal is not to discuss error from numerical integration
Use same 100 draws in numerical integrals in data creation
and estimation
No numerical error from integration
In practice, multiply all computing times by 100

10,000 draws

Not clear fewer draws favors either NFP, MPEC
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Software details

MATLAB, highly vectorized code

Parallelizes well

Optimization software KNITRO

Professional quality optimization program
Can be called directly from R2008a version of MATLAB
We call from TOMLAB
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Loose versus tight tolerances for NFP
With numerical derivatives

NFP NFP NFP Truth
Loose Loose Tight
Inner Both

Fraction Convergence 0.0 0.54 0.95
Frac.< 1% > “Global” Min. 0.0 0.0 1.00
Mean Own Price Elasticity -7.24 -7.49 -5.77 -5.68

Std. Dev. Own Price Elasticity 5.48 5.55 ~0
Lowest Objective 0.0176 0.0198 0.0169

Elasticity for Lowest Obj. -5.76 -5.73 -5.77 -5.68

100 starting values for one dataset
NFP loose inner loop: εin = 10−4, εout = 10−6

NFP loose both: εin = 10−4, εout = 10−2

NFP tight: εin = 10−14, εout = 10−6
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Nevo’s cereal data: Loose versus tight tolerances for NFP
With closed-form derivatives

NFP NFP NFP
Loose Loose Tight
Inner Both

Fraction Convergence 0.0 0.81 1.00
Frac.< 1% > “Global” Min. 0.0 0.0 1.00
Mean Own Price Elasticity -3.75 -3.69 -7.43

Std. Dev. Own Price Elasticity 0.03 0.08 ~0
Lowest Objective 15.3816 15.4107 4.5615

Elasticity for Lowest Obj. -3.77 -3.77 -7.43

Nevo (2000) cereal data (pseudo-real) – prices, quantities,
characteristics across multiple markets
25 starting values
NFP loose inner loop: εin = 10−4, εout = 10−6

NFP loose both: εin = 10−4, εout = 10−2

NFP tight: εin = 10−14, εout = 10−6
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Multiple local minima / Knittel and Metaxoglou (2008)

We find NFP with tight inner loop often finds global minimum

Multiple local minima do exist, but not insurmountable

They used NFP and 50 starting values
They claim BLP unreliable because different starting values
find different local optima
We find they did not check solver error messages, used
unreliable solvers
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Lessons learned

Loose inner loop causes numerical error in gradient

Can converge to wrong point
Can fail to diagnose convergence of outer loop
Early stops, false estimates

Making outer loop tolerance loose allows “convergence”

But to false solution

We will now code derivatives

Improves performance of smooth optimizers
Same component functions for derivatives
Helpful for standard errors
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Our alternative constrained optimization approach

MPEC (general idea from Su & Judd 2007)

min
θ,ξ

g (ξ)′Wg (ξ)

subject to s(ξ; θ) = S

Market share equations enter as constraints
No inner loop / contraction mapping
MPEC uses constrained optimization: standard numerical
problem
The moment condition term g (ξ) is just

g (ξ) =
1
T

T∑
t=1

ξtzt
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MPEC and NFP have identical local minima

Theorem
Set of first order conditions to MPEC problem equivalent to set of
first order conditions to true (no numerical error) NFP

Proof
NFP is min

θ
Q (ξ (θ))

FOC is ∂Q(ξ(θ))
∂θ = dξ

dθ
′ ∂Q
∂ξ = 0

MPEC Lagrangian is L (θ, ξ, λ) = Q(ξ)− λT (S − s(ξ; θ))

FOC’s include
∂L (θ, ξ, λ)

∂θ
= −ds(ξ; θ)

dθ

′
λ = 0

∂L (θ, ξ, λ)

∂ξ
=
∂Q
∂ξ
− ds(ξ; θ)

dξ

′
λ = 0

∂L
∂θ = −ds(ξ; θ)

dθ

′(ds(ξ; θ)

dξ

′)−1
∂Q
∂ξ

= 0, (ds(ξ;θ)
dξ is invertible)

Implicit function theorem: ∂ξ(θ)
∂θ = −

(
ds(ξ;θ)

dξ

)−1 ds(ξ;θ)
dθ
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MPEC advantages vs. NFP

No nested contraction mapping
No numerical error from inner loop

Can be faster
Contraction mapping converges linearly vs. Newton’s method
(MPEC) converges quadratically
Market share equations hold only at final solution, not at every
iteration
Market share equations exposed to optimizer
Optimizer has gradient and sparsity pattern of constraints to
exploit
Objectives, constraints less nonlinear in parameters
Larger, smoother, sparser problem can be easier than smaller,
rougher, denser problem

