PRODUCT: Dannon DanActive
MARKET: National
PROGRAM: The Young and the Restless Yesterday
CODE #: 080401233
TITLE: Boy Taking A Test, Playing Baseball/Vo
LENGTH: 30
STATION: SOAP
DATE: 04/01/2008
TIME: 06:53 AM
REV OF #: 080320612

(SFX: TICKING/BELL RINGS)
FEMALE ANNCR: Between exams
MALE TEACHER: Pencils down.

(SFX: CHEERING/CRACK) after-school activities.

And tons of homework, my kid never stops. (SFX: THUD)

MALE ANNCR: Your kids have a hectic life and don't always eat right, and you don't want their defenses to be weak.

(MUSIC IN) Delicious DanActive can help strengthen them.

Only DanActive has L. casei immunitas cultures and is clinically proven to help strengthen your body's defenses.

FEMALE ANNCR: And a little strengthening can really help. (AUDIO LOGO) CHILDREN (UNISÓN): DanActive.

MALE ANNCR: Help strengthen your family's bodies defenses.

(MUSIC OUT)
PRODUCT: DanActive
MARKET: Cincinnati, OH
PROGRAM: The King of Queens
CODE #: 090301831
TITLE: Boy Takes a Test, Karate, Takes Off

MALE ANNCR: Exams, (SFX: POWER DOWN) to be weak.

(DanActive can help. How?)

reaching your intestine where about (SFX: HISS OUT)

70 percent of your immune system is located.

When your defenses are weak, (SFX: BOUNCE) gaps may occur in your intestine wall allowing unwanted substances to pass.

(MUSIC IN) DanActive with L. Casei immunitas

works right there

which may help your body (SFX: SPRING) close the gaps and help

and don't always eat right and you don't want their defenses

PRODUCT Dannon DanActive MARKET Cincinnati, OH PROGRAM The King of Queens CODE # 090301831 TITLE Boy Takes a Test, Karate, Takes Off

LENGTH :30
STATION WXIX
DATE 03/02/2009
TIME 06:12 PM

VIDEO ALSO AVAILABLE IN ANALOG & DIGITAL FORMATS
Material supplied by VMS may be used for internal review, analysis or research only. Any editing, reproduction, publication, re-broadcasting, public showing or display for profit is forbidden and may violate copyright law.
PRODUCT: Dannon DanActive
MARKET: Cincinnati, OH
PROGRAM: The King of Queens
CODE #: 090301831
TITLE: Boy Takes a Test, Karate, Takes Off

(SFX: WHOOSH) strengthen his body's defenses.

(SFX: STAMP) Which makes you feel good too.

CHILDREN (SINGING): DanActive.
(MUSIC OUT)

LENGTH: 30
STATION: WXIX
DATE: 03/02/2009
TIME: 06:12 PM
DanActive® is a delicious, probiotic-cultured dairy drink that is clinically proven to help strengthen your body's defenses as part of a balanced diet and healthy lifestyle.

DanActive® Light: 35 calories, 0g Fat; Regular Probiotic Dairy Drink: 90 Calories, 1.5g Fat per 3.1 FL OZ

as part of a balanced diet and healthy lifestyle

MANUFACTURER'S COUPON

SAVE $1.00 when you buy any DanActive® or DanActive® Light

EXPIRES 6/26/06

DO NOT DOUBLE

Manufacturer: For ultimate consumer protection, read all of the labeling information below before consumption. This offer is valid only when purchased from participating retail stores in the U.S. Limit one coupon per purchase. Good only on purchases of product as noted. Not valid on any other DanActive® or any other Danone product. No cash value. Cannot be copied, reproduced, or transferred. Void where prohibited or restricted. Retailer participation required. Offer valid in the United States only. Offer is subject to change at any time without notice. ©2006 The Danone Company, Inc.

Complaint Exhibit C
PRODUCT Dannon Activia
MARKET National
PROGRAM Today
CODE # 060806735
TITLE Daughter Tells Mom To Try It

LENGTH 30
STATION WBAL
DATE 08/20/2006
TIME 08:41 AM

(MUSIC IN) DAUGHTER: Hey mom!

