

United States Patent [19]

Jessup et al.

- [54] GASOLINE FUEL
- [75] Inventors: Peter J. Jessup; Michael C. Croudace, both of Santa Ana, Calif.
- [73] Assignee: Union Gil Company of California, Los Angeles, Calif.
- [21] Appl. No.: 628,488
- [22] Filed: Dec. 13, 1990
- [51] Int. Cl.⁵ C10L 1/04

[56] **References** Cited

U.S. PATENT DOCUMENTS

		-	
3,658,690	4/1972	Graven	
3,753,670	8/1973	Strang et al.	
3,886,759	6/1975	McNamee	62/54
3,903,194	9/1975	Hutson, Jr. et al2	60/683.48
3,955,938	5/1976	Graham et al.	
3.957.901	5/1976	Chapman2	
	0/1976	Rosenthal et al	
4,022,589	5/1977	Alquist et al.	
• •	0/1978	Herbetman	
4.214.876	7/1980	Garth et al.	
4.215.997	8/1980	Sandy	44/367
4,220,120	9/1980	Jackson, deceased et al	
4.312.636	1/1982	Singleman	
4,313,738	2/1982	Parlman et al	
4.319.981	3/1982	Singerman	
4. 322. 304	3/1982	Parlman et al.	757/515 D
4, 322. 304	4/1982	Klimczak	
4.372.752	2/1983	Lamy	
4,372,732	6/1983	Bums	
4,388,081	-,	Bums	
	6/1983		
4,437,436	3/1984	Graiff et al	
4,468,233	8/1984	Bruderreck et al	
4,501,596	2/1985	Bums	44/341
4,508,617	4/1985	Montgomery	208/134
4,571,439	2/1986		
4,579,990	4/1986	Keyworth	
4,607,129	8/1986	Lee	
4,6 47,368	3/1987	McGuiness et al	
	0/1987	Coudace et al	
4,737,159	4/1988	Phillips	
4,743,273	5/1988	Croudace et al	
4,773,916	9/1988	Croudace et al	44/440

US005288393A

[11] Patent Number: **5,288,393**

[45] Date of Patent: Feb. 22.1994

4,812,146	3/1989	Jessup	
4,818,250	4/1989	Whitworth	
4,824,552	4/1989	Magusawa et al	
4,844,717	7/1989	Croudace et al	44/418
4,851,601	7/1989	Fukuda et al.	585/241
4,873,389	10/1989	Avidan et al.	
4,884,531	12/1989	Degnan, Jr. et al.	123/3
4,899,014	2/1990	Avidan et al.	585/415
4,955,332	9/1990	Talbert	123/1 A
5,015,356	5/1991	Talbert	208/16
5,041,208	8/1991	Partridge et al	208/16

FOREIGN PATENT DOCUMENTS

OTHER PUBLICATIONS

"California Sets Tough Auto Standards" Jananne Sharpless in Fuel Reformulation published Nov./Dec. 1991, pp. S-10. "The Role of MTBE in Future Gasoline Production"

"The Role of MTBE in Future Gasoline Production" by William J. Piel, *Energy Progress* (vol. 8, No. 4), Dec., 1988, pp. 201–204.

"Are the Reductions in Vehicle Carbon Monoxide Exhaust Emissions Proportional to the Fuel Oxygen Content?" by J. A. Gething, J. S. Weistand, and J. C. Horn, *SAE Techincal Paper Series*, 890216, SAE International Congress and Exposition, Detroit, Michigan, Feb. 27-Mar. 3, 1989.

"How Injector, Engine, and Fuel Variables Impact Smoke and Hydrocarbon Emissions with Port Fuel Injection" by Arthur A. Quader, *SAE Technical Paper* (List continued on next page.)

(List continued on next page

Primary Examiner-Helane Myers Attorney, Agent, or Firm-Gregory F. Wirzbicki

[57] ABSTRACT

By controlling one or more properties of a gasoline fuel suitable for combustion in automobiles, the emissions of **NOx,** CO and/or hydrocarbons can be reduced. The preferred fuel for reducing all three such emissions has a Reid Vapor Pressure no greater than 7.5 psi (0.51 atm), essentially zero olefms, and a 50% D-86 Distillation Point greater than about 180" F. (82" C.) but less than 205' F. (96.1" C.)

155 Claims, 9 Drawing Sheets

OTHER PUBLICATIONS

Series, 890623, SAE International Congress and Exposition, Detroit, Michigan, Feb. 27-Mar. 3, 1989.

"Engine Bench Evaluation of Gasoline Composition Effect on Pollutants Conversion Rate by a Three-Way Catalyst" by Michel F. Prigent, Brigitte C. Martin and Jean-Claude Guibet, SAE Technical Paper Series, 900153, SAE International Congress and Exposition, Detroit, Mich., Feb. 26-Mar. 2, 1990.

"Effect on Gasoline Quality on Throttle Response of Engines During Warm-up" by Minoru Tomita, Masanori Okada, Haruyuki Katayama and Masahiko Nakada, SAE Techincal Paper Series, 900163, SAE International Congress and Exposition, Detroit, Mich., Feb. 26-Mar. 2, 1990.

"The Effect of Gasoline Aromatics Content on Exhaust Emissions: A Cooperative Test Program" by Jeff A. Gething, S. Kent-Hoekman, SAE Technical Paper Series, 902073, International Fuels and Lubricants Meeting and Exposition, Tulsa, Okla. Oct. 22-25, 1990. Octane Week, Special NPRA Convention Edition,

Week of Mar. 26, 1990, vol. IV, No. 44, pp. 1-14.

"Automotive Fuels for the 1990's-Challenges and Opportunities" by Joseph M. Colucci, Research Publica-General Motors Research Laboratories, tion. GMR-6589, F&L-882, to be presented at **DeWitt** and Company-Petrochemical Review Seminar, Houston, Tex., Mar. 30, 1989.

"The Refiner's Key to Future Gasoline Production" by William J. Piel, National Petroleum Refiners Association, AM-88-66, 1988 Annual NPRA Meeting, San Antonio, Tex., Mar. 20-22, 1988.

"Vehicle Evaporative and Exhaust Emissions as Influenced by Benzene Content of Gasoline" by Donald E. Seixinger, William F. Marshall, Frank W. Cox, and Martin W. Boyd, National Institute for Petroleum and Energy Research, NIPER-151, DE86 010603, Apr. 16, 1986.

"The Effects of Aromatics Content on NOx Emissions" by Annette Reid Guerrero and James M Lyons, Toxics and Fuels Section, Mobile Source Division, California Air Resources Board, Mar., 1990.

"The Effect of Gasoline Aromatics on Emissions of Nitrogen Oxides in Vehicle Exhaust" by J. A. Gething, Chevron Research and Technology Company, Richmond, Calif., Apr. 19, 1990.

"Reformulated Gas No Help in Older Cars" by Matthew L. Wald, The New York Times, appearing in Orange County Register, Dec. **19,1990.** "Clean Gasoline" **ARCO** EC-l Gasoline.

"Nationwide Gasoline Compositions" (MVMA and **SwRI** Surveys, 1988).

"Reformulated Gasoline" Industry Scoreboard.

"Regular Compositions" Average Results for 9 RVP Season.

"Premium Compositions" Average Results for 9 RVP Season.

"The Talbert Information Package" by Talbert Fuel Systems, Inc., date Dec. 3, 1990.

"A Study of Factors Influencing the Evaporative Emissions From In-Use Automobiles" API Publication No. 4406, Apr., 1985, American Petroleum Institute.

"The Effect of Fuel Volatility Variations on Evapora-tive and Exhaust Emissions," API Publication 4310, May, 1979, Prepared for the American Petroleum **Insi**-tute by Exxon Research and Engineering Company.

"Distillation Adjustment: An Innovative Step to Gasoline Reformulation" by Jeff A. Gething, SAE Technical Paper 910382, Feb. 25-Mar. 1, 1991.

"The Role of MTBE in Future Gasoline Production" by William J. Piel, Energy Progress (vol. 8, No. 4), Dec., 1988, pp. 201-204.

"Are the Reductions in Vehicle Carbon Monoxide Exhaust Emissions Proportional to the Fuel Oxygen Content?' by J. A. Gething, J. S. Weistand, and J. C. Horn, SAE Technical Paper Series, 890216, SAE Internaitonal Congress and Exposition, Detroit, Mich., Feb. 27-Mar. 3. 1989.

"How Injector, Engine, and Fuel Variables Impact Smoke and Hydrocarbon Emissions with Port Fuel Injection" by **Ather** A. Quader, *SAE Technical Paper* Series, 890623, SAE International Congress and Exposition, Detroit, Mich., Feb. 27-Mar. 3, 1989.

