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Abstract 
 
This paper reports the results of experiments constructed to test the effects of demand 
information (knowledge of the demand function or schedule) and monitoring (knowledge 
of rivals’ actions) on collusion in infinitely repeated games. In addition, the treatments 
encompass the assumptions of two highly influential theories (Green and Porter [1984] 
and Rotemberg and Saloner [1986]), thereby allowing for a test of the predictions of each 
theory. Given the numerous theoretically possible equilibria, this last exercise is 
important as it improves our understanding of which equilibria appear more empirically 
plausible. Results indicate that monitoring is a key factor in facilitating collusion, but, 
contrary to conventional wisdom, demand information does not improve collusion and in 
some cases it may even decrease cooperation. Both theories tested receive empirical 
support as possible explanations of behavior; however, in both cases data appears to be 
best described by permanent price wars (i.e. grim-trigger strategies) rather than by the 
temporary price wars for which both theories are known. We discuss these findings 
within the broad set of possible strategies and equilibria. 
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1. Introduction 

Firms’ coordination to obtain high profits has been a continuous concern for researchers 

and antitrust authorities. As a consequence, there exists a large body of theoretical work 

on the factors that determine the likelihood of collusion. But analyzing collusion 

empirically is difficult because the illegal status of cartels makes field data scarcely 

available. Importantly, with many exogenous and unobservable factors in field data, the 

task of identifying and estimating the effect of different market conditions on collusion 

becomes problematic. One objective of this paper is to improve the understanding of the 

role of two factors that have been prominent in models of repeated interaction with 

demand uncertainty: demand information (knowledge of the demand function or 

schedule) and monitoring (knowledge of rivals’ actions). The general strategy is to 

analyze the effects of these factors on collusion by generating data from controlled 

experiments that resemble various demand information and monitoring conditions. 

The motivation comes from two models that have been highly influential in the 

development of the theoretical and empirical literature on cartel stability: Green and 

Porter (1984) and Rotemberg and Saloner (1986) [GP and RS henceforth]. Both models 

assume an uncertain (stochastic) demand structure, but differ on their assumption about 

firms’ information regarding the actual demand realization (e.g. high, low). RS assume 

that firms have perfect foresight about demand next period (i.e. the demand realization 

can be anticipated) whereas GP assume that firms are always uncertain about (future and 

past) demand realizations. In addition, GP assume that monitoring among cartel members 

is imperfect (i.e. comes in the form of a noisy public signal),2 whereas RS assume that 

monitoring is perfect. Our experimental design is guided by these differences in 

assumptions: in two of our treatments monitoring and demand information differ in the 

same way as GP and RS differ. In a third, ‘intermediate’, treatment there is uncertainty 

about next period’s demand realization (as in GP) but monitoring is perfect (as in RS); 

this treatment allows us to separate the imperfect monitoring effect from the imperfect 

demand information effect. 

                                                 
2 This assumption is needed so that uncertainty about past demand realizations persists into the future.  
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Interestingly, the differential treatment of demand information and monitoring 

assumptions by GP and RS generate theoretical predictions that appear to be “at odds” 

(Ellison, 1994: 38). GP show that price wars in a cartel may be triggered by unusually 

small demand shocks, but RS show that a cartel may experience price wars during 

periods of unusually large demand shocks.3  A usual interpretation of these theories is 

that GP predicts more collusion during booms, while RS predicts more collusion during 

recessions.4 Given the divergent predictions of these theories and our encompassing 

experimental design, we test each theory’s internal validity; this is the second objective of 

this research.  

It is important to point out, however, that GP and RS are not mutually exclusive 

theories, and results from our second objective may well indicate that each model is valid 

in its own domain. Instead, our effort is to investigate the empirical plausibility of each 

theory. Studying each theory’s internal validity is important for at least two reasons. First, 

with field data there is no guarantee that firm behavior that appears to correspond to the 

predictions of a given theory (even if the theory’s assumptions appear to hold) is a 

consequence of the theory at work (e.g. Frechette, Kagel and Morelli, 2005).  Second, 

from a practical perspective, the multiplicity of equilibria in infinitely repeated games 

and the large number of theories on collusion makes it important for empirical 

economists to identify the empirically plausible equilibria from the set of theoretically 

possible equilibria; experiments can be a particularly useful tool in this effort. For 

example, if the predictions of a collusive theory hardly emerge in a simple controlled 

environment, then there should be more skepticism in labeling an industry as collusive 

when its behavior resembles the predictions of such theory. 

                                                 
3 RS is also interpreted as a model of ‘countercyclical’ pricing. Here, the alternative interpretation of price 
wars during booms is adopted since it fits better with the experimental design of two strategies (collusion 
and non-collusion). Because of our specific design, the terms “price wars”, “non-collusive outcome” and 
“competitive outcome” will be used interchangeably throughout the paper. 
4 A subtle difference is that in GP the duration of a price war is endogenously determined (i.e. the price war 
is triggered by low demand and remains in place regardless of demand realizations during the ‘punishment’ 
period), whereas in RS a price war is state dependent: it only emerges when the demand shock is unusually 
large. 
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Specifically, we test whether the collusive equilibrium path for which GP is 

known (finite price wars triggered by low demand) is supported by the data. For the RS 

theory, we test the equilibrium prediction that price wars should occur during high 

demand periods whereas collusion should occur otherwise. We also study strategies at the 

individual level to determine whether the strategies implied by each theory constitute a 

reasonable explanation of behavior when compared with other plausible strategies. 

Finally, we study how the RS and GP equilibria explain behavior with respect to other 

possible equilibria.  

Results indicate that monitoring appears to be a critical factor in facilitating 

collusion. Conversely, contrary to conventional wisdom, demand information does not 

appear to have the expected effect on collusion: removing demand information does not 

decrease (and in some cases increases) collusion. The results provide some support for 

both the RS and the GP predictions; however, evidence appears to be stronger for 

permanent price wars (i.e. grim-trigger strategies) rather than the temporary reversions 

for which both theories are known for. This is important as one of the several GP 

equilibria allows for permanent price war, while the RS equilibria do not permit this 

possibility. 

Section 2 reviews the literature while section 3 describes the model. Section 4 

provides details of the experimental design and section 5 describes its implementation. 

Section 6 presents the results and section 7 discusses our main findings. 

2. Literature Review 

Friedman (1971) showed that if firms are patient enough in a non-cooperative 

infinitely repeated game, a trigger strategy (reversion to Cournot production levels when 

market price dropped below a threshold) would produce an equilibrium in which no firm 

has an incentive to deviate. According to this early view, the existence of price wars in 

oligopoly markets was interpreted as a sign of cartel breakdown. However, GP show that 

instead of a symptom of unsuccessful collusion, finite price wars may be part of a 

‘collusive’ equilibrium path. GP modify Friedman’s model by allowing for a stochastic 
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demand structure and imperfect monitoring of rivals’ actions.5 As in Friedman, collusion 

can be sustained through the use of trigger strategies, but now switching from the 

collusive outcome to the competitive outcome (after an unusually low demand state) is 

only temporary. More importantly, the seminal result of this model is that price wars are 

part of the collusive equilibrium path as they constitute a self-enforcing mechanism used 

by successful colluders. 

 RS propose a model with a stochastic environment similar to that of GP. The 

main differences between RS and GP is that firms know next period’s demand shock 

realization prior to setting their quantity (or price) and that firms can perfectly monitor 

rivals’ choices. In this environment, firms’ incentive to deviate from the collusive 

outcome is positively correlated with next period’s demand shock and for unusually large 

(and positive) demand shocks this incentive  more than offsets the expected future losses 

of a reversion to the competitive outcome. A cartel is thereby predicted to be less stable 

during “booms”. To avoid the competitive outcome during large demand shock periods, 

firms limit the incentives to deviation by reducing (increasing) their “collusive” price 

(quantity) below (above) the monopoly level. The resulting collusive equilibrium path 

has firms pricing in a countercyclical fashion.6 

Empirical work assessing the validity of the GP theory has been restricted to data 

from the 19th century Joint Executive Committee (JEC). However, limited data and an 

uncontrolled field environment do not allow a direct test of the GP theory. As a result 

most of the work with these data has been concerned with finding evidence for the 

existence of regime switching between high and low prices (see Ellison, 1994, and 

references cited therein).7 Empirical work on the RS theory has focused on its 

countercyclical pricing prediction; this has been a puzzling issue as it runs 

counterintuitive to conventional wisdom (i.e. a rightward shift in demand should increase 

                                                 
5 Note that with imperfect monitoring, uncertainty about demand in period t is extended to periods t+i, 
i=1,…∞. 
6 RS consider IID demand shocks. Haltiwanger and Harrington (1991) and Kandori (1991) show that, under 
certain conditions, countercyclical pricing also holds with cyclical demand, but Bagwell and Staiger (1997) 
show that in other stochastic conditions the RS results are reversed. 
7 Ellison also uses the JEC data to search for evidence supporting the RS theory; however, he finds better 
support for the GP theory. 



 5

equilibrium price) but is nevertheless frequently observed in many markets (e.g. soft 

drinks during summer, turkey during Thanksgiving). Prior research has tried to explain 

this pattern against other competing models and has found little support for RS as an 

explanatory theory (Chevalier, Kashyap and Rossi, 2003).  

On the experimental front, there has been work studying how demand information 

and monitoring affect collusion/cooperation in repeated games. This literature has 

addressed either monitoring or demand information, but not both, and in rather specific 

ways. The role of imperfect monitoring on collusion has been studied Holcomb and 

Nelson (1991, 1997), Bereby-Meyer and Roth (2006), and Aoyagi and Frechette (2008). 

Holcomb and Nelson study repeated duopoly games in which opponent’s quantity 

choices are randomly changed by the experimenter 50% of the time; they find that 

collusion increases in treatments where this manipulation of the opponent’s quantity 

choice is not present. Imperfect monitoring in this experiment, however, comes from a 

private signal administered by the experimenter to either subject rather than from noisy 

demand (as assumed by theory). 

 Bereby-Meyer and Roth study the speed of learning in the finitely repeated 

prisoner’s dilemma game and find that cooperation decreases when payoffs are noisy, 

even when players can monitor opponents’ actions. Aoyagi and Frechette study 

experiments on the infinitely repeated prisoner’s dilemma game when players are given a 

noisy public signal about the pair of strategies (out of the four possible in the prisoner’s 

dilemma game) chosen by two players.8 The authors find that payoffs decrease with 

noise. The authors also test the existence of a threshold strategy, similar to that of GP, 

that switches between cooperation and punishment as a function of the noise and find that 

subjects follow a simple threshold strategy that considers only the most recent public 

signal. 

Cason and Mason (1999) and Feinberg and Snyder (2002) investigate the role of 

demand information on collusion. Cason and Mason analyze how firms’ decisions of 

whether to share information can facilitate collusion in an environment of demand 
                                                 
8 A downside of this design is that to make imperfect monitoring possible, subjects are never informed of 
their period earnings but only of their accumulated earnings at the end of the rounds. 
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uncertainty. In different treatments, subjects accessed information about the state of 

demand in different ways.  The main result is that subjects generally decided to share 

information to reduce uncertainty, which led to output reductions. However, in treatments 

where subjects did not have the choice of sharing information, information itself did not 

increase tacit collusion. Feinberg and Snyder claim that uncertain demand shocks do 

interfere with collusion, although few data points and an apparent ‘group effect’ do not 

allow a clear interpretation of the results. 

3. The Model 

The model is based on the prisoner’s dilemma game. There are at least two 

reasons for studying collusion in an environment that is a highly simplified version of the 

models that motivate this research: a) we want to give collusion its best possible chance 

of occurrence - subjects’ coordination on the collusive outcome is less likely if a game 

has multiple (or continuous) strategies, and b) we want to give theories their best possible 

chance of occurrence - if theories fail to produce the predicted results in simple 

environments, it is less likely that such results will be observed in more complex 

situations. In addition, simplicity of the experiment reduces subjects’ confusion thereby 

producing more reliable results. 

This simplified model can be thought of as a 2-firm Cournot game with 

homogeneous products, constant marginal cost, symmetric firms, and discrete choices.9 

Three demand states (High (h), Medium (m) and Low (l)) are assumed. There are two 

quantity choices: Low (L) and High (H). The game is infinitely repeated and three 

demand states (i.e. three prisoner’s dilemma games) occur with probabilities 0.60 for 

Medium, and 0.20 for both High and Low. The payoff table for demand state “s” has the 

following structure:10 

                                                 
9 Both RS and GP can be cast as either price or quantity games. With homogeneous products, quantity 
competition seems a more natural wording as the matrices used have non-zero payoffs at the Nash 
equilibrium. Without loss of generality, the prior language of “price war” should be interpreted as the 
Cournot outcome (H). 
10 Although 20% seems like reasonable probability for a positive (negative) demand shock, this choice of 
probabilities may seem somewhat arbitrary (i.e. it is not immediately clear how or whether results would be 
sensitive to the equilibria implied by different probabilities). However, the equilibria implied by a different 
distribution of demand states can also be obtained by changing the values of the payoff tables; we choose 
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Table 1: Typical Payoff Table 

  Player 2 

  L H 

L ,C C
s sΠ Π  ,ND D

s sΠ Π  

Pl
ay

er
 1

 
H ,D ND

s sΠ Π  ,NE NE
s sΠ Π  

 
where, C

sΠ  denotes the Collusive payoff, D
sΠ  the payoff to a ‘deviating’ or cheating 

firm, ND
sΠ  the payoff to a ‘Non-deviating’ firm that has been cheated upon, and NE

sΠ  the 

Nash-Equilibrium payoff, with  > >D C NE ND
s s s sΠ Π Π >Π . The subscript s represents the 

demand state (h, m or l). For a given demand state s, and if firms use a grim-trigger 

strategy (reverting to H forever after a firm deviates from L), it is well known that the 

collusive outcome (L,L) can be supported in equilibrium if (s temporarily omitted): 

                                            
1

( )

( )
1

D C t C NE
t

D C C NE

δ

δ
δ

∞

=
Π −Π < Π −Π

Π −Π < Π −Π
−

∑
                                            (1) 

where δ  is the discount factor. For a given set of payoffs, collusion will be sustainable if 

firms’ discount factor is larger than the critical value, * /D C D NEδ ⎡ ⎤ ⎡ ⎤= Π −Π Π −Π⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ . A 

main feature in the RS and GP models, however, is that demand is stochastic (i.e. s is 

determined probabilistically); this assumption is critical for obtaining the models’ 

predictions: ‘price wars’ (i.e. temporary deviations to H) are observed for some periods 

as a consequence of ‘extreme’ demand shocks and not as a consequence of a ‘breakdown’ 

in collusion.  