(SFX: DOOR CLOSING IN & OUT) MOM: Oh, and too much take out,

PARROT: Hawk! Bloated!

I feel irregular, bloated.

PARROT: Activia!

FEMALE ANNCR: Delicious Dannon Activia, with the natural culture of

FEMALE ANNCR: Dad! Bifidus Regularis, it's clinically proven to help regulate your digestive system in two weeks.

MOM: Umm! Delicious. DAUGHTER: Soon you'll be back to your regular self. PARROT: Regular!

(MUSIC IN) FEMALE ANNCR: Dannon Activia, help naturally regulate your digestive system in 2 weeks. activia.com

(DAUGHTER GIGGLES IN & OUT) DAUGHTER: Here, try Dannon Activia. MOM: Activia.

(MUSIC OUT) DANNON

Video also available in analog & digital formats.

Material supplied by VMS may be used for internal review, analysis or research only. Any editing, reproduction, publication, re-broadcasting, public screening or display for profit is forbidden and may violate copyright law.

330 West 42nd Street, New York, NY 10036 T 212 796 2010

Complaint Exhibit E
PRODUCT: Dannon Activia
MARKET: Huntsville/Decatur/Florence, AL
PROGRAM: Comics Unleashed with Byron
CODE #: 080215014
TITLE: Jamie Lee Curtis: Good & Bad

LENGTH: 30 sec
STATION: WAAY
DATE: 02-23-2008
TIME: 01:03 AM

JAMIE LEE CURTIS: First the bad news: 87 percent of this country suffers from digestive issues like occasional irregularity.

No wonder. Our busy lives sometimes force us to eat the wrong things at the wrong times.

Now the good news: I just discovered a yogurt called Activia that can help.

MALE ANNCR: With a natural culture, bifidus regularis, Activia eaten every day is clinically proven to help regulate your digestive system in two weeks.

JAMIE LEE CURTIS: The other good news: Activia tastes great.

FEMALE SINGERS: Activia.

(MUSIC OUT)
Activia with Bifidus Regularis is scientifically proven to help with slow intestinal transit when eaten daily for two weeks, as part of a balanced diet and healthy lifestyle.

Well-known to nutritionists and health editors for years, these helpful natural cultures are behind a new wave of "functional foods."
Information is Vital
As more and more people talk about the health benefits of probiotic foods, it's important that you have access to reliable scientific findings. For twenty years, the scientists at Dannon, in partnership with numerous independent laboratories, have conducted research on the health effects of probiotics, including Activia yogurt. Here, we've printed the results of our research to date on Activia with Bifidus Regularis and will continue to update this site as more results are available.

Scientific Resources
For health care professionals, who'd like to learn more about Activia and Bifidus Regularis, here is a link to a detailed scientific resource that will provide in-depth information about Bifidus Regularis and its effect on slow intestinal transit.

Scientific Summary For Health Care Professionals (1024 ko)
(If you don't have Adobe Acrobat 5.0, click here to download.)

View List of Peer-Reviewed Scientific Summaries

Calendar of Events
Click the link at right for a listing of medical conferences that will be attended by Activia representatives.

Healthcare Professionals: Sign up to receive a Referral Pad
We recommend ACTIVIA today! Click here.
A lowfat yogurt that helps naturally regulate the digestive system

Presenting—ACTIVIA® by Dannon®

Clinically proven to help regulate the digestive system when eaten daily for two weeks.
- ACTIVIA® is a creamy, blended, probiotic-cultured, lowfat yogurt.
- ACTIVIA® helps with slow intestinal transit and contains a unique culture — Bifidus Regularis®
- ACTIVIA® has the great taste and quality that you expect from Dannon®

ACTIVIA® helps naturally regulate your digestive system

ACTIVIA® is a probiotic, lowfat yogurt that contains a unique culture, Bifidus Regularis®, clinically proven to survive passage through the gastrointestinal tract and scientifically known as Bifidobacterium animalis DN-173 010.