"Engine Bench Evaluation of Gasoline Composition Effect on Pollutants Conversion Rate by a Three-Way Catalyst" by Michel F. Prigent, Brigitte C. Martin and Jean-Claude Guibet, *SAE Technical Paper Series*, 900153, SAE International Congress and Exposition, Detroit, Mich., Feb. 26-Mar. 2, 1990.

"Effect on Gasoline Quality on Throttle Response of Engines During Warm-up" by Minoru Tomita, Masanori Okada, Haruyuki Katayama and Masahiko

OTHER PUBLICATIONS

Nakada, *SAE Technical Paper Series*, 900163, SAE International Congress and Exposition, Detroit, **Mich.**, Feb. **26–Mar.** 2, 1990.

"The Effect of Gasoline Aromatics Content on Exhaust Emissions: A Cooperative Test Program" by Jeff A. Gething, S. Kent Hoekman, *SAE Technical Paper Series*, 902073, International Fuels and Lubricants Meeting and Expoxition, Tulsa, Okla. Oct. 22-25, 1990.

Octane Week Special NPRA Convention Edition, Week of Mar. 26, 1990, vol. IV, No. 44, pp. 1-14.

"Automotive Fuels for the **1990's-Challenges** and Opportunities" by Joseph M. **Colucci**, Research Publication, General Motors Research Laboratories, GMR-6589, **F&L-882**, to be presented at **DeWitt** and Company-Petrochemical Review **Seminar**, Houston, Tex., Mar. 30, 1989.

"The Refiner's Key to Future Gasoline Production" by William J. Piel, National Petroleum Refiners Association, AMj-88-66, 1988 Annual NPRA Meeting San Antonio, Tex., Mar. 20-22, 1988.

"Vehicle Evaporative and Exhaust Emissions as Influenced by Benzene Content of Gasoline" by Donald E. Seiiinger, William F. Marshall, Frank W. Cox, and Martin W. Boyd, National Institute for Petroleum and Energy Research, NIPER-151, **DE86010603**, Apr. 16, 1986.

"The Effects of Aromatics Content on **NOx** Emissions" by Annette Reid Guerrero and James M. Lyons, **Toxics** and Fuels Section, Mobile Source Division, California Air Resources Board, Mar. 1990. "The Effect of Gasoline Aromatics on Emissions of

"The Effect of Gasoline Aromatics on Emissions of Nitrogen Oxides in Vehicle Exhaust" by J. A. Gething, Chevron Research and Technology Company, Richmond, **Calif.** Apr. 19, 1990.

"Reformulated Gas No Help in Older Cars" by Matthew L. Wald, The New York Times, appearing in Orange County Register, Dec. 19, 1990.

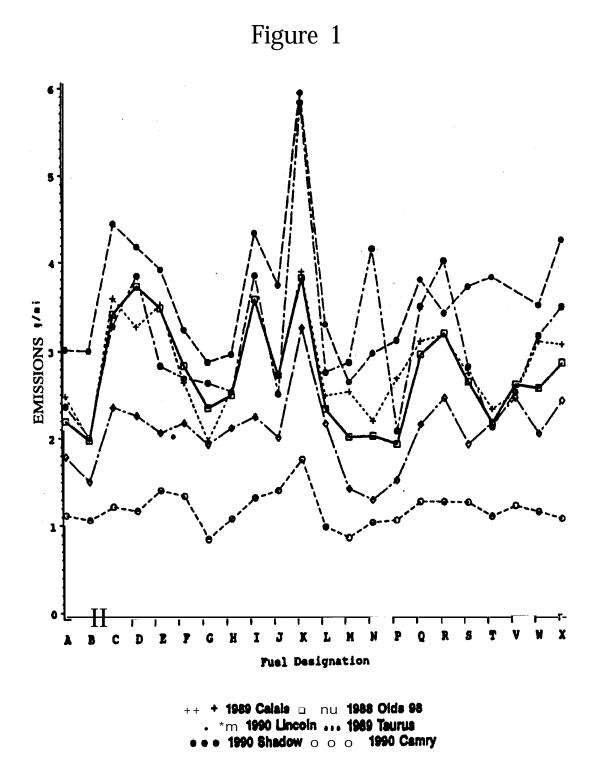
Orange County Register, Dec. 19, 1990. "A Study of Factors Influencing the Evaporative Emissions From In-Use Automobiles" API Publication No. 4406, Apr., 1985, American Petroleum Institute.

"The Effect of Fuel Volatility Variations on Evaporative and Exhaust Emissions," API Publication 4310, May, 1979, Prepared for the American Petroleum Institute by Exxon Research and Engineering Company.

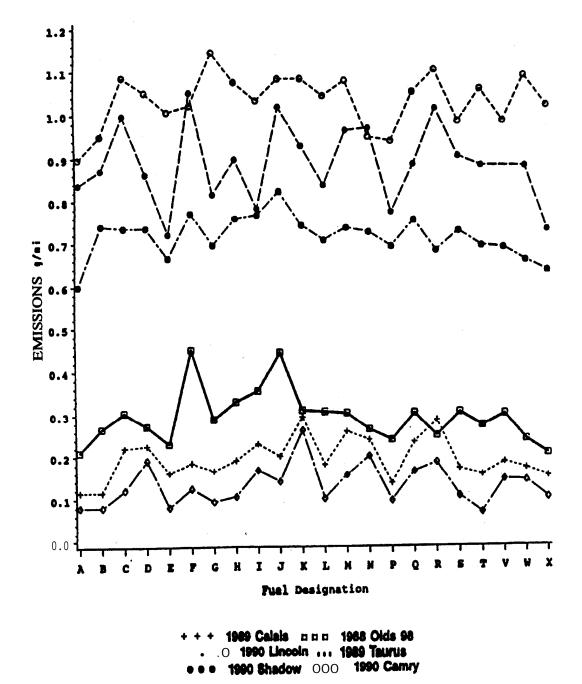
"Distillation Adjustment: An Innovative Step to **Gaso**line Reformulation" by Jeff. A. Gething, SAE Technical Paper 910382, Feb. **25–Mar**, 1, 1991.

Information in Disclosure Statement No. 5 discussion only.

"The Talbert Information Package" by Talbert Fuel Systems, Inc., dated Dec. 3, 1990.

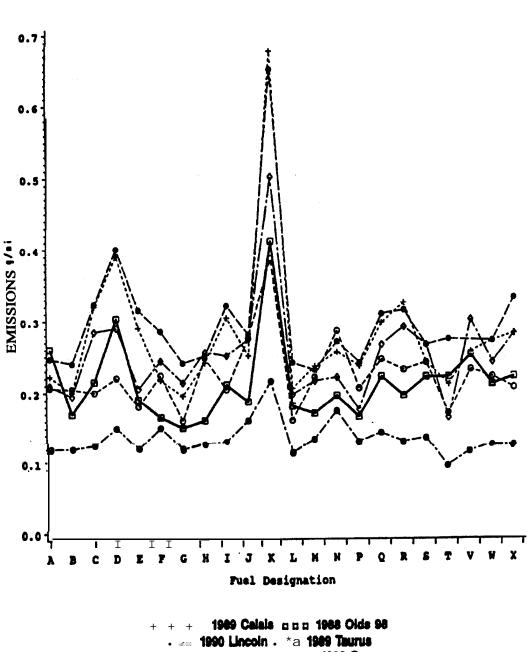
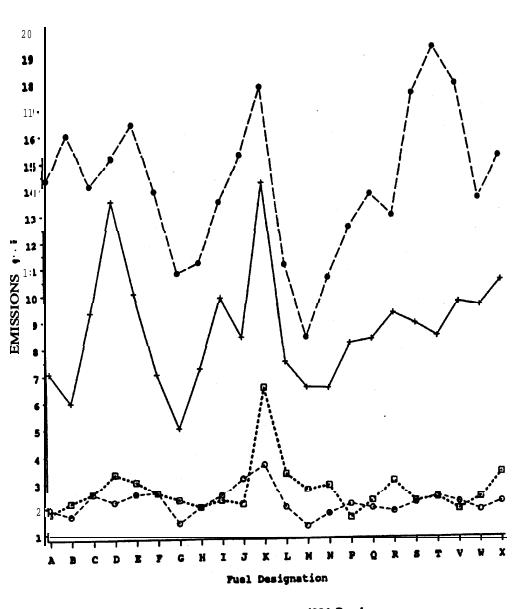

"Clean Gasoline" ARCO EC-l Gasoline.

