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Abstract

I study how patent policy shapes R&D investments in the context of sequential innovation.

I show that investments are driven by the incremental rent that firms obtain from innovating

and increase with the approximation of the patent’s expiration date. The main finding is that

patent policy affects both the value of a new patent and the cost of replacing currently active

patents. As a result, strong patent protection may decrease investment rates and, consequently,

the economy’s speed of innovation. In other words, the welfare losses of a protective policy lie

beyond the loss in consumer surplus due to monopoly power.

1 Introduction

Inventions and the development of new knowledge are at the heart of the progress of modern

economies. Much of the microeconomic dynamics within markets are generated by temporary

competitive advantages created by the introduction of new products or the adoption of new

production processes. Patents are the main tool that governments use to promote innovation.

By granting the right of exclusion, patents help firms to obtain enough profits to incentivize the

pursuit of new discoveries. However, the incentives provided by a patent system are not yet fully

understood. The goal of this paper is to answer the following questions on the effects of patent

policy in a context of sequential innovation (i.e. where innovations build upon each other): 1)

what are the dynamic incentives induced by patent policy on firms’ R&D decisions? 2) Given

these incentives, what are the key determinants of an optimal patent policy and how does this

policy relate to potentially observable market characteristics?

The classic work on patents (e.g. Nordhaus, 1969; Loury, 1979; and Lee and Wilde, 1980)

treats each innovation as an isolated phenomenon, ignoring how the prospect of future break-

throughs affect the value of an innovation and, ultimately, the incentives to innovate at any given
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point in time. This literature sustains the idea that, in the absence of economies of scale in

R&D, longer and more enforceable (stronger) patents increase the returns of a succeeding inno-

vator. Consequently, the design of an optimal patent system consists only in assessing the benefit

of higher innovation rates, induced by stronger patents, and the monopoly cost associated with

them. As we shall see, in a sequential world this logic is not complete. Even though patents are

necessary to induce R&D, patent systems that are “too strong” induce a relatively low innovation

arrival rate in the economy, implying that the welfare losses of a strong patent policy lie beyond

the loss in consumer surplus due to monopoly power.

In this paper, I provide a tractable continuous-time model of R&D investments in an economy

where innovation is sequential and has the Schumpeterian property of creative destruction. A

patent is represented by a two-dimensional policy that determines how long an innovator will be

able to exclude others from using his technology –i.e. patent length– and how much protection

will an innovator have from future inventions –also called forward protection or patent breath.

When a new invention occurs, the patent authority may determine that the new invention in-

fringes the currently active patent. In that case, license fees, equal to the damages caused by the

commercialization of the new product, have to be paid by the innovator in order to be able to

commercialize his new invention and obtain economic profits.

Since patent protection expires, the value of an active patent decreases with the approximation

of its expiration date. This induces R&D incentives –and consequently investments– to be non-

stationary though time. Also, it makes patent policy play an important role in the timing of

R&D investments. At any point in time, the prize obtained from an innovation corresponds to

the incremental rent derived from a new patent. For an entrant, this rent corresponds to the value

of a new patent minus the license fees he may have to pay in order to be able to commercialize

his innovation. On the other hand, for the incumbent, the incremental rent corresponds to the

difference between the value of a new patent and the cannibalized value of their currently active

patent (this cannibalization is also known as Arrow’s replacement effect, see Arrow (1962)).

The key insight gained from studying the problem in a sequential context is that patent

policy not only affects the value of a new innovation, in equilibrium, it also affects the cost

of replacing currently active patents. For instance, an increase in patent length will not only

increase the value of developing a new patent –rising the firms’ incremental rent, creating an

incentive to invest more– it also increases the incumbent’s valuation for his current patent and the

expected license fees paid by innovating entrants. These effects, not present in a single-innovation

context, discourage firms from innovating. Furthermore, when patent protection is too strong,

these effects become dominant, decreasing the firms incremental rent, lowering investment rates

and, ultimately, decreasing the economy’s pace of innovation.

After understanding the firms’ investment dynamics, I study the welfare implications of a

patent system. To do so, I depart from the standard approach of assessing the consumers’ dead

weigh loss associated with the monopoly granted by patent protection and focus solely in the
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speed of the innovative activity induced by a given policy. In particular, I study how the optimal

policy –understood as the one that maximizes the innovative activity– varies through different

markets. If find that in markets in which innovations take on average longer to produce or are

costly to generate, longer patents with little forward protection are optimal. In contrasts, market

in which innovations occur frequently, short patents with a strong forward protection are optimal.

This paper represents a contribution to the innovation literature in three respects. First, I

provide a clean theoretical model that sheds light on how the dynamic incentives for innovation

evolve through the patent life. To my knowledge, this is the first paper that, in a context of

sequential innovation, studies the incentives induced by finite patent lengths, looks at optimal

patent policy, and performs comparative statics. Secondly, my model rationalizes some empirical

findings, such as incumbents: invest less than entrants (Czarnitzki and Kraft 2004, Acs and

Audretsch 1988), patent at lower rates (Bound et al., 1984), and, further, invest at a slower pace

(Igami, 2011). Moreover, it is consistent with the empirical evidence provided by Sakakibara

and Branstetter (2001) that stronger patent policy does not necessarily lead to more R&D (see

Cohen 2010 for exhaustive survey in the empirical R&D literature). Lastly, my findings bring

new insights and provide deeper understanding of patent systems –the most common tool used

by governments to promote innovation.

The paper is organized as follows: Section 2 presents a simple model of innovation which is

the basis of the subsequent analysis. In Section 3, I prove the equilibrium’s existence and find its

analytical solution (Proposition 1). There, I show that the firms’ investments increase with the

approximation of the patent expiration date as both the incumbent’s cannibalization of his own

patent, and the license fees paid by innovating entrants, vanish with the decrease in value of the

currently active patent.

In Section 4, as a comparative static analysis, I explore the firms investment dynamics. I

start by studding how the different elements of the model determine the value of an active patent.

Proposition 2 shows that higher expected discounted profits and stronger patent protection in-

creases the value of active patents. Despite of this increase in value, stronger protection does not

necessarily lead to higher investments. Proposition 4 studies the effect of patent length on firms

R&D. Under longer patent protection, incumbents decrease their investment rates, postponing it

towards the end of their patent protection. Entrants, on the other hand, purse the innovation

harder at the beginning of incumbent’s patent protection but may decline their efforts toward the

end of the incumbent’s protection. This decrease in investments is caused by the fact that, in a

sequential context, patent policy not only affects the value of a new innovation but it also affects

the replacement value of active patents, and, consequently potential license fees that entrants

have to pay in case that an infringement occurs.

As Proposition 6 shows, incumbents and entrants also react asymmetrically to an increase

in the level of forward protection that a patent grants. An increase in forward protection raises

the incumbents incremental rent from innovating, leading incumbents to perform more R&D. In
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contrasts, due to an increase in the probability of infringing active patents, the increase in forward

protection decreases entrants incremental rent at the beginning of the incumbent’s protection,

decreasing their R&D. Since the value of the license fees paid in case of an infringement vanish

with the approximation of the patent expiration date, the deterrence effect from the increase in

forward protection fades away towards the end of patent life, increasing the entrants R&D .

In Section 5 I perform numerical analysis to study the policy that maximizes the innovative

speed of the economy. There I show that the optimal policy consist in a finite patent length and a

non-maximal level of forward protection. This result contrast with the classical patent literature

which, in the absence of consumers, infinite patent length would maximize the innovative activity

in the economy. In this section, I also show that the optimal patent varies through different

markets and that the two policy tools tend to substitute one another. In particular, in markets

in which innovation occur frequently short patents with high levels of forward protection tend

maximize the innovative activity. In contrasts, in slow innovating markets, long patents with

little forward protection are optimal.

Section 6 presents different extensions that aim to understand the role of the different assump-

tions used in the basic model. Section 6.1 extends the model to the case in which license fees

are determined through a bargaining process between the incumbent and the infringing entrant.

