UNITED STATES OF AMERICA
BEFORE FEDERAL TRADE COMMISSION

COMMISSIONERS: Deborah Platt Majoras, Chairman
Orson Swindle
Thomas B. Leary
Pamela Jones Harbour
Jon Leibowitz

In the Matter of
RAMBUS INCORPORATED,
a corporation.

Docket No. 9302

PUBLIC

LIST OF EXHIBITS THAT MAY BE DISPLAYED OR OTHERWISE REFERRED TO
DURING COMPLAINT COUNSEL’S TECHNOLOGY PRESENTATION

Pursuant to the Commission’s Order dated August 20, 2004, the following is the list of
exhibits that Complaint Counsel expects to display or refer to during its technology presentation
on September 21, 2004:

CX0234
CX0371
CX0424
CX1309
CX1454
CX1460
CX1543
DX0001
DX0013
DX0049

-1-
In addition, Complaint Counsel might refer to certain of the following exhibits, depending on the issues and questions that arise during the course of the proceeding.

CX0034
CX0367
CX0368
CX1320
CX3025 (in camera)
DX0005
DX0007
DX0044
DX0053
DX0080
DX0081
DX0083
DX0084
DX0085
DX0090
DX0093
Complaint Counsel has created two new demonstrative exhibits for use during technology day. Complaint Counsel has taken the multiple clock edges shown in DX0358 to create separate exhibits that identify and illustrate separately each of the clock edges. Complaint Counsel has also modified slightly images from CX0367, CX1543, DX0001, DX0065, DX0079, DX0088, DX0094, and selected pages of DX0382 in order to illustrate more clearly certain technological concepts. Certain pages of DX0382 and the clock slides derived from DX0358 have been modified to show movement. Copies of all such modified demonstrative exhibits, including those showing movement, are contained on the compact disk submitted with this filing.

Respectfully submitted,

Geoffrey D. Oliver
Patrick J. Roach
Robert P. Davis

Bureau of Competition
Federal Trade Commission
Washington, D.C. 20008
(202) 326-2275
Counsel for the Complaint

September 14, 2004
CERTIFICATE OF SERVICE

I, Lourine K. McDuffie, hereby certify that on September 14, 2004, have caused a copy of the attached, *List of Exhibits that may be displayed or otherwise referred to during Complaint Counsel's Technology Presentation*, to be served upon the following persons:

by hand delivery to:

The Commissioners
U.S. Federal Trade Commission
Via Office of the Secretary, Room H-159
Federal Trade Commission
600 Pennsylvania Ave., N.W.
Washington, D.C. 20580

and by electronic transmission and overnight courier to:

A. Douglas Melamed, Esq.
Wilmer Cutler Pickering LLP
2445 M Street, N.W.
Washington, DC 20037-1402

Steven M. Perry, Esq.
Munger, Tolles & Olson LLP
355 South Grand Avenue
35th Floor
Los Angeles, CA 90071

Counsel for Rambus Incorporated

[Signature]
Lourine K. McDuffie
What Does Memory Do?

CPU

Memory

Hard Drive
DRAM BASICS

Interface

CPU

MC

other functions

- Control -

Chipset

Module

Hard Drive

Slide based on DX0382-011
DRAM
Dynamic Random Access Memory

Slide based on DX0382-018
DRAM
Dynamic Random Access Memory

Slide based on DX0382-019
DRAM
Dynamic Random Access Memory

Slide based on DX0382-020
DRAM
Dynamic Random Access Memory

Slide based on DX0382-021
DRAM
Dynamic Random Access Memory

Slide based on DX0382-022
DRAM

Burst Length

Based on DX0382-042
DRAM
Burst Length

Row Address

Column Address

Based on DX0382-042
DRAM
Burst Length

Based on DX0382-042
Synchronous DRAM
WIDE BUS - SDR

Clock
Control 4 lines

12 Address lines (A0 - A11)

16 Data lines (DQ0 - DQ15)

MC

DRAM

Slide based on DX0382-023
Synchronous DRAM
WIDE BUS - DDR

Clock -
Control 4 lines

12 Address lines (A0 - A11)

16 Data lines (DQ0 - DQ15)

DQS# Data Strobe

Slide based on DX0382-030
DRAM BASICS

Interface

CPU

MC

other functions

- Control -

Chipset

Module

Slide based on DX0382-009
Methods to Specify Latency

- Use one or more fixed latencies
- Use a fuse to set latency
- Use a pin to set latency
- Specify latency in the read command