The RS Model: Perfect Demand Foresight and Perfect Monitoring 

Although demand is stochastic, RS assume that firms know next period’s demand 

shock (and can monitor rivals’ strategies) but are uncertain about future demand (i.e. 

firms know the distribution of the demand shock for periods t+2 onwards, but not their 
                                                                                                                                                 
this latter route and consider three different payoff structures to check the robustness of our results (see 
sections 6 and 7).  
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realizations). RS assume that players use a grim-trigger strategy and show that for a given 

punishment (RHS of (1)) the incentive to deviate (LHS of (1)) is increasing in the 

demand shock. As a consequence, for a sufficiently high demand shock and a given 

discount factor, the incentive to deviate is greater than the future punishment and thus 

collusion breaks down. In the literature this breakdown is interpreted in two different 

ways: a) as countercyclical pricing and b) as price wars during booms. RS indicate that 

depending on how the strategy space is constructed the model can yield either result: if 

the strategy space is continuous, (smooth) countercyclical pricing will be observed in 

equilibrium; on the other hand, if the strategy space is constrained to either compete or 

collude (as is the case here), then price wars will be observed (RS: 396).  

Accommodating the RS model to our design gives the modified version of 

equation (1): 

           
[ ( )]

1

0.2( ) 0.6( ) 0.2( )
1

D C C NE
s s s s

D C C NE C NE C NE
s s h h m m l l

Eδ
δ

δ
δ

Π −Π < Π −Π
−

⎡ ⎤Π −Π < Π −Π + Π −Π + Π −Π⎢ ⎥⎣ ⎦−

              (2) 

To test the RS theory, a set of payoff tables (parameterization 1, see section 4 

below) are constructed so that equation (2) holds only for the medium (m) and low (l) 

demand states but not for the high (h) demand state. As is the case with infinitely 

repeated games, however, the RS prediction is one of several equilibria. We adapt the 

results in Stahl II (1991) to our stochastic setting and compute the set of equilibria that 

can be derived from a grim-trigger strategy in the parameterizations considered. In 

addition, we consider whether equilibria can be supported by finite punishment strategies 

and compute the corresponding minimum price war length. Appendix A contains 

computational details and the results of this exercise. Understanding the set of possible 

equilibria and the set of possible optimal punishment strategies allows us to compare the 

evidence for the RS equilibrium with respect to alternative explanations.  

The GP Model: No Demand Foresight and Imperfect Monitoring 

At any t, GP assume that firms only know the distribution of the demand 

schedule. In addition, firms can only imperfectly monitor their rivals’ quantity choices 
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through a noisy signal: the market price. These two sources of uncertainty impede firms 

from inferring their opponents’ strategies even after the realization of demand. GP show 

that finite punishment strategies (reversion to H) can be sustained in an equilibrium path 

in which no firm deviates from the collusive agreement. These finite punishment periods 

are triggered by a low market price: since there is imperfect monitoring of rivals’ actions, 

a low price can either denote a negative demand shock or a rival’s deviation. As with 

other cartel models, GP entertain a collusive equilibrium in which no firm has an 

incentive to deviate from the agreement. Hence, in this sort of equilibrium, the low price 

can only be a consequence of a negative demand shock. Nonetheless, rational firms will 

want to punish themselves and their rivals during periods of low demand, otherwise the 

threat of reverting to the Nash-Equilibrium is not credible. 

 The GP model involves a more complex optimization problem in which the length 

of the punishment, the trigger price and the level of collusion have to be adjusted.  An 

advantage of our experimental design is that it allows calibration of the payoff tables to a 

GP equilibrium with any desired punishment length. The GP equilibrium is based on the 

assumption that firms use a trigger strategy which establishes that all players reverse to 

the Nash equilibrium ( ,H H ) for N  periods when the noisy signal (price) falls below 

threshold level k.11  

Denote firm i ’s choice as { },iy L H∈  and the expected discounted future payoffs 

of choosing iy  as ( )i iV y . Also, denote ( | )f p y  as the density function that determines 

the probability of observing price level p given the outcome ( , )i jy y y= , and ( | )F p y  

its corresponding cumulative distribution function. The expected payoff in each 

reversionary period is given by: 0.2 0.6 0.2NE NE NE
i h m lλ = Π + Π + Π , and the (next-period) 

expected profit when the opponent is sticking to the collusive quantity (L) is: 

0.2 0.6 0.2     if   
( )

0.2 0.6 0.2    if   

C C C
h m l i

i i D D D
h m l i

y L
y

y H
γ

⎧⎪ Π + Π + Π =⎪⎪=⎨⎪ Π + Π + Π =⎪⎪⎩
 

                                                 
11 Our payoff matrices are constructed to accommodate imperfect monitoring (see section 4). Appendix C 
describes how the implied price of our payoff matrices represents a noisy public signal (as required by the 
GP theory). 
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and the resulting Bellman’s equation is: 

1
1

1
1

( ) (1 ) ( ) ( )      if  
( )

( ) (1 ) ( ) ( )      if  

NL L t N
i k i k i i it

i i NH H t N
i k i k i i it

L F V L F V L y L
V y

H F V H F V H y H

γ δ δ λ δ

γ δ δ λ δ

+
=

+
=

⎧ ⎡ ⎤⎪ + − + + =⎪ ⎢ ⎥⎪ ⎣ ⎦⎪=⎨⎪ ⎡ ⎤⎪ + − + + =⎢ ⎥⎪⎪ ⎣ ⎦⎩

∑
∑

           (3) 

where, ( | )L
k i jF F k y y L= = =  and ( | ; )H

k i jF F k y H y L= = = . That is, for a given 

threshold level k, firm i’s decision shifts the probability with which the observed price 

level may fall below k.  The GP equilibrium path specifies that a price war is triggered 

when the noisy signal falls below a given threshold level k and (since firms are colluding) 

the only way price may fall is because demand contracts. In our design, finding the k 

suggested by GP is straightforward: the price that corresponds to the collusive profit in 

the low demand state ( C
lΠ ), which we denote as p . Thus, for p  and a given punishment 

period N , the GP equilibrium exists if: 

1
1

( ) (1 ) ( ) ( )NL L t N
i k p i k p i it

L F V L F V Lγ δ δ λ δ +
= = =

⎡ ⎤+ − + + >⎢ ⎥⎣ ⎦∑� �  

1
1

( ) (1 ) ( ) ( )NH H t N
i k p i k p i it

H F V H F V Hγ δ δ λ δ +
= = =

⎡ ⎤+ − + +⎢ ⎥⎣ ⎦∑� �  

Solving for ( )i iV y  and after some manipulation, the equilibrium condition becomes: 

       1 1

(1 ) (1 )( ) ( )
1 1( ) ( )

1 (1 ) 1 (1 )

N N
L H

i k p i i k p i
i iL H N H H N

k p k p k p k p

L F H F
V L V H

F F F F

δ δ δ δγ λ γ λ
δ δ

δ δ δ δ

= =

+ +
= = = =

− −+ +
− −= > =

− − − − − −

� �

� � � �
          (4) 

Of course, there could be many values of N for which this condition holds (or 

none at all), including the N=∞. Similarly, there can be several thresholds (prices) for 

which one can find a finite N such that (4) holds. Computation of all feasible equilibria 

(including all feasible punishment lengths) can be found in Appendix A (table A.2). As 

with the case of the RS design, we employ the set of feasible equilibria to guide our 

econometric analysis of the likelihood of the GP equilibrium compared with other 

alternatives. 

4. Experimental Design 
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Subjects play the prisoner’s dilemma game for 30 rounds with certainty and the 

continuation probability is set to 0.75 thereafter; this simulates an infinitely repeated 

game with a discount factor (δ) of 0.75 (Fudenberg and Tirole, 1989). We do not 

implement a continuation probability in round 1 (as suggested by Dal Bó, 2005) because 

the focus of the paper is to create an environment with a horizon long enough where 

finite periods of reversion to competition (as predicted by theory) can emerge.12 

In each round subjects simultaneously choose a quantity (High (H) or Low (L)) 

and payoffs are determined by one of three tables:  High Demand (h), Medium Demand 

(m) and Low Demand (h), see table 2. One of the three tables is chosen each round with 

the probabilities indicated above; this probability is known by all subjects in all 

treatments, but the way in which demand information is presented varies across 

treatments.13 

There are two sets of payoff matrices. Note that the main difference between these 

two parameterizations is that deviation is less attractive in parameterization 2: the 

additional profits from deviation are smaller, and reversion to NE play is more costly; the 

reason for two parameterizations is to investigate the robustness of our results and to 

create variation in our data. To illustrate the latter point, parameterization 1 implies that 

the GP equilibrium is not feasible (not even with the use of a grim strategy), while in 

                                                 
12 Our design is a combination of the two types of treatments that Dal Bó proposes for disentangling the 
“shadow of the future” effect from that given by the increased number of expected rounds. In Dal Bó’s 
analysis, one type of treatment has the random stopping rule implemented from round 1 (e.g. δ = 0.75), 
whereas the other type of treatment has a finitely repeated game of equivalent expected length (e.g. 1/(1- 
δ)= 1/(1- 0.75) = 4 rounds). Dal Bó finds that under the first treatment cooperation is higher, but it is not 
clear if there exists an important difference in the strategies used that would compromise the intended 
incentives of our design (Dal Bó only indicates that strategies in the first type of treatment appear to be 
more consistent with the grim strategy, p. 1601). For our design, Dal Bó’s main result means that the level 
of cooperation may be different than that observed under a design that implements a random stopping rule 
from period 1 (i.e. our design is perhaps more likely to have a lower level of cooperation as the number of 
fixed periods is large relative to the number of expected periods under the random stopping rule). Hence, it 
is not clear how using a mixed design (33 rounds for sure and then a random stopping rule) would result in 
strategies (or equilibrium outcomes) that are very different from those one would obtain if the random 
stopping rule were to be implemented from round 1. 
13 To keep treatments comparable, subjects in all sessions are not informed about their opponent’s choice. 
This means that when monitoring is allowed the opponent’s choice can be inferred by looking at the payoff 
tables. 
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parameterization 2 the GP equilibrium is feasible with a punishment length of at least 3 

periods.  

Table 2: Payoff Tables for Three Demand States

Parameterization 1 

High Demand (probability=0.2) 

  Player 2 

  L H 

L 26.00 , 26.00 7.50 , 43.00 

Pl
ay

er
 1

 

H  43.00 , 7.50 12.50, 12.50 

 
Medium Demand (probability=0.6) 

  Player 2 

  L H 

L 7.50 , 7.50 2.10 , 12.50 

Pl
ay

er
 1

 

H 12.50 , 2.10 3.50 , 3.50 

 
Low Demand (probability=0.2) 

  Player 2 

  L H 

L 2.10 , 2.10 0.60 , 3.50 

Pl
ay

er
 1

 

H 3.50 , 0.60 1.00 , 1.00 

 

Parameterization 2 

High Demand (probability=0.2) 

  Player 2 

  L H 

L 31.00 , 31.00 9.00 , 43.00 

Pl
ay

er
 1

 

H 43.00 , 9.00 12.50, 12.50 

 
Medium Demand (probability=0.6) 

  Player 2 

  L H 

L 9.00 , 9.00 2.50 , 12.50 

Pl
ay

er
 1

 

H 12.50 , 2.50 3.50 , 3.50 

 
Low Demand (probability=0.2) 

  Player 2 

  L H 

L 2.50 , 2.50 0.70 , 3.50 

Pl
ay

er
 1

 

H 3.50 , 0.70 1.00 , 1.00 

 

Thus, if the GP predictions are likely to occur, a natural test would be to check 

whether the predictions of the GP theory are more likely to occur in parameterization 2. 
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Likewise, parameterization 1 is calibrated in accordance with the predictions of the RS 

theory (collusion is an equilibrium only in the medium and low demand states), while 

parameterization 2 is not (i.e. collusion is an equilibrium in all demand states). 

Parameterization 2 also serves to check the robustness of our other main result, namely 

the more prominent role of monitoring (rather than demand information) on collusion. 

Instead of specifying a demand function, the payoff tables are constructed so that 

the percentage difference between payoffs across entries remains invariant across demand 

states. For example, in parameterization 1 the payoff in the collusive outcome is about 

100% higher (with some rounding error) than the payoff in the Nash-Equilibrium. The 

reason for constructing payoff matrices in this fashion is that individuals seem to care 

about relative variation in payoffs rather than the absolute variation (Weber, Shafir and 

Blais, 2004); thus, the potential confounding effect of significant variation in relative 

payoffs across demand states is reduced. 