There, I show that the larger the incumbent bargaining power the less effective becomes the

patent’s forward protection as a tool to promote innovation. In Section 6.2 I study the extent to

which previous results are driven by the assumption that the commercialization of new inventions

completely cannibalize profits from previous patents. As it should be expected, the less dynamic

competition a patent face, the closer the model is to a single-innovation model, and the weaker

the results become. Lastly, through numerical analysis, I examine a duopoly model to study the

effects of strategic interaction between firms. As shown there, the conclusion of the basic model

remain unaffected.

To conclude and due to the large extent of the previous literature, I devote Section 7 to discuss

how my results relate to the previous work in patents and Section 8 concludes.

2 A Simple Model of Sequential Innovation

Consider an economy consisting of firms competing in an infinitely-lived market. Firms perform

R&D in order to obtain an innovation that allow them to obtain temporary competitive advan-

tages. Time is continuous and denoted by t. At each instant of time t, there is at most one firm

possessing an active patent for the latest technology available in the market; this firm is called

the incumbent and is denoted by i. All other firms, called entrants and denoted by n, compete

investing in R&D in order to leapfrog the incumbent and become the new technology leader. I

assume that the incumbent is a long-run player, who maximizes the present discounted value of

his profits, whereas the entrants are an infinite sequence of short-run investors that maximize
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their instantaneous payoffs.1 The incumbent discounts his future payoffs at a rate r > 0.

The value of an innovation depends on the underlying patent system, the monopoly profits

that the incumbent gets while he holds the patent, and the time remaining until the patent’s

expiration date. A patent system consists of a statutory length T ∈ R+ and of forward protection

represented by an infringement probability b ∈ [0, 1]. I assume that all innovations are patentable

but a new innovation may infringe the previously active patent with probability b. While an

incumbent’s infringement of its own patent has no active consequences, entrants have to pay a

compulsory license fee to be able to profit from their invention. The license fee is assumed to be

equal to the profit damages that the incumbent suffers from the commercialization of the new

product. For all the participants of this economy the tuple (T , b) is considered common knowledge

and exogenously given.

While a patent is active, the incumbent receives a monopoly flow of profits π > 0. When the

patent expires, competition in the product market drives the incumbent’s profits to zero. When

an innovation occurs, the inventing firm patents his technology right away, gaining the right to

exclude others from using his technology at the cost of making this new technology publicly known.

As a consequence, any innovation produced by an entrant will build upon the latest technology,

leapfrogging the current incumbent. Furthermore, I assume that the new technology renders the

currently patented technology obsolete, driving the profits of the replaced incumbent to zero. In

concrete terms, the conjunction of these assumptions imply that there is, at most, a one-step lead

between the technology leader and his competitors.2

A period is the time lapse between two innovations. Periods have random length and are basis

of the notation below; t = 0 represents the beginning of a period and t = s represents that s units

of time have passed since the last innovation; that is, if s < T , the currently active patent has

T − s time left.

In order to obtain an innovation firms have to invest in R&D. These investments lead to a

stochastic arrival of inventions which is an increasing function of the firms’ investments. At every

t, each firm k ∈ {i, n} chooses an R&D effort xk,t ≥ 0. The instantaneous cost of this investment

is given by the cost function c (x). I assume that the cost is a twice continuously differentiable

function that satisfies c′(·), c′′(·) > 0, c′ (0) = 0 and limx→∞ c
′ (x) = ∞ (in order to obtain an

analytical solution below I will focus on the case in which c(x) = x2/2.)

Firm’s k effort induces an arrival of innovations described by a non-homogeneous Poisson

process whose arrival rate at instant t is λxk,t with λ > 0. The parameter λ is called the

market’s natural innovation rate and is a measure of the pace of innovation in any given market3.

The Poisson processes are independent among firms and generate a stochastic process that is

1Alternatively, this assumption can be re-interpreted as free entry into the R&D race; see footnote 4.
2In section 6.2 I relax the assumption that a new innovation makes the current technology completely obsolete.

As shown there, the main force driving the results is still present, but fades away with the decrease in rivalry among

innovations.
3Comment about cost and λ
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Figure 1: Timing of the game

memoryless but potentially non-stationary. The waiting time between two innovations is described

by an exponential distribution with the probability of observing an innovation by instant t equal

to 1 − exp(−z0,t) where zτ,t = λ
∫ t
τ (xi,s + xn,s) ds is a measure of the accumulated investments

from instant τ to instant t.

Timing of the game The timing of the game, depicted in Figure 2, is as follows. When

an innovation arrives our time index t is reset to zero. From that time and on, and while his

incumbency lasts, the patent holder receives a monopoly flow of π whereas the entrants obtain zero

profit as they only have access to obsolete technologies. At each instant of time, the incumbent

faces a different entrant. Entrants are assumed to play only once in the game maximizing their

instantaneous payoff. Thus, the effort xn,t represents how the investment of the different entrants

evolves through time.4 At every instant of time, both incumbent and entrant choose their effort

simultaneously determining the arrival rate of innovation for both firms.

Let v(t) be the equilibrium value of holding a patent that has been active for t < T years.

When an innovation occurs, the succeeding firm becomes the new incumbent and his technology

renders the currently patented technology obsolete. If the innovating player is an entrant, with

exogenous probability b his innovation is considered to infringe the incumbent’s patent and he

has to pay a compulsory license fee of v(t) equal to the damages caused to the incumbent due to

4 This assumption can be thought of a reduced form of the following model: There are two arrival processes, one

for the incumbent and one for the entrants. All the potential entrants play simultaneously. The arrival rate of the

entrants depends on the sum of their efforts denoted by xn,t. If the entrants’ arrival process delivers an innovation,

the succeeding firm is chosen with an uniform probability among all possible entrants. When the number of entrants

is arbitrarily large, as it would be if there is free entry in the R&D race, each firm has efforts and payoffs that

converge to zero but on the aggregate total effort, xn,t, converges to that represented in equation (2) below.
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the commercialization of the new invention. If no innovation has occurred within the statutory

length of the patent, the patent holder loses his incumbency status and becomes one of the many

entrants of the game. Consequently, no license fee can be charged for innovations that occur after

T and the value of a patent at that date is zero, i.e. v(T ) = 0.

Payoffs and strategies Fix {xn,t}T0 . From the perspective of time s, the incumbent’s value of

having a patent that has been active for s years is:

v (s) = max
{xi,t}Ts

∫ T

s
(π + λxi,tv(0) + λxn,tbv(t)− c (xi,t)) e

−zs,te−r(t−s)dt. (1)

That is, with probability exp (−zs,t) no innovation has occurred between instant s and t and

the patent is still active at t. At that instant t, the incumbent receives the flow payoff π and pays

the cost of his investment c (xi,t). The R&D investment leads him to an innovation at a rate λxi,t

obtaining the benefit of a brand new patent v(0). On the other hand, the entrant may succeed

at a rate λxn,t in which case he may infringe the current patent with probability b, having to pay

to the incumbent a compulsory license fee of v(t). All of these payoffs are discounted by e−r(t−s).

On the other hand, at each instant of time t at which a patent is active, a new entrant decides

how much to invest. Entrants maximize their instantaneous flow payoff

λxn,t ((1− b) v(0) + b(v(0)− v(t)))− c (xn,t) .

This is, the entrant’s expected profit from an innovation v(0)− bv(t), adjusted by the arrival rate

induced by his effort λxn,t, minus the cost of his effort c (xn,t). It is immediate to see that the

entrant’s effort at each instant of time will be given by

c′(xn,t) = λ(v(0)− bv(t)). (2)

Similarly, when no patent is active, and no license fee can be charged for an innovation, the

entrant’s effort becomes constant and equal to xn,t = c′−1 (λv0).

In this game a strategy is a mapping from the time that the current patent has been active,

t, to a R&D intensity. Therefore, this is a Markov game as both the incumbent’s and entrants’

strategies are functions of the only state variable. Thus, I focus on finding Markov Perfect

equilibria.