Scale latency with the clock frequency

Continue to use Asynchronous DRAMs
Methods to Specify Burst Length

- Use one or more fixed burst lengths
- Use a fuse to set burst length
- Use a pin to set burst length
- Specify burst length in the read command
- Program burst length in mode register
- Use fixed burst length with a burst terminate command
- Use CAS pulse to control data output

From DX0079, DX0057
Methods to Accelerate Data Transfer

- Single Edge Clock
 - Faster Clock
 - Clock Splitter
 - Interleaving Memory Banks
 - On DRAM

- Simultaneous Bi-directional I/O Drivers

From DX0088, DX0060, CX0371
Methods of Synchronizing Data

- PLL/DLL on chip
- PLL/DLL on module
- PLL/DLL on controller

From DX0094, DX0059, JX0031
In the minimum system, arrival time could be detected and adjusted inside the controller to a max delay of one DCLK with an internal vernier, but would most likely require the DCLK to run continuously. For systems with more than one memory device, such adjustment would not be feasible.

Synchronizing inside controller would typically be to controller clock that would likely be 1/2 or 1/4 memory clock speed, so the synchronizing delay would be very costly for system performance.
Simple System Block Diagram
Without Vernier

Note: Synchronizing inside controller would typically be to controller clock that would likely be 1/2 or 1/4 memory clock speed, so the synchronizing delay would be very costly for system performance.
Simple System Block Diagram

Without Vernier

ASYNCHRONOUS RELATIVE ARRIVAL

DCLK

Note: Synchronizing inside controller would typically be to controller clock that would likely be 1/2 or 1/4 memory clock speed, so the synchronizing delay would be very costly for system performance.
Simple System Block Diagram
Without Vernier

Note: Synchronizing inside controller would typically be to controller clock
that would likely be 1/2 or 1/4 memory clock speed, so the synchronizing
delay would be very costly for system performance.

Jan 1997
Simple System Block Diagram

Without Vernier

VLSI Technology

SLDRAM

Note: Synchronizing inside controller would typically be to controller clock that would likely be 1/2 or 1/4 memory clock speed, so the synchronizing delay would be very costly for system performance.
Simple System Block Diagram
Without Vernier

Note: Synchronizing inside controller would typically be to controller clock that would likely be 1/2 or 1/4 memory clock speed, so the synchronizing delay would be very costly for system performance.
Simple System Block Diagram
Without Vernier

Note: Synchronizing inside controller would typically be to controller clock that would likely be 1/2 or 1/4 memory clock speed, so the synchronizing delay would be very costly for system performance
Simple System Block Diagram
Without Vernier

Note: Synchronizing inside controller would typically be to controller clock that would likely be 1/2 or 1/4 memory clock speed, so the synchronizing delay would be very costly for system performance.
Simple System Block Diagram
Without Vernier

Note: Synchronizing inside controller would typically be to controller clock that would likely be 1/2 or 1/4 memory clock speed, so the synchronizing delay would be very costly for system performance.

DESI RHODEN
CONFIDENTIAL
Jan 1997
Simple System Block Diagram

Without Vernier

Note: Synchronizing inside controller would typically be to controller clock that would likely be 1/2 or 1/4 memory clock speed, so the synchronizing delay would be very costly for system performance.

DESIRHODEN

CONFIDENTIAL

Jan 1997
Simple System Block Diagram

Without Vernier

Note: Synchronizing inside controller would typically be to controller clock that would likely be 1/2 or 1/4 memory clock speed, so the synchronizing delay would be very costly for system performance.
Simple System Block Diagram
Without Vernier

Note: Synchronizing inside controller would typically be to controller clock
that would likely be 1/2 or 1/4 memory clock speed, so the synchronizing
delay would be very costly for system performance

- DESI RHODEN
CONFIDENTIAL
Jan 1997
Rambus Clock Synchronization