Targeting in Advertising Markets: Implications for Offline vs. Online Media

Dirk Bergemann Yale University

Alessandro Bonatti MIT Sloan

FTC Northwestern Conference November 2010

Introduction

"Recent" progress in advertising technology:

display advertising mobile ads
sponsored search addressable cable social networks

- Distinctive feature is the ability to target:
 - attribute, demographic targeting;
 - behavioral, contextual targeting.

Some Data

Targeting with Many Markets/Products

- to offer a model of targeting in advertising markets in the presence of
 - many distinct advertising markets
 - many distinct advertisers
- we trace out the implications of targeting for:
 - the allocation of advertisement messages;
 - the social value of advertising;
 - the equilibrium price of advertising;
 - the equilibrium revenues of new and old media.

A Model of Advertising as Matching

- Advertising matches a consumer and a product.
- An advertisement message turns a potential, interested consumer into an actual customer.
- Advertising markets operate under substantial frictions:
 - messages may reach the wrong consumer;
 - @ messages may reach the same consumer repeatedly.
- Targeting reduces matching frictions.

Advertising and Product Markets

A continuum of distinct advertising markets

$$a \in [0, \infty)$$
,

representing outlets, channels, websites, searches.

• A continuum of distinct products (= firms),

$$x \in [0, \infty)$$
.

- A unit mass of consumers with two-dimensional type (a, x):
 - each consumer is located in a specific advertising market a;
 - each consumer is interested in a specific product x.

Consumer Characteristics...

- A consumer is characterized by (a, x):
 - 1 his location in a specific advertising market a,
 - \bigcirc his preference for a specific product x

• market structure: joint density s(a, x) over (a, x):

$$\int_{0}^{\infty} \int_{0}^{\infty} s(a, x) da dx = 1.$$

... and Market Characteristics

• advertising market a: distribution over consumer preferences

$$s(x|a) = \frac{s(a,x)}{\int_0^\infty s(a,x') dx'}$$

• firm x: distribution of its consumers over advertising media:

$$s(a|x) = \frac{s(a,x)}{\int_0^\infty s(a',x) da'}$$

Consumer Preferences...

• we maintain the distribution over consumer preferences:

$$s(x) = \int_0^\infty s(a', x) da',$$

the share s(x) of each product in the consumer market

• we order x (without loss of generality) so that:

$$s'(x) < 0$$
,

• there are products with a broad audience $x \approx 0$ and products with a narrow audience $x \approx \infty$ (the long tail of Anderson (2006))

...and Targeting

- we investigate the impact of different distributions of consumers across advertising markets..
- the distribution of consumer across advertising markets range
 - from perfect targeting
 - to zero targeting
- and ask how does an increase in targeting impact the allocation and the price of advertising across media markets

Impact of Targeting

- an increase in targeting then has two effects:
 - consumers move from mass market publications to more specialized, narrower media
 - 2 in every media market, the naturally targeted audience has a larger relative population share

Distribution in Product Markets

• Exponential distribution of consumers' interests:

$$s_x := \lambda e^{-\lambda x}$$
.

- ullet λ measures concentration of consumers in product markets.
- Market shares s_x are declining in x.
- Hierarchical structure of products:
 - popularity: bicycles, music, watches, travel destinations;
 - mass vs. niche products, mainstream vs. fringe firms.

Distribution in Advertising Markets

• Conditional distribution of consumers x in markets a:

$$s(x|a) = \gamma e^{-\gamma(x-a)}$$
, for all $0 < a \le x$.

Distribution across markets is upper triangular (stationary):

$$s(x|a) = 0$$
 for all $x < a$,

Size of Advertising Markets

ullet an increase in the targeting technology γ has a size effect...:

- ullet γ measures consumer concentration in advertising markets.
- high $\gamma \Rightarrow$ the consumers of x move to nearby markets $a \approx x$.

Composition of Advertising Markets

ullet ... and an increase in targeting γ has a composition effect:

- ullet γ measures consumer concentration in advertising markets.
- high $\gamma \Rightarrow$ most consumers in a have nearby preferences $x \approx a$.
- \bullet a higher γ facilitates targeting.