3 The Incumbent’s Problem

In this section I solve the incumbent’s problem using optimal control techniques. I start by

assuming that the value of a new innovation is known, and equal to v0.
5 Then, I apply the

5To be clear, v(0) represents the value of an active patent that was just issued. On the other hand, v0 represents

the value of a new patent that has not been issued, i.e. is the value of the next innovation.
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Principle of Optimality to derive the Hamilton-Jacobi-Bellman (HJB) equation which provides

necessary and sufficient conditions for a maximum. Maximizing the HJB equation I find the

incumbent’s optimal investment rule which is used to solve for the value of having an active

patent at each instant t. This solution is implicitly defined by the conjectured value v0. Thus,

this section concludes by showing that there exists a value of v0 that is consistent with the solution

found above, i.e. v(0) = v0.

Let xt = xi,t + xn,t, starting at an arbitrarily small time interval [t, t + dt), the incumbent’s

value of having a patent for t years must satisfy the Principle of Optimality:

v (t) = max
xi,t

{
(π + λxi,tv0 + λxn,tbv(t)− c (xi,t))dt+ e−rdtE [v (t+ dt) |xt]

}
.

That is, given the optimal strategy, the value of having a patent at t is equal to the payoff

flow at that instant of time, plus the discounted expected continuation value of the patent. For

sufficiently small dt, the discount factor exp (−rdt) is equal to 1 − rdt. On the other hand, the

expected continuation value of the patent E [v (t+ dt) |xt] is equal to the probability of not having

an innovation today 1−λxtdt, times the value of a patent tomorrow v (t+ dt) = v (t)+v′ (t) dt, plus

the probability that an innovation occurs λxtdt times the continuation value of the current patent

after an innovation which is zero. Substituting back the previous expressions in the equation

derived from the Principle of Optimality, I obtain the following HJB equation

rv(t) = max
xi,t

{
π + λxi,t (v0 − v (t))− λxn,t (1− b) v(t)− c (xi,t) + v′ (t)

}
. (3)

Condition (3) is necessary and sufficient for a maximum, and the incumbent’s optimal R&D

intensity is determined by its first-order condition

c′ (xi,t) = λ (v0 − v (t)) . (4)

Equations (2) and (4) are very informative about the firms’ R&D investments dynamics. They

state that, at any instant t, the firm’s marginal benefit of their R&D investments is a function of

the incremental rent that the firms obtain from innovating. For the incumbent this is the expected

profits from a new patent v0, minus the expected profits loss from giving up the currently active

patent v(t). For the entrant the incremental rent corresponds to the profits from a new patent

minus the expected license fee bv(t) that he has to pay in order to commercialize his innovation.

Since the value of an active patent declines with the proximity of its expiration date (see

Proposition 1), both types of firms perform increasing investments through time. Also, before a

patent expires and as long as b < 1, entrants invest at a higher rate than the incumbent. The

incumbent starts performing zero effort at t = 0 as, by definition, v (0) = v0, whereas the entrant

investment starts at xn,t = c′−1 (λ(1− b)v0). Effort reaches its maximum at t = T , where the

replacement value of the currently active patent becomes zero, and both firms invest at a rate of

c′−1(λv0).
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To be able to obtain an analytic solution more structure on the cost function is needed, in

particular I assume the following quadratic cost c (x) = x2/2. Substituting the incumbent’s

and entrant’s effort into (3), using the cost assumption, and rearranging, the following ordinary

differential equation (ODE) is obtained6

0 = v′ (t) + λ2
(

1

2
+ b (1− b)

)
v (t)2 −

(
r + λ2 (2− b) v0

)
v (t) + π +

λ2

2
v20. (5)

This is a separable Riccati differential equation. It has a unique solution that satisfies the bound-

ary condition that patents lose their value after they expire, v(T ) = 0, and its solution is given

by (see Appendix A for details)

v(t) =
(2π + (λv0)

2)(eφ(T−t) − 1)

(θ + φ) eφ(T−t) − (θ − φ)
(6)

where θ = r + λ2 (2− b) v0 and φ =
(
θ2 − λ2 (1 + 2b (1− b))

(
2π + λ2v20

))1/2
.

As shown by equation (6), the value of a patent v(t) is a function of the conjectured value v0. In

order to have a well-defined solution it is necessary to show that a fixed point to v(0) = v0 exists.

It is important to note here that v(t), as a function of v0, is well-defined for all non-negative values

of v0. In particular, this is also true for values of the parameters such that φ is imaginary because

all the imaginary terms in (6) cancel out (see Appendix A.) The next proposition establishes the

existence of a solution.

Proposition 1 (Existence) There always exists a fixed point v(0) = v0. The value of having a

patent decreases with t and is given by equation (6) evaluated at the fixed-point v0. The incum-

bent’s R&D investments increase as the patent expiration date approaches, whereas the entrant

investments increase whenever b > 0. The R&D investments for the incumbent and the entrants

are respectively given by

xi,t = λ(v0 − v(t)) xn,t = λ(v0 − bv(t)).

The proof of Proposition 1 is relegated to Appendix B.1. Unfortunately, uniqueness of the

fixed point cannot be guaranteed for all sets of parameters. However, since there is a finite number

of fixed points and they can be ranked in a Pareto sense, i.e. all players rank the fixed points in

terms of their payoffs equally, in the subsequent analysis I use the Pareto-dominant fixed point

as the solution, i.e. the largest v0 that is a fixed point.

4 R&D Dynamics

The purpose of this section is to study how the different elements of this economy affect the firms’

R&D investments. Since investments are function of the value of a patent through time, a key

6This specification of equation (5) assumes that firm’s investments are non-negative. This will be the case in

equilibrium, however the conjectured value v0 may be sufficiently low that the incumbent or both firms may choose

no to perform R&D for some t. Appendix A provides details in this matter.
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step to understand R&D dynamics is to study how the value of a patent v(t) is affected by changes

in the parameters or the model.

The value of an active patent In equilibrium, when innovation is sequential, exogenous

changes in the parameters of the model will have two –often opposing– effects. On the one hand,

there is a direct effect on the patent race taking place at the moment of the change. On the

other, there is an indirect effect in the patent races taking place in the future. This last effect is

captured by changes in the fixed-point v(0) = v0, and generally makes the comparative static not

as straight forward as ones would expect to be. In what follows, Proposition 2 summarizes the

net equilibrium effect of a change in a parameter of the model, whereas Proposition 3 isolates the

fixed-point effect.

Proposition 2 (Value of a new patent) The equilibrium value of a patent v(t) increases with:

(i) an increase in the profit flow π; (ii) a decrease the interest rate r; (iii) an increase of the

statutory length T ; (iv) an increase of the forward protection b whenever b < 1/2, and; (v) an

increase in the market’s natural rate of innovation λ when there is full forward protection.

Claims (i)-(iv) in Proposition 2 are quite intuitive. If the discounted flow of monopoly profits is

higher or if patent protection is stronger, the equilibrium value of a patent goes up. Although

the proof that greater forward protection increases the value of a patent holds only for b < 1/2,

numerical results show that the increase in value is for all possible levels of forward protection (see

Figure 2(a) for an example). This limitation in the proof is due to not having an explicit solution

for v(0) and a decrease in the expected revenues that an incumbent derives from the innovation

of an entrant whenever b > 1/2. This revenue effect, studied in Section 6, pushes the value of an

active patent down but seems to be dominated when license fees are equal to the damage suffered

by incumbents due to the commercialization of a new innovation, but may dominate if we endow

the incumbent with larger bargaining power.

The effect on an increase in the natural innovation rate λ is less clear as is the result of the

interaction of two opposing forces. On the one hand, the increase in λ can be understood as an

increase on the incumbent’s competition as it increases the entrant’s R&D productivity. On the

other hand, the increase in λ also increases the incumbent’s productivity of R&D, increasing his

probability of remaining technology leader. Hence, the net effect of a change in λ depends on the

relative magnitude of the increase-in-competition and the increase-in-productivity effects. Claim

(v) states that when the incumbent possesses maximal forward protection, the increase on the

incumbents productivity becomes the dominant effect, increasing the value of a patent. Although

unproven, numerical analysis also show that the converse is also true. When no forward protection

is offered, the competition effect becomes dominant and an increase in the natural innovation rate

λ decreases the value of a new patent. As figure Figure 2(a) shows, for intermediate levels of

forward protection the effect of an increase in λ may be non-monotonic and tend to decrease the
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Figure 2: Comparative Statics: Value of a patent

value of a patent in markets in which innovations are frequent. In practical terms, this result

implies that unless incumbents have strong protection against future inventions, they will not

generally benefit with measures that facilitate innovation at an industry-wide level and this is

particularly true in market in highly innovative markets.