Another behavioral aspect considered is the possibility of risk aversion by 

subjects, which contrasts with the risk neutrality assumption of the theories we 

entertain.14 Because risk aversion may compromise the external validity of our results, we 

estimate the level of risk aversion in our sample by including a risk measurement task in 

the experimental protocol.15 To ensure that our results are robust to the presence of risk 

aversion, we carry out additional sessions with an alternative parameterization 

(parameterization 3, see appendix D); section 7 reports these results. 

The first objective of the paper is to test the role of demand information and 

monitoring on collusion, as motivated by the difference in assumptions between the RS 

and GP theories. To this end, we design two treatments that resemble each theory’s 

assumptions. We also consider a third treatment that contemplates an intermediate case. 

i) Full Information Treatment (FI) [RS theory]: Before a round starts, subjects are told 

which payoff table they will play. Hence, uncertainty about next period’s demand 

state is removed; demand states for future rounds remain unknown, however. 

Similarly, monitoring is possible because in our design it possible to infer the rival’s 
                                                 
14 See Harrison and Ruström (2008) for an extensive review of the evidence of risk aversion in the lab. 
15 Appendix B contains a brief description of the task and the estimation of risk aversion in our sample. 
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strategy after a round’s profit realization.  Payoff tables in parameterization 1 are 

constructed such that the incentive to deviate in the high demand state (LHS of (3)) is 

smaller than the expected value of a future infinite punishment (RHS of (3)). 

Parameterization 2, on the other hand, does not provide incentives to deviate in any of 

the three demand states. Comparisons of results between parameterizations 1 and 2 

will indicate whether the incentives devised by RS work as originally intended. 

ii) Imperfect Monitoring Treatment (IM) [GP theory]: Subjects only know the 

distribution about next period’s demand state: demand next period will most likely be 

normal (medium, probability 0.60) but there is also a chance of experiencing a 

demand shock (high with probability 0.20 and low with probability 0.20). 

With the constructed payoff tables, there is imperfect monitoring about the 

opponent’s choice of output even after profits have been realized for that round.  To 

see this, suppose that player 1 chooses to collude (L) and his profit turns out to be 

2.10 (parameterization 1); if demand was low, it means that the opponent also chose 

the collusive outcome (L), but if demand was medium it means that the opponent 

deviated from it (H). This imperfect monitoring is possible whether a firm follows the 

collusive outcome (L) or the deviates from it (H).16 Importantly, as assumed by GP, 

our design implies that imperfect monitoring is public. To see this, note that because 

subjects know the profit and the quantities chosen, they can also perceive the 

corresponding price; this implied price is the noisy public signal as defined by GP. 

Appendix C explains how both players perceive the same noisy price.17 

iii) The Monitoring Treatment (M) [Intermediate Treatment]: Here, imperfect monitoring 

is removed from the IM treatment, thus only allowing for imperfect demand foresight. 

This treatment similar to the IM treatment, except that subjects are informed of the 

demand state after the round takes place, which is equivalent to informing them of 

                                                 
16 A system of equations allows us to maintain the imperfect monitoring structure (available upon request). 
17 Alternatively, subjects could be directly informed of the noisy price. Such design, while more realistic 
for a test of the GP theory, would significantly increase the level of difficulty of the instructions. See 
Aoyagi and Frechette for an example of the degree of complexity in instructions when this approach is used 
(see also footnote 8 above for another possible caveat of such design). 
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their opponent’s choice.18  The motivation for adding this treatment is twofold.  First, 

while demand uncertainty and imperfect monitoring (as assumed by GP) may be 

realistic sometimes, it is plausible that firms accrue information to infer rivals’ past 

actions.  Secondly, this treatment isolates one of the two factors that differentiate the 

FI treatment from the IM treatment. 

The treatments are organized in a 2x2 matrix (Table 3). The perfect demand 

foresight/no monitoring treatment is unfeasible because subjects can infer the opponent’s 

strategy. This yields a 3 (treatments) x 2 (parameterizations) experimental design. 

5. Implementation 

Twelve sessions with a total of 288 subjects were run. Six sessions were run with 

each parameterization (two sessions for each treatment). Subjects were recruited from 

Economics, Statistics and Management courses at the University of Massachusetts-

Amherst. Demographic composition was not unusual for laboratory experiments with 

college students: 40% were females, 72% were white, and the combined number of 

freshmen and sophomores was 51% (with the remaining 49% distributed relatively 

evenly among juniors, seniors and graduate students). Subjects received a $5 show-up fee 

and earned additional money from their decisions; earnings from decisions were in 

experimental dollars ($1=10 experimental $). Average earnings in dollars ($) per session, 

as well as the corresponding dates and number of subjects are presented in table 4. 

Table 3: Experimental Design 
 Monitoring No Monitoring 
Perfect Demand Foresight Full Information (FI) - 
Imperfect Demand Foresight Monitoring (M) Imperfect Monitoring (IM) 

All experiments were computerized and programmed in Z-tree (Fischbacher, 

1999).19 Students were assigned a computer terminal and advised that they would be 

randomly paired with someone else in the room for the duration of the experiment and 

that communication with other participants was forbidden. Special efforts were made to 

achieve subjects’ comprehension and familiarity with the experiment before the start of 
                                                 
18 In order to keep the experimental design consistent across treatments, subjects in the IM treatment are 
informed of the demand state instead of their opponent’s choice. 
19 Instructions and decision screens are available at: http://www.umass.edu/resec/faculty/rojas/z-tree.html 
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the game. Extensive instructions were coupled with 3 practice rounds, each with one 

demand state, and a quiz. If a subject did not respond correctly to a question, the 

participant was approached by the experimenter for explanation.20  

Table 4: Number of Participants and Average Earnings per Session*  
Parameterization 1 

Treatment Full Information Monitoring Imperfect 
Monitoring 

Session Number I II III IV V VI 
Date 04/25/08 04/25/08 04/28/08 04/30/08 04/28/08 04/28/08

# of Participants 24 24 24 24 24 24 
Avg. Earnings $ 25.76 27.13 31.42 30.40 24.74 26.86 

Parameterization 2 
Treatment Full Information Monitoring Imperfect 

Monitoring 
Session VII VIII IX X XI XII 

Date 04/30/08 04/30/08 05/05/08 05/05/08 05/02/08 05/02/08
# of Participants 24 24 24 24 24 24 
Avg. Earnings $ 34.40 33.03 33.22 35.78 29.86 28.04 

*Excludes show-up fee ($5) and earnings in risk task (see Appendix B for details of risk task) 
Three colors were used for the different demand states and to distinguish own 

payoffs from the counterpart’s payoffs; also, the three possible payoff tables were 

permanently displayed on the left hand side of the screen (see figures 1-4). After the quiz 

and the practice rounds, but before the actual rounds started, subjects were allowed to 

send their opponent a message from a pre-specified menu.21 The objective of the message 

is twofold: a) to increase the possibility of a collusive environment (which is the focus of 

this paper), and b) to further enhance subjects’ understanding of the experiment.22  

 

 

                                                 
20 Only 2.7% of the questions (23 out of 864) were answered incorrectly. 
21 The menu of messages is: “Let's both play A every round”; “Let's both play B every round"; “I will 
always play A”; “I will always play B”; “I will play A only if you play A”; “If you play B once, I will 
never play A again”; “If you play B, I will not play A for some time”; “I don't want to tell you anything”.  
22 In several pilot sessions we noticed that subjects spent a considerable amount of time thinking about 
what message to send. Also, this was the time when most questions were asked to the experimenter. These 
two facts were an indication that subjects were thinking intensely about how the rules of the game worked. 
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Figure 1: Decision Screen in the Full Information (FI) Treatment (Parameterization 1) 
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Figure 2: Decision Screen in the Monitoring (M) and Imperfect Monitoring (IM) Treatments (Parameterization 1) 
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Figure 3: Profit Screen in the Full Information (FI) and Monitoring (M) Treatments (Parameterization 1) 
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Figure 4: Profit Screen in the Imperfect Monitoring (IM) Treatment (Parameterization 1) 

 

are: 
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All subjects in all treatments were informed about the probability of appearance 

of each payoff table. Subjects played 30 rounds with certainty; after round 30, the 

computer terminated the game with 20% probability. To keep treatments comparable, the 

same draw was used to terminate the game in all treatments; the total number of periods 

turned out to be 33. To determine the demand state (high, medium or low), 33 random 

draws from a uniform distribution were taken once, and the same set of demand states 

implied by these draws was used in all treatments to preserve comparability. 

A round consisted of subjects making a simultaneous decision between low 

output (L) and high output (H) (decision screen, figures 1 and 2); after a decision, 

subjects were informed of profits and the round ended (profit screen, figures 3 and 4). In 

the FI treatment, the decision screen presented subjects with the payoff matrix that they 

would play (figure 1). Conversely, in the IM and M treatments the decision screen only 

reminded subjects of the probability with which each payoff table will be chosen for play 

(figure 2). 

In the M treatment, the profit screen reveals the chosen demand state. Also, this 

screen highlighted the cell in the chosen payoff table that determined the subject’s profit. 

Because the FI and M treatments imply perfect monitoring and demand information after 

the round is played (ex-post), the profit screen for both of these treatments was the same 

(figure 3). In the IM treatment, the profit screen presented subjects with the possible 

outcomes that might have occurred (figure 4), effectively implementing the desired 

imperfect monitoring. 

As depicted in the figures above, the program also contains a history table where 

subjects can see their cumulative earnings. In addition to the experiment on collusion, 

subjects completed a risk task (see Appendix B) and a small survey that contained 

questions on demographics, and on the subjects’ assessment of the clarity of the 

experiment (97% of the subjects believed that the instructions were clear).23 All sessions 

lasted approximately one and a half hours, including instructions.  A total of 9,504 

                                                 
23 Answers to the statement “The instructions for the experiment were clear and easy to follow” were: 
Strongly Agree (62%), Agree (35%), Neither Agree nor Disagree (0%), Disagree (1%) and Strongly 
Disagree (2%). 
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observations were collected (33 rounds x 288 participants). At the end of the experiment, 

subjects were individually called in private and were paid their cumulative earnings from 

the task in cash. 

6. Results 

6.1 Effect of Demand Information and Monitoring 

For each of the three treatments, table 5 presents the frequency of individual cooperation 

(at least one player chooses the collusive outcome - L)24 as well as the frequency of 

collusion (both players choose L) for the two parameterizations considered. Contrary to a 

stylized fact in industrial organization, when demand information is removed (from Full 

Information to Monitoring), cooperation and collusion increase in parameterization 1 and 

appear unchanged in parameterization 2. Conversely, cooperation and collusion diminish 

in both parameterizations when imperfect monitoring is introduced (from Monitoring to 

Imperfect Monitoring). 

Table 5: Frequencies of Cooperation and Collusion (standard deviation) 

Treatment Parameterization Frequency of 
Cooperation*

Frequency of 
Collusion**  

1 0.72 (0.45) 0.51 (0.50) Full Information 
2 0.83 (0.38) 0.71 (0.46) 
1 0.76 (0.42) 0.59 (0.49) Monitoring 2 0.84 (0.37) 0.71 (0.46) 
1 0.63 (0.48) 0.31 (0.46)  Imperfect Monitoring 2 0.66 (0.47) 0.41 (0.49) 

      * At least one player chooses L. ** Both players choose L. # of observations in all treatments is 1,584 
We test and confirm these observations using several non-parametric tests 

(Wilcoxon, Kolmogorov-Smirnov, Pearson’s Chi-square and Epps-Singleton) as well as 

the parametric t-test: frequencies (for both cooperation and collusion) in parameterization 

1 are statistically larger in the M treatment than in the FI treatment (all p-values<0.01), 

but frequencies from these two treatments are not statistically different from each other in 

parameterization 2 (p-values>0.39); frequencies (for both collusion and cooperation) in 

both parameterizations are statistically larger in the M and FI treatments when 

(individually) compared with the IM treatment (all p-values<0.01). Finally, using the 
                                                 
24 Alternatively, one can define cooperation as the number of “L” choices (a smaller number). The results in 
the paper are invariant to either definition. 
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same battery of parametric and non-parametric tests, the level of cooperation and 

collusion in a given treatment is statistically larger in parameterization 2 (p-values<0.01), 

except for cooperation in the IM treatment (p-values tests range from 0.05 to 0.39). It 

important to note that the described results support theoretical predictions: 

a) As noted earlier, the incentives to collude are stronger in parameterization 1, 

regardless of the treatment. Further, in the FI treatment, parameterization 2 implies 

that the left hand side of (2) is smaller than its right hand side for all three demand 

states, whereas in parameterization 1 this is true only for the medium and low demand 

states (deliberately, to test the RS theory); this reinforces the fact that a larger amount 

of collusion should be observed in parameterization 2 in the FI treatment. 

b) In the M treatment, collusion is an equilibrium if the following condition (a modified 

version of equation (1)) is met: 

( ) [ ( )]
1

D NE C NE
s s s sE Eδ

δ
Π −Π < Π −Π

−
   

0.2( ) 0.6( ) 0.2( ) 0.2( ) 0.6( ) 0.2( )
1

D NE D NE D NE C NE C NE C NE
h h m m l l h h m m l l

δ
δ

Π −Π + Π −Π + Π −Π < Π −Π + Π −Π + Π −Π
−

 (5) 

where ( ) 0.2( ) 0.6( ) 0.2( )C NE C NE C NE C NE
s s h h m m l lE Π −Π = Π −Π + Π −Π + Π −Π . In 

parameterization 1, the left hand size of equation (5) is equal to 6.68 and the right 

hand side is equal to 15.96; this inequality is even more pronounced in 

parameterization 2: the left hand size of equation (5) is equal to 4.70 and the right 

hand side is equal to 21.90.25 Assuming no mistakes by subjects, we should rarely 

observe deviations from cooperation/collusion in this treatment (especially in 

parameterization 2). 

c) Theoretically, if the GP equilibrium were supported by the data, larger levels of 

collusion and cooperation should be expected in parameterization 2 as the collusive 

scheme predicted by GP can not be an equilibrium in parameterization 1. This only 

holds for collusion, however. 