Advertising as Random Matching

- Each consumer reads/views/processes M messages
- A consumer with preference for product x purchases if and only if she receives a message from firm x
- Firm x sends $m_{a,x}$ messages to consumers in market a.
- Each message is received with uniform probability by one of the consumers in advertising market a:
- It follows that a consumer in advertising market a receives at least one message from firm x with probability

$$f\left(m_{\mathsf{a},\mathsf{x}},s_{\mathsf{a}}\right)=1-\exp\left(-m_{\mathsf{a},\mathsf{x}}/s_{\mathsf{a}}\right).$$

Advertising Policy

• an advertising policy of firm x:

$$\left\{m_{a,x}\right\}_{a=0}^{x}$$

• advertising intensity in advertising market a:

$$\frac{m_{a,x}}{s_a}$$

• the gross revenue of $m_{a,x}$ is given by

$$s_{\mathsf{a},\mathsf{x}} \cdot f\left(m_{\mathsf{a},\mathsf{x}}, s_{\mathsf{a}}\right) = s_{\mathsf{a},\mathsf{x}} \cdot \left(1 - \exp\left(-m_{\mathsf{a},\mathsf{x}} / s_{\mathsf{a}}\right)\right)$$

- an optimal advertising policy seeks to minimize the role of:
 - 1 irrelevant messages: $1 s_{a,x}$
 - 2 duplicating messages: $\exp(-m_{a,x}/s_a)$

Competitive Equilibrium

 price of message in advertising market a is competitive equilibrium price

- M is time/attention of consumer devoted to advertisments
- supply of messages M_a in advertising market a is given by:

$$M_a = s_a \cdot M$$

 \bullet competitive price p_a equilibrates demand and supply:

$$\int_0^\infty m_{a,x}\left(p_a\right)dx=M_a.$$

The Firms's Problem

- Each sale generates revenue \$1, firms only differ in size s(x).
- Firm x chooses $m_{a,x}$ to maximize profit:

$$\pi_{\mathsf{a},\mathsf{x}} = \max_{m_{\mathsf{a},\mathsf{x}}} \ \left[s_{\mathsf{a},\mathsf{x}} \cdot \left(1 - \exp\left(-\frac{m_{\mathsf{a},\mathsf{x}}}{s_{\mathsf{a}}} \right) \right) - p_{\mathsf{a}} \cdot m_{\mathsf{a},\mathsf{x}} \right].$$

• advertising policies are separable across advertising markets:

$$m_{a,x} = s_a \left(\ln rac{\gamma + \lambda}{p_a} - (\gamma + \lambda) \left(x - a
ight)
ight)$$

for all $x \geq a$.

Competitive Equilibrium

- marginal advertiser in advertising market a is X_a^*
- The number of active firms is constant across markets a:

$$X_a^* - a = \sqrt{\frac{2M}{\lambda + \gamma}}.$$

• The equilibrium demands are

$$m_{a,x}^* = \gamma \lambda e^{-a\lambda} \left(X_a^* - x \right).$$

Competitive Equilibrium Price

• Equilibrium prices p_a^* are equalized across advertising market:

$$p_a^* = p^* = (\lambda + \gamma) e^{-\sqrt{2(\lambda + \gamma)M}}$$
, for all a .

- \bullet For any $\gamma > 0$, all firms advertise somewhere
- positive targeting ⇒ "long tail".

The Social Value of Targeting

- ullet an improvement in targeting technology as increase in γ
- what is the impact in terms of the social welfare?
 - less irrelevant messages are received
 - more messages are sent by smaller firms

Proposition (Targeting and Social Welfare)

As targeting improves the social value of advertising increases.

- the total number of matches between advertisers and consumers increases
- even, the number of matches of each firm (product) increases

Targeting and the Profile of Demand

 as the social value of advertising increases, how does the composition in the demand for advertising change?

Proposition (Targeting and Demand)

As targeting improves:

- the large firms purchase less, the small firm purchase more messages (across all markets);
- 2 the number of participating firms X_a^* a decreases in every advertising market;
- **3** The number of messages per capita $m_{a,x}^*/s_a$ increases for all $x < (a + X_a^*)/2$.
 - o conversely, every firm is present in fewer advertising markets

Targeting and The Price for Advertising

• as the social value of advertising increases, can (a share of) the increase in value be captured by the media?