Proposition 3 (Changes in future policy) With no forward protection, an exogenous change

in the value of the next technology, v0, decreases the value of an active patent v(t).

Proposition 3 isolates the effect of anticipated changes in policy, i.e. changes that will will take

place only after the next innovation occurs. As it happens with the natural innovation rate λ,

a change in v0 has an increase-in-competition effect and an increase-in-reward-from-R&D effect.

Proposition 3 states that with no forward protection, the increase-in-competition effect dominates.

Furthermore, with exception of full forward protection, numerical analysis show that increasing

the value of future inventions decreases the value of currently active patents due to the increase

in competition (see Figure 2(b)).

R&D Investments After understanding how the different aspects of the model affect the value

of holding an active patent, I study how patent policy influence the dynamics of R&D investments.

Proposition 4 (Patent length and R&D) An increase in the statutory length of a patent T :

(i) decreases the incumbent’s investment rate at each t, and; (ii) increases the entrants’ investment

at t = 0 but, when forward protection is large enough, may decrease its R&D for t > 0.

At any instant of time, firms R&D investments are a function of the incremental rent they

obtain from innovating (see equations (2) and (4)). For the incumbent this is the value of a new

patent minus the cannibalized benefits of the old patent. For the entrant is the value of a new

patent minus the license fees he has to pay in case of an infringement. As shown in Proposition
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Figure 3: Comparative Statics: R&D investments and patent policy

2, an increase in the statutory length of a patent leads to an increase in the value of holding an

active patent v(t) for all t. Consequently, the equilibrium effect of an increase in patent length

will depend on how the magnitude of the increase in v(t) changes through the patent life t. Claim

(i) in Proposition 4 implies that the increase in v(t) is larger the closer the active patent is to its

expiration date, this is due to the fact that the effective length of a patent generally differs from

its statutory length. When longer patent protection is offered, the increase in value of an active

patent at t > 0 is larger than the increase at t = 0 because the probability of actually reaching

and using the patent extension is higher the closer the incumbent is to the expiration date T .

Thus, the effective gain due to an increase in the duration of the patent is larger the closer the

patent is to the initial expiration date.

To understand claim (ii) observe that the entrant’s R&D can be written as

xn,t = bxi,t + λ(1− b)v0.

Thus, the total effect in the entrants’ investments is a convex combination of the effect of patent

length on the value of a new patent and on the effect on the incumbent’s investments. When

t = 0, xi,0 = 0 and the only effect present is the increase in the value of a new patent. As time

goes through and since license fees correspond to the value of the cannibalized patent, the increase

in the expected license fees derived from the increase in T becomes larger and, when b is large

enough, dominates the increase in v0 driving the entrants’ investment down. Figure 3(a) depicts

Proposition 4 when b = 1/3. As can be observed, the increase in license fee effect is quite strong

and dominates even with low degrees of forward protection.

The next proposition connects the sequential model with traditional single-innovation models

and helps to gain a deeper understanding of Proposition 4.

Proposition 5 (Grandfathering) If an increase in the statutory length of a patent T do not

12
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Figure 4: Comparative Statics: R&D investments and forward protection

apply to currently active patents but apply to all subsequent innovations, then incumbent and

entrants will increase their R&D intensity at the moment of the change in policy.

Proposition 5 shows that Proposition 4 correspond to equilibrium effects, i.e. once all the

effects in the change in policy have taken place. As single-innovation models do, when the analysis

of an increase in patent length is restricted to the increase in the reward that firms obtain from

future innovations v0, we conclude that R&D should increase. Is precisely by incorporating the

sequential structure to the standard innovation model that we find that the replacement value

of an active patent, v(t), also depends on patent policy, leading to the conclusion that R&D

investments may decrease in equilibrium.

Proposition 6 (Forward protection and R&D) An increase in forward protection b: (i) in-

creases the incumbent’s investment rate at each t, and; (ii) decreases the entrants’ investment rate

at t = 0 whenever b ≥ 1/2, and increases the entrants’ investments at the end of the patent life.

In contrast to the case of a patent extension, the benefit of an increase in forward protection

fades away when the patent expiration date approaches. In particular, at t = T the effect of

an increase in b is nil. As a consequence, the incumbent’s incremental rent from innovating

raises at each t, increasing his R&D investment rate. For entrants, on the other hand, there is a

direct negative effect on their incremental rent due to the increase in the infringing probability.

This effect leads to a decrease in the entrants’ investment rates at the beginning of the patent

protection. When the patent expiration date approaches, licenses fees decrease to zero. Hence,

the increase in value of a new patent due to the increase in b dominates, increasing the entrants’

R&D investment towards the end of patent life. These effects are shown in Figure 3(b), where I

depict the firms investment dynamics for different levels of forward protection b.
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To gain a better understanding on the role that forward protection plays in the firms in-

vestment dynamics, Figure 4 show some numerical results. Figure 4(a) suggests that the initial

decrease in the entrants’ investments due an increase in b is generally not restricted to b > 1/2.

Also, the decrease of the initial investments is sharper the faster the speed of innovation in the

economy is. Figure 4(b) shows the total accumulated investments throughout the patent life. Al-

though subtle, for each λ, there generally is an interior level of forward protection that maximizes

total investments. Moreover, this interior value of b is larger in economies that innovates faster.

The combination of Propositions 4 and 6 give clear and testable empirical predictions. First,

the probability that an incumbent innovates in a technology that cannibalize market share from

one of their current products increases with the approximation of the patent expiration date.

Secondly, entrants are always more likely to innovate than incumbents, however, the the difference

in probability converges to zero as the patent expiration date approaches. Third, the entrants’

innovation rate is strictly related to the enforceability of a patent’s forward protection. More

precisely, we should observe more entrants innovating in markets were the degree of infringement

of previous patents is harder to determine.

To conclude this section, I relate my model with the assumption more commonly used in the

sequential innovation and grow literature.

Proposition 7 (Stationarity) Under an infinite statutory patent length, the firms investments

become constant. Incumbents perform no R&D whereas entrants’ investment are xn = λ(1−b)v∞,

where v∞ is the value of a patent, which is independent of t and equal to

v∞ =
1

2λ2 (1− b)2

(
−r +

√
r2 + 4πλ2 (1− b)2

)
when b < 1, and to v∞ = π/r when b = 1.

When patent protection is infinitely long, incentives become stationary and incumbents have

no incentives to innovate. This is due to the fact that a new innovation just replaces the currently

active patent with one of the same value. The intuition for the stationary in the value of the

patent is that, under infinite patent protection, the benefit from innovating does not change as

time passes; at any point of the patent life the incumbent is protected for the same expected

amount of time.

Proposition 7 also provides a better understanding, and in a sense justifies, the assumption of

passive incumbents generally made in the growth and innovation literature.7 Passive incumbents

will only exist in environments in which patents have an infinite statutory length. Also, as shown

in Section 6, the assumption that an innovation completely cannibalizes the value of an existent

patent, is also necessary.

7Although previous proof of this result exists (see for example Aghion and Howitt (1992)), my framework

provides a direct proof, helping to get a better understanding of the underlying mechanisms that drives it.
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5 Optimal patent policy

In this section I study different policies in terms of their capacity to generate higher innovation

rates. In particular, I study the policy that maximizes the innovative activity and how it varies

across markets according to their intrinsic capacity to produce innovations. The purpose of

following this methodology, and not maximizing total welfare, is to understand the incentives

that patent policy imposes on firms and the role that the different elements in patent policy play

at incentivizing firms. Another motivation for this methodology is that much of the applied work

and policy discussions focus on the speed of the innovative activity rather than total welfare. This

is so as, in principle, the former is easier to measure than the latter.