                                                 
25 These numbers correspond to the case of risk neutrality. After adjusting for the level of risk aversion 
observed in our sample (see Appendix B), the inequalities remain unchanged: 1.89 (left hand side) and 5.99 
(right hand side) for parameterization 1 and 1.28 and 7.82 for parameterization 2. 
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Figures 5A and 5B show the frequency of cooperation throughout the 33 periods 

of the experiment, in both parameterizations. The figures confirm the higher level of 

cooperation in the FI and M treatments (with respect to the IM treatment) in both 

parameterizations. Also, the figures confirm the higher cooperation rate in the M 

treatment than in the FI treatment in parameterization 1 (5A), and the similar cooperation 

rates in these two treatments in parameterization 2 (5B). Figures 6A, 6B and 6C compare 

the frequency of cooperation across parameterizations for each of the treatments and 

confirm the larger cooperation in parameterization 2. The level of cooperation appears to 

decrease with time in all three treatments and parameterizations.26 

A stylized fact in industrial organization is that both market factors considered 

should facilitate collusion. Overall, the results of this experiment suggest that this relation 

appears to apply only to monitoring. Lack of demand information (as modeled here) does 

not decrease collusion, and, conversely, may even increase it. 

6.2 The Evidence for the RS theory 

Descriptive Evidence 

The second question we analyze is whether the predictions of the theories of 

interest are supported by the data. Figure 6A provides “visual” support for the RS model 

prediction that price wars, or breakdowns in collusion, should be observed during periods 

of high demand shocks: the six periods of high demand (“h”, the dotted vertical lines) 

coincide with important drops in the frequency of cooperation in the FI treatment. 

Interestingly, the level of cooperation appears to return to prior levels immediately after 

the positive demand shock, suggesting that (some) participants did not regard defection 

as a trigger that caused a temporary or permanent reversion to competitive levels. On the 

other hand, these drops in cooperation in the FI treatment are either absent or less 

pronounced in parameterization 2 (see FI(2) line in figure 6B); recall that 

parameterization 2 implies that collusion is an equilibrium in all three demand states and 

hence the frequency of collusion should be approximately the same regardless of the 

demand state. 
                                                 
26 Similar patterns to the ones displayed by figures 5 and 6 are present in figures that plot either the 
frequency of collusion or the frequency of “L” choices (not shown). 
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Figure 5: Frequency of Cooperation over 33 Periods of Stochastic Demand: h=high [---], 
m=medium or l=low [—]; by Parameterization (in parenthesis) 
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Figure 5A: Parameterization 1 

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

m l m m m h l m h m m m l h m l m m m m l h m m h l h m m m m m m

FI (2) M (2) IM (2)

 
Figure 5B: Parameterization 2 
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Figure 6: Frequency of Cooperation over 33 Periods of Stochastic Demand: h=high [---], 
m=medium or l=low [—]; by Treatment (parameterization) 
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Figure 6A: Full Information Treatment 
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Figure 6B: Monitoring Treatment 
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Figure 6C: Imperfect Monitoring Treatment 
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Table 6: Frequencies of Cooperation and Collusion in FI Treatment (St. Dev.) 

All Observations (Periods 1-33) Periods 1-25 

Demand 
State 

Pa
ra

m
et

er
iz

at
io

n 
# 

Obs. 
Freq. 

Coop.* 
Freq. 

Collusion** # Obs. Freq. 
Coop.* 

Freq. 
Collusion**

1 288 0.58 (0.49) 0.42 (0.49) 240 0.58 (0.49) 0.43 (0.50) High  
(h) 2 288 0.78 (0.42) 0.65 (0.48) 240 0.80 (0.40) 0.67 (0.47) 

1 1,008 0.73 (0.44) 0.52 (0.50) 720 0.78 (0.42) 0.56 (0.50) Medium 
(m) 2 1,008 0.83 (0.38) 0.70 (0.46) 720 0.85 (0.36) 0.73 (0.44) 

1 288 0.78 (0.41) 0.57 (0.49) 240 0.79 (0.41) 0.59 (0.49) Low  
(l) 2 288 0.89 (0.31) 0.76 (0.43) 240 0.90 (0.30) 0.77 (0.42) 

* Frequency of either player choosing L. ** Frequency of both players choosing L. 
Table 6 summarizes the frequency of cooperation and collusion in the FI 

treatment under both parameterizations. To analyze any potential end-of-game effect, 

table 6 also presents the frequencies in all 33 rounds as well as frequencies in rounds 1-

25. There appears to be a small end-of-game effect, as lower frequencies of cooperation 

and collusion appear to be slightly larger (in both parameterizations) when only the first 

25 rounds are considered; however, the only statistically significant difference appears in 

the medium demand state (parameterization 1), where the difference in frequencies (for 

both collusion and cooperation) between the two period lengths (33 vs. 25) is somewhat 

significant (p-values range from 0.04 to 0.47).27 

Focusing on rounds 1-2528, our battery of tests reveal that the frequency of 

cooperation and collusion in parameterization 1 is significantly smaller in the high 

demand state when compared with either the medium or low demand states (all p-values 

< 0.01), whereas cooperation and collusion are not statistically different between medium 

and low demand states (p-values>0.37). Turning to parameterization 2, it is clear that the 

difference in collusion and cooperation frequencies between the high demand state and 

the other two states is much smaller than in parameterization 1; this is reflected by a 

weaker statistical difference (p-values range from 0.06 to 0.79). A similarly small and 

                                                 
27 A similar conclusion is reached if the end-of-game effect is analyzed with other cut-off periods (24, 26). 
28 We report the results of rounds 1-25 because of the evidence found of an end-of-game effect for the 
medium demand period. The conclusion in this paragraph, however, is similar if all rounds are used. 
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weakly significant difference in cooperation and collusion frequencies exists between the 

medium and low demand states (p-values range from 0.04 to 0.97). Taken together, these 

results provide some informal evidence for the predictions of the RS theory. 

Subjects’ Strategies 

More formally, we test how closely subjects’ strategies are in accordance to the 

predictions of the RS theory by analyzing individual choices in a limited dependent 

variable model. Theoretically, only parameterization 1 yields the predictions of the RS 

theory (price wars during high demand); hence the analysis that follows uses data from 

this parameterization. Specifically, we consider various possible individual strategies and 

use standard likelihood ratio tests to analyze how well the RS theory can explain the 

observed choices. The decision to cooperate of individual i  in period t  is given by: 

[ ]1 0it it i ity z c eγ= + + >  

where ity  denotes cooperation (1) or defection (0), [ ]1 ⋅  is an indicator function, itz  is a 

vector of explanatory variables, 2| ( , )i it i cc z N α ψζ σ+∼  is an unobserved and random 

heterogeneity term, and (0,1)ite N∼  is an idiosyncratic error term. We assume a non-

zero mean for ic  to deal with the initial conditions problem (Wooldridge, 2002, p. 495) 

and set iζ  equal to 0iy .29 The vector of parameters γ  as well as α , ψ  and 2
cσ  are 

estimated from the data. The vector itz  contains different variables depending on which 

strategy is being tested. Table 7 displays the different strategies considered and presents 

the recursive definition (third column) of the corresponding variable ( its ) that enters itz . 

Note that this specification accommodates subjects’ mistakes (through ite ) as well as 

heterogeneity (through ic ); for example if RS
it tz s= and 0it ie c= = , one would have a 

deterministic rule: whenever demand is high one would observe defection, whereas 

collusion would be observed otherwise (assuming 1γ  is positive). 

                                                 
29 Other specifications that set iζ  equal to the mean or the median of ity  over the 33 periods generated 
qualitatively similar results. 
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Note that all these strategies can be defined as trigger strategies, each with three 

characteristics: a) the type of trigger, b) the duration of reversion to the non-cooperative 

outcome, and c) the rule for returning to the collusive outcome. It is important to note, 

however, that while RS
ts  is a trigger-like strategy, it tests whether subjects are on the 

equilibrium path predicted by RS; that is, the trigger strategy upon which the RS 

prediction is based (i.e. reversion to the NE forever if deviation occurs in the medium and 

low demand states) is not observed. Put differently, RS
ts  tests whether the equilibrium 

outcome predicted by RS occurs, whereas its∞ , for example, tests whether subjects use a 

strategy that is consistent with the conditions needed to obtain the RS equilibrium (i.e. the 

grim-trigger strategy). In a sense, then, RS
ts  entails a demanding test of the RS theory.  

Table 7: Strategies Considered and Corresponding Variables (FI treatment) 
Strategy itzγ  Definition 

Random N/A N/A 
RS 1

RS
tsγ  1[    ]RS

ts demand state medium or low= =  

Tit-for-Tat (TT) 2
tt
itsγ  1

tt
it jts y −=  

Punishment 
Strategy 
(P-N) 

3
N
itsγ  

1

1 1 1

1 ( 1)

For 1:   1

1       if  1 and ( 1 and 1)

For 1:          or if  0 and 1

0   otherwise

N
i

N
it it jt

N N N
it it it N

t s

s y y

t s s s
− − −

− − +

= =
⎧⎪ = = =⎪⎪⎪⎪> = = =⎨⎪⎪⎪⎪⎪⎩

 

Notes: punishment length; subject ' s choiceiN y i= =  
Note that RS

ts  is determined exclusively by the current demand state; tt
its  depends 

exclusively on the opponent’s choice last period, whereas punishment strategies depend 

on both own (i) and opponent’s (j) choices. Given the wide range of punishment lengths 

that can sustain collusion (Appendix A, table A.1), we consider seven punishment 

strategies (P-N), six finite ( 1,...,6N = ) and the grim strategy N = ∞ . The tit-for-tat 

strategy, is not related to theoretical predictions we have in mind, but it is considered for 

its reported predictive power (see, for example, Engle-Warnick and Slonim, 2006). 

Table 8 reports the results of probit regressions of the strategies considered 

excluding the last 8 rounds of the game (results are robust if all rounds are included). 
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While searching for patterns that may explain subjects’ strategies better than the RS 

theory alone, informal inspection of the data revealed that subjects may appear to be 

basing their strategies on both the demand state (high or not) as well as on their 

opponent’s choice; the last column presents the estimates of this “combined” strategy. 

In all specifications, the statistical significance of 2 2/( 1)c cρ σ σ= +  does not reject 

the random effects specification, indicating that heterogeneity is important. The positive 

and significant estimate of ψ  indicates that a subject that cooperates in period 1 is more 

likely to do so later on. The log-likelihood reveals that (besides the “combined” RS + tt 

strategy) the best fit is given by the infinite punishment strategy (P-∞ ), while the second 

best fit is given by the RS strategy, followed by the tit-for-tat strategy. The finite 

punishment strategies tend to increase in predictive power with the punishment length; 

importantly, the fit of the model appears to converge to that of P-∞  as N grows beyond 6 

periods (results not reported).  

The table also presents pair-wise likelihood ratio tests between each of the 

strategies and the random strategy. The random strategy can not be rejected in favor of P-

1 and can be rejected only at the 10% level in favor of P-3. Consistent with the fit of each 

strategy, the random strategy can be rejected in favor of RS, TT, P-∞  and the P-2, P-4, P-

5 and P-6 strategies.30 The single most important variable explaining behavior is P-∞ . 

The combined RS+tt strategy has a better fit than the P-∞  strategy and is also preferred 

over the RS strategy alone (p-value of LR-test < 0.01) and the tt strategy alone (p-value < 

0.01). Considering the fact that RS
ts  is a demanding test of the RS theory, and that most of 

the explanatory power in the RS+tt strategy appears to be attributable to the RS
ts  variable, 

the results are interpreted as supportive of the RS theory.