Daily consumption of ACTIVIA® helps with slow intestinal transit, particularly in women and the elderly. ACTIVIA® also possesses the standard nutritional qualities of a dairy product, thanks to the proteins and calcium it contains.

What are probiotics?

Probiotics are living microorganisms that, upon ingestion in sufficient numbers, exert health benefits beyond basic nutrition.
The gastrointestinal tract, the intestinal microflora, and intestinal transit

The gastrointestinal (GI) tract and the intestinal microflora

The GI tract is an extremely complex environment with multiple functions. The small intestine acts as the main site of enzymatic digestion of foods and absorption of nutrients. The colon or large intestine absorbs large quantities of water and electrolytes and allows evacuation of waste matter and toxic substances. The colon also appears to be responsible for regulation of intestinal well-being, particularly through its complex bacterial microflora and maintenance of intestinal balance.

The intestinal microflora of each individual is highly specific and remains remarkably stable over time. However, it develops in stages throughout the individual's lifetime as a result of diet, host health status and environmental conditions. The intestinal tract of an adult human contains microflora comprising approximately 10^{11} microorganisms per gram of stool, with approximately 400 to 500 different bacterial species. The dominant population consists of strict anaerobic bacteria: Bacteroides, Bifidobacterium, Eubacterium and Peptostreptococcus.

A balanced intestinal microflora rich in bifidobacteria helps ensure optimal functioning of the digestive system. Research suggests that when the intestinal microflora is out of balance, it may affect overall health. This balance can be disturbed during physical or psychological stress, with age, in menopause, during drug treatment (e.g., antibiotics) and in the event of acute or chronic intestinal diseases. The intestinal microflora balance can be temporarily restored by ingestion of certain probiotics.

Intestinal transit

Intestinal transit is the process by which gut intestinal contents pass through the digestive system. The average transit time from mouth to anus in a healthy adult takes under 72 hours and most of this transit time is spent in the colon. Transit time varies significantly between individuals in spite of identical diet and also varies within specific individuals. In addition, it appears that transit time is longer in women than in men and increases with age. Intestinal transit is affected not only by the quality of the diet and by environmental parameters (e.g., age, stress, etc.), but also by the intestinal microflora.

Slow transit is not necessarily pathological and it corresponds to the upper limit of normal transit time and is between 48 and 72 hours. However, slow intestinal transit is a source of daily discomfort for a large proportion of the population and the physical and physiological consequences on the quality of life should not be underestimated. Bloating, heaviness, difficult and painful defecation are all troublesome symptoms when they become chronic.

A total transit time exceeding 72 hours is considered abnormally long and normally gives rise to a diagnosis of constipation, also involving excessive dehydration of stools. Maintaining a regular intestinal transit is therefore essential for health and general well-being.

Interaction between intestinal microflora and transit

Several studies have attempted to determine the mechanisms by which the intestinal microflora stimulates transit. These studies focus particularly on the effects of products from bacterial fermentation, such as Short-Chain Fatty Acids (SCFA), and on physicochemical modifications induced by the microflora. Various hypotheses, illustrated on the diagram below, have pertained to the effects of the intestinal microflora on transit.
Clinical Evidence

Since certain strains of probiotics have been identified through their beneficial effect on the endogenous intestinal microflora, it was logical to assess their impact on transit. Bifidobacteria have thus been particularly and closely studied in man. Their effects on transit have been clearly demonstrated through studies performed recently with ACTIVIA® by Dannon® and its specific strain: *Bifidobacterium animalis* DN-173 010. Dannon's *Bifidobacterium animalis* DN-173 010 is an exclusive probiotic culture of food origin, which is found live and in large quantities in ACTIVIA® and remains stable throughout the product shelf life.