To define our measure of innovative activity I leverage from the property that innovations

follow a non-homogeneous exponential distribution. In particular, I study the policy (T ∗, b∗) that

maximizes economy’s expected arrival time of innovations λ̂ which is defined as8,9

λ̂ = E[t]−1 =

(∫ ∞
0

λxtte
−z0,tdt

)−1
.

Result 8 (Optimal patent policy) The expected innovation rate of the economy, λ̂, is maxi-

mized at a finite patent length and at a non maximal forward protection level. The optimal length,

T ∗, decreases with the natural innovation rate of the economy λ, whereas the optimal forward

protection, b∗, increases with it.10

Figure 5(a) exemplifies how the expected arrival rate of the economy varies with different

policies. As can be observed, λ̂ is maximized at an interior point of the policy space. Fixing a

level of forward protection b we learn that the effect of patent length on the speed of innovation

is non-monotonic. In Proposition 2 we learned that the value of a patent is increasing in the

length of patent protection; hence, with low values of T , rewards are too low to induce high rates

of innovation (for instance, in the limit, when T = 0 no R&D is performed.) In contrast, when

patent protection last too long, Proposition 4 teaches us that incumbent delay their investments

which, at some point, will induce the expected innovation speed to decrease.

8For the purpose of illustration, if the total investment xt where constant through time and equal to one, the

distribution of successes will follow an exponential distribution with an arrival rate equal to λ. In that case we have

λ̂ = (E[t])−1 = λ, and the expected innovation rate of the economy corresponds exactly to its natural innovation

rate.
9In many games in which the reward from effort is random (see Reinganum (1982) or more recently Keller et al.

(2005)) the innovation rate is approximated by the total investment performed during the game. This methodology,

however, is not an appropriate measure for a game of infinite length as investments never stop. Another option is

to restrict attention to the total investments performed during patent protection z0,T . However, this methodology

ignores the R&D performed after the expiration of a patent which is also affected by patent policy. Other authors

like Bonatti and Hörner (2011) have used stochastic dominance (SD) to compare the distribution of successes for

different sets of parameters. Here, the lack of monotonicity in the comparison of policies makes SD uninformative.
10The term Result is used to make the distinction that this is a numerical result without proof.

15



(a) Optimal policy has an interior solution (b) Optimal patent policy

0.6

0.4

0.2

0

0 5 10 15

T

0
0.5

1

0 0.2 0.4 0.6 0.8 1

as a function of

b*,T*
b*T* ^ 1

0.5

00

40

80

^^

b

Figure 5: Comparative Statics: R&D investments and forward protection

The effect of forward protection in the innovative speed is related to the length of the patent.

Longer patent protection delays the incumbent investment, and the investments performed by

entrants at the beginning of the active patent life become important to determine the speed on

the innovative activity. By Proposition 6, higher levels of forward protection decreases entrants’

investments at the beginning of the patent race. Thus, as shown in Figure 5(a), higher levels

of forward protection will have a larger negative impact in the speed of innovation when patent

protection last for too long.

Figure 5(b) show how the policy that maximizes the economy’s innovation rate varies with

the natural rate of innovation. The optimal patent length decreases with the market’s natural

innovation rate, whereas the maximizing forward protection increases. To understand the intuition

of this result we have to compare the incentives present in markets that innovate fast, with those

incentives present in market that innovate more lowly. When the natural innovation rate is high,

innovation occurs at a higher frequency shortening the patent’s effective life. In that case, patent

length is an ineffective tool to encourage innovation as the reward from a new innovation, v0, is

inelastic with respect to changes in T . In this context and by making harder to entrants to obtain

rents from innovating, forward protection acts as an effective way to extend the effective duration

of a patent, increasing the rewards from innovation and incentivizing firms, in the aggregate, to

perform higher R&D levels. In contrast, in markets in which innovation occur lest frequently, the

value of a project v0 is quite elastic to the statutory length of the patent, becoming a good tool

to promote R&D. However, since longer patents leads incumbents to delay their investments, the

entrant’s innovation is crucial to speed the innovative activity up. Thus, little forward protection

has to be offered in order to have firms performing R&D in early stages of the patent life and

increase the speed of innovation.

At this point is important to contrast these results with those in the previous literature. In

the single-innovation literature the only effect of increasing patent protection is to increase the
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reward from innovating, increasing R&D from both incumbents and entrants. Thus, in that

context, the patent policy that maximizes the speed of innovation would contain infinitely long

patents. Hence, the only reason to have finite patent is to limit the inefficiency created by the

monopoly that the patent creates. In the context of a sequential model, long patents decreases the

speed of the innovative activity creating a new source of inefficiency in addition to that derived

from consumers.

Although forward protection has been studied in the sequential innovation literature, one the

insights that we gain from incorporating the length of the patent in to the analysis, is to learn

the interaction between the policy tools at the moment of given incentives. In particular, how the

two policy tools substitute one another, and the way that optimal patents varies through markets

seems to be a novel insight which contributes in the understanding of the dynamic incentives

provided by patent policy.

6 Extensions

In this section I study new issues that may raise in the context of sequential innovation and the

robustness of the results to some of the assumption in the model.

6.1 License Fees: The Hold-up Problem

6.2 Profit Cannibalization

6.3 Strategic Entrants

7 Relation with Previous Literature

The purpose of this section is to relate previous findings to the literature on patent policy and

innovation. For clarity, the discussion is divided into a comparison of my results to those in the

single-innovation literature, and to those in the sequential innovation literature. Finally, I discuss

how this work relates to the literature of innovation and growth.

Single-innovation models and patent policy In the seminal work of Nordhaus (1969),

inventions are produced by a deterministic production function under which innovations of higher

quality have higher production costs. The main conclusion of Nordhaus’s work is that longer

patent protection induces inventions of higher quality but a greater social cost of monopoly. The

interaction of these two effects calls for finite patent protection.

In contrast, my model belongs to a class of stochastic innovation. In these models inventions of

a predetermined quality arrive stochastically and as a function of the firms’ investment. Similar

in spirit to Nordhaus, in the context of a single-innovation, Loury (1979) and Lee and Wilde

(1980) find that longer patents increase the speed of innovation. Also, Denicolò (1999) makes the
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point that optimal patent length is finite due to the cost in consumer surplus. With respect to

the single-innovation literature the key insight gained from analyzing the effects of patent length

in a sequential world is that longer patents do not necessarily lead to higher innovation rates

and therefore the cost associated with stronger patent policy may well be beyond the consumer

surplus losses emphasized by the literature described above.

Another difference generated by the sequential framework is that incentives become non-

stationary through time. In particular, investments increase as the patent expiration date ap-

proaches. In most of the single-innovation literature, patent races are stationary, meaning that

a constant effort rate is performed by all the firms until an innovation occurs (an exception is

Reinganum (1982) where the non-stationarity comes from the assumption that innovations may

be only generated within a predetermined period of time). Even though the non-stationary prop-

erty increases the difficulty of the analysis, it has the advantage of generating more realistic effort

dynamics.

Earlier models of innovation, mainly inspired by Schumpeter (1942), studied the difference in

incentives that incumbents and potential entrants may face (see Gilbert (2006) for a comprehen-

sive theoretical and empirical review of the subject). Arrow (1962) showed that, when innovation

cannibalizes part of an incumbent’s profits, incumbents have less incentives to innovate than en-

trants. This effect is typically called the replacement effect. In contrast, Gilbert and Newbery

(1982) argued that in an auction-like environment, where the firm that makes the highest invest-

ment/bid is the one that gets the patent, incumbents may be willing to outbid entrants due to the

fact that the former may have more to lose than the latter to gain. One of my main contributions

is to show that Arrow’s effect is the key determinant of the incumbent’s investment dynamics,

and that patent policy not only affects the value of a new patent, it also affects the value of the

replacement effect predicted by Arrow. Furthermore, is precisely the role of patent policy in de-

termining the value of the replacement effect, which causes the decrease the economy’s innovation

rate for long patent protection.

