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Introduction

Research question

Firms in many industries are geographically differentiated

Gas stations, fast food, theaters, cement, lumber, paper.
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Introduction

Research question

Firms in many industries are geographically differentiated

Gas stations, fast food, theaters, cement, lumber, paper.

Can we estimate the underlying parameters of supply & demand,
exploiting variation in commonly available data?

Structural estimation would enable us to –

Measure spatial differentiation, local market power

Conduct new counterfactual policy experiments:

Gas tax & market power
Tariffs, duties

Geo. antitrust markets
Entry deterrence

Miller and Osborne (2010) Competition and Spatial Differentiation Autumn 2010 2



Introduction

Why is this challenging?

Most obvious way to estimate the
costs of transportation:

Observe distribution of shares

Select costs that rationalize
distribution

Data Availability Problem:

This isn’t typically observed

No studies do this (?)

More common: firm-level
shares and/or prices

 

Figure: Market Shares over Space
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Introduction

Another complication: spatial price discrimination

Some firms employ spatial price discrimination

E.g., charge higher prices to nearby “captive” consumers

Must account for geographic distributions of shares and prices

Exacerbates data availability problem

Some structural work on non-discriminatory spatial models

Thomadsen (2005), Davis (2006), McManus (2009)

But no structural work on spatial price discrimination
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Introduction

Two-part presentation

1 Estimator for models of spatial price differentiation, spatial price
discrimination

Flexible data requirements (e.g., regional prices/production)

Extend estimation to settings previously too demanding

Conditions for consistency, asymptotic normality
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Introduction

Two-part presentation

1 Estimator for models of spatial price differentiation, spatial price
discrimination

Flexible data requirements (e.g., regional prices/production)

Extend estimation to settings previously too demanding

Conditions for consistency, asymptotic normality

2 Empirical application to portland cement

Estimator works in real-world example

Fits the data well – in-sample, out-of-sample

Provide one counterfactual: merger harm over space
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Introduction

Main methodological insight

Numerical approximations to equilibrium relax data requirements

1 Compute distributions of shares & prices for a parameter vector

2 Construct aggregated equilibrium predictions at level of data

3 Repeatable: select parameters that match predictions to data
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Introduction

Main methodological insight

Numerical approximations to equilibrium relax data requirements

1 Compute distributions of shares & prices for a parameter vector

2 Construct aggregated equilibrium predictions at level of data

3 Repeatable: select parameters that match predictions to data

Identification: predictions & data differ due to measurement error

Orthogonal to plant locations, cost/demand shifters

Multiple-equation nonlinear least squares (“RHS” computed)

Each equation matches time-series of data to corresponding
prediction
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Part II

An Economic Model
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Framework Economic model

The geographic space

A geographic space is a compact, connected set in R2

Plants have fixed locations

Continuum of consumers exists over the space
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Framework Economic model

The geographic space

A geographic space is a compact, connected set in R2

Plants have fixed locations

Continuum of consumers exists over the space

Consumer areas are subsets of the geographic space

Each firm sets different mill price to each area

=⇒ partition determines pattern of spatial price discrimination

One consumer area: no spatial price discrimination (arbitrage?)

Lots of areas: firms discrimination finely
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Framework Economic model

The geographic space: example

Z1

C1 C2 C3

Z2

P11

P23

P12 P13

P21

P22

w

||w-z1||

Figure: A Geographic Space.
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Framework Economic model

Supply and demand

Multi-plant firms compete in prices, maximize variable profits:

πf =
∑

j∈Jf

∑

n

pjnqjn(pn; θ0)

︸ ︷︷ ︸
variable revenues

−
∑

j∈Jf

∫ Qj (p; θ0))

0

c(Q; θ0)dQ

︸ ︷︷ ︸
variable costs
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Framework Economic model

Supply and demand

Multi-plant firms compete in prices, maximize variable profits:

πf =
∑

j∈Jf

∑

n

pjnqjn(pn; θ0)

︸ ︷︷ ︸
variable revenues

−
∑

j∈Jf

∫ Qj (p; θ0))

0

c(Q; θ0)dQ

︸ ︷︷ ︸
variable costs

Conventional discrete-choice demand system. Indirect utility:

uij = βc + βppnj + βddjn + νij

Logit or nested logit facilitates computation of equilibrium
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Framework Economic model

Equilibrium

Get standard first-order conditions:

f(p; θ0) ≡ p− c(Q(p; θ0); θ0)︸ ︷︷ ︸
marginal cost

+Ω−1(p; θ0)q(p; θ0)︸ ︷︷ ︸
markup

= 0.
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Framework Economic model

Equilibrium

Get standard first-order conditions:

f(p; θ0) ≡ p− c(Q(p; θ0); θ0)︸ ︷︷ ︸
marginal cost

+Ω−1(p; θ0)q(p; θ0)︸ ︷︷ ︸
markup

= 0.