Effects of ACTIVIA® and/or Bifidobacterium animalis DN-173 010 on transit time in healthy adults

In a parallel, double-blind study including 72 healthy adult volunteers (mean age 30 years), the ingestion of a fermented milk (3x125 g/day) containing the strain *Bifidobacterium animalis* DN-173 010, for 11 days, significantly reduces total colonic transit time by 21% and sigmoid transit time by 39% compared to an identical fermented milk (3x125 g/day) in which bacteria were killed by heat treatment. The effect was more pronounced in women (p<0.03), particularly in those with a long baseline transit time compared to men (p<0.05). These beneficial effects were not found with heat-treated product, suggesting that both probiotic survival and metabolic activity are necessary.

Action of ACTIVIA® on colonic transit time in women

A double-blind, randomized, cross-over study including 36 healthy women (mean age 27 years) compared the efficacy of ACTIVIA® (3x125 g/day) with a fermented milk preparation containing no *Bifidobacterium animalis* DN-173 010 (3x125 g/day) during a consumption period of 10 days. Total colonic and sigmoid transit times were significantly shortened (p<0.05) with ACTIVIA® versus control (51.5 +/- 30.2 hours vs. 60.7 +/- 27.1; sigmoid: 21.6 +/- 14.9 hours vs. 26.8 +/- 14.2). In women with a total transit time of more than 40 hours, the sigmoid transit time and total transit time were significantly shorter following consumption of ACTIVIA® versus the baseline values recorded prior to consumption.

Effects of ACTIVIA® on total transit time in elderly subjects

Two randomized studies investigated the efficacy of different doses of ACTIVIA® with *Bifidobacterium animalis* DN-173 010 on transit time by focusing on elderly subjects. The first study (total 100 subjects) showed that consumption of 2x125 g or 3x125 g of ACTIVIA® per day for two weeks significantly reduced intestinal transit time (p<0.001). A 10% reduction was found in the groups with a short transit time (less than 40 hours) and a 40% reduction was found in groups with a long transit time (greater than 40 hours). The results were greater in those elderly subjects who had 3x125 g of ACTIVIA® versus 2x125 g (p<0.05). Intestinal transit time is shortened in elderly subjects by consumption of two or three cups of ACTIVIA® for two weeks.

A second, large-scale, controlled study evaluated lower doses and the duration of the beneficial effects after discontinuing consumption of the product. The study included 200 elderly, healthy volunteers, aged 50-75 years, divided into two groups — 100 with moderate transit time (40-50 hours) and 100 with a longer transit time (50-70 hours), who were randomized to receive either 1x125 g or 2x125 g of ACTIVIA® per day for 2 weeks. Consumption of one or two 125 g cups of ACTIVIA® significantly reduced intestinal transit time, both in subjects with moderate and long transit times (p<0.05). However, two servings per day were more effective than one serving per day (p<0.05). The action of ACTIVIA® persisted for at least two weeks after the end of consumption of one serving and for at least four weeks after the end of ingestion of two servings of ACTIVIA®.

In conclusion, these two studies demonstrate the efficacy of ACTIVIA® in reducing transit time in elderly subjects, particularly in those with long transit times. A dose-dependent effect was observed (from 1 to 3 cups).
Clinically proven to survive in the GI Tract

ACTIVIA® contains Bifidobacterium animalis DN-173 010, which has been clinically proven to survive the passage through the gastrointestinal tract.

Various human studies have been performed to demonstrate the high survival of *Bifidobacterium animalis* DN-173 010 in the digestive system when consumed in a fermented dairy product.23, 25, 26, 28

- *Bifidobacterium animalis* DN-173 010, incorporated in ACTIVIA®, survived successfully (10⁸-10⁹ cfu/g) for at least 90 minutes in the stomach, while another commercial strain was much less resistant. The shelf life of the product does not affect the survival capability of *Bifidobacterium animalis* DN-173 010.

- *Bifidobacterium animalis* DN-173 010, incorporated in ACTIVIA®, survived passage through the entire gastrointestinal tract and was recovered live and in large quantities in stools (>10⁹ cfu/g). The amount of *Bifidobacterium animalis* DN-173 010 recovered was similar to the quantity initially ingested.

ACTIVIA® Benefits

- **ACTIVIA®** by Dannan® is clinically proven to naturally help regulate your digestive system in two weeks when consumed daily, as part of a healthy lifestyle and balanced diet.

