Competition Among Spatially Differentiated Firms: An Estimator with an Application to Cement

Nathan Miller1 Matthew Osborne2

1Antitrust Division
2Bureau of Economic Analysis

Autumn 2010

The views expressed are entirely those of the authors and should not be purported to reflect those of the U.S. Department of Justice or the Bureau of Economic Analysis.
Firms in many industries are geographically differentiated

- Gas stations, fast food, theaters, cement, lumber, paper.
Firms in many industries are geographically differentiated

- Gas stations, fast food, theaters, cement, lumber, paper.

Can we estimate the underlying parameters of supply & demand, exploiting variation in commonly available data?
Firms in many industries are geographically differentiated
- Gas stations, fast food, theaters, cement, lumber, paper.

Can we estimate the underlying parameters of supply & demand, exploiting variation in commonly available data?

Structural estimation would enable us to –
- Measure spatial differentiation, local market power
- Conduct new counterfactual policy experiments:
 - Gas tax & market power
 - Tariffs, duties
 - Geo. antitrust markets
 - Entry deterrence
Why is this challenging?

Most obvious way to estimate the costs of transportation:
- Observe distribution of shares
- Select costs that rationalize distribution

Data Availability Problem:
- This isn’t typically observed
- No studies do this (?)
- More common: firm-level shares and/or prices

Figure: Market Shares over Space
Another complication: spatial price discrimination

Some firms employ spatial price discrimination
 - E.g., charge higher prices to nearby “captive” consumers
 - Must account for geographic distributions of shares and prices
 - Exacerbates data availability problem

Some structural work on non-discriminatory spatial models
 - Thomadsen (2005), Davis (2006), McManus (2009)
 - But no structural work on spatial price discrimination
Two-part presentation

Estimator for models of spatial price differentiation, spatial price discrimination

- Flexible data requirements (e.g., regional prices/production)
- Extend estimation to settings previously too demanding
- Conditions for consistency, asymptotic normality
Introduction

Two-part presentation

1. Estimator for models of spatial price differentiation, spatial price discrimination
 - Flexible data requirements (e.g., regional prices/production)
 - Extend estimation to settings previously too demanding
 - Conditions for consistency, asymptotic normality

2. Empirical application to portland cement
 - Estimator works in real-world example
 - Fits the data well – in-sample, out-of-sample
 - Provide one counterfactual: merger harm over space
Main methodological insight

Numerical approximations to equilibrium relax data requirements

1. *Compute* distributions of shares & prices for a parameter vector
2. Construct aggregated equilibrium predictions at level of data
3. Repeatable: select parameters that match predictions to data
Main methodological insight

Numerical approximations to equilibrium relax data requirements

1. **Compute** distributions of shares & prices for a parameter vector
2. Construct aggregated equilibrium predictions at level of data
3. Repeatable: select parameters that match predictions to data

Identification: predictions & data differ due to measurement error

- Orthogonal to plant locations, cost/demand shifters
- Multiple-equation nonlinear least squares ("RHS" computed)
- Each equation matches time-series of data to corresponding prediction
Part II

An Economic Model
A *geographic space* is a compact, connected set in \mathbb{R}^2

- Plants have fixed locations
- Continuum of consumers exists over the space
The geographic space

A *geographic space* is a compact, connected set in \mathbb{R}^2
- Plants have fixed locations
- Continuum of consumers exists over the space

Consumer areas are subsets of the geographic space
- Each firm sets different mill price to each area
A geographic space is a compact, connected set in \mathbb{R}^2

- Plants have fixed locations
- Continuum of consumers exists over the space

Consumer areas are subsets of the geographic space

- Each firm sets different mill price to each area

\implies partition determines pattern of spatial price discrimination
A *geographic space* is a compact, connected set in \mathbb{R}^2

- Plants have fixed locations
- Continuum of consumers exists over the space

Consumer areas are subsets of the geographic space

- Each firm sets different mill price to each area

\implies partition determines pattern of spatial price discrimination

- One consumer area: no spatial price discrimination (arbitrage?)
- Lots of areas: firms discrimination finely
The geographic space: example

Figure: A Geographic Space.
Supply and demand

Multi-plant firms compete in prices, maximize variable profits:

\[
\pi_f = \sum_{j \in J_f} \sum_{n} p_{jn} q_{jn}(p_n; \theta_0) - \sum_{j \in J_f} \int_0^{Q_j(p; \theta_0)} c(Q; \theta_0) dQ
\]
Supply and demand

Multi-plant firms compete in prices, maximize variable profits:

$$\pi_f = \sum_{j \in J_f} \sum_{n} p_{jn} q_{jn}(p_n; \theta_0) - \sum_{j \in J_f} \int_0^{Q_j(p; \theta_0))} c(Q; \theta_0) \, dQ$$

variable revenues

variable costs

Conventional discrete-choice demand system. Indirect utility:

$$u_{ij} = \beta^c + \beta^p p_{nj} + \beta^d d_{jn} + \nu_{ij}$$

Logit or nested logit facilitates computation of equilibrium
Equilibrium

Get standard first-order conditions:

\[f(p; \theta_0) \equiv p - c(Q(p; \theta_0); \theta_0) + \Omega^{-1}(p; \theta_0)q(p; \theta_0) = 0. \]
Equilibrium

Get standard first-order conditions:

\[f(p; \theta_0) \equiv p - c(Q(p; \theta_0); \theta_0) + \Omega^{-1}(p; \theta_0)q(p; \theta_0) = 0. \]

Bertrand-Nash equilibrium characterized by \(J \times N \) vector of prices

- Formally, \(p^*(\theta) : \mathbb{R}^K \rightarrow \mathbb{R}^{JN} \) such that \(f(p^*(\theta); \theta) = 0 \)
- Assume uniqueness, existence – come back to this
Part III