Proposition (Targeting and Price)

As γ increases, the equilibrium price per message p_a^* increases if and only if $\lambda + \gamma < 2/M$.

- the equilibrium price is initially increasing in the targeting ability but eventually decreasing
- main trade-off: the messages become more relevant yet eventually to a smaller set of firms and thus the risk of duplication (saturation)
- in hedonic terms: the price per consumer reached is decreasing everywhere.

Related Empirical Evidence

- Chandra and Kaiser (2010) "Target Advertising in Magazine Markets":
 - advertiser value more homogenous groups of readers (in subscriber characteristics of age, gender, income, etc.)
- Rutz and Bucklin (2010): "From Generic to Branded: A Model of Spillover Dynamics in Paid Search Advertising," compare generic (e.g., "Hotels LA") and branded (e.g., "Hilton Hotels LA") searches
 - find that branded keywords have lower prices than generic keywords "Sheraton Hotel NYC" vs "Hotel NYC;
 - find that long, narrower keywords "Hotels LA Westwood" have lower prices than shorter ones "Hotels LA"

Media Competition

- allow for multi-homing of consumer and thus multiple opportunities for advertiser to match with a customer
- online versus offline media, targeted vs. non-targeted medium
- total exposure to advertising, given by M, is now divided between media, A and B:

$$M_A + M_B = M$$

- suppose firm x reaches a fraction a_x of its consumers on medium A, and a fraction b_x on medium B.
- the total fraction of s_x reached is

$$a_X + b_X - a_X \cdot b_X$$
.

Online vs. Offline Media

- general (offline, A) and perfectly targeted (online, B) advertising (m_x^A, m_{ax}^B) .
- supply in the (single) offline market is M_A .
- supply in online market a is $M_{B,a} := s_a \cdot M_B$.
- ullet perfectly targeted advertising online: $\gamma=\infty$
- the relevant online advertising market for firm x is a = x.

Online vs. Offline Media

- large firms $(x < X^*)$ are present online and offline
- small firms $(x > X^*)$ are present only online

Proposition (Equilibrium Prices)

1 The equilibrium price on the offline medium is given by:

$$p^* = \lambda \exp(-M_B - \sqrt{2\lambda M_A}).$$

2 The equilibrium prices on the online markets are given by:

$$p_a^* = \left\{ egin{array}{ll} \exp(\lambda a - M_B - \sqrt{2\lambda M_A}), & ext{for} & a \leq X^*, \ \exp(-M_B), & ext{for} & a > X^*. \end{array}
ight.$$

The Emergence of the Internet

- the attention/time allocated to online media, M_B , is increasing; conversely the attention to offline media, M_A is decreasing
- the segment of firms advertising offline is shrinking as $x < X^*$:

$$X^* = \sqrt{\frac{2M_A}{\lambda}}$$

 the price of advertising offline is decreasing faster, linear rather than square root, with an increase in the online media:

$$p^* = \lambda \exp(-M_B - \sqrt{2\lambda M_A}).$$

 in particular, relative to the introduction of competing offline medium where it would be:

$$p^* = \lambda \exp(-\sqrt{2\lambda \left(M_A + M_B\right)})$$

Related Empirical Evidence

- Goldfarb and Tucker (2010): "Search Engine Advertising: Channel Substitution when Pricing Ads to Context" use natural experiment - ambulance-chaser regulations across states
- when lawyers cannot contact clients by mail, advertising prices per click for search engine advertisements are 5-7% higher.
 Therefore, online advertising substitutes for offline advertising
- consistent with Chandra and Kaiser (2010) who document the positive valuation of homogenous, targeted audiences; and hence imply differential revenue across media with differential targeting abilities

Concluding Remarks

- A model of targeting in competitive advertising markets.
- Hierarchical framework for product and advertising markets.

Extensions and future directions:

- revenue maximization, strategic interaction;
- 2 platform competition;
- Ocongestion, consumer preferences over for different ads;
- 4 ad exchanges.