- Daily consumption of **ACTIVIA®** helps with slow intestinal transit, particularly in women and elderly subjects. In subjects whose digestive system functions regularly, no marked change or risk of diarrhea was observed.

- The effect of **ACTIVIA®** is in part due to *Bifidobacterium animalis* DN-173 010, a unique probiotic culture, clinically proven to survive passage through the gastrointestinal tract.

How to recommend ACTIVIA® for your patients

- **ACTIVIA®** by Dannan® helps optimize the function of the gastrointestinal tract, helping to achieve a more regular intestinal transit, leading, in turn, to better daily well-being and a natural regulation of the digestive system.

- The scientifically demonstrated benefits allow us to recommend regular daily consumption of **ACTIVIA®** by Dannan® for everyone.

- **ACTIVIA®** is suitable for the entire family and can be included as part of a balanced diet.

ACTIVIA® Product Information

- **ACTIVIA®** is available in 6 tasty flavors: vanilla, strawberry, mixed berry, prune, peach and blueberry.

- **ACTIVIA®** contains no artificial flavors or preservatives.

- **ACTIVIA®** is a probiotic-cultured, lowfat yogurt.

- **ACTIVIA®** is Kosher certified.

- Now available—**ACTIVIA®** Light, 70 calories per 4-oz cup.

Visit www.activia.com for stores and availability and to obtain a copy of our Scientific Summary.

Nutrition Facts

<table>
<thead>
<tr>
<th>Serving Size (1 container) (110g)</th>
<th>Amount Per Serving</th>
<th>% Daily Value*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calories</td>
<td>110</td>
<td>5%</td>
</tr>
<tr>
<td>Total Fat</td>
<td>3g</td>
<td>5%</td>
</tr>
<tr>
<td>Saturated Fat</td>
<td>1g</td>
<td>5%</td>
</tr>
<tr>
<td>Trans Fat</td>
<td>0g</td>
<td>0%</td>
</tr>
<tr>
<td>Cholesterol</td>
<td>2g</td>
<td>0%</td>
</tr>
<tr>
<td>Sodium</td>
<td>75mg</td>
<td>3%</td>
</tr>
<tr>
<td>Potassium</td>
<td>220mg</td>
<td>8%</td>
</tr>
<tr>
<td>Total Carbohydrate</td>
<td>15g</td>
<td>5%</td>
</tr>
<tr>
<td>Dietary Fiber</td>
<td>0g</td>
<td>0%</td>
</tr>
<tr>
<td>Sugars</td>
<td>14g</td>
<td>3%</td>
</tr>
<tr>
<td>Protein</td>
<td>5g</td>
<td>10%</td>
</tr>
<tr>
<td>Vitamin A</td>
<td>1%</td>
<td>0%</td>
</tr>
<tr>
<td>Vitamin C</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>Calcium</td>
<td>10%</td>
<td>0%</td>
</tr>
<tr>
<td>Iron</td>
<td>0%</td>
<td>0%</td>
</tr>
</tbody>
</table>

Strawberry as detailed 12/14/06

Visit www.activia.com for stores and availability and to obtain a copy of our Scientific Summary.

For more information on probiotics, visit www.dannonprobioticscenter.com

References

ACTIVIA® by Dannan®-helps optimize the function of the gastrointestinal tract, helping to achieve a more regular intestinal transit, leading, in turn, to better daily well-being and a natural regulation of the digestive system.

- **ACTIVIA®** by Dannan® helps optimize the function of the gastrointestinal tract, helping to achieve a more regular intestinal transit, leading, in turn, to better daily well-being and a natural regulation of the digestive system.

- The scientifically demonstrated benefits allow us to recommend regular daily consumption of **ACTIVIA®** by Dannan® for everyone.