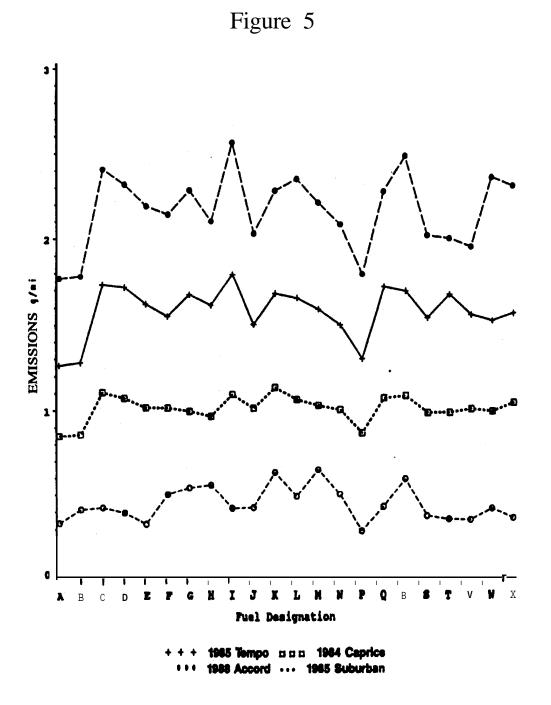
"Nationwide Gasoline Compositions" (MVMA and SwRI Surveys, 1988).


"Reformulated Gasoline" Industry Scoreboard.

"Regular Compositions" Average Results for 9 RVP **Season**.

"Premium Compositions" Average Results for 9 RVP Season.


Figure 3

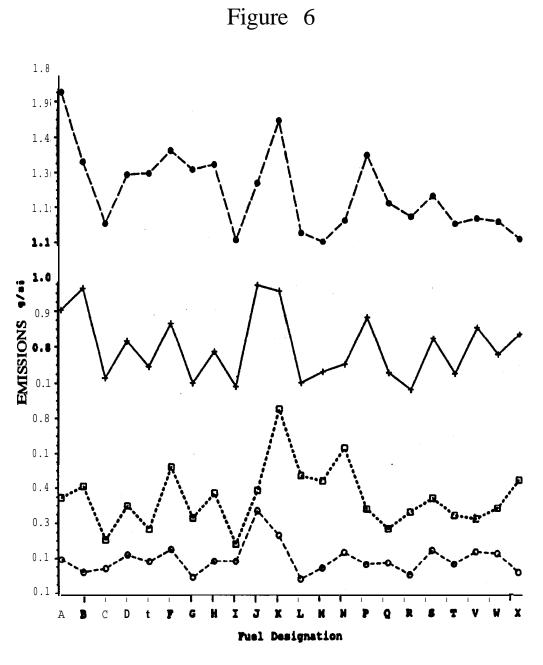

mo'lmoshadow 000 1990 Camry

Figure 4

1984 Caprice 85 Tempo 1965 Suburban 18 Accord

	r	
	e	
	E.	
Î	3	

					Fuel Variable	ariable					ĩa
Car	Arom	Olef	Para	MTBE RON		MON	T10	T50	T90	RVP	×
1989 Calais			8					+ + +			0.974
198 Oldsmobile 98			8					+			0.974
1985 Tempo								++			272.0
1990 Lincoln								+			172.0
1984 Caprice	8							+			0.926
1988 Accord								+			0.944
1989 Taurus								+			086.0
990 Shadow			ł					+	+		0.966
1985 Suburban			+					++	(-)		0.962
1990 Camry								++			0.968
Note: () indicates minor effects	ninor eff	ects									

90
2
2
.00
5

				. '	Puel Variable	Rriable					Ĩ
Car	Arom	Olef	Para	MTRE RON MON	RON	NOM	T10	T50	190	RVP	×
1989 Calais		+	· (-)				(+)			+++	+ + +
1988 Oldsmobile 98		+					÷			+++++	+ + + 0.965
1985 Tempo		+					(+)			l ++	⁺ 0.992
1990 Lincola		+					+			+ + + + + + + + + + + +	5660
1984 Caprice		+					+			266.0 + + +	766.0
1988 Accord		+	•				(÷)			+ + + + + + t + +	817.0
1989 Taurus		+					(+)			+ + + + +	166.0
Mopenes 0661		+					(+)			566.0 + + + + + + + + + + + + + + + + + + +	566°0
1985 Seburban		+					+			+++	0.990
1990 Camry		+					(+)				0.894
Note: () indicates minor effects	ninor cl	fects									

0
igure
H

, i					Fuel Variable	hriable					2
	Arom	Olef	Para	MTBE RON	RON	MON	T10	T50	T90	RVP	-א
1989 Calais		++			1			+			0.967
1988 Oldsmobile 98					•			+			0.948
1985 Tempo	1							+			0.993
1990 Lincoln	•							+			0.961
1984 Caprice	1							+			0.952
1988 Accord	I							+			0.951
1989 Taurus		+			t			+			0.973
1990 Shadow								+			0.965
1985 Suburban	1							+			0.988
1990 Camry		+			-			+			0.977

GASOLINE FUEL

The present invention relates to fuels, particularly gasoline fuels, and combustion methods therefor, and 5 in methods for preparing gasoline fuels which, upon combustion, minimize the release of CO, NOx, and/or hydrocarbon emissions to the atmosphere.

One of the major environmental problems confronting the United States and other countries is atmospheric 10 is the 50% D-86 distillation point, with decreases pollution (i.e., "smog") caused by the emission of gaseous pollutants in the exhaust gases from automobiles. This problem is especially acute in major metropolitan areas, such as Los Angeles, Calif., where the atmospheric conditions and the great number of automobiles 15 drocarbon and CO emissions progressively decreasing account for aggravated air pollution. It is well known that the three primary gaseous con-

stituents, or pollutants, which contribute to air pollution due to auto exhaust are nitrogen oxides (NOx), carbon monoxide (CO), and unburned or incompletely burned 20 below 195' F. (90.6' C.). hydrocarbons (i.e., hydrocarbon components originally present in the gasoline fuel which are not fully converted to carbon monoxide or dioxide and water during combustion in the automobile engine).

SUMMARY OF THE INVENTION

The present invention provides gasoline fuels from which a relatively low amount of gaseous pollutants, and in particular one or more of NOx, CO, and hydrocarbons, is produced during combustion in an automo- 30 tive engine. The invention provides methods for producing gasoline fuels having such desirable properties. The invention also provides methods of combusting such fuels in automotive engines while minimizing emission of pollutants released to the atmosphere, which in 35 turn provides a method for reducing air pollution, particularly in congested cities and the like, when large volumes of automotive fuel of the invention are combusted in a great number of automobiles in a relatively small geographical area.

The present invention also provides a petroleum refiner with knowledge of which properties of a gasoline fuel to alter, and in which direction (i.e., increased or decreased), so as to produce a gasoline fuel which will reduce or minimize NOx, CO, and hydrocarbon emis- 45 sions upon combustion in an automotive engine.

The present invention, in its broadest aspect, is founded on the discovery that, when gasoline fuels are produced, for example, by blending a plurality of hydrocarbon-containing streams together so as to produce 50 D-86 Distillation Point below 140° F. (60° C.). a gasoline product suitable for combustion in an automotive spark-induced internal combustion engine, improvements in emissions of one or more pollutants selected from the group consisting of CO, NOx, and hy-drocarbons upon combustion of the gasoline product in 55 such an engine system can be attained by controlling certain chemical and/or physical properties of said gasoline product. For example, a first hydrocarboncontaining stream boiling in the gasoline range can be blended with a different hydrocarbon stream at rates 60 can be obtained by maintaining the olefm content below adjusted so as to effect at least one of the properties of the first gasoline stream as follows:

- (1) decrease the 50% D-86 Distillation Point:
- (2) decrease the olefm content;
- paraffm content; (3) increase the
- decrease the Reid Vapor pressure; (4)
- Research Octane Number; (5) increase the
- (6) decrease the 10% D-86 Distillation Point;

(7) decrease the 90% D-86 Distillation Point; and (8) increase the aromatic content

The greater the increase or decrease of the eight prop erties as set forth above, the greater the resulting benefit reducing emissions of one or more of CO, NOx, and hydrocarbons.