Another branch of the single-innovation literature assumes that the costs and benefits of

an innovation are known. In that respect, optimal patent policy consists of maximizing social

welfare subject to an innovator-breaks-even constraint (Gilbert and Shapiro (1990); Klemperer

(1990) and, in an environment with imitation, Gallini (1992)). This type of analysis is precluded

in a sequential-stochastic world as both the cost of an innovation and the benefit of incumbency

are random.

Policy in Sequential Innovation In spirit, the closest work to mine is Bessen and Maskin

(2009). In a model of sequential innovation, where firms decide whether or not to undertake an

innovative activity, they compare the situation in which either an infinitely long patent protection

exists, or it does not. They find that patent protection may slow down the innovation process.

The main contrast of their model to mine is that in my work I allow for patents of any length,

18



not only the polar cases that deliver stationary investments. Also, in my framework, patents are

necessary to promote innovation as the absence of patent protection drives the profits from an

innovation to zero. In contrast, in their model, firms get positive profits regardless of the protection

provided. Finally, while in their framework innovation does not cannibalize profits derived from

previous innovations, my model is one of Creative Destruction where the cannibalization is total.

In the substantive side, their result is driven by the existence of asymmetric information in the

opponent’s cost of R&D. In contrast, my result is driven by the role that patent policy plays in

determining the incumbent’s opportunity cost of innovation. Thus, both set of results complement

each other by indicating different channels through which long patents may harm the innovation

process.

Most sequential models focus on modeling different aspects of patent breadth (see Scotch-

mer (1991) for an insightful narrative paper that explains the general trade-offs explored in this

literature). The early work of Scotchmer and Green (1990) and Scotchmer (1996) studies how

patentability of second-generation products affects the development of first-generation products.

Green and Scotchmer (1995) study the role of ex-ante and ex-post licensing agreements on R&D

incentives.

A more recent literature initiated by O’Donoghue, Scotchmer and Thisse (1998) studies the

effect of patents’ novelty requirements on the market innovation rate in the context of an infinitely-

lived market. These papers generally assume an infinitely-long patent protection and use patent

breadth as a mechanism to deter inventions of lower quality. The lack of novelty requirements

leads to fast imitation and to a reduction of the expected benefits of an innovation. Therefore,

it is found that some breadth encourages innovation. Optimally, as shown by Hopenhayn et al.

(2006), the minimal improvement required to obtain a patent is an increasing function of the

quality of the previous innovation. I complement the study of patent systems by incorporating

the effect of finite statutory lengths into the analysis.

My main contribution to the patent breadth literature is to highlight that its effectiveness

depends on the patent statutory length and on the characteristics of the economic environment.

In general, patent length is a more effective tool when the natural innovation rate of the market

is low. Breadth becomes the predominant tool to encourage innovation when the gap between

the the effective patent length and the statutory length renders patent length ineffective. This

gap is a function of the market’s natural innovation rate. In particular, when innovations are

frequent by nature, patent length loses it effectiveness as innovations consistently arrive before

the patents’ statutory length. In that circumstance, breadth becomes the predominant tool as

helps the planner to extend the effective length of a patent by making harder to overcome the

incumbent’s innovation.

More recently, there has been effort in understanding how other elements of policy affect inno-

vation. For instance, Segal and Whinston (2007) study how antitrust affects the rate of innovation

in a given market. My work complements this literature by deepening the understanding of how
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the different policy tools available can affect innovation.

Innovation, Market Structure and Growth There is a large literature that studies how

different elements of the economy affect economic growth in a context where growth is mainly

driven by the arrival of new innovations (see for example Grossman and Helpman (1991), and

Aghion and Howitt (1992).) Although the focus of this work its far from that literature. I believe

that this may be a first step towards modeling how patent policy may affects economic growth

and competition between different countries. In particular, my research could be directly applied

to a context in which innovations go through a quality ladder under the restriction of looking at

one particular market instead of the economy as a whole.

8 Conclusion

This work developed a tractable model of sequential innovation, and studied how patent policy

affects the R&D investment dynamics in an economy described by a quality ladder and by the

Shumpeterian property of creative destruction. Due to profit cannibalization, I found that in-

cumbents delay their investment towards the end of their patent protection as the benefit of an

innovation increases with the approximation of the patent expiration date. This result is consis-

tent and provides an explanation to the empirical evidence that incumbents: invest less in R&D,

patent less, and adopt new technologies later.

I found that patent policy plays an important role in determining the rents of an innovation.

In particular, patent policy not only determines the value of obtaining a new patent, it also

determines the value of replacing the active patent held by the incumbent. For instance, an

increase in patent length increases the value of an active patent more than the value of a new

patent, decreasing the incumbent’s prize from an innovation. As a consequence, at each point in

time, the incumbent’s effort rate decreases when offered longer protection, inducing the economy’s

innovation rate to react non-monotonically to changes in patent length. In particular, a patent

extension increases the economy’s innovation rate when the initial statutory length of a patent

is short, and the extension decreases the economy’s innovation rate when the initial statutory

length is long. Therefore, the common result that stronger patent protection encourages growth

is shown not to apply to this dynamic setting.

Important questions about how patent policy affects innovation in a sequential context remain

open. For instance, firms do not always disclose their inventions right after developing them. For

incumbent’s, this may be done to avoid cannibalization of their profit flow. Entrants, on the other

hand, may do it to avoid potential license fees from soon-to-be-expired patents. These potential

delays of disclosure come at a cost; if the competition were to release the new technology first, the

firm that waited may lose its potential benefit of being the next incumbent. Patent systems play

an important role in the disclosure of innovations. If two firms where to claim similar technology

20



to the patent office, in a first-to-invent system, the office will rule in favor of the innovator that

invented a patent first but chose to not disclose his invention. In contrast, in a first-innovator-to-

file system, the patent office will tend to rule in favor of the first firm that arrived at the patent

office. I believe that my model could provide a basis to begin answering this or other questions

about sequential innovation.
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A Solution to ODE

In this appendix I solve the differential equation that describes how the value of a patent evolves

with the proximity of its expiration date. Depending on the conjectured value v0, competition

during the life of the patent my go through three phases. Phase 0 happens when the value v0 is

low, so that v0 < bv(t) ≤ v(t) and no firm will invest in R&D as the cost of replacing the currently

active patent is larger than its benefit. Phase 2 occurs when bv(t) ≤ v0 ≤ v(t), i.e. when only

the entrant has incentives to performs R&D. Finally, phase 2 occurs when v0 ≥ v(t). In this case

both will firms invest. In equilibrium, only phase 2 will be observed. However, for the purpose of

proving existence, the three phases have to be characterized. Let vj(t) be the value of having an

active patent in phase j ∈ {∅, 1, 2}.11 Henceforth, the expression v(t) denotes vj(t) where j is the

phase of the patent race at instant t.

Restate the differential equation (5), corresponding to phase 2, as

dv2(t)

dt
+ av2(t)

2 − θv2(t) + â = 0

where

a = λ2(
1

2
+ b(1− b)), θ = r + λ2(2− b)v0, and â = π +

λ2

2
v20.

This ODE is separable and of the form dv/h (v) = dt where h (v) = −(av2 − θv+â). Separable

ODEs have unique non-singular solution that goes through its boundary condition, in this case

v2(T ) = 0.12 To find the non-singular solution I integrate both sides to get

− ln

(
θ − 2v2(t)a+

√
θ2 − 4aâ

θ − 2v2(t)a−
√
θ2 − 4aâ

)√
1

θ2 − 4aâ
= Ĉ + t

where Ĉ is a constant of integration. Define φ = (θ2 − 4aâ)1/2 and solving for v(t) we find

v2(t) =
1

2a

θ + φ

(
1 + e−φ(Ĉ+t)

)
(

1− e−φ(Ĉ+t)
)
 (7)

which is the general solution to the ODE. To find the particular solution we just make use of the

boundary condition v2(T ) = 0 to get

Ĉ = − 1

φ
ln

(
θ + φ

θ − φ

)
− T. (8)

Replacing back (8) in to (7) and rearranging terms we obtain

v2(t) =

(
2π + λ2v20

) (
eφ(T−t) − 1

)
(θ + φ)eφ(T−t) + φ− θ

11I use ∅ to denote phase 0, so v∅(t) does not get confused with the conjectured value v0.
12Singular solutions to (5) are found by setting dv/dt = 0 and solving the quadratic equation. These solutions

are disregarded as they do not generically satisfy the boundary condition v (T ) = 0 and have no economic meaning.
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which corresponds to equation (6). Now, I make sure that v2(t) is well defined for all positive

conjectures of v0. This clearly is true in cases where v0 is such that φ > 0. I have to check the

cases under which φ is either imaginary or zero. For the former case, let φ = qi where q is the

positive real coefficient of i and rewrite v2(t) as

v2(t) =
2π + λ2v20

θ + q e
q(T−t)i+1
eq(T−t)i−1 i

.