- **ACTIVIA®** is suitable for the entire family and can be included as part of a balanced diet.
A colony immunoblotting method for quantitative detection of a Bifidobacterium animalis probiotic strain in human faeces

H. Duez, C. Pelletier, S. Cools, E. Assi, C. Cayuela, F. Gavin, S. Bouquelet, C. Neut and J. Mengaud
Journal of Applied Microbiology, 2000, 88: 1019-1027

Abstract: A colony immunoblotting method has been developed to allow detection of the probiotic Bifidobacterium animalis strain DN-173 010 in human faecal samples. Rabbits were immunized with heat-killed DN-173 010 bacteria resulting in the production of an antiserum highly specific for bacteria belonging to Bif. animalis species. Of the 81 strains representative of 29 different Bifidobacterium species tested, only 15 strains of the Bif. animalis species could be detected with the antiserum. In Western immunoblotting the serum reacts with a protein of 40±2 kDa apparent molecular weight. None of the bacteria classically encountered in human faecal samples and able to grow on non-selective Columbia blood agar (enterobacteria, Bacteroides or Lactobacillus) was stained and reacted with the antiserum. Taking advantage of the high specificity of the antiserum and the absence of Bif. animalis bacteria in faeces samples of five human volunteers, we demonstrated that strain DN-173 010 survives the intestinal transit. Being based on a combination of semiquantitative cultivation and colony immunoblotting techniques, the method allowed detection of the Bif. animalis strain even when it represented only one thousandth of the total bifidobacterial population.

Isolation of Bifidobacterias dans les selles apres ingestion prolongee de lait au bifidus (LB) — Recovery of bifidobacteria (Bif) in faeces after prolonged digestion of bifidus milk (BM)

P. Pochart, P. Manteau, N. Bisetti, J. Godere, P. Bouriaux and J.C. Rembaut

Abstract: Since many authors considered that bifidobacteria (Bif) play an important role in the resistance of the colonic microflora to pathogen colonization, there has been renewed interest in the consumption of milk fermented with these bacteria (BM). However data on the survival of ingested Bif in the GIT are not yet available. Therefore, we investigated the recovery of Bif ingested in BM in the feces of 12 adults (9 men and 3 women, 17–50 yr). The experiments comprised 3 consecutive 10-day periods: baseline, the test period, and the wash-out period. During the test period subjects ingested 3 times per day 125 g of BM (10° Biff or yoghurt). Spores of Bacillus (SSB) were added to both fermented products (10° SSB/kg) as a tracer marker. All the subjects were tested for BM and Y in a random order. Fecal samples were obtained every 5th day and Bif were enumerated on selective medium incubated anaerobically for 5 days at 37°C and SSB on PCA agar incubated anaerobically for 24 h at 37°C.

A fermented milk with a Bifidobacterium probiotic strain DN-173 010 shortened oro-faecal gut transit time in elderly

S. Méance, C. Cayuela, P. Turchet, A. Raimondi, C. Lucas and JM. Antoine
Microbial Ecology in Health and Disease, 2001; 12: 217-227

Fermented milk have been proposed to modulate gut transit time. Reduction of long transit time may be of importance in decreasing susceptibility to some large bowel diseases. Objective: to assess the effect on gut transit time in free-living elderly of a regular consumption of the milk fermented by the probiotic strain Bifidobacterium animalis DN-173 010 (10° CFU/g) and lactic acid cultures (10° CFU/g) (BM). Design: a randomized study was performed with 4 groups: 10 subjects with a stable transit time under 40 h (UTT: 24.4 h, SD ±1.3) and 50 subjects with a stable transit time over or equal to 40 h (UTT: 64.1 h, SD ±13.2) were included. Subjects from each transit group were randomly assigned to eat during 3 weeks, either 3 or 7 servings per day of BM. The oro-faecal transit time was measured before and after BM consumption using a colored marker technique. Results: in the 4 groups, comparing values before and after BM consumption, the transit time reductions were statistically significant, being around 10% in UTT and around 40% in OFT (p<0.001). In UTT as well as in OFT, BM were more active than BM (p<0.05). Conclusion: In elderly, the long gut transit times have been shortened by a 2-week regular consumption of the milk fermented with the strain Bifidobacterium animalis DN-173 010 and lactic cultures. This specific fermented milk can be considered as a functional food.