                                                 
30 Because the feasible equilibria are state dependent (see Appendix A), it may make more sense to search 
for three different punishment lengths; that is, the N with the highest explanatory power may depend on 
which demand state a punishment phase starts. We carried out such an estimation and, for all three demand 
states, we found a similar pattern to the one observed in table 8: coefficients of strategies with short 
punishment length have weak (or no) statistical significance and increase in size and significance with N. 
This indicated that there is a unique N that minimizes subject’s mistakes in all three demand states: N = ∞  
(i.e. the P-∞  specification in table 8). 
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Table 8: Probit Estimates of Different Strategies in the FI treatment, Parameterization 1, Rounds 1-25 

Parameter Random RS tt P-1 P-2 P-3 P-4 P-5 P-6 P-∞  RS + tt 

α     -0.80*** -0.66   -0.97*  -0.88** -0.93** -0.85** -0.90** -0.88** -0.86** -0.69* -0.86** 

 (0.43) (0.46) (0.36) (0.42) (0.39) (0.39) (0.36) (0.36) (0.35) (0.16) (0.38) 

1γ   0.92*         0.99* 

  (0.14)         (0.14) 

2γ        0.56*        0.68* 

   (0.12)        (0.12) 

3γ     0.17 0.37* 0.23** 0.51* 0.49* 0.53* 2.39*  

    (0.11) (0.11) (0.12) (0.12) (0.13) (0.14) (0.24)  
ψ     2.40* 2.56*     2.03*   2.31* 2.20* 2.20* 2.02* 2.03* 1.98* 0.69* 2.14* 

 (0.52) (0.53) (0.43) (0.48) (0.46) (0.45) (0.41) (0.42) (0.41) (0.23) (0.44) 
ρ     0.69* 0.72* 0.60* 0.67* 0.65* 0.65* 0.60* 0.61* 0.59* 0.69* 0.63* 

LL -450.84 -427.84 -440.41 -449.80 -445.30 -449.17 -443.37 -444.33 -444.16 -422.07 -413.77 

LR Test  

(p-value)† 

N/A 46.00 

(<0.01) 

20.85 

(<0.01) 

2.07 

(0.15) 

11.08 

(<0.01) 

3.34 

(0.07) 

14.94 

(<0.01) 

13.01 

(<0.01) 

13.35 

(<0.01) 

57.53 

(<0.01) 

74.13 

(<0.01) 

* Significant at 1%. ** Significant at 5%. *** Significant at 10%.  † Likelihood ratio test with respect to the random strategy 
Notes: # of Observations = 1,152 in all models to keep number of observations comparable across strategies (first period is lost in TT strategy). RS=Rotemberg 
and Saloner equilibrium strategy, tt=Tit-for-Tat, P-N=punishment for N periods, P-∞ = infinite punishment. LL=Log-likelihood. Standard errors in 
parentheses.
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Equilibrium Outcomes 

As opposed to the econometric model presented above, the focus of the analysis 

here is on equilibrium outcomes rather than on individual strategies. Specifically, we 

analyze how the data lends support to the different feasible equilibria presented in 

Appendix A (table A.1). Table 9 displays the frequencies of the outcomes observed in 

each of the three demand states; the bold numbers indicate that the cell is a feasible 

equilibria. There are several patterns worth noting. First, collusion (L,L) is the most 

frequently observed outcome, except when theory predicts it is not an equilibrium (high 

demand, parameterization 1). Second, (H,L)/ (L,H) is the least frequently observed 

outcome, except in one case (low demand, parameterization 2). Third, within a 

parameterization, collusion appears a more likely outcome during “bad times” (i.e. its 

frequency decreases as demand becomes larger), whereas the one-shot NE becomes more 

likely during “good times”; the frequency of the (H,L)/(L,H) equilbria, on the other hand, 

is relatively stable within a parameterization. 

   Table 9: Frequencies of Observed Outcomes 
Demand State (outcomes) Parameterization 1 Parameterization 2 

High (h) 
(L,L) 
(H,H) 
(H,L)/(L,H) 

41.67% 
42.36% 
15.97% 

65.28% 
22.22% 
12.50% 

Medium (m) 
(L,L) 
(H,H) 
(H,L)/(L,H) 

51.79% 
26.59% 
21.63% 

70.44% 
17.46% 
12.10% 

Low (l) 
(L,L) 
(H,H) 
(H,L)/(L,H) 

57.64% 
21.53% 
20.83% 

75.69% 
11.11% 
13.19% 

Notes: Bold numbers indicate that entry is a feasible equilibrium (see Appendix A for details) 

 To contrast the predictive power of the RS equilibrium with that of other feasible 

equilibria, we conduct a simple test. First, we create an indicator variable that takes a 

value of 1 if the observed outcome coincides with that predicted by a given equilibria. 

Then, we compute the fraction of “correctly” predicted outcomes for each of the 

equilibria considered and rank the equilibria according to this fitness measure. The 

equilibria that we consider are: a) the one shot NE (H,H) in all periods, b) the collusive 

outcome (L,L) in all periods, c) the RS prediction (H,H during high demand and L,L 



 33

otherwise), d) and the (H,L)/(L,H) outcome in all periods.31,32 The best fit in 

parameterization 1 is given by the RS equilibrium (54%) followed by the “always 

collude” outcome (51%), the “always defect” outcome (28.54%), and the (H,L)/(L,H) 

outcome (20.45%). The best fit in parameterization 2 is given by the “always collude” 

outcome (70.45%), followed by the RS equilibrium (64.90%), the “always defect” 

outcome (17.17%), and the (H,L)/(L,H) outcome (12.37%). Thus, the RS equilibrium has 

stronger support when expected (parameterization 1) thereby providing additional 

support for the RS predictions; again, however, this support is not overwhelming. 

6.3 The Evidence for the GP theory 

Figure 6C (IM treatment) shows a decline in cooperation after the occurrence of a 

low demand period in four out of six cases in parameterization 1, and in all but one case 

in parameterization 2. This evidence may suggest that low demand triggers defection (i.e. 

a price war). While there is no discernable regime switching pattern in either 

parameterization, as predicted by GP, cooperation tends to have a downward trend after a 

low demand realization and an upward trend after a high demand realization, especially 

in earlier rounds.  As shown by table 5 and figure 6C, the frequency of cooperation and 

collusion in the IM treatment is the smallest of all treatments which may suggest that the 

GP environment may hinder collusive behavior. 

In search of further evidence for the GP theory, we construct an indicator variable 

that takes a value of 0 for price war and 1 otherwise. To determine whether a price war 

has started, we use the GP trigger price p2 (see Appendix A for details) as the relevant 

threshold in this exercise: a price war is triggered if a price of p2 or lower is observed. We 

construct several indicator variables, one for each possible price war duration (from one 

period to ∞). Finally, we compute the frequencies of cooperation and collusion when the 

                                                 
31 Note that (L,L) in all periods is only an equilibrium in parameterization 2. Similarly, the RS outcome is 
only an equilibrium in parameterization 1; for completeness of the tests, however, we consider these two 
outcomes as possible explanations of behavior even if they are not a feasible theoretical equilibrium.  
32 Our indicator variable of the (H,L)/(H,L) equilibria takes a value of 1 if either outcome is observed, and 
zero otherwise; alternatively, one can construct two different indicators, one for each equilibria, but in our 
case this is not relevant as our conclusions remain unchanged. 
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indicator variable predicts collusion (C) and compare them with the frequencies of 

cooperation and collusion when the indicator variable predicts a price war (R). 

Table 10 reports the cooperation and collusion frequencies during the two 

regimes, as predicted by the different lengths of punishment after price drops to p2 (or 

below). Cooperation and collusion frequencies are almost always statistically different 

(with the frequencies in the collusive regime (C) always larger); this difference tends to 

increase in size with the punishment length (to conserve space we only display a few 

punishment lengths here). As shown in appendix A, in parameterization 1 the GP 

equilibrium is not feasible (even with a permanent price war N=∞); conversely, 

parameterization 2 can support price wars that range from 3 to ∞.  Interestingly, 

frequencies appear similar across parameterizations, even though the parameterizations 

imply different incentives. Overall, the evidence in table 10 in support of the GP 

equilibrium appears to be mixed; we would expect no difference between “C” and “R” 

frequencies for parameterization 1, but there are several cases when this does not occur. 

Also, it is not clear why finite price wars (as suggested by GP) appear less likely than 

price wars of infinite duration. We next turn to a more exhaustive analysis that compares 

the strategies and outcomes predicted by GP with those predicted by other alternatives. 

Table 10: Frequencies of Cooperation and Collusion in Collusive (C) and Reversionary 
(R) Regimes in IM treatment, Various Punishment Lengths, Rounds 1-25. 

Cooperation 
Collusion 

Parameterization 1 Parameterization 2 Parameterization 1 Parameterization 2 

Pu
ni

sh
m

en
t 

Le
ng

th
 (N

)  

R C p-value* R C p-value* R C p-value* R C p-value* 
2 0.66 0.69 0.27 0.65 0.74 <0.01 0.30 0.41 <0.01 0.42 0.48 0.02 
3 0.67 0.68 0.83 0.65 0.74 <0.01 0.33 0.39 0.02 0.43 0.48 0.05 
4 0.67 0.68 0.83 0.66 0.78 <0.01 0.33 0.44 <0.01 0.42 0.51 <0.01 

16 0.67 0.71 0.24 0.68 0.80 <0.01 0.34 0.46 <0.01 0.44 0.54 <0.01 
17 0.66 0.74 0.04 0.68 0.81 <0.01 0.34 0.49 <0.01 0.43 0.59 <0.01 
18 0.66 0.79 <0.01 0.68 0.83 <0.01 0.34 0.57 <0.01 0.43 0.63 <0.01 
∞ 0.65 0.94 <0.01 0.68 0.94 <0.01 0.33 0.73 <0.01 0.43 0.73 <0.01 

Note: Bold numbers indicate that the entry entails a feasible punishment length in the GP equilibrium. The 
results are qualitatively similar if all rounds (1-33) are considered; p2 is assumed to be the price trigger. 
* Pearson’s Chi-Square statistic; p-values of other non-parametric tests (Wilcoxon, Kolmogorov-Smirnov, 
and Epps-Singleton) and the parametric t-test produce similar p-values. 
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Subjects’ Strategies 

Recall that the basis for the GP equilibrium is the presence of trigger strategies; 

thus, we investigate how the predictive power of individual trigger strategies as predicted 

by the GP equilibrium compares to the predictive power of other plausible trigger 

strategies. As in the previous section, we recursively define a variety of plausible trigger 

strategies ( its ) and use a probit model that allows for errors in subjects’ decisions. The 

strategies considered, summarized in table 11, are more complex than in the FI treatment; 

this is because the opponent’s choice here is observed with noise. To be consistent with 

the public nature of monitoring assumed by GP, the relevant noisy signal in these 

strategies is the price “implied” by our design (see Appendix C).33  

Two strategies can be considered as tests of the GP theory. The GP strategy, 

which corresponds to the regimes used in table 10 (1=collusive, 0=competitive), can be 

considered as a more demanding test of the GP theory as it tests whether individual 

strategies are consistent with the GP equilibrium path. The trigger strategy that depends 

on the public signal only (T1) can be considered as a less demanding test of the GP 

theory as it only tests whether defection is triggered by the threshold level predicted by 

theory (p2 in parameterization 2, see Appendix A). 

Except for the GP strategy, all strategies are subject-specific; these strategies 

differ in whether their transition rules (from the collusive regime to the competitive 

regime -“down”- and from the competitive regime to the collusive regime –“up”) depend 

on the public signal ( 1tp − ), the own action ( 1ity −  in TT1 and TT2) and whether there is a 

singe threshold (k) (i.e. return to the collusive regime is determined by a given number of 

punishment periods -T1 and TT1) or two thresholds (T2 and TT2).  The reason for 

defining strategies to be a function of the own action (TT1 and TT2) is because the 

distribution of prices is a function of the own action. 

 
 
 

                                                 
33 In a separate analysis of trigger strategies that consider observed profit (not price) to be the relevant noisy 
signal we obtained qualitatively similar conclusions; we omit these results to conserve space. 
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Table 11: Strategies Considered and Corresponding Variables, IM treatment 
Strategy itzγ  Definition 

Random N/A N/A 

GP, with: 
N = 1,…, ∞ 1

NGP
tsγ  

1

1

1 ( 1)

For 1:   1

1    if  =1 and demand=high or medium

     or  =0 and =1 

0   otherwise

N

N

N NL

GP

GP
t
GP GPGP

t t t N

t s

s

s s s
−

− − +

= =
⎧⎪⎪⎪⎪⎪=⎨⎪⎪⎪⎪⎪⎩

 

One Threshold Strategy 
(T1), with: 
k =f( p )  
N = 1,…, ∞ 

1
2

NT
itsγ  

1
1

1
11

1 11
1 ( 1)

For 1:   1
For 1

1    if  =1 and 

    or  =0 and =1 

0   otherwise

N

N

N NN

T
i

T
tit

T TT
it it t N

t s
t

s p k

s s s
−−

− − +

= =
>
⎧⎪ >⎪⎪⎪⎪=⎨⎪⎪⎪⎪⎪⎩

 

One Threshold Strategy 
(TT1), with: 
k=f( p , iy )  
N= 1,…, ∞ 

1
3

NTT
itsγ  

1
1

-1 11
1

-1 1
1 11
1 ( 1)

For 1:   1
For 1

=1:  and ( )
1    if  =1 and if:   

or =0:  and ( ) 

     or if  =0 and =1 

0   otherwise

N

N

N NN

TT
i

it tTT
it

it t
TT TTTT

it it it N

t s
t

y p k L
s

y p k H

s s s

−
−

−

− − +

= =
>

⎧ ⎧ >⎪ ⎪⎪⎪⎪ ⎨⎪ ⎪ >⎪ ⎪⎩⎪⎪⎪=⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

 

Two-Threshold 
Strategy (T2), with: 
k =f( p ) 

2
4

T
itsγ  

2
1

2
1 1

2 2
1 1

For 1:   1
For 1:

1    if  =1 and if   

     or if  =0 and if   
0   otherwise

T
i

T down
it t

T T up
it it t

t s
t

s p k

s s p k
− −

− −

= =
>
⎧⎪ >⎪⎪⎪⎪= >⎨⎪⎪⎪⎪⎪⎩

 

Two-Threshold 
Strategy (TT2) with: 
k=f( p , iy ) 

2
5

TT
itsγ  

2
1

-1 12
1

-1 1

-1 12 2
1

-1

For 1:   1
For 1:

=1:  and ( )
1    if  =1 and if:   

or =0:  and ( ) 

=1:  and ( )
      or if  =0 and if:

or =0:  an

TT
i

down
it tTT

it down
it t
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it tTT TT

it it
it

t s
t

y p k L
s

y p k H

y p k L
s s
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−
−

−

−
−

= =
>

⎧⎪ >⎪⎪⎨⎪ >⎪⎪⎩
>

=
1

 
d ( ) 

0   otherwise

up
tp k H−

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪ ⎧⎪⎪ ⎪⎪ ⎪⎨ ⎨⎪ ⎪ >⎪ ⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
 

0 1 2 3 4punishment length;  price ( , , , , ); threshold ; choice; =low quantity; =high quantityN p p p p p p k p y L H= = ∈ = =  
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These strategies allow several possibilities. For example, if a subject cooperated 

in t-1, the threshold price for reverting to the competitive regime may be different than if 

the subject did not cooperate ( 1 1( ) ( )TT TTk H k L≠  or 2 2( ) ( )down down
TT TTk H k L≠ ). Also, reversion 

to collusion may depend on a threshold ( 2 2, ( )up up
T TT ik k y , { , }iy H L∈ ) rather than occurring 

after a given period of time. Finally, the threshold level for the transition to competition 

may be different than the threshold level for the transition to collusion (i.e. 2 2  up down
T Tk k≠

= ; 

2 2( )  ( )down up
TT i TT ik y k y≠

= ). 