For gasoline fuels in which one desires that hydrocarbon emissions and/or CO emissions be minimized or reduced, the principal factor influencing such emissions therein causing decreases in the hydrocarbon emissions. Fuels generally prepared in accordance with this embodiment of the invention have a 50% D-86 distillation point no greater than 215' F. (101.6' C.), with the hyas the 50% D-86 distillation point is reduced below 215 F. (101.6' C.). Preferred fuels have a 50% D-86 Distillation Point of 205" F. (96.1' C.) or less. Best results are attained with fuels having a 50% D-86 distillation point

For gasoline fuels in which one desires that emissions of **NOx** be minimized or reduced, the principal factor influencing such emissions is Reid Vapor pressure. **NOx** emissions decrease as the Reid Vapor Pressure is de-25 creased (e.g., to 8.0 psi (0.54 atm) or less, preferably to 7.5 psi (0.51 atm) or less, and even more preferably below 7.0 psi (0.48 atm)). Of secondary importance with respect to NOx emissions are the 10% D-86 Distillation Point and the olefin content. In general, decreasing oletin content (e.g., below 15 volume percent, preferably to essentially zero volume percent) and/or decreasing the 10% D-86 Distillation Point (e.g., to values below 140" F. (60° C.)) will provide some reduction in NOx emissions. However, because it is contemplated that decreases in olefm content will be more acceptable to an oil refiner than decreasing the 10% D-86 Distillation Point sufficiently to significantly affect the NOx emissions, it is believed that, as a practical matter, it will be olefm content which will be the secondary variable 40 providing the most flexibility to an oil refiner in altering the gasoline properties to reduce NOx emissions. (This is all the more the case inasmuch as, in general, if one wishes to decrease the Reid Vapor Pressure, it is usually necessary to increase the 10% Distillation Point.) Accordingly, best results are attained when both the olefin content is below 15 volume percent (preferably to zero) and the Reid vapor

pressure is no greater than 7.5 psi-with it being highly desirable, if possible, to also maintain the 10%

In view of the foregoing, it can be seen that many modifications of the invention are possible, depending upon which of the three pollutants one desires to reduce and the degree of reduction desired. For example, one can attain significant reductions in all three pollutants-hydrocarbons, CO, and NOx--by maintaining the 50% D-86 distillation point at or below about 215" F. (101.6' C.) and maintaining the Reid Vapor Pressure no greater than 8.0 psi (0.54 atm). Still better reductions 10 volume percent, or maintaining the 10% D-86 distillation point below 140° F. (60° C.), with still further reductions being possible when both the olefm content and 10% D-86 Distillation Point are so maintained. Yet 65 further reductions are possible by maintaining the 50% D-86 distillation point below 195' F. (90.6" C.), by reducing the oletin content to below 5.0 vol.% (preferably to essentially zero), by decreasing the 10% D-86

Distillation Point to below 120" F. (49' C.), and/or by maintaining the Reid Vapor pressure below 7.0 psi (0.48) atm).

3

The presently preferred specifications proposed for commercial use for a gasoline produced in accordance **5** ferent fuels tested in six different automobiles. Bach with the invention are (1) Olefm Content of 0%; (2)Reid Vapor Pressure of 7.5 psi (0.51 atm) maximum; and (3) 50% D-86 distillation point greater than 180' F. (82' C.) but no greater than 205' F. (96' C.). However, other fuels falling within the scope of the invention are also 10 possible, for example, fuels meeting the following criteria:

- (1) a 50% D-86 distillation point no greater than 215" F. (101.7' C.) and a Reid Vapor Pressure no greater than 8.0 psi (0.54 atm).
- (2) a 50% D-86 distillation point no greater than 205" F. (96" C.) and an olefm content less than 3 percent by volume:
- (3) a Reid Vapor Pressure no greater than 8.0 psi (0.54 atm) and containing at least 40 volume per- 20 cent paraffins;
- (4) a Reid Vapor Pressure no greater than 7.5 psi (0.51 atm) and containing essentially no methyl tertiary butyl ether but less than 15 volume percent olefins.

One of the main advantages of the invention is that a less polluting gasoline fuel is provided that can be easily prepared in a petroleum refinery or the like. That is, in a typical refinery in which gasoline is produced, it is necessary or at least desirable in most instances to blend 30 the hydrocarbon stocks so as to produce gasolines of specified Reid Vapor Pressure, olefins content, etc. Thus, the only difference is that now the refinery will blend the stocks in light of the information provided herein such that the NOx, CO, and hydrocarbon emis- 35 sions are reduced as much as possible or practicable, given the individual situation (the blend stocks available, refining capacity, etc.) facing the particular refinery.

It will be understood in this disclosure and the claims 40 to follow that the words "reduce" and "reducing" in the context of lowering **NOx**, CO, or hydrocarbon emissions are relative terms. Obviously, the simplest way to produce no emissions is to combust no fuel; and equally obviously, almost any combustion of a gasoline 45 fuel will produce some emissions and thus produce greater emissions than if no fuel were combusted. However, on the assumption that the motoring public would find the consequences of combusting no fuel rather unattractive, logic dictates in the context of this **inven-** 50 tion that "reducing" is in comparison to the results achievable with other fuels. For example, for those embodiments of the invention in which the 50% D-86 Distillation Point is controlled to no more than 200° F. (93' C.), the emissions will be reduced in comparison to 55 the otherwise identical fuel but having a higher 50% D-86 Distillation Point when combusted in the same automotive engine (or in an equivalent number of automotive engines) operating for the same time period 'in the same way.

BRIEF DESCRIPTION OF THE DRAWING

The invention can be best understood with reference to the drawing, the figures of which provide graphical or tabular data derived from the experiments described 65 hereinafter with respect to Examples $\hat{2}$ and 3.

More particularly, FIG. 1 is a graph of CO emission values for 22 different fuels tested in six different automobiles. Bach data point on the graph is an average of a plurality of runs for each fuel-automobile combination.

FIG. 2 is a graph of NOx emission values for 22 difdata point on the graph is an average of a plurality of runs for each fuel-automobile combination.

FIG. 3 is a graph of hydrocarbon emission values for 22 different fuels tested in six different automobiles. Each data point on the graph is an average of a plurality of runs for each fuel-automobile combination.

FIG. 4 is a graph of CO emission values for 22 different fuels tested in four different automobiles. Each data point on the graph is an average of a plurality of runs for 15 each fuel-automobile combination.

FIG. 5 is a graph of NOx emission values for 2 different fuels tested in four different automobiles. Each data point on the graph is an average of a plurality of runs for fuel-automobile combination. each

FIG. 6 is a graph of hydrocarbon emission values for 22 different fuels tested in four different automobiles. Each data point on the graph is an average of a plurality of runs for each fuel-automobile combination.

FIG. 7 is a table, based on data derived from the 25 experiments in Examples 2 and 3, which identities the most significant variables which increase emissions of CO when the variable is increased (as identified by one or more + signs) or which decrease emissions of CO when the variable is decreased (as identified by one or more - signs).

FIG. 8 is a table, based on data derived from the experiments in Examples 2 and 3, which identifies the most significant variables which increase emissions of **NOx** when the variable is increased (as identified by one or more + signs) or which decrease emissions of NOx when the variable is decreased (as identified by one or more - signs).

FIG. 9 is a table, based on data derived from the experiments in Examples 2 and 3, which identifies the most significant variables which increase emissions of hydrocarbons when the variable is increased (as identitied by one or more + signs) or which decrease emissions of hydrocarbons when the variable is decreased (as **identified** by one or more - signs).

DETAILED DESCRIPTION OF THE **INVENTION**

The present invention is directed to gasoline compositions having chemical and physical properties which reduce and/or minimize the amount of gaseous pollutants emitted during combustion. In particular, the invention aims to reduce and/or minimize the emissions of hydrocarbons, **NOx** and/or CO during combustion in an automotive engine.

Gasolines are well known fuels, generally composed of a mixture of hydrocarbons boiling at atmospheric pressure in a very narrow temperature range, e.g., 77" F. (25' C.) to 437" F. (225' C.). Gasolines are typically composed of mixtures of aromatics, **olefins**, and paraf-60 fins, although some gasolines may also contain such added nonhydrocarbons as alcohol (e.g., ethanol) or oxygenates (e.g., methyl tertiary butyl ether). Gasolines may also contain various additives, such as detergents, anti-icing agents, demulsifiers, corrosion inhibitors, dyes, deposit modifiers, as well as octane enhancers such as tetraethyl lead. However, the preferred fuels contemplated in the invention are unleaded gasolines (herein defined as containing a concentration of lead no

5 greater than 0.05 gram of lead per gallon (0.013 gram of lead per liter)). The preferred fuels will also have a Research Octane Number (RON) of at least 90. Octane value $(\mathbf{R}/2 + \mathbf{M}/2)$ for regular gasoline is generally at least 87 and for premium at least 92.

At present, most gasolines suitable for combustion in automotive spark-ignition engines conform to the requirements of ASTM D4814-89 specifications, which specifications are herein incorporated by reference in their entirety. Such gasolines fall into five different 10 50% D-86 Distillation point influence such emissions volatility classes, with some of the specifications therefor set forth in the following Table 1:

1.	ADLL I			
Class	Class	Ciass	Class	Class
Properties A	B	C	D	E
RVP (psi) max 9 . 0	10.0	11.5	13.5	15.0
(atm) max 0 . 6	0.7	0.8	0.9	1.0
Dist. 10% ("F.) max 158	149	140	131	122
("C.) max 7 0	65	60	55	50
Dist. 50% ('F.) min-max 170-250	170-245	170-240	170–235	170-230
('C.) min-max 77-121	77-118	77-1 16	77-113	77-110
Dist. 90% ('F.) min 374	314	365	365	365
(°C.) m a n 190	190	185	185	185
End Point ('F.) max 437	437	437	437	437
(°C.) max 2 2 5	225	225	225	225

TABLE 1

The most preferred gasolines produced in accordance with the invention are those which meet the requirements of one or more of the five classes specified in Table 1.