Effects of consumption of a milk fermented by the probiotic strain Bifidobacterium animalis DN-173 010 on colonic transit time in healthy humans

M. Bouyer, S. Méance, C. Boulay, J.L. Berta and J.C. Genmaid
Biotechnology Microferments, 2001; Vol. 20 (2), 43-48

Objectives: The aim of our study was to ascertain whether the specific Bifidobacterium animalis DN-173 010 fermented milk could modulate colonic transit time in humans. Bifidobacteria are a major component of the gut microflora and may interact with gut transit. Methods: The trial compared in a parallel double-blind study in seven-two healthy volunteers the effect of a Bifidobacterium animalis fermented milk containing 3.6x10^9 CFU/g living bifidobacteria versus heat-treated Bifidobacterium fermented milk on colonic transit times. The main marker was the total colonic transit time (TCT) measured with radio-opaque pellets. Segmental colonic transit times were also calculated. Results: A 11-day consumption of this Bifidobacterium animalis DN-173 010 fermented milk significantly reduced the total CTT (p<0.05) comparatively to the initial CTT and to the control group where no significant change were recorded. The effect was more pronounced in women than in men. Conclusion: Our study demonstrated that the consumption of the fermented milk containing Bifidobacterium animalis DN-173 010 was able to improve CTT in humans.

Recent advances in the use of functional foods: effects of the commercial fermented milk with Bifidobacterium animalis strain DN-173 010 and yoghurt strains on gut transit time in the elderly

S. Méance, C. Cayuela, A. Raimondi, P. Turchet, C. Lucas and JM. Antoine
Microbial Ecology in Health and Disease, 2003; 15: 15-22

Fermented milk products containing the probiotic strain Bifidobacterium animalis DN-173 010 (BM), have a beneficial effect in reducing gut transit times in a range of populations including adults and the elderly, especially female. The aims of this study were to investigate the efficacy of one and two servings per day of BM in elderly subjects and to determine the duration of the reduction in transit times after consumption of the product. This was a randomized, controlled and open study with four groups. 200 elderly subjects (aged 65–75 years) were enrolled in the trial. In all, one hundred subjects with medium transit times (MTT, 40–55 h) and 100 with slow transit times (TFT, >55 h) were randomized to receive either 125 g or 250 g BM daily for 1 week. Oro-faecal gut transit was determined by the use of colored markers. Both dosages significantly reduced oro-faecal transit time with reductions of 20.2% and 42.3% observed in MTT subjects receiving 125 g/day and 250 g/day, respectively (p<0.001). Corresponding reductions in TFT subjects were 22.7% and 38.1%, respectively. The beneficial effects of BM lasted long after consumption of the product was stopped, with values returning to baseline in subjects with MTT at 4 weeks follow-up and in TFT subjects consuming BM 4 weeks follow-up. Significant differences in transit times were still observed at week 6 follow-up in TFT subjects receiving 250 g/day BM. This study confirms and extends the dose-dependent effects of BM from 5 to 250 g per day and can be compared with similar results obtained with 250 g to 375 g per day in a previous study on transit times in elderly subjects. It also demonstrates that there are significant beneficial effects long after consumption of the product has stopped. The results suggest an important role for this probiotic dairy product in fundamentally modulating gastrointestinal function that could beneficially affect the host, and hence reduce the susceptibility to conditions associated with delayed gut transit.

Bifidobacterium from fermented milks: survival during gastric transit

N. Barradas, JF. Lomeland, C. Lauche, P. Thouveret and M. Plains
J. Dairy Sci., 1991; 74: 409-413

Abstract: Two Bifidobacterium strains contained in two different fermented milks behave very differently when exposed to an in vitro simulated gastric environment. One strain survives very well during at least 90 min (>90%), but the second strain studied is much less resistant. These in vitro results, with slight differences, were confirmed by an in vivo study in humans. The assessment of the gastric emptying rate of these products allows an estimation of the amount of Bifidobacterium that may pass into the small intestine.