Observe that Euler’s identity implies13

q
eq(T−t)i + 1

eq(T−t)i − 1
i =

q sin (q (T − t))
1− cos (q (T − t))

(9)

establishing that the value of a patent v2(t) is real when φ is imaginary.

Finally, for the case when φ = 0, let v̂ be the value of v0 such that φ (v̂) = 0. When φ = 0 the

value of the patent at every t becomes v2(t) = 0/0. Then, I define v2(t) to be the limv0→v̂ v2(t)

which can be computed by applying L’Hôspital’s rule to equation (6) and is equal to 14

v2 (t) =

(
2π + λ2v20

)
(T − t)

θ(T − t) + 2

showing that v2(t) is well defined for any possible value of v0.

Similar steps can be follow to obtain v1(t); however, two key differences apply. First, the

optimal investment rate of the incumbent is zero. Secondly, there exists t2 ≤ T that determines

the time in which phase 1 finishes and phase 2 starts, at that point the boundary condition

v1(t2) = v2(t2) must hold. Under those conditions I find

v1(t) =
v2 (t2)

(
θ1 + φ1 + (φ1 − θ1) eφ1(t2−t)

)
+ 2π

(
eφ1(t2−t) − 1

)
φ1
(
1 + eφ1(t2−t)

)
+ (θ1 − 2a1v2 (t2))

(
eφ1(t2−t) − 1

)
where a1 = λ2b(1− b), θ1 = r+ λ2(1− b)v0 and φ1 = (θ21 − 4a1π)1/2. Finally, the value of v∅(t) is

v∅(t) =
π

r

(
1− e−r(t1−t)

)
+ v1(t1)e

−r(t1−t)

where t1 ≤ T is the instant of time in which phase 1 starts. To conclude, t1 and t2 are found by

solving bv1(t1) = v0 and v2(t2) = v0.

B Omitted Proofs

B.1 Proof of Proposition 1

I start by proving existence. From appendix A we know that there is a unique solution to the

ODE, so I can restrict attention to show that exists a fixed-point v(0) = v0 for a positive value of

13Euler’s identity: eiψ = cos(ψ) + i sin(ψ).
14In this case, left and right limit converge to the same point, so this is a well defined construction.
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v0.
15 To do so, I start by reformulating the problem defining a function f(z) = v(0, z)− z where

v(0, z) denotes the dependence of the solution (6) on the conjectured value z. Then, showing the

existence of the fixed-point is equivalent to show f(z) = 0.

I show existence by means of the intermediate value theorem. Observe that φ goes to∞ when

z goes to infinity. Then, it is easy to check that

lim
z→∞

f (z) = lim
z→∞

(
2π − z2λ2 (1− b)− rz

) (
1− 1

eφT

)
− zφ

(
1 + 1

eφT

)
θ
(
1 + 1

eφT

)
+ φ

(
1 + 1

eφT

)
= −∞.

It remains to show that there exists z such that f(z) > 0. The result follows from choosing z = 0.

There, f(0) = v(0, 0) − 0 and since there is no benefit from a new patent we are in phase 0 so

v(0, 0) = (π/r)(1− exp(−rT )) > 0.

Finally, effort is increasing through time as v(0) = v0 and

∂v (t)

∂t
= −

2φ2
(
θ2 − φ2

)
eφ(T−t)

λ2
(
(θ + φ) eφ(T−t) − (θ − φ)

)2 < 0.

B.2 Proof of Propositions 2 and 3

Comparative static results for the value of a new patent are obtained through applications of

the implicit function theorem. Before going into the details of the proofs, I describe the gen-

eral methodology used. Let f(α, z) = v(0;α, z) −z be the construction presented in the proof

of Proposition 1 where its dependence on the vector of parameters of the model, α, has been

made explicit. By the implicit function theorem there exists a function V (α) implicitly defined

by f (α, V (α)) = 0 that describes the equilibrium value of having a new patent. Then, the com-

parative statics for how the value of a new patent, v(0), changes due to a change in parameter αi

is given by
dV (α)

dαi
= −

(
∂f (α, V (α))

∂αi

)/(
∂f (α, V (α))

∂x

)
.

From the proof of the existence of equilibrium and the fact that I use the largest fixed point v0

follows that ∂f(α, V (α))/∂x < 0, so comparative statics are signed by 16

sign

(
dV (α)

dαi

)
= sign

(
∂f (α, V (α))

∂αi

)
= sign

(
∂v (0;α, V (α))

∂αi

)
.

For space considerations, only final expressions are shown. Details of the derivation can be

found in section XX of the online appendix. For ease on notation, define the positive constant

Γ = (v20λ
2 + 2π)/(θ(eφT − 1) + φ(eφT + 1))2.

15There may be other fixed points such that v0 ≤ 0; however, those do not have an economic meaning and,

consequently, are ignored.
16For completeness, section XX in the on-line Appendix shows that ∂f(α, V (α))/∂x < 0 analytically.
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Comparative static with respect to r: The value of a new patent decreases with an

increase in r as:

∂v (0)

∂r
= −Γ

((
eφT − 1

)2
+
θ

φ

(
e2φT − 2φTeφT − 1

))
< 0

The only expression that is not clearly signed is e2φT − 2φTeφT − 1. I show that this expression is

positive for all relevant values of φT . Let y = φT and define h(y) = e2y−2yey−1. Then h(0) = 0

and h′(y) = 2ey(ey − 1− y) > 0 which is positive for positive values of y, implying the result.

Comparative static with respect to π: The value of a new patent increases with an

increase in π as:

∂v (0)

∂π
= 2Γ

((
eφT − 1

)2
v0

+
(
e2φT − 2φTeφT − 1

) a
φ

)
> 0.

Comparative static with respect to b: The partial derivative of v(0) with respect to b is:

∂v (0)

∂b
=
λ2Γ

φ

(
φv0

(
eφT − 1

)2
+ (

e2φT − 2φTeφT − 1
) (
rv0 + 3λ2 (1− b) v20 + 2π (1− 2b)

))
and the result follows from the observation that rv0 + 3λ2(1− b)v20 + 2π(1− 2b) is guaranteed to

be positive whenever b < 1/2. 17

Comparative static with respect to T : The value of a new patent increases with an

increase in T as:
∂v (0)

∂T
= 2Γφ2eφT > 0.

Comparative static with respect to λ: The partial derivative of v(0) with respect to λ is:

∂v (0)

∂λ
= −2λΓ

φ

((
eφT − 1

)2
φ (1− b) v0+(

e2φT − 2φTeφT − 1
)(

3λ2 (1− b)2 v20 + r (2− b) v0 − π (1− 2b (1− b))
))

.

Again, this expression cannot be signed directly. At the limit, when full forward protection, b = 1,

is offered, becomes:

∂v (0)

∂λ
= 2λΓ

(
e2φT − 2φTeφT − 1

)(π − rv0
φ

)
> 0

where the result follows from the fact that getting monopoly profits perpetually and without R&D

costs, π/r, must be larger that the equilibrium value of finite patent protection v0.