Estimation
Want to recover the structural parameters of supply and demand

Some more notation:
- Available endogenous data in vector y_t
 - Includes average firm prices, regional production, etc.
- Denote aggregated equilibrium predictions as $\tilde{y}_t(\theta; X_t)$
 - Construct at same level as data
- Put plant locations, cost/demand shifters in matrix X_t
The estimator

Multiple-equation nonlinear least squares estimator

$$\hat{\theta} = \arg \min_{\theta \in \Theta} \frac{1}{T} \sum_{t=1}^{T} [y_t - \tilde{y}_t(\theta; X_t)]' C_T^{-1} [y_t - \tilde{y}_t(\theta; X_t)]$$

- Minimize deviations b/w data and equilibrium predictions
- Each element of $[y_t - \tilde{y}_t(\theta; X_t)]$ defines one nonlinear equation
- Matrix C_T weights equations
- “Method of moments with optimal instruments”
Obtaining aggregate equilibrium predictions

Evaluation of objective function requires $\tilde{y}_t(\theta; X_t)$

1. Compute equilibrium as a vector \tilde{p}^* that satisfies:

$$\frac{1}{JN} \| f(\tilde{p}^*; X_t, \theta) \| < \delta$$

- δ is user-specified tolerance; we use 1e-13
- Need fast nonlinear equation solver (e.g., DFSANE)

2. Use \tilde{p}^* to calculate aggregated equilibrium predictions

3. Plug into objective function
Asymptotic properties

- Nested logit, single-plant firms (Mizuno 2003)
- Logit, multi-plant firms (Konovalov & Sándor 2010)
Asymptotic properties

Assumption (A1): A *unique* Bertrand-Nash equilibrium exists.
- Nested logit, single-plant firms (Mizuno 2003)
- Logit, multi-plant firms (Konovalov & Sándor 2010)

Assumption (A2): *The population parameter vector is globally identified.*
Asymptotic properties

Assumption (A1): A unique Bertrand-Nash equilibrium exists.
- Nested logit, single-plant firms (Mizuno 2003)
- Logit, multi-plant firms (Konovalov & Sándor 2010)

Assumption (A2): The population parameter vector is globally identified.

Theorem 1: The multiple-equation NLS estimate is consistent and asymptotically normal.
Part IV

Empirical Application
Portland cement industry: Basics

What is portland cement?

- Finely ground powder
- Portland Cement $+$ Water $=$ Ready Mix Concrete
- Shipped by truck from cement plants to concrete plants
- Consumers pay the transportation costs
- Contracts are individually negotiated with buyers
Map of cement production in 2003

Annual Portland Cement Production Capacity
- 0 - 800,000 metric tonnes
- 800,001 - 1,300,000 metric tonnes
- 1,300,001 - 1,800,000 metric tonnes

Miller and Osborne (2010) Competition and Spatial Differentiation Autumn 2010
Marginal cost specification (cont’d)
Demand specification

Demand is nested logit

- Plants differentiated by price, location, i.i.d. error
 \[u_{ijt} = \beta^c + \beta^p p_{jnt} + \beta^d \text{MILES}_{jn} \ast \text{DIESEL}_t + \nu_{ijt} \]

- Two nests: inside goods vs. outside good
Demand specification

Demand is nested logit

- Plants differentiated by price, location, i.i.d. error

\[u_{ijt} = \beta^c + \beta^p p_{jnt} + \beta^d MILES_{jn} \ast DIESEL_t + \nu_{ijt} \]

- Two nests: inside goods vs. outside good

Additional details:

- Use 90 counties to specify consumer areas
- Model competitive fringe of import suppliers
Endogenous data

Endogenous data from the U.S. Geological Survey, 1983-2003:

1. Average prices for NorCal, SoCal, and AZ-NV
2. Total production (same regions)
3. Total consumption for NorCal, SoCal, AZ, and NV

10 nonlinear equations, 21 time periods
Model fits

Panel A: Regional Consumption

Panel B: Regional Production

Panel C: Regional Prices

Panel D: Cross-Region Shipments

Empirical application

EstIMATION Results

Miller and Osborne (2010)
Estimated price elasticities

<table>
<thead>
<tr>
<th></th>
<th>Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aggregate Elasticity</td>
<td>-0.12</td>
</tr>
<tr>
<td>Firm Elasticity</td>
<td>-4.27</td>
</tr>
</tbody>
</table>

- Wood, asphalt, steel are weak substitutes
- But firms compete – firm demand is more elastic
Empirical application

Estimated distribution of miles shipped in 2003

Transportation costs of $0.30 per tonne-mile (at 2000 diesel price)
- Consumers pay $24.61 for transportation per tonne
- 22% of total consumer expenditure
- Mean = 92 miles, 90% under 175 miles
Localized market power

Map A: Price

Map B: Shares

Counties By Price
- < 71
- 71 - 80
- 80 - 90
- > 90

Counties By Shares
- < .04
- .04 - .25
- .25 - .40
- > .40

Miller and Osborne (2010) Competition and Spatial Differentiation Autumn 2010 26
Empirical application

Merger simulation

Map A: No Divestiture

Map B: Optimal Divestiture

Loss of Consumer Surplus

- <2
- 2-20
- 20-50
- 50-250
- >250

Miller and Osborne (2010) Competition and Spatial Differentiation Autumn 2010 27
Closing thoughts

Estimator could define stage-game payoffs in dynamic routines
- Bajari, Benkard, Leven (2007 EMA), etc.
- Endogenize firm location choice
- Would have to solve state-space problem

Parallels to estimators for product space differentiation (BLP)
- BLP fully observe prices/shares but not characteristics
- M-O fully observe characteristics but not prices/shares
- Use numerical techniques to recover unobserved metrics