We investigated different punishment lengths (N=1,…,∞) and all possible 

threshold values. Table 12 presents estimates (for both parameterizations) of the 

strategies that had the highest explanatory power. In both parameterizations, the random 

strategy is rejected in favor of a variety of strategies (including GP strategies).34 There 

are several patterns worth noting. First, the grim-trigger strategy (N=∞ ) has the largest 

explanatory power in both parameterizations as indicated by its substantially larger LL 

value; this is true whether defection is triggered by a low demand realization (GP 

strategy) or by a low threshold level (T1, TT1). Second, the most likely trigger for 

reverting to defection seems to be p1, regardless of the strategy or parameterization 

considered; this threshold is lower than that predicted by GP for parameterization 2 (p2). 

Third, the random strategy is rejected in favor of several GP strategies of various 

punishment lengths (in both parameterizations); recall that the GP equilibrium is not 

feasible in parameterization 1 and is feasible for punishment lengths that range from 3 to 

∞ in parameterization 2. Lastly, behavior appears to be very similar in both 

parameterizations, as the strategies with the highest explanatory power are almost 

identical. 

 

                                                 
34 Periods 1-25 are included in the estimation. Conclusions are qualitatively similar if all periods are 
included. 
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Table 12: Probit Estimates of Different Strategies in the IM treatment, Rounds 1-25 
 

R
an

do
m

 
GPN 

1NT   
{N} 

1NTT  
{N} 

2T  2TT  

Parameterization 1 

1k p= 2 2k p= 2 1( )k L p=

0( )k H p=  3 4( )upk L p= , 3( )upk H p=  
  

N=121 N=13 N=∞ 
{7} {∞ } {∞ } {∞ } 

1
downk p=

 

3
upk p=

 

1
downk p=

 
4

upk p=
 

1( )downk L p=  
0( )downk H p=  

2( )downk L p=

1( )downk H p=  
γ  N/A 0.81* 1.04* 1.61* 0.86* 1.21* 1.86* 1.02* 1.14* 1.21* 0.92* 1.74* 
LL -592.2 -570.9 -565.9 -555.3 -555.7 -537.1 -554.54 -553.4 -539.7 -537.1 -551.9 -555.6 
LR† 
p-value 

N/A 42.56 
<0.01 

52.45 
<0.01 

73.77 
<0.01 

73.05 
<0.01 

110.22 
<0.01 

75.34 
<0.01 

77.61 
<0.01 

105.03 
<0.01 

110.22 
<0.01 

80.57 
<0.01 

73.15 
<0.01 

Parameterization 2 

1k p= 2 2k p= 2 1( )k L p=

0( )k H p=  3 4( )upk L p= , 3( )upk H p=  
  

N=31 N=13 N=∞ 
{8} {∞ } {∞ } {∞ } 

1
downk p=

 

3
upk p=

 

1
downk p=

 
4

upk p=
 

1( )downk L p=  
0( )downk H p=  

2( )downk L p=

1( )downk H p=  
γ  N/A 0.33* 0.79* 1.30* 0.74* 1.33* 1.45* 0.91* 1.25* 1.33* 0.84* 1.43* 
LL -549.8 -543.6 -534.4 -523.7 -526.2 -502.3 -523.6 -521.3 -503.9 -502.3 -521.6 -522.6 
LR† 
p-value 

N/A 12.50 
<0.01 

30.85 
<0.01 

52.25 
<0.01 

47.22 
<0.01 

95.02 
<0.01 

52.42 
<0.01 

56.95 
<0.01 

91.78 
<0.01 

95.02 
<0.01 

54.41 
<0.01 

56.35 
<0.01 

Notes: Estimates of α , ρ  and ψ  are significant at the 1% level in all specifications (not shown). Number of observations: 1,200 in both parameterizations. 
N=number of punishment periods. LL= Log-likelihood. GP=Green and Porter theoretical prediction; strategies T1, TT1, T2 and TT2 are defined in table 11. k are 
threshold levels, also defined in table 11. 
1 Parameterization 1: the GP equilibrium is not feasible; Parameterization 2: the GP equilibrium is feasible for punishment lengths 3-∞. Shown are only the three 
punishment lengths with the highest explanatory power (except for N=3 in parameterization 2, shown for reference only). 
2 Other finite punishment lengths also had statistical significance, but were less significant than the one reported. 
3 Strategies with threshold levels 

2( )k L p=  and 
1( )k H p=  also had statistical significance, but were less significant than the one reported. 

† Likelihood ratio test with respect to the random strategy 
* Significant at 1% level 
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The evidence presented in table 12 is interpreted as providing support for the 

existence of trigger strategies in general, and in particular for the grim-trigger strategy. 

Also, results provide support for the strategies predicted by the GP theory, with some 

caveats. First, we do not observe a substantial difference in behavior across 

parameterizations, even when the incentives favor a stronger evidence for GP in 

parameterization 2. Also, collusion is not significantly larger in parameterization 2, even 

though the incentives for defection are smaller than in parameterization 1; this means that 

some subjects are cooperating less than what theory predicts. Finally, punishment 

strategies seem to be infinite rather than finite (which GP is known for). 

Equilibrium Outcomes 

We adopt a similar strategy as in the analysis of equilibrium outcomes of the FI 

treatment. Recall that the equilibrium set is given by the “always defect” outcome (H,H), 

in both parameterizations, and by the GP equilibria in parameterization 2 (with threshold 

level p2 and punishment lengths from 3 to ∞). The predictive power of different GP 

“equilibrium paths” is presented in table 13; note that this test is different than that 

presented in the previous section: here we analyze whether both players defect when the 

GP path predicts so. The results are consistent with what was observed in the preceding 

section: a) subjects appear to apply the grim-trigger strategy, and b) there are no 

substantial differences in behavior across parameterizations. Moreover, it appears as if 

the GP equilibrium paths have a higher predictive power for parameterization 1, which is 

contrary to what one would expect: GP equilibrium paths considered can only be 

sustained as such in parameterization 2. 

7. Robustness Checks  

With the level of risk aversion observed in our sample, the intended theoretical 

incentive for the RS theory in parameterization 1 (i.e. collusion is not an equilibrium 

when demand is high) no longer holds. We conducted additional sessions with 

parameters that restore the intended incentives under the observed level of risk aversion 

(parameterization 3, see Appendices A and D). In addition, these sessions allow us to 

further check whether demand information remains as the key factor affecting collusion 
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in our design. Appendix D reports the results of the estimations, which strongly confirm 

the latter finding. Conversely, the evidence for the RS theory still exists but is not as 

strong as in parameterization 1. In particular, the tit-for-tat and the grim strategies now 

appear to describe data better than the RS strategy. 

Table 13: Fraction of Times the Equilibrium Path Correctly Predicts Outcomes  
Equilibrium Path Parameterization 1 Parameterization 2 
(H,H) every period 
GP3 
GP4 
GP5 
GP6 
GP15 
GP16 
GP17 
GP18 
GP∞ 

36.87% 
50.00% 
56.82% 
48.48% 
52.27% 
66.16% 
67.68% 
68.69% 
70.20% 
71.72% 

33.59% 
50.63% 
53.91% 
48.36% 
51.14% 
60.48% 
60.73% 
61.74% 
61.74% 
62.25% 

Notes: Bold numbers indicate a theoretically feasible equilibrium (see Appendix A for details). The 
GPN path takes a value of 1 when collusion is predicted and 0 when a price war is predicted; a price 
war is assumed to be triggered by a low signal (price≤p2) which lasts N periods. 

With the observed level of risk aversion, the set of GP equilibria gets larger (see 

Appendix B). Specifically, the GP equilibrium becomes feasible in parameterization 1 for 

punishment lengths that range from 6 periods to ∞. Another possible equilibrium emerges 

for parameterization 2: with threshold level p1, the feasible range of punishment lengths 

for the GP equilibrium is [6,..,∞]; in addition, the punishment length for a threshold of p2 

increases its range to [2,..,∞]. This attenuates our interpretation of the results regarding 

the similar behavior across parameterizations being construed as lack of evidence for the 

incentives implied by the GP equilibrium. In addition, since p1 is now a threshold level 

that yields feasible GP equilibria, the estimation results for strategy T1 are no longer 

inconsistent with the GP predictions. 

We still note, however, that the finite punishment behavior for which GP is 

known does not describe the data as well as the infinite punishment strategy. To be sure, 

we carried out an additional check: we varied the random draws that determine the 

demand states and conducted additional sessions with parameterization 2. Our main 

results are robust (Appendix D). 
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8. Discussion 

In this paper we focus on two factors (demand information and monitoring) that 

have played a key role in the theory of infinitely repeated games with stochastic demand. 

Guided by theory, we construct experiments to study the effect of these two factors on 

collusion. Results indicate that monitoring appears to always increase collusion, whereas 

the effect of knowing the demand schedule (to be faced next period) is either negligible 

or may even reduce collusion (if the parameters of the game are appropriately calibrated). 

We show that, while counterintuitive, this result is consistent with theoretical predictions 

of our design. Thus a central conclusion of this work is that theory plays a crucial role 

determining the effect of each factor.  

The large number of equilibria that are theoretically possible in infinitely repeated 

games has been frequently criticized by many empirical economists. As a second 

objective, we attempt to bridge this gap between theory and empirics by studying whether 

the predictions of two influential theories are supported by experimental data from 

treatments that resemble the assumptions of each theory. We carry out two types of 

analysis. First we study individual strategies and find that data can be explained relatively 

well by several alternatives. Specifically, we reject the random strategy (i.e. flipping a 

coin every period to decide whether to cooperate) in favor of the strategies predicted by 

the RS and GP theories. But behavior can also be explained relatively well by other 

strategies, especially the grim-trigger strategy which explains the data best in both cases. 

This result suggests that reversions to competition are more likely to be permanent rather 

than temporary. What triggers permanent defection is different in each model, however. 

In the RS model, the grim strategy is triggered by defection from either player, whereas 

in the GP model it is triggered by a low price (or a negative demand shock). 

Second, we analyze how observed outcomes (not individual strategies) lend 

support to the various equilibria that are theoretically possible. Results indicate that 

within the set of possible equilibria, the RS and GP equilibria, in their respective 

treatment, tend to have the highest explanatory power.  
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The traditional (or simple) interpretation of the RS model is that it is a theory of 

countercyclical pricing (temporary low price during high demand), whereas the GP 

theory is usually attributed with somewhat an opposite prediction (temporary low price 

after low demand). Taking the traditional interpretation of the theories at face value, the 

strong support for the grim strategy would suggest that the theories considered, while 

plausible, are not the best explanation of observed data. It is important to note, however, 

that the theoretical feasibility of a GP equilibrium path that allows for a finite punishment 

of length N, also allows for equilibrium paths with punishment lengths N+1,…,∞. In this 

broader interpretation of the GP equilibrium, our results are supportive of the GP theory, 

just not the finite price war equilibria for which it is well known. In this sense, our results 

cast some doubt on the likelihood of whether observed finite price wars (e.g. Porter, 

1983) are evidence for the GP theory at work. 

Conversely, the finite price war considered by RS is different in nature: it is not a 

punishment mechanism to deter collusion; instead it is observed because demand is 

sometimes too high to prevent firms from deviating. As such, it does not predict price 

wars of extensive length. While we do find evidence for a drop in collusion when demand 

is high, the evidence still tends to more strongly favor permanent price wars (triggered in 

any demand state). However, while observing the grim-trigger strategy is not consistent 

with the RS equilibrium path, this is the behavior RS assume players should have in order 

obtain their result. In this sense, observing the grim strategy is not entirely inconsistent 

with the RS theory. 

Given this preceding discussion, our overall assessment of whether the RS and 

GP theories explain data well is positive, even though the evidence is not overwhelming. 

A reason for this assessment is that the theories are being tested against several 

alternatives. For example, while the tit-for-tat strategy has been reported to be perhaps 

the most successful strategy in the repeated prisoner’s dilemma game, the explanatory 

power of the strategy implied by the RS theory is superior in one of the two 

parameterizations considered. 
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In general, we find that the RS environment is more “collusive friendly” than the 

GP environment. We conjecture that the uncertain environment implied by GP may be 

responsible for this as well as for why finite punishments do not emerge as a major 

explanation of behavior. 