Can be applied to models where there is no contraction
mapping

Uniqueness (Gandhi 2008)
No uniqueness?
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Lipschitz constants for NFP contraction mapping

Parameter Std. Dev. of # of Mean of Intercept
Scale Shocks ξ Markets T E

ˆ
β0

i
˜

Value Lipschitz Value Lipschitz Value Lipschitz Value Lipschitz
0.01 0.985 0.1 0.808 25 0.860 -2 0.771
0.1 0.971 0.25 0.813 50 0.871 -1 0.871
0.50 0.887 0.5 0.832 100 0.888 0 0.936
0.75 0.865 1 0.871 200 0.888 1 0.971
1 0.871 2 0.934 2 0.988
1.5 0.911 5 0.972 3 0.996
2 0.938 20 0.984 4 0.998
3 0.970
5 0.993
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Speeds, # convergences and finite-sample performance

Intercept Lips. Routine Runs CPU Own-Price Elasticities

E
ˆ
β0

i
˜

Const. Conv. Times Bias RMSE

-2 0.806 NFP tight 1 1184.1 0.026 0.254
MPEC 1 1455.1 0.026 0.254

-1 0.895 NFP tight 1 1252.8 0.029 0.258
MPEC 1 1528.4 0.029 0.258

0 0.950 NFP tight 1 1352.5 0.029 0.265
MPEC 1 1564.1 0.029 0.265

1 0.978 NFP tight 1 1641.1 0.029 0.270
MPEC 1 1562.5 0.029 0.270

2 0.991 NFP tight 1 2498.1 0.030 0.273
MPEC 1 1480.7 0.030 0.273

3 0.997 NFP tight 1 5128.1 0.031 0.276
MPEC 1 1653.9 0.030 0.278

4 0.999 NFP tight 1 9248.5 0.032 0.279
MPEC 1 1881.8 0.031 0.279
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Lessons learned

For low Lipschitz constant, NFP and MPEC can be about the
same speed
For high Lipschitz constant, NFP may become very slow

Remember: multiply times by 100 for reasonable simulation
draws!

MPEC speed can be relatively invariant to Lipschitz constant

No contraction mapping in MPEC

Dubé, Fox and Su Numerical Performance of BLP



Speed for varying # of markets

Concern: MPEC has lots of auxiliary optimization parameters
(# of markets times # of products)

MPEC has trade-off between quadratic convergence and
dimension of optimization
MPEC may perform poorly with large numbers of markets

Answer: MPEC may be competitive with NFP in these settings

# Mark. Lips. Routine Runs CPU
T Const. Conv. Time

25 0.937 NFP 1 258.5
MPEC 1 226.8

50 0.944 NFP 1 780.0
MPEC 1 564.7

100 0.951 NFP 1 2559.6
MPEC 1 2866.0

200 0.953 NFP 1 6481.7
MPEC 1 2543.6

Dubé, Fox and Su Numerical Performance of BLP



Field data: Nevo’s cereal data

NFP finds same local minimum for all 50 runs with objective
function 4.5615
MPEC finds same local minimum for 48 of 50 runs with
objective function 4.5615
Avg. CPU time: 763.14 sec (NFP) vs. 544 sec (MPEC)
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Extension: maximum likelihood estimation of BLP model

MLE more efficient, facilitates testing models

Add parametric distributional assumption on ξj,t

Still need NFP / MPEC
Likelihood has Jacobian term from ξj ,t ’s to shares
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Extension: Dynamic BLP with forward-looking consumers

Consumers have expectations over future

Real option value of no-purchase: delay choice to future

Durable goods with declining prices
Stockpiling with temporary discounts
Purchasing upgrades and resale of existing products

Melnikov (2002), Nair (2007), Gowrisankaran and Rysman
(2007), etc.

Still endogeneity / stochastic model motivations for demand
shocks ξj ,t
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Example: durable goods with falling prices

J = 2 products, R consumer types, T time periods

log (pj ,t) = p′t−1ρj + ψj ,t

Expected Value of waiting

v r
0 (pt ; θr ) = δ

ˆ
max

(
v r
0
`
p′tρj + ψ; θr

´
+ ε0

maxj

n
βr

j − α
r `p′tρj + ψ

´
+ ξj + εj

o )
dFε(ε)dFψ,ξ (ψ, ξ)

Tastes θh ≡
[
βh

αh

]
=


θ1, Pr(1) = λ1
...