Bertrand-Nash equilibrium characterized by J × N vector of prices

Formally, p∗(θ) : RK → RJN such that f(p∗(θ); θ) = 0

Assume uniqueness, existence – come back to this
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Part III

Estimation
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Framework Estimation

Overview

Want to recover the structural parameters of supply and demand

Some more notation:

Available endogenous data in vector yt
Includes average firm prices, regional production, etc.

Denote aggregated equilibrium predictions as ỹt(θ;Xt)

Construct at same level as data

Put plant locations, cost/demand shifters in matrix Xt
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Framework Estimation

The estimator

Multiple-equation nonlinear least squares estimator

θ̂ = argmin
θ∈Θ

1

T

T∑

t=1

[yt − ỹt(θ;Xt)]
′C−1

T [yt − ỹt(θ;Xt)]

Minimize deviations b/w data and equilibrium predictions

Each element of [yt − ỹt(θ;Xt)] defines one nonlinear equation

Matrix CT weights equations

“Method of moments with optimal instruments”
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Framework Estimation

Obtaining aggregate equilibrium predictions

Evaluation of objective function requires ỹt(θ;Xt)

1 Compute equilibrium as a vector p̃ ∗ that satisfies:

1

JN
‖ f(p̃ ∗ ;Xt , θ) ‖< δ

δ is user-specified tolerance; we use 1e-13

Need fast nonlinear equation solver (e.g., DFSANE)

2 Use p̃ ∗ to calculate aggregated equilibrium predictions

3 Plug into objective function
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Framework Estimation

Asymptotic properties

Assumption (A1): A unique Bertrand-Nash equilibrium exists.

Nested logit, single-plant firms (Mizuno 2003)

Logit, multi-plant firms (Konovalov & Sándor 2010)
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Framework Estimation

Asymptotic properties

Assumption (A1): A unique Bertrand-Nash equilibrium exists.

Nested logit, single-plant firms (Mizuno 2003)

Logit, multi-plant firms (Konovalov & Sándor 2010)

Assumption (A2): The population parameter vector is globally

identified.

Theorem 1: The multiple-equation NLS estimate is consistent and

asymptotically normal.
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Part IV

Empirical Application
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Empirical application Portland cement

Portland cement industry: Basics

What is portland cement?

Finely ground powder

Portland Cement + Water = Ready Mix Concrete

Shipped by truck from cement plants to concrete plants

Consumers pay the transportation costs

Contracts are individually negotiated with buyers
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Empirical application Portland cement

Map of cement production in 2003
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Empirical application Specifications

Marginal cost specification (cont’d)
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Empirical application Specifications

Demand specification

Demand is nested logit

Plants differentiated by price, location, i.i.d. error

uijt = βc + βppjnt + βdMILESjn ∗ DIESELt + ν∗

ijt

Two nests: inside goods vs. outside good
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Empirical application Specifications

Demand specification

Demand is nested logit

Plants differentiated by price, location, i.i.d. error

uijt = βc + βppjnt + βdMILESjn ∗ DIESELt + ν∗

ijt

Two nests: inside goods vs. outside good

Additional details:

Use 90 counties to specify consumer areas

Model competitive fringe of import suppliers
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Empirical application Estimation

Endogenous data

Endogenous data from the U.S. Geological Survey, 1983-2003:

1 Average prices for NorCal, SoCal, and AZ-NV

2 Total production (same regions)

3 Total consumption for NorCal, SoCal, AZ, and NV

4 Cross-region shipments 1990-2003

=⇒ 10 nonlinear equations, 21 time periods
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Empirical application Estimation Results

Model fits
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Empirical application Estimation Results

Estimated price elasticities

Mean

Aggregate Elasticity -0.12

Firm Elasticity -4.27

Wood, asphalt, steel are weak substitutes

But firms compete – firm demand is more elastic
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Empirical application Estimation Results

Estimated distribution of miles shipped in 2003

Transportation costs of $0.30 per tonne-mile (at 2000 diesel price)

Consumers pay $24.61 for transportation per tonne
22% of total consumer expenditure
Mean = 92 miles, 90% under 175 miles
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Empirical application Estimation Results

Localized market power
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Empirical application Competition Policy

Merger simulation
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Conclusion

Closing thoughts

Estimator could define stage-game payoffs in dynamic routines

Bajari, Benkard, Leven (2007 EMA), etc.

Endogenize firm location choice

Would have to solve state-space problem

Parallels to estimators for product space differentiation (BLP)

BLP fully observe prices/shares but not characteristics

M-O fully observe characteristics but not prices/shares

Use numerical techniques to recover unobserved metrics
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