Finally, we observe a large level of heterogeneity in our sample as evidenced by 

the acceptance of the random effects specification in all regressions, and by the existence 

of a variety of strategies and equilibria that explain data relatively well. Classifying 

subjects into “types” is another possibility of analysis that we leave for further research. 
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APPENDIX A: Equilibrium Set 
 
A.1. The Full Information Treatment (RS theory)  
 
In order for collusion (L,L) to be a feasible equilibrium under a grim-trigger strategy, we 
know that condition (2) must hold. Further, it is easy to show that playing the one-shot 
NE equilibrium (H,H) in every period is also an equilibrium. In addition, as shown by 
Stahl II (1991), the strategy pair (L,H) can also be sustained as an equilibrium outcome. 
Adapting Stahl’s approach to our stochastic demand structure, the strategy pair (L,H) can 
be an equilibrium outcome in demand state s if there exists at least one payoff xΠ  for 
player 1, such that the following condition is met:i 

(1 ) ( ) (1 ) ( )ND x NE y
s sE Eδ δ δ δ− Π + Π ≥ − Π + Π  

where ( ) 0.2 0.6 0.2z z z z
h m lE Π = Π + Π + Π . The left hand side consists of the payoff of 

playing L today (when the opponent is playing H) plus the expected discounted profits of 
obtaining profits xΠ  for each of the remaining rounds of the game; the right hand side 
consists of the payoff of switching to H today (when the opponent is playing H) plus the 
expected discounted payoffs of playing a strategy that yields a payoff of yΠ . By setting 

yΠ  equal to NEΠ  (i.e. the grim strategy) one makes the right hand side as small as 
possible, thus making the following condition a sufficient one for (L,H) to be an 
equilibrium: 

(1 )( ) ( )( )
NE ND NE

x s s EE δ δ
δ

− Π −Π + ΠΠ ≥  

In our case, it suffices to check if, for each demand state, the above condition 
holds when we set x CΠ =Π . If it does, then, by symmetry, the equilibrium (H,L) is also 
feasible. It is important to note, again, that these equilibria are state dependent. 

The above equilibria are derived using a grim-trigger strategy. However, less 
severe punishments (i.e. finite reversions to the NE outcome) can also support the same 
equilibria. For the (L,L) outcome to be an equilibrium in state s under a finite punishment 
strategy of length N, the following inequality (using Bellman’s equation) should hold: 

1
1

(1 ) ( ) (1 )[ ( )] ( )NC C D NE N C
s s t

E E Eδ δ δ δ +
=

− Π + Π ≥ − Π + Π + Π∑  
After some manipulation, this condition becomes: 

1

(1 )(1 ) ( )
1

( )

N
D C NE
s s

C
N

E
E

δ δδ
δ

δ δ +

⎡ ⎤−⎢ ⎥− Π −Π + Π⎢ ⎥−⎣ ⎦Π ≥
−

 

Again, note that this condition is state dependent. In a similar fashion, a condition 
can be obtained for the (L,H) or (H,L) equilibria. Results of computations using the above 
formulae are summarized in table A.1 below.  

                                                 
i Stahl II shows that only player 1’s condition is the relevant one. 
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A.2 The Imperfect Monitoring Treatment (GP theory) 

As with the FI treatment, it is easy to show that the playing the one shot NE (H,H) in 
every period is an equilibrium of this game. Collusion, on the other hand, can be 
sustained through the use of trigger strategies; but, as opposed to the RS equilibrium, 
collusion here refers to a “collusive path” rather than observing (L,L) every period: 
reversion to the NE play is part of the equilibrium path for some period of time (finite or 
infinite). This is an important difference because observing reversion to the NE play in 
the RS model may be consistent with RS strategies but inconsistent with the RS 
equilibrium path, whereas in the GP model reversion is consistent with both equilibrium 
strategies and the equilibrium path.ii 

Table A.1: Feasible Equilibria by Demand State and Parameterization in the FI 
Treatment, (strategy pair), [range of feasible punishment lengths “N”] 
Demand State Parameterization 1 Parameterization 2 Parameterization 3 

High (h) 
 
(H,H) 
(H,L)/(L,H) [2-∞] 

(L,L) [3-∞]* 
(H,H) 
(H,L)/(L,H) [1-∞] 

 
(H,H) 
 

Medium (m) 
(L,L) [2-∞] 
(H,H) 
(H,L)/(L,H) [1-∞] 

(L,L) [1-∞] 
(H,H) 
(H,L)/(L,H) [1-∞] 

(L,L) [5-∞] 
(H,H) 
(H,L)/(L,H) [3-∞]** 

Low (l) 
(L,L) [1-∞] 
(H,H) 
(H,L)/(L,H) [1-∞] 

(L,L) [1-∞] 
(H,H) 
(H,L)/(L,H) [1-∞] 

(L,L) [1-∞] 
(H,H) 
(H,L)/(L,H) [1-∞] 

Note: This table corresponds to the case of risk neutrality. The table for the case of risk aversion (see 
Appendix B) is identical except for the entries marked with asterisks. 
* For the case of risk aversion this entry has a minimal feasible punishment length of 2 (instead of 3).  
** For the case of risk aversion this entry has a minimal feasible punishment length of 10 (instead of 3). 

In this type of equilibrium, there are two variables that need to be calibrated: the 
punishment length and the threshold level. As shown by Abreu et al. (1990), the set of 
equilibrium payoffs can be obtained by considering a grim-trigger strategy and then 
finding the smallest public signal for which collusion is incentive compatible. Our design 
makes it straightforward to compute the feasible set of “collusive” equilibria (and their 
corresponding range of incentive compatible punishment lengths) using Abreu et al’s 
insight. We proceed as follows: a) for each of the 5 possible threshold levels (one for 
each price, see Appendix C), we compute whether a grim-trigger strategy satisfies 
condition (4), and then b) if condition (4) is satisfied for a grim-trigger strategy, we find 
the minimum N for which (4) holds. Table A.2 presents the results of this calculation. 
 

                                                 
ii Because monitoring is imperfect, Stahl’s results regarding the feasibility of (H,L)/ (L,H) do not apply to 
this case.  
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Table A.2: Feasible Equilibria in the IM Treatment, (choices),[range of feasible 
punishment lengths “N”] 

Equilibrium Path Parameterization 1 Parameterization 2 
(H,H) every period Yes Yes 
Trigger: (L,L) as long as 
observed p greater than: 

  

0p  No No 

1p  No No** 

2p  No* Yes [3-∞]*** 

3p  No No 

4p  No No 
Notes: Parameterization 3 is not considered as it does not have the imperfect monitoring feature. This table 
corresponds to the case of risk neutrality; the table for the case of risk aversion (see Appendix B) is 
identical except for the entries marked with asterisks.  
* (L,L) is a feasible outcome in the case of risk aversion, with range [6-∞] 
** (L,L) is a feasible outcome in the case of risk aversion, with range [6-∞] 
*** (L,L) is also feasible outcome in the case of risk aversion, but the range is [2-∞] 
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Appendix B: Risk Aversion Estimate and Parameterization Details 

B.1. Risk Aversion Estimate 

The underlying assumption of the theories studied in this paper is that subjects are risk 
neutral, or that utility is of the form ( )u x x= , where x  is the monetary payoff. To allow 
for the possibility of risk averse (or risk seeking) behavior, we adopt the widely used 
constant relative risk aversion (CRRA) utility specification: 1( ) /1ru x x r−= − , where r  is 
the CRRA coefficient and nests risk neutrality ( 0r = ), risk aversion ( 0r > ) and risk 
seeking behavior ( 0r < ). To obtain an estimate of r  for our sample, we employ the 
elicitation method proposed by Eckel and Grossman (2008). The method consists of 
asking subjects to choose from among six possible gambles the one they would most 
prefer to play (Table B.1); after choosing the gamble, a die is rolled to determine whether 
the subject obtains the high or the low payoff.37 

Table B.1: Eckel-Grossman Gamble Choices 

Choice 
(50/50 Gamble) 

Low  
Payoff 

High  
Payoff

Expected 
Return 

Standard 
Deviation

Fraction of  
Subjects Choosing 

Gamble (%) 
Gamble 1 18 18 18 0 9.2 
Gamble 2 14 26 20 8.5 17.4 
Gamble 3 10 34 22 17 27.2 
Gamble 4 6 42 24 25.5 11.3 
Gamble 5 2 50 26 34 28.7 
Gamble 6 -2 54 26 40 6.2 

Structural estimation assumes that utility is of the von Neumann-Morgentstern 
type and hence individuals evaluate alternatives based on the weighted average (expected 
utility): ( ) ( )i L L H HEU p u i p u i= + , where i  denotes gambles 1 through 6, the subscripts L 
and H denote the Low and High payoffs, respectively, and p denotes the probability of 
occurrence. Individuals then choose the gamble that provides them with the highest 
utility level (with some econometric error). In order to obtain an estimate of r, we adopt 
the logit specification (see Harrison and Rustrom, 2008): 

 ( )
( )

*
6

1

exp

exp
i

i
ii

EU
y

EU
=

=
∑

 

where, *
iy  is a latent index based on the assumed preferences. The log-likelihood is then: 

 *( ) ( ) jid
i

j i

L r y=∏∏  

where, 1jid =  if individual j chooses gamble i, and zero otherwise. 
 

                                                 
37 The instructions, available at http://www.umass.edu/resec/faculty/rojas/z-tree.html, contain details of the 
protocol used. 
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B.2. Parameterization Details 

The estimated CRRA coefficient using the above procedure is r = 0.46 (SE=0.03), 
which means that subjects are risk averse. While this estimate is slightly smaller than 
those found by Harrison and Rustrom (2008) in their exercise of various elicitation 
methods (their estimates range from 0.51 to 0.86), it is in line with the common 
experimental finding that subjects are risk averse. Table B.2 contains details of the 
equilibrium conditions implied by both parameterizations under risk neutrality, as well as 
under risk aversion. 

Table B.2: Implied Equilibrium Conditions for RS and GP Models 
  Parameterization 1 Parameterization 2 
  r = 0 r = 0.46 r = 0 r = 0.46 

0.76 0.67 0.62 0.58 
0.48 0.51 0.32 0.42 

Implied *δ for RS Model (h, m 
and l demand states) 

0.21 0.34 0.12 0.27 
      
Implied (minimum) Punishment 
length for GP Model N/A 6 3 2 

 Note: r = 0 denotes risk neutrality; r = 0.46 is the estimated CRRA coefficient. 

For parameterization 1, note that the implied critical discount factor ( *δ ) in the 
high demand state under risk neutrality is slightly above the “simulated” discount factor 
(0.75) (but below - *δ =0.67- under risk aversion). For parameterization 2, *δ  is always 
below the simulated discount factor. Thus, we would expect that in parameterization 1, 
the predictions of the RS theory (i.e. breakdown of collusion when demand is high) 
would hold under risk neutrality (but not under risk aversion), while in parameterization 2 
collusion should be an equilibrium in all demand states.  Risk aversion implies a shorter 
optimal punishment period for the GP model in both parameterizations.  

Thus, risk aversion may pose a problem for our test of the RS theory, but note that 
the implied *δ  in the high demand state (parameterization 1) is relatively close to the 
simulated discount factor and hence the intended incentives of our design may (weakly) 
work in this case (as shown by the results in the paper). To be sure, however, we carried 
out additional sessions for the FI treatment with a third parameterization that addresses 
this problem; Appendix D shows the parameters used in these sessions. The main 
difference between parameterization 3 and the other two parameterizations is that it has a 
much smaller difference between the collusive outcome and the non-cooperative outcome 
(especially in the high demand state); this effectively reduces the incentives to collude 
thereby increasing *δ . Parameterization 3 has implied (critical) discount factors (for each 
demand state) of 0.88, 0.68 and 0.37 under risk neutrality and of 0.77, 0.62 and 0.44 
under risk aversion (r = 0.46). 

On the other hand, risk aversion is not a problem for testing the GP theory; on the 
contrary, in both parameterizations risk aversion implies a shorter optimal punishment 
length, giving the GP theory a better chance of occurrence (given the length of 33 
periods). 
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APPENDIX C: Imperfect Public Monitoring 
 
Consider parameterization 1. Without loss of generality, let’s assume that the collusive 
quantity (L) is equal to 1; given our design, L=1 automatically defines H (the high 
quantity), as well the prices (the public signal) in all the cells of the three payoff tables 
(high, medium and low demand) as follows: 
 
Table C.1: Implied High Quantity (H) and Prices (pi) in Parameterization 1 when L=1 

  High Demand  Medium Demand  High Demand 

  Player 2  Player 2  Player 2 

  L=1 H=5.73  L=1 H=5.73  L=1 H=5.73 

L=1 p4 = 26 p3 = 7.5  p3 = 7.5 p2 ≈ 2.1  p2 = 2.1 p1 ≈ 0.6 

Pl
ay

er
 1

 

H=5.73 P3 = 7.5 p2 ≈ 2.1  p2 ≈ 2.1 p1 ≈ 0.6  p1 ≈ 0.6 p0 = 0.17 
Notes:  

a) H=5.73 is obtained by dividing 43 (player 2’s profit when player 1 chooses L, player 2 chooses H 
and high demand occurs) by 7.5 (the price that must hold in the L,L cell of the medium demand 
state and in the L,H cell of the high demand state). A slightly different H (because of rounding of 
profit numbers) can be obtained by dividing 12.5  (player 2’s profit when player 1 chooses L, 
player 2 chooses H and medium demand occurs) by 2.1 (the price that must hold in the L,L cell of 
the low demand state and in the L,H cell of the medium demand state). 

b) Because of rounded profit (which is easier for subjects to understand), the implied prices in some 
instances have also been approximated (the ones with a “ ≈ ”) 

Note that the noisy price signal (indirectly) received by both players is the same, 
and hence it is public. For example, suppose that player 1 chooses to play the collusive 
outcome (L) and that player 2 chooses to defect (H). Further, suppose that medium 
demand occurred. Then, player 1 receives the noisy price signal of p2 (upper right cell of 
the medium demand matrix or the upper left cell of low demand matrix) and so does 
player 2 (upper right cell of the medium demand matrix or the lower right cell of high 
demand matrix). A similar exercise can demonstrate the public nature of monitoring for 
parameterization 2. 