...

θR , Pr(R) = 1−
R−1
Σ

r=1
λr

Joint density of (ξj ,t , ηj ,t) ∼ N (0,Ω)
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An NFP approach to Maximum Likelihood

Empirical model

ut ≡
»
ψt
ξt

–
=

»
log
`
pj,t
´
− p′t−1ρj

s−1 (pt , St ; θ)

–

sj (pt ; θ) =
R
Σ

r=1
λt,r

exp(βr
j −α

rpj,t+ξj,t )

exp(v r
0(pt ;θr ))+

PJ
k=1 exp

“
βr
k−α

rpk,t+ξk,t

”

v r
0 (pt ; θr ) = δ

´
max

(
v r
0
`
p′tρj + ψ; θr

´
+ ε0

maxj

n
βr

j − α
r `p′tρj + ψ + ψ

´
+ ξj + εj

o )
dFε(ε)dFψ,ξ (ψ, ξ)

Optimization problem

max
{θ,ρ,Ω}

TY
t=1

1

(2π)
3J
2 |Ω|

1
2
exp

„
−1
2
u

′
tΩ−1

u ut

«
|Jt,u→Y |
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NFP algorithm now has three loops!

Two inner loops

Compute consumer’s value function, v r
0(pt) (Bellman equation

is a contraction mapping)
Compute ξj,t by inverting market shares (BLP contraction
mapping)
In some dynamic models, BLP contraction mapping may not
converge

Outer loop is optimization of the objective function (max of
likelihood)
Exacerbates incentive to loosen tolerances
Some specifications may have additional inner loops

Complementary goods’ demand shocks (Lee 2008)
Value function after buying (Gowrisankaran and Rysman 2007,
Dube, Hitsch and Chintagunta 2008)
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An MPEC approach to dynamic demand

Optimization problem

max
{θ,ρ,Ω,ξ,v}

TQ
t=1

1

(2π)
3J
2 |Ω|

1
2
exp

“
− 1

2u
′
tΩ−1

u ut

”
|Jt,u→Y |

subject to s(ξt ; θ) = St ∀ t = 1, . . . ,T

and v r
0 (pd ) = δ log

0@ exp (v r
0(p′dρj + ψ)) + ...P

j
exp

`
βr

j − αr (p′dρj + ψ) + ξj
´ 1A dFψ,ξ (ψ, ξ)

∀ d ∈ D, r = 1, . . . ,R.

Constrained optimization combines

Maximization of likelihood
Dynamic programming
Market share inversion / demand shocks
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Early results from a Monte Carlo study

Bias RMSE

θ MPEC NFP MPEC NFP

β1 : 4 7.5E-03 4.6E-02 1.7E-01 1.5E-01
β2 : -1 6.2E-03 3.7E-02 1.5E-01 1.2E-01
α : -0.15 -1.1E-04 -2.9E-04 8.0E-04 5.4E-04

ρ

int1 : 5 9.4E-03 1.9E-02 4.9E-02 4.6E-02
ρ1,1 : 0.8 9.5E-05 -2.1E-04 1.2E-03 1.2E-03
ρ1,2 : 0.2 -1.6E-04 -3.8E-05 1.5E-03 1.7E-03
int2 : 5 8.9E-03 6.6E-04 5.9E-02 3.2E-02
ρ2,1 : 0.1 -7.0E-05 1.5E-04 1.1E-03 5.6E-04
ρ2,2 : 0.55 -6.5E-05 -4.5E-04 1.4E-03 8.8E-04

chol(Ω)

1 -4.1E-03 -4.5E-03 1.7E-02 1.7E-02
0.866 -1.7E-03 -5.5E-04 1.5E-02 1.4E-02
0.5 -7.9E-04 -2.4E-03 2.0E-02 1.9E-02

Avg CPU time (sec) 4579 16,971 4579 16,971
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Conclusions

BLP very important innovation in demand estimation
Concerns with NFP algorithm

Can be slow
Numerical derivatives + loose inner loop can lead to incorrect
parameter estimates

MPEC applied to BLP
Can be faster

Especially when NFP’s Lipschitz constant close to 1

Fewer numerical errors
No inner loop to propagate errors

Can apply to models where there is no contraction mapping

Degree of advantage of MPEC over NFP may increase with
dynamic BLP

NFP nests multiple inner loops
Typically linearly convergent contraction mappings
Amplifies benefits of quadratic convergence in MPEC
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