In the present invention, the gasoline is formulated, usually by appropriately blending various hydrocarbon streams in a refinery, to reduce or **minimize** emissions of CO, **NOx,** and/or hydrocarbons upon combustion in a spark-induced automotive internal combustion engine. 35 It has been discovered in the present invention, for many automotive engines, that the amount of pollutants emitted upon combustion is closely in accord with the following equations:

Equation 1

40

 $\begin{aligned} \mathcal{CO}(\mathbf{m} \text{ per mile}) &= \mathbf{K}_{1 \mathbf{X}} \text{ (0-86 Dist. 50\% Point in `F.)} + \\ \mathbf{K}_{2 \mathbf{X}} (D\text{-}86 \text{ Diit. 90\% Point `F.)} - \mathbf{K3} \text{ x (Vol. \% Paraffins)} \end{aligned}$ Equation 2

NOx(gm per mile) = K4 x (Vol. % Olefins) -K5 × (Vol. % Paraffins) + K6 X (D-86 Diit. 10% Point in *F.) +

45 K7 x (RVP in psi) **Equation** 3

 $HC(gm per mile) = K_8 \times (Vol. \% Olefins) =$ $Kg \times (\text{Research Octane Number}) + K_{10} \times (D-86 \text{ Dist. } 50\% \text{ Point in } \bullet$ F.)

where each K value in the foregoing equations is a positive number. The K values will be fixed for a particular engine in a particular car but can be readily determined. For example, for a 1988 Oldsmobile Regency 98 quipped with a 3.8 liter V-6 Engine, the K values are 55 such that the equations are as follows:

Equation 4

CO(gm per mile) = 0.00937 × (D-86 Dist. 50% Point in 'F.) + 0.00133 x (D-86 Dist. 90% Point in 'F.) -0.00828 x (Vol. % Paraffins)

```
Equation 5
```

NOx(gm per mile) = 0.00503 X (Vol. % Olefins) = 0.00060 x (Vol. % Paraffins) +

0.00087 × (D-86 Dist. 10% Point in 'F.) + 0.0159 x (RVP in psi)

Equation 6

HC(gm per mile) = 0.00245 x (Vol. % Olefins) -0.00104 x (Research Octane Number) +

0.00109 x (D-86 Diit. 50% Point in 'F.)

6

From the foregoing equations, and from the relative sizes of the various K values and the typical values which would pertain for the properties by which the K values are multiplied (e.g., Vol. % Olefms, Research 5 Octane Number, etc.), the following conclusions are obtained for the 1988 Oldsmobile Regency 98 and similar automobiles: For CO emissions, although decreasing the 90% D-86 distillation point has some impact on lowering CO emissions, the paraffin content and the

much more substantially. All other things being equal, increasing the **paraffin** content or reducing the 50%

D-86 distillation point will provide the most dramatic effects in reducing CO emissions, with best results being attained when both the paraffin content is substantially 30 increased and the 50% D-86 distillation point is substantially reduced. In like manner, it can be seen that by **decreasing** the 10% D-86 Distillation Point and/or by increasing the **paraffin** content, some decrease in the NOx emissions will be produced. However, far more influential on the **NOx** emissions are the olefm content and the Reid Vapor Pressure, both of which cause substantial reductions in NOx emissions as they are substantially decreased. For hydrocarbon emissions, inspection of the equations indicates, since one is usually constrained to no more than a 5 unit change in Research Octane Number in the range of about 90 to 95, that it will not normally be practicable to alter the Research Octane Number sufficiently to have a significant impact on the hydrocarbon emissions. Accordingly, although some reduction in hydrocarbon emissions can be attained by increasing the Research Octane Number, the most practical way to significantly lower the hydrocarbon emissions while retaining other beneficial properties of the fuel is by lowering the olefm content and/or **50** by lowering the 50% D-86 Distillation Point.

The foregoing equations also provide those skilled in the art, again as to a 1988 Oldsmobile Regency 98 and similar automobiles, with information as to how to lower the reductions of not just CO, NOx, or hydrocarbons, but also any combination thereof. For example, if one is interested in reducing the emission levels of all three, the equations show, if all other properties are held essentially constant, that reducing the Reid Vapor Pressure and the 50% D-86 distillation point will de-60 crease the emissions of CO, NOx, and hydrocarbons. Likewise, decreases in these three pollutants can be attained by decreasing the 50% D-86 Distillation Point and decreasing the olefm content.

The above equations also lead to the following con-65 clusions (again as to the 1988 Oldsmobile Regency and similar automobiles):

All other properties of a gasoline fuel being substantially the same,

1. As the 50% D-86 Distillation Point is progressively decreased, progressively greater reductions in CO and hydrocarbons emissions will result; 2. As the olefm content is progressively decreased,

bile had been previously driven for 38,000 miles to stabilize the Octane Requirement Increase.

The properties of each of the 22 fuels are shown in the following Table 2.

-	-	-	~	
ΤA	BI	.н.	2	

				GASOL	INE PROI	PERTIES				
Blmd Desig- nation	Aromatics Vol. % by FIA	Olefins Vol. % by FLA	Paraffins Vol. % by FIA	MTBE Vol. % by IR	Research Octane Number	Motor Octane Number	D86 Dirt. 10% point (*F.)	D86 Dist. 50% point (*F.)	D86 Dist. 90% point (°F.)	Reid Vapor Pressure ps i
AR.3951-1	1.60	0.2	92.20	0.0	93.6	89.2	131	209	299	9.00
AR3951-2	6.60	0.0	93.40	0.0	90.3	86.8	111	203	383	10.10
AR3951-3	43.30	9.5	47.20	0.0	96.1	84.5	126	235	312	8.90
AR39514	47.50	8.3	44.20	0.0	95.8	84.4	150	251	355	5.60
AR3951-5	38.15	0.2	61.65	0.0	91.3	82.7	166	221	284	6.37
AR3951-6	11.90	15.9	55.00	17.2	91.5	82.2	128	174	368	8.50
AR3951-7	36.80	0.6	48.30	14.3	95.0	86.1	120	224	405	9.70
AR3951-8	12.30	12.7	60.40	14.6	94.4	85.1	120	185	341	9.20
AR3951-9	44.10	11.3	44.60	0.0	96.6	84.5	128	229	305	8.80
AR3951-10	4.50	19.6	75.90	0.0	94.4	84.8	127	195	310	9.70
AR3951-11	51.60	11.6	36.80	0.0	95.9	84.0	149	308	382	6.50
AR3951-12	28.80	0.6	55.70	14.9	92.9	85.7	128	210	271	9.55
AR3951-13	14.70	17.9	51.50	15.9	91.6	82.2	127	169	392	7.90
AR3951-14	11.60	12.9	75.50	0.0	90.7	82.8	107	193	416	9.20
AR3951-15	9.50	0.0	. 90.50	0.0	88.6	85.1	158	207	329	6.25
ULRG	58.30	0.4	30.40	10.9	107.0	95.7	160	218	229	5.35
G3297-PJ	40.90	11.1	48.00	0.0	96.4	85.2	120	214	339	8.20
A/o 1111	19.50	4.1	76.40	0.0	90.6	84.4	123	196	282	8.80
A/o 2222	48.30	21.0	15.40	15.3	99.0	86.1	125	221	356	8.80
A/O AVE	30.70	9.5	59.80	0.0	92.2	82.7	112	218	315	8.70
ARCO EC-1	20.70	10.8	61.40	7.1	92.8	84.0	125	198	348	8.20
SU2000E	40	9	45.3	5.7	97.9	86.7	139	224	321	8.0

progressively greater reductions in NOx and hydrocarbons emissions will result; 30

3. As the paraffin content is progressively increased, progressively greater reductions in CO and NOx emissions will result;

4. As the Reid Vapor pressure is progressively decreased, progressively greater reductions in NOx emis- 35 every fifth run was conducted with fuel G3297-PJ as a sions will result;

5. As the Research Octane Number is progressively increased, progressively greater reductions in hydrocarbon emissions will result;

6. As the 10% D-86 Distillation Point is progressively 40 decreased, progressively greater reductions in NOx emissions will result;

7. As the 90% D-86 Distillation Point is progressively decreased, progressively greater reductions in CO emis-45 sions will result.