Importantly, the public nature of the noisy signal is achieved for any number one 
wishes to choose for L. More generally, one can think of this design as a symmetric two-
player Cournot game with two strategies and stochastic demand. This game maps choices 

1 2( , )y y y=  onto price through a stochastic (demand) function, generating a conditional 
distribution f(p|y); in our case f  has discrete support, that is ( )0 4,...,p p p∈ . 
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APPENDIX D: Results of Robustness Checks 

First, we constructed an additional parameterization (table D.1), to address the potential 
drawback caused by subjects’ risk aversion in the analysis of the evidence for the RS 
theory (see appendix A). To achieve the desired critical discount factors in the presence 
of risk aversion, however, the imperfect monitoring characteristic could no longer be 
maintained; thus, sessions were run only for the FI and M treatments.i A total of 102 
subjects from the University of Massachusetts participated in 3 sessions (2 for treatment 
FI and 1 for treatment M); mean earnings (excluding show up fee and risk task payments) 
were $19.12 for the FI treatment and $19.40 for the M treatment. Further, 
parameterization 3 also serves as a robustness check for our other main finding (demand 
information removal does not decrease collusion).  

Second, to check the robustness of the GP results, we ran additional sessions with 
parameterization 2 but varied the random draws that determine the demand states. These 
draws can be seen in figure D.1 below; we call it parameterization 2b. A total of 74 
subjects from the University of Massachusetts participated in 4 sessions (2 for the IM 
treatment and 1 for each of the other two treatments). Average earnings were $31.06, 
$33.42 and $24.73 for the FI, M and IM treatments, respectively. In addition, 
parameterization 2b also allows us to further check the results obtained in the analysis of 
evidence for the RS treatment. 

Table D.1: Parameterization 3 
  High Demand  Medium Demand  High Demand 

  Player 2  Player 2  Player 2 

  L H  L H  L H 

L 17.00, 17.00 2.00, 31.00  5.00, 5.00 0.50, 9.00  1.40, 1.40 0.20, 2.50 

Pl
ay

er
 1

 

H 31.00, 2.00 12.50, 12.50  9.00, 0.50 3.50, 3.50  2.50, 0.20 1.00, 1.00 

D.1 Effect of Demand Information on Collusion 
We use parameterizations 2b and 3 to check the robustness of whether removal of 
demand information does not decrease collusion; table D.2 confirms this finding. In both 
parameterizations, cooperation is not statistically different between the FI and the M 
treatments, whereas collusion is statistically larger when demand information is removed. 
Figure D.1 confirms (for each parameterization) the similar frequency of cooperation in 
the two treatments.ii 

 

 
                                                 
i To minimize confounding effects, we made a special effort to change as few parameters as possible (i.e. 
the NE payoffs are the same as in parameterizations 1 and 2). 
ii Parameterization 3 also confirms that the removal of monitoring (IM treatment) decreases the rate of 
cooperation and collusion with respect to both the FI and M treatments (results are not reported).  
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Table D.2: Frequencies of Cooperation and Collusion (standard deviation) 

Treatment Parameterization # Obs. Frequency of 
Cooperation*

Frequency of 
Collusion**  

2b 660 0.87 (0.33) 0.62 (0.49) FI 
3 2112 0.64 (0.48) 0.48 (0.50) 
2b 792 0.90 (0.29) 0.83 (0.37) M 3 1254 0.64 (0.48) 0.57 (0.49) 

* At least one player chooses L. ** Both players choose L. 

Figure D.1: Frequency of Cooperation over 33 Periods of Stochastic Demand: h=high [---
], m=medium or l=low [—]; (Parameterization) 
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D.2 Evidence for the RS theory 
Collusion frequencies shown in table D.3 are somewhat similar to those observed for 
parameterization 1 (table 6 of the paper). Collusion in parameterization 2b appears to be 
lower than in parameterization 2, whereas collusion in parameterization 3 appears to be 
similar as in parameterization 1. Consistent with the results reported in the paper, 
collusion is statistically lower when demand is high (with respect to the other two 
demand states) in parameterization 3, but not so in parameterization 2b. Similarly, the 
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frequency of collusion in the medium demand state is not statistically different than that 
observed in the low demand state. 

Turning to the analysis of individual strategies, the regressions reported in table 
D.4 still provide support for the RS strategy, but this evidence is not as strong as in 
parameterization 1. In particular, the TT strategy has a higher explanatory power than the 
RS strategy; the grim strategy continues to be the most significant (single) strategy and it 
can even explain data better than the combined RS+TT strategy. 

Table D.3: Frequencies of Cooperation and Collusion in Full Information Treatment (St. 
Dev.) 

All Observations (Periods 1-33)  Periods 1-25 
Demand 

State 

Pa
ra

m
. 

# Obs. Freq. 
Collusion**  # Obs. Freq. 

Collusion** 

2b 100 0.44 (0.50) 40 0.55 (0.50) 
High (h) 

3 384 0.42 (0.49) 320 0.43 (0.50) 
2b 420 0.65 (0.48) 320 0.66 (0.43) Medium 

(m) 3 1,344 0.49 (0.50) 960 0.54 (0.50) 
2b 140 0.64 (0.48) 140 0.64 (0.48) Low (l) 3 384 0.52 (0.50) 320 0.53 (0.50) 

* Frequency of either player choosing L. ** Frequency of both players choosing L. 
Table D.4: Probit Estimates of Different Strategies in the FI treatment, Parameterization 
3, Rounds 1-25 

Parameter Random RS TT P-∞  RS + TT 
α     -0.87*** -0.75 -1.12* -0.76* -1.02** 

1γ   0.83*   0.94* 

2γ    0.88*  0.99* 

3γ      2.90*  
ψ     2.21* 2.30* 1.70* 0.23 1.79* 
ρ     0.78* 0.80* 0.70*  0.32* 0.73* 
LL -526.29 -505.08 -499.87 -465.45 -473.57 
LR Test  
(p-value)† 

N/A 42.42 
(<0.01) 

52.84 
(<0.01) 

121.68 
(<0.01) 

105.44 
(<0.01) 

* Significant at 1%. ** Significant at 5%. *** Significant at 10%.  † Likelihood ratio test with respect to the 
random strategy. 
Notes: # of Observations =1,536 in all models to keep number of observations comparable across strategies 
(first period is lost in TT strategy). RS=Rotemberg and Saloner equilibrium strategy, TT=Tit-for-Tat, P-
∞ = infinite punishment. LL=Log-likelihood. Finite punishment strategies also have significant 
explanatory power but much smaller than the strategies displayed.  

The frequencies of observed outcomes in parameterization 3 (displayed in table 
D.5) are similar to those for parameterization 1 presented in table 9 of the paper; the main 
difference is that the (H,H) outcome now appears to be more frequent (especially in the 
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medium state). When compared with parameterization 2, observed outcomes for 
parameterization 2b are somewhat different, however; the main difference is that here the 
collusive outcome is observed less frequently (especially in the high demand state), while 
the (H,L)/(L,H) outcome is now observed much more frequently. This is our least strong 
robustness result.  

The non-parametric tests are, however, consistent with what was reported in the 
paper. The best fit in parameterization 3 is given by the RS equilibrium (51%) followed 
by the “always collude” outcome (48%), the “always defect” outcome (35.61%), and the 
(H,L)/(L,H) outcome (16.11%). On the other hand, the best fit in parameterization 2b is 
given by the “always collude” outcome (65%), the RS equilibrium (64%), the (H,L)/(L,H) 
outcome (25.76%), and the “always defect” outcome (12.73%). Again, the evidence from 
parameterzation 2b is not as conclusive as that of parameterization 2.iii 

Table D.5: Frequencies of Observed Outcomes 
Demand State (outcomes) Parameterization 2b Parameterization 3 

High (h) 
(L,L) 
(H,H) 
(H,L)/(L,H) 

44.00% 
24.00% 
32.00% 

41.67% 
46.88% 
11.46% 

Medium (m) 
(L,L) 
(H,H) 
(H,L)/(L,H) 

64.76% 
11.43% 
23.81% 

49.11% 
36.01% 
14.88% 

Low (l) 
(L,L) 
(H,H) 
(H,L)/(L,H) 

64.29% 
8.57% 
27.14% 

52.08% 
22.92% 
25.00% 

Notes: Bold numbers indicate that entry is a feasible equilibrium (see Appendix B, table B.1 for details) 

D.3 Evidence for the GP theory 
Table D.6 is consistent with the results obtained for parameterization 2 (reported in table 
10 of the paper): large punishment lengths tend to explain cooperation and collusion 
better by than short ones. Similarly, regression results designed to study subjects’ 
strategies (table D.7) are in line with those obtained for parameterization 2b (table 12 of 
the paper): a) the grim-trigger strategy appears to explain the data best, and b) the most 
likely threshold level for starting a price war appears to be p1 (regardless of the rule for 
returning to the collusive regime). Finally, results displayed in table D.8 below are also 
consistent with those reported for parameterization 2 in table 13 of the paper. 

                                                 
iii One reason for this could be the difference in number of observations: parameterization 2 has 1,584 
observations, while parameterization 2b has 660. 
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Table D.6: Frequencies of Cooperation and Collusion in Collusive (C) and Reversionary 
(R) Regimes in IM treatment, Various Punishment Lengths, Rounds 1-25, 
Parameterization 2b 

Cooperation Collusion Punishment 
Length (N) R C p-

value* R C p-
value* 

2 0.68 0.67 0.73 0.18 0.24 0.11 
3 0.69 0.67 0.60 0.21 0.23 0.46 
4 0.66 0.70 0.25 0.19 0.26 0.01 
14 0.66 0.78 0.02 0.19 0.44 <0.01 
15 0.66 0.78 0.02 0.19 0.44 <0.01 
∞ 0.65 0.94 0.02 0.19 0.44 <0.01 

Note: Bold numbers indicate that the entry entails a feasible punishment length in the GP equilibrium. The 
results are qualitatively similar if all rounds (1-33) are considered. Consistent with theory, the public signal 
assumed to trigger a price war is p2. 
* Pearson’s Chi-Square statistic; p-values of other non-parametric tests (Wilcoxon, Kolmogorov-Smirnov, 
and Epps-Singleton) and the parametric t-test produce similar p-values. 
 
Table D.8: Fraction of Times the Equilibrium Path Correctly Predicts Outcomes 
(Predictive Power) 

Equilibrium Path Parameterization 2 
(H,H) every period 
GP3 
GP4 
GP5 
GP14 
GP15 
GP∞ 

37.98% 
40.40% 
50.51% 
60.61% 
75.96% 
78.18% 
81.21% 

Notes: Bold numbers indicate a theoretically feasible equilibrium (see Appendix B, table B.1 for details). 
The GPN path takes a value of 1 when collusion is predicted and 0 when a price war is predicted; a price 
war is assumed to be triggered by a low signal (price≤p2) which lasts N periods. 
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Table D.7: Probit Estimates of Different Strategies in the IM treatment, Rounds 1-25, Parameterization 2b 
 

R
an

do
m

 
GPN 

1NT   
{N} 

1NTT  
{N} 

2T  2TT  

1k p= 2 0k p= 2 1( )k L p=

0( )k H p=  3 
1( )downk L p= , 

0( )downk H p=  
  

N=51 N=13 N=∞ 
{5} {∞ } {∞ } {∞ } 

1
downk p=

 

3
upk p=

 

1
downk p=

 
4

upk p=
 

4( )upk L p=  
2( )upk H p=

4( )upk L p=  
3( )upk H p=

γ  N/A 0.39* 0.50* 0.61* 0.63* 0.92* 0.48* 0.60* 0.90* 0.92* 0.55* 0.62* 
LL -437.66 -431.13 -431.1 -430.0 -420.4 -415.9 -430.98 -425.8 -416.0 -415.9 -426.90 -424.89 
LR† 
p-value 

N/A 13.04 
<0.01 

13.15 
<0.01 

15.28 
<0.01 

34.38 
<0.01 

43.35 
<0.01 

13.35 
<0.01 

23.68 
<0.01 

43.23 
<0.01 

43.35 
<0.01 

21.52 
<0.01 

25.54 
<0.01 

Notes: Estimates of α , ρ  and ψ  are significant at the 1% level in all specifications (not shown). Number of observations: 1,200 in both parameterizations. 
N=number of punishment periods. LL= Log-likelihood. GP=Green and Porter theoretical prediction; strategies T1, TT1, T2 and TT2 are defined in table 11. k are 
threshold levels, also defined in table 11. 
1 GP equilibrium is feasible for punishment lengths 3-∞ (2-∞ for the risk aversion case). Shown are only the three punishment lengths with the highest 
explanatory power. 
2 Other finite punishment lengths also had statistical significance, but were less significant than the one reported. 
3 Strategies with threshold levels 

2( )k H p=  and 
1( )k H p=  also had statistical significance, but were less significant than the one reported. 

† Likelihood ratio test with respect to the random strategy 
* Significant at 1% level 
 
 