17It is possible to provide a necessary and sufficient condition for this result. However, it would be as a function

of v0. Hence, not directly in terms of the primitives of the model.
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Comparative static with respect to v0: The partial derivative of v(0) with respect to v0

is:

∂v (0)

∂v0
=
λ2Γ

φ

(
φb
(
eTφ − 1

)2
−

(
e2Tφ − 2TφeTφ − 1

)(
3λ2 (1− b)2 v0 + (2− b) r

))

which does not have a clear sign. To characterize further take b = 0 to get

∂v (0)

∂v0
= −λ2Γ3λ2v0 + 2r

φ

(
e2Tφ − 2TφeTφ − 1

)
< 0.

which proving the result.

B.3 Proof of Proposition 4

I start describing the general methodology of the proofs. Through an application of the Funda-

mental Theorem of Calculus, the incumbent’s R&D investment at t can be written as

xi,t = λ (v (0)− v (t)) = −λ
∫ t

0
v′ (s) ds.

Using the observation
dv (t)

dt
= −dv (t)

dT

the comparative statics for parameter αj (excluding λ) is equal to

dxi,t
dαj

= λ

∫ t

0

d2v (s)

dαjdT
ds.

Therefore, if the sign of d2v (t) /dαjdT is constant through t, it is a sufficient descriptive to sign

R&D comparative statics.

B.4 Proof of Proposition 5

The total derivative with respect to patent length is

dxi,t
dT

= λ

(
dv0
dT
−
(
∂v(t)

∂T
+
∂v(t)

∂v0

dv0
dT

))
,

when the change in policy is grandfathered to the next invention, there is no direct effect, i.e.

∂v(t)/∂T = 0 and the derivative becomes.

dxi,t
dT

= λ
dv0
dT

(
1− ∂v(t)

∂v0

)
.

From Proposition 2 we know that dv(t)/dT > 0 and the result follows from the observation that,

by construction, ∂v(t)/∂v0 < 1.
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B.5 Proof of Proposition 7

I start by showing that the limiting value of a patent is given by equation (??). Taking the limit

of (6) when T goes to infinity delivers

v∞ = lim
T→∞

v (t) =
2π + (λv∞)2

θ + φ
.

Solving this expression for v∞ delivers a unique positive solution. When b < 1 the solution is

v∞ =
1

2λ2 (1− b)2

(
−r +

√
r2 + 4πλ2 (1− b)2

)
and when b = 1 the solution is v∞ = π/r, which are the expressions in the proposition, proving

the second statement. The incumbent investments converging to zero is just consequence of

limT→∞ v(t) = v∞ for all t.

C Strategic Entrants

In this appendix I derive the ODE describing how the value of a patent, v (t), evolves through out

its life and the value of an being an entrant that faces an incumbent that posses a patent at t ,

w (t). To start deriving the value of competing after patent protection expires to then compute

the values under protection.

C.1 Continuation value of competing after patent protection expires

After patent protection expires, the game becomes stationary and so will be the firms investmet

rates, thus each firm solves

cj ≡ max
xj

∫ ∞
0

(
λxjv0 −

(xj)
2

2
+ λx−jw0

)
e−(λ(xj+x−j)+r)tds

= max
xj

2λxjv0 − x2j + 2λx−jw0

2 (λ (xj + x−j) + r)

where x−j =
∑

i 6=j xi, v0 is the value of a new patent and w0 the value of being an entrant when

a new patent was issued. Taking the first order condition and imposing symmetry delivers two

posible solutions, but only one solution delivers a positive investment rate of

x∗ =
1

λ (2m+ 1)

(
λ2m (v0 − w0)− r +

√
(r + λ2m (v0 − w0))

2 + 2rλ2 (v0 + 2mw0)

)
which in turn implies that the value of competing in a race with no protection is given by

c =
1

λ2 (2m+ 1)

(
r + λ2 (v0 +m (v0 + w0))−

√
(r + λ2m (v0 − w0))

2 + 2rλ2 (v0 + 2mw0)

)
.
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C.2 Value function during patent protection

Let x̂n,s =
∑m

j=1 xni,s, then the value of being an incumbent at that posess a patent at t is

v (t) =

∫ T

t

(
π −

x2i,s
2

+ λxi,sv0 + λx̂n,s (w0 + b (v (s)− c))

)
e−z0,se−r(s−t)ds

This version of compensantion is as follows: What is the difference between the value of a patent

today, to the value of patent protection terminating today. and the value for entrant j

wj (t) =

∫ T

t

(
−
x2nj ,s

2
+ λxnj ,s (v0 − b (v (s)− c)) + λ

(
xi,s + x̂−nj ,s

)
w0

)
e−z0,se−r(s−t)ds.

Appliying the Principle of Optimality to equations (X) and (Y) I, respectivelly obtain

0 = max
xi,t

{
v′ (t) + π −

x2i,t
2

+ λxi,t (v0 − v (t)) + λx̂n,t (w0 − bc− (1− b) v (t))− v (t) r

}

0 = max
xnj,t

{
w′j (t)−

x2nj ,t

2
+ λxnj ,t (v0 − b (v (t)− c)− wj (t)) + λ

(
xi,t + x̂−nj ,t

)
(w0 − wj (t))− w (t) r

}

The first order conditions are

x∗i,t = λ (v0 − v (t)) , x∗nj ,t = λ (v0 − wj (t)− b (v (t)− c))

which together with symmetry (xnj ,t = xn,t and wj (t) = w (t) for all j) imply the following system

of differential equiations

0 = v′ (t) + α0v (t)2 − α1v (t) + λ2m (1− b)w (t) v (t)−mλ2 (w − bc)w (t) + α2

0 = w′ (t) +
b2λ2

2
v (t)2 − α3v (t) + λ2 (1 +mb)w (t) v (t)− α4w (t) + λ2

(
m− 1

2

)
w (t)2 + α5

where

α0 = λ2
(

1

2
+mb (1− b)

)
α1 =

(
r + λ2v (1 +m (1− b)) + λ2m (1− 2b) bc+ λ2mbw

)
α2 = π +

1

2
v2λ2 +mλ2 ((v + bc) (w − bc)) ,

α3 = λ2
(
w + b (v + (m− 1)w) + b2c

)
α4 =

(
r + λ2 (v − w +m (v + w + bc))

)
α5 = λ2

(
v2 + b2c2

2
+ bc (v − w) +mw (v + bc)

)
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C.3 Free Entry and Convergence of the Basic Model

In this subsection I show that a model under free entry plus a particular assumption in the

entrant’s arrival process converges to the basic model presented in the introduction. There is two

arrival process, one where for the incumbent which delivers innoations at a rate λxi,t and one for

the entrants, that delivers innovation at a rate λx̂n,t where x̂n,t =
∑m

j=1 xn,,t. Then, the successful

entrant is chosen with uniform probability, 1/m , among all the entrants. Under this assumption

equation (X) remains the same, but equation (Y) changes to

wj (t) =

∫ T

t

(
−
x2nj ,s

2
+
λ

m

(
xnj ,t + x̂−nj ,s

)
(v0 − b (v (s)− c)) + λ

(
xi,s + x̂−nj ,s

)
w0

)
e−z0,se−r(s−t)ds.

Appliying the principle of optimality we obtain the following HJB equation

wj (t) = max
xnj,t

{(
−
x2nj ,s

2
+
λ

m

(
xnj ,t + x̂−nj ,t

)
(v0 − b (v (t)− c)) + λ

(
xi,t + x̂−nj ,t

)
w0

)
dt+ (1− (r + xi,t + x̂n,t) dt)

(
w (t) + w′ (t)

)}

0 = max
xnj,t

{(
−
x2nj ,s

2
+
λ

m

(
xnj ,t + x̂−nj ,t

)
(v0 − b (v (t)− c))− λxnj ,tw (t) + λ

(
xi,t + x̂−nj ,t

)
(w0 − w (t))

)
+ w′ (t)

}

FOC

xnj ,t =
λ

m
(v0 − b (v (t)− c))− λwj (t)

thus with symmetry

xn,t =
λ

m
(v0 − b (v (t)− c))− λw (t)

x̂n,t = λ (v0 − b (v (t)− c))− λmw (t)

converging to the model.
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