And, of course, combining any of the above seven factors will lead to yet progressively greater reductions. However, as will become evident in light of the data in the examples to follow, the most important of the foregoing factors are Reid Vapor Pressure (for reducing 50 program, the results of the runs with the 15 different NOx) and the 50% D-86 Distillation Point (for reducing CO and hydrocarbon emissions). Of secondary importance in reducing NOx are the olefm content and the 10% D-86 Distillation Point, with the former being of greater influence than the latter. The following Exam- 55 ples serve to further illustrate the inventive concept and are not intended to be construed as limitations on the invention, which is defined by the claims.

EXAMPLE 1

A total of 22 different unleaded gasoline fuels was tested in a 1988 Oldsmobile Regency 98 automobile equipped with a 3800 cc V-6 engine. This automobile was selected because it represented a high sales volume product with close to the current state-of-the-art emis- 65 sion technology. The emission system was closed loop control on the air to fuel ratio with a three way catalyst system and adaptive learning capability. The automo-

The fuels were tested in random order with no back to back runs of the same fuel. At first, only the 15 test fuels (designated AR3951-1 through AR3951-15) were run, in random order, and all more than once. However, control to evaluate systematic error. Each fuel was tested in accordance with the Federal Test Procedure except that (1) instead of allowing the engine between tests to cool down in still air for 10 to 12 hours at 68" to 86" F. (20.0' to 30.0" C.), the engine was subjected for 4.75 hours to a 70° F. (21.1" C.) wind of 50 miles per hour (80.5 km/hr) and (2) instead of a Clayton dynamometer, a General Electric dynamometer was used. It will be noted that the 15 test fuels were purposely blended to provide widely different values for the ten properties **shown** in Table 2. The emissions data derived from **combusting** the 15 different test fuels were then analyzed by computer program using the SAS system commercially available from SAS Institute Inc. In this fuels were regressed against each of the 10 variables shown in Table 2, as well as against all possible combinations thereof, searching for an equation for each of the three pollutants of interest (NOx, CO, and hydrocarbons) defined by the minimum number of variables that gives the best surface fit based on the R squared value. As a result, the Equations 4, 5, and 6 hereinbefore presented were derived as the equations which best define the amount of pollutants (in grams per mile) 60 emitted as a function of the properties of the fuel **com**-busted in the 1988 Regency vehicle.

After developing the foregoing equation, the other fuels shown in Table 2 were tested, most in multiple runs, and again with the G3297-PJ fuel being used in every fifth run. These fuels were tested for the purpose of checking the accuracy of the foregoing equations in forecasting emissions for new fuel, i.e., they were used as "check fuels."

7

Emis.

со

The emissions data for all runs-the test, control, and check fuels-as well as the calculated emissions according to the foregoing developed equations, are tabulated in Table 3, with it being specifically noted that the order shown in Table 3 is not the exact order in which the 5 $\frac{1}{co}$ fuels were tested.

9

		10		
	TABLE	4-conti	nued	
Fuel	Actual g/mi	Cal- l culated g/mi	Deviation	Standard Deviation
G3297-PJ	2.127	2.059	0.067	0.205

1.810

0.226

0.205

			1	ABLE 3			
		~~~	NO-		alculated CO	Calculated NOx	Calculated HC
Exp.	Fuel <b>Designation</b>	CO g/mile	NOx g/mile	HC g/mile			g/mile
1	AR3951-1	1.106	0.1%	0.100	1.593	0.203	0.131
2	AR3951-2	0.948	0.186	0.094	1.638	0.201	0.127
3	AR3951-3	1.590	0.264	0.145	2.226	0.271	0.179
4	AR39514	2.228	0.252	0.193	2.458	0.235	0.194
5	AR3951-5	2.034	N.D.	0.157	1.938	0.218	0.146
6	AR3951-6	1.637	0.280	0.143	1.664	0.293	0.133
7	AR3951-7	2.335	0.232	0.166	2.238	0.233	0.147
8	AR3951-8	1.374	0.257	0.118	1.687	0.278	0.135
9	AR3951-9	2.068	0.286	0.165	2.182	0.281	0.177
10	AR3951-10	1.357	0.307	0.134	1.611	0.318	0.162
11	AR3951-11	3.752	0.273	0.268	3.089	0.269	0.264
12	AR3951-12 AR3951-13	1.738	0.278	0.154	1.867	0.233	0.134
13	AR3951-13	2.275 1.959	0.311	0.159	1.678	0.295 0.259	0.133
14 15	AR3951-14	1.654	0.271 0.190	0.147 0.114	1.737 1.628	0.239	0.148 0.133
16	ULRG	1.004		0.142	2.096	0.183	0.133
10	AR3951-14	1.901	0.200	0.142	2.096	0.208	0.127
18	G3297-PJ	2.267	0.273	0.130	2.059	0.259	0.148
19	G3297-PJ	1.784	0.275	0.167	2.059	0.262	0.160
20	G3297-PJ	1.975	0.288	0.160	2.059	0.262	0.160
21	G3297-PJ	2.265	0.263	0.180	2.059	0.262	0.160
22	AR3951-1	1.269	0.200	0.137	1.593	0.203	0.131
23	AR3951-1	1.535	0.200	0.135	1.593	0.203	0.131
24	AR3951-2	1.253	0.163	0.133	1.638	0.201	0.127
25	AR3951-3	1.692	0.244	0.148	2.226	0.271	0.179
26	AR39514	2.835	0.274	0.235	2.458	0.235	0.194
27	AR3951-5	1.764	0.250	0.159	1.938	0.218	0.146
28	AR3951-6	1.338	0.268	0.115	1.664	0.293	0.133
29	AR3951-7	2.059	0.223	0.146	2.238	0.233	0.147
30	<b>AR3951-8</b>	1.633	0.271	0.140	1.687	0.278	0.135
31	AR3951-9	1.952	0.281	0.157	2.182	0.281	0.177
32	AR3951-11	3.443	0.237	0.272	3.089	0.269	0.264
33	AR3951-12	1.959	0.266	0.146	1.867	0.233	0.134
34	AR3951-13	2.127	0.320	0.156	1.678	0.295	0.133
35	AR3951-14 G3297-PJ	2.552	0.284	0.182	1.737	0.259	0.148
36 37	G3297-PJ G3297-PJ	2.240 2.059	0.263	0.204	2.059	0.262	0.160
37 38	G3297-PJ	2.059	0.240	0.168 0.172	2.059 2.059	0.262	0.160 0.160
39	G3297-PJ	1.890	0.278	0.172	2.059	0.262	0.160
40	G3297-PJ	2.339	0.252	0.192	2.059	0.262	0.160
41	A/o 1111	1.641	0.296	0.173	1.579	0.222	0.129
42	NO 2222	1.999	0.251	0.173	2.417	0.345	0.129
43	A/O AVE	2.162	0.298	0.210	1.798	0.248	0.145
44	Ă/Ŏ ĂVĒ	2.476	0.274	0.167	1.798	0.248	0.145
45	ARCO EC-1	1.651	0.271	0.139	1.810	0.257	0.146
46	ARCO EC-1	1.517	0.255	0.139	1.810	0.257	0.146
47	SU2000E	1.738	0.203	0.166	2.104	0.256	0.164
48	AR3951-15	1.511	0.244	0.152	1.553	0.172	0.125
49	G3297-PJ	1.862	0.284	0.161	2.059	0.262	0.160
50	AR3951-5	2.012	0.261	0.201	1.938	0.218	0.146
51	A/o 1111	1.545	0.293	0.224	1.579	0.222	0.129
52	NO 2222	1.963	0.246	0.157	2.417	0.345	0.189
53	ULRG	1.769	0.217	0.139	2.096	0.208	0.127

The multiple test emissions data for each of the check fuels and the control fuel were then averaged, set against the calculated values, the deviation from the calculated value then determined, and compared against the standard deviation, which in turn was calcu- 60 lated from only the data pertaining to the control fuel G3297-PJ. These data are set forth in the following Table 4:

TABLE	4
-------	---

			cd-			65
		Actual	culated		Standard	1 1
Emis.	Fuel	g/mi	g/mi	Deviation	Deviation	1
со	ULRG	1.835	2.096	0.261	0.205	H

со	A/O 1111	1.593	1.579	0.014	0.205
со	A/O 2222	1.981	2.417	0.436	0.205
со	SU2000E	1.738	2.104	0.366	0.205
со	NO AVE	2.319	1.798	0.521	0.205
NOx	ULRG	0.209	0.207	0.002	0.0162
NOx	G3297-PJ	0.266	0.261	0.005	0.0162
NOx	Arco EC1	0.263	0.256	0.007	0.0162
NOx	NO 1111	0.295	0.222	0.073	0.0162
NOx	A/O 2222	0.249	0.345	0.096	0.0162
NOx	SU2000E	0.203	0.256	0.053	0.0162
NOx	A/O AVE	0.286	0.248	0.038	0.0162
πu	ULRG	0.141	0.127	0.014	0.0142
HC	G3297-PJ	0.178	0.160	0.017	0.0142
HC	Arco EC1	0.139	0.146	0.007	0.0142
HC	A/O 1111	0.198	0.129	0.069	0.0142
HC	A/O 2222	0.165	0.189	0.024	0.0142

1.584

Arco EC 1

11

			Cal-			
		Actual	culated		Standard	
Emis.	Fuel	g/mi	g/mi	Deviation	Deviation	
ΗС	SU2000E	0.166	0.164	0.002	0.0142	- >
НC	A/O AVE	0.189	0.145	0.044	0.0142	

It will be seen that, in most cases, the deviations shown in Table 4 are well within three times the standard deviation. In turn, this means that the equations accurately define the scientific phenomena at work within normal realms of variabilities.

#### **EXAMPLE 2**

In this example, 22 gasoline fuels, including 15 test fuels A through N and P, one control fuel, Q, and six check fuels, R, S, T, V, W and X were run in six different automobiles. The properties of the 22 gasolines used are shown in the following Table 5.

general effect of a given fuel is the same for different vehicles, with only the magnitude of the effect varying.

#### EXAMPLE 3

In this example, Example 2 was repeated except on the following automobiles (and accompanying engines):

1. 1985 Ford Tempo-2.3 liter 4 cylinders

2. 1984 GM Caprice-50 liter V-8

3. 1988 Honda Áccord-2.0 liter 4 cylinders

4. 1985 GM Suburban-5.7 liter V-8

The fuels were tested in the foregoing automobiles in the same manner as described in Example 2. The emission data obtained were averaged and plotted on FIGS. 4 through 6, and once again, the results show a remark-

In all, for Examples 2 and 3, a total of over 500 FTP runs was made so as to provide a large enough data base to ensure the validity of the results. It should be noted that Examples 2 and 3, and the figures of the drawing pertaining to each, focused on automobiles and engines

Р	
TABLE	5

	GASOLINE PROPERTIES									
Blend <b>Desig-</b> nation	Aromatics Vol. % by FIA	<b>Olefins</b> Vol. % by FIA	Paraffins Vol. % by FIA	MTBE Vol. % by IR		Motor octane Number	D86 <b>Dist.</b> 10% point <b>(°F.)</b>	D86 Dist. 50% point (°F.)	D86 <b>Dist</b> . 90% point <b>(°F.)</b>	Reid Vapor <b>Pressure</b> psi
А	9.6	0.0	90.4	0.0	94.0	89.5	28	206	291	9.23
В	5.3	0.0	94.7	0.0	91.1	87.4	106	178	290	11.45
С	48.8	10.3	41.0	0.0	97.0	84.7	22	225	300	9.14
D	46.6	11.4	42.1	0.0	96.2	84.0	147	236	334	6.63
Е	39.4	0.4	60.1	0.0	97.3	83.2	164	219	271	6.46
F	9.8	16.8	73.3	15.9	92.0	83.0	121	161	231	9.35
G	32.8	0.6	66.6	13.7	96.6	87.5	107	194	296	11.54
Н	12.7	15.0	72.3	14.0	94.3	84.8	119	180	302	9.88
Ι	46.4	12.6	41.0	0.0	91.3	84.9	126	220	294	8.73
J	4.8	6.2	89.1	0.0	93.9	84.9	119	188	290	9.65
K	45.6	13.6	40.8	0.0	95.9	83.9	135	274	370	7.60
L	31.0	0.2	68.8	14.4	93.3	85.6	125	206	262	9.43
м	15.9	15.3	68.8	15.8	92.1	82.9	114	157	368	9.77
N	12.8	11.6	75.6	0.0	90.7	83.2	107	185	403	10.51
Р	10.6	0.0	89.4	0.0	89.1	85.8	144	204	318	7.07
Q	31.8	9.9	58.3	0.0	92.1	82.7	129	220	331	8.31
R	52.0	21.9	26.1	14.6	98.8	85.5	130	224	358	8.37
S	21.1	3.9	75.0	0.0	91.0	84.3	129	199	284	8.44
Т	30.2	0.0	69.8	0.0	88.5	81.2	127	182	293	8.00
V	23.3	6.0	70.7	0.0	92.0	83.5	132	196	319	7.96
W	25.6	11.8	62.5	10.1	97.1	86.7	134	215	335	8.12
Х	38.5	0.0	61.5	0.0	94.8	85.0	123	211	326	7.63

The automobiles (and accompanying engines) utilized 45 were:

1. 1988 Oldsmobile 98 Regency-3.8 liter V-6

2. 1989 Ford Taurus-3.0 liter V-6

3. 1990 Toyota Canny-2.0 liter 4 cylinders

4. 1989 GM Cutlass Čalais-3.8 liter V-6

5. 1990 Ford Lincoln-5.0 liter V-8

6. 1990 Dodge Shadow-2.5 liter 4 cylinders

The fuels were tested in the foregoing automobiles in the same manner as described in Example 1 except that the control fuel was used in every sixth mn and the 55 Federal Test Procedure (FTP) was followed exactly. Each fuel was tested at least twice, many three times, and some four times, in each of the vehicles.

The CO, NOx, and hydrocarbon emission data obtained by the Federal Test Procedure for each fuel in a 60 given automobile were averaged, and then plotted respectively in the graphs in FIGS. 1, 2, and 3. (Thus, each data point in FIGS. 1 through 3 is an average of the values obtained for each automobile with the specified fuel.) Given the great number of fuels and automo- 65 biles tested, each of the three graphs shows a remarkable similarity in the overall shape of the curves in the graphs. It is clearly evident from these figures that the

15 able consistency in the effects of a given fuel.

which were dissimilar in many respects. However, the automobiles in Example 2 all had adaptive learning computers with fuel-to-air feedback control loops whereas those in Example 3 did not. The figures thus show that groups of cars with these similar engineering features behave similarly to changes in the fuel, which in turn shows the universality of one of the inventive concepts. The automobiles of Examples 2 and 3 were chosen because of their high commercial sales. The automobiles of Example 2 were all relatively recent models while those of Example 3 were generally older. All but one of the Example 3 automobiles had carburetor systems whereas all of those in Example 2 had fuel injection systems. The data derived in Examples 2 and 3 were analyzed by the same computer program as described for Example 1, searching, as in Example 1, for an equation for

each automobile which would provide a value for NOx, CO, and hydrocarbon emissions as a function of the minimum number of fuel properties. Not every equation so derived conformed to the generalized equation set forth hereinbefore; some, for example, showed a minor increase in hydrocarbon emissions with increases in

aromatics content. Nevertheless, many of the equations did fit the generalized equation set forth hereinbefore, and more importantly, the data overall validated the fact that the most important factors as shown in the generalized Equations 1 to 3 proved almost universally **5** most significant for each automobile.

More specifically, where much of the previous discussion was limited to 1988 Oldsmobile Regency 98 and similar automobiles, the data in tables 7 to **9—which** were obtained from the data from which FIGS. 1 to 6 10 were derived--indicate that some variables universally or **essentially** universally affect emissions from automobile engines, others are limited to one or only a few vehicles, and yet others **affect** a particular pollutant in about 50% of the vehicles. 15

More specifically still, in the tables of FIGS. 7 to 9 there are indicated for each automobile tested in Examples 2 and 3 those factors which proved to be significant in increasing the specified emission when the variable is increased (as indicated by one or more + signs) and 20 significant in decreasing the specified emission when the variable is increased (as indicated by one or more signs). Those variables which dramatically affect emissions (i.e., principal factors) are indicated by more than one + or - signs, with increasing numbers of + or - 25 signs indicating increased significance for that variable. Those variables which are of least importance among the significant variables are indicated by a (+) or (-) sign. (Also shown in FIGS. 7 to 9 are the values obtained by summing the square of all the data predicted 30 by the particular equation for each automobile for a particular pollutant and dividing by the sum of the square of all the data actually obtained for the automobile. It will be recognized that, the closer such value is to 1.0, the better the equation defines the effect under 35 consideration. In the case of FIGS. 7 to 9, 29 of the 30 values are above 0.9 and only one is below-and that scarcely below at 0.894. Accordingly, it was determined that the equations for each of the automobiles was statistically accurate, and that therefore the data 40 derived therefrom-as shown in FIGS. 7 to 9-would meaningfully point to those variables which would have a statistically significant effect upon the emission characteristics from a given automobile in FIGS. 7 to 45 9.)

When the data of Examples 2 and 3 are analyzed as shown in FIGS. 7 to 9, the following facts stand out as most significant:

1. Decreases in the 50% D-86 Distillation Point caused decreases in CO and hydrocarbon emissions for **50** with respect to reducing **CO**, i.e., progressively increasing the paraffin content progressively decreases the CO

2. Decreases in the Olefm Content caused reductions in **NOx** emissions from all the vehicles.

3. Decreases in the 10% D-86 Distillation Point caused reductions in **NOx** emissions from all the vehi- 55 cles.

4. Decreases in Reid Vapor Pressure caused reductions in **NOx** emissions from all the vehicles but one.

Accordingly, from the data in FIGS. 7 to 9, it can be seen that for automobiles in general that decreasing any **60** of the variables I to 4 above will have a positive effect, especially for any large population of automobiles. In turn, it can be appreciated that the preferred fuels of the invention will be prepared (e.g., by appropriate blending in a refinery) so as to decrease each of the foregoing 65 variables, and in particular, the 50% D-86 Distillation Point, the Reid Vapor Pressure, and the Olefm content, all three of which are more significantly (and easily)

decreasable in refinery practice than the 10% D-86 distillation Point.

Presently, the most commercially attractive fuel producible in accordance with the invention has the following properties: (1) Olefm Content of 0%; (2) Reid Vapor Pressure of 7.5 psi (0.51 atm) maximum; and (3) 50% D-86 distillation point greater than 180' F. (82' C.) but no greater than 205" F. (96' C.).

Where it is desired to take advantage of the emission reductions attainable by varying the 50% D-86 distillation point, this value usually is no greater than 215' F. (101.6' C.), e.g., no greater than 210' F. (98.9' C.) but preferably is no greater than 205' F. (96.1' C.), e.g., less than 203' F. (95' C.), or less than 200° F. (93.3' C.), or less than 198" F. (92.2' C.), more preferably less than 195' F. (90.6' C.), e.g., less than 193' F. (89.4' C), or less than 190° F. (87.8' C.), or less than 187' F. (86.1" C.), and most preferably less than 185' F. (85.0' C.), e.g., less than 183' F. (83.9' C.). In general, the 50% D-86 Distillation Point is above 170° F. (77' C.) and most often above 180" F. (82.2' C.)

Where it is desired to take advantage of the emission reductions attainable by varying the olefm content, this value is generally maintained less than **15** volume percent, with decreasing values providing progressively improved results. Thus, it is contemplated that each unit reduction, e.g., to values below 14, below 13, below 12, below 11, below 10, below 9, below 8, below 7, below 6, below 5, below 4, below 3, below 2, below I providing progressively better results, with values of 0.5 or less and essentially zero providing the best results possible.

Where it is desired to take advantage of reductions attainable by reducing the Reid Vapor Pressure, the gasoline will generally have a Reid Vapor Pressure specification of 8.0 psi (0.54 atm) max., most often less than 8.0 psi (0.54 atm), preferably no greater than 7.5 psi (0.51 atm), even more preferably no greater than 7.0 psi (0.48 atm), and most preferably of all, no greater than 6.5 psi (0.44 atm).

Where the emissions reductions attainable by reducing the 10% D-86 Distillation Point is desired, this value is most often maintained no greater than **140°** F. (71' C.), preferably no more than 135'' F. (57.2' C.), even more preferably no more than 130' F. (54" C.), and most preferably of all, no more than 122' F. (48.9" C.).

It can also be seen from the data in FIG. 7 that the **paraffin** content has an effect on 50% of the automobiles with respect to reducing **CO**, i.e., progressively increasing the paraffm content progressively decreases the CO emitted. Accordingly, where it is desired to take advantage of these facts, the paraffi content would be increased to above **40** volume percent, usually above 50 volume percent, most often to above 65 volume percent, preferably above 68 volume percent, more preferably above 70 volume percent, e.g., above 72 volume percent, e.g., above 75 volume percent, e.g., above 80 volume percent, e.g., above 82 volume percent, e.g., above 87 or 90 volume percent.

Likewise, 60% of the automobiles shown in FIG. 9 evidenced reductions in hydrocarbon emissions when the aromatics content was increased. Where it is desired to take advantage of this fact, the aromatics content would be increased to at least 35 volume percent, preferably at least **40** volume percent.

Ю

In view of the information presented above, a petroleum refiner may take advantage of the invention by blending hydrocarbon streams boiling in the gasoline range of 77' F. (25' C.) to about 437" F. (225' C.) so as to affect at least one (and preferably more than one) of 5 the properties of one of the streams as follows: (1) decrease the 50% D-86 Distillation Point;

- (2) decrease the olefm content;
- (3) increase the **paraffin** content;
- (4) decrease the Reid Vapor pressure;
- (5) increase the Research Octane Number;
- (6) decrease the 10% D-86 Distillation Point;
- (7) decrease the 90% D-86 Distillation Point; and
- (8) increase the aromatics content.

In such case, the petroleum refmer is, in essence, using the information provided by the present invention so as to convert a given gasoline stream into another with better properties with respect to CO, NOx, and/or hydrocarbon emissions.

It will also follow that one can increase or decrease 20 any combination of the eight properties listed above, i.e., at least two, at least three, at least four, etc., of the properties can be increased or decreased in the direction indicated above, as well as all eight. In addition, the greater any individual property is changed in the direction indicated, the better the result, with at least 10% changes being normally used, and preferably at least 20%. In addition, one can change the property by difference instead of by percentage, for example, affecting the properties as follows:

- (a) decreasing the 50% D-86 distillation point by at least **20°** F. (11.1" C.) or by at least 40" F. (22.1" C.);
- (b) decreasing the Reid Vapor Pressure by at least 1 psi (0.07 atm.) or by at least 2 psi (0.14 atm.);
- (c) decreasing the olefin content by at least 3 volume 35 tive: percent or by at least 5 volume percent;
- (d) increasing the paraffin content by at least 10 volume percent by at least 20 volume percent.
- (e) decreasing the 10% D-86 distillation point by at least 10° F. (5.5' C.) or by at least 20° F. (11.1" C.); 40 and
- (f) increasing the aromatics content by at least 10 volume percent. Moreover, as would stand to reason, one could also elect to employ any combination of (a) to (f) above to produce the desired lower 45 emission gasoline product.

While the invention may be used to advantage even on a small volume basis, e.g., a single automobile operating with a fuel composition of the invention for a week or for at least 200 consecutive miles, it is clear that the 50 benefits offered by the invention are best taken advantage of when a large number of automobiles operating with spark induced internal combustion engines requiring a gasoline fuel are powered with the fuel of the invention. In fact, the benefits of the invention increase 55 directly with the number of automobiles which employ the fuel. Therefore, in one embodiment of the invention, on a given day, and preferably on a daily basis over a period of at least one month, at least 1,000 and more preferably at least 10,000 automobiles are provided with a fuel composition of the invention-and even more preferably it is desired that the 1000+ or 10,000+ automobiles be provided with such fuel in a highly congested area, e.g., within the limits of a city or county Most advantageously, the amount of fuel dispensed into automobile fuel tanks within the city or county should be sufficient to effect a noticeable decrease in the

amount of one or more of NOx, CO, and hydrocarbons in the air. At the present time, it is believed that, if as little as 10% of the gasoline fuel supplied to automobiles within a given city or county were a composition of the invention, a decrease in the pollution caused by one or more of these components would be obtained (assuming no significant increase in the automobile **traffic** within said city or county). Higher percentages, e.g., at least 25%, will yield still better results. If at least 50% of the fuel sold within a given city or county on a daily basis

- were a composition of the invention, it is believed, based on the data in the Examples hereinabove, that reductions in auto emissions of CC, NOx, and/or hy-
- drocarbons at least as high as 20% as compared to the 15 typical gasoline fuel could be observed (depending, of course, on how each of the variables is adjusted in the appropriate direction and the magnitude of such changes). Yet better results can be expected if at least 75%, even more preferably at least 90%, of the gasoline fuel were supplied on a given day from gasoline service stations within a given geographical area, e.g., a governmental district such as a city or county. Alternatively, if the same percentages pertained to a specific **unit** area, e.g., any 5,000 square mile (12,948 square 25 kilometer) or 10,000 square mile (25,895 square kilometer) or any 50,000 square mile (129,476 square kilometer) area, one would expect to see reductions in one or more of CO, NOx, and hydrocarbons.

In any event, because the benefits of the invention are best realized when the gasoline fuel of the invention is supplied and combusted on a large quantity basis (i.e., large volume consumption), it is contemplated that there are many ways by which this can be accomplished, among which the following are merely illustra-

- 1. Operating a fleet of automotive vehicles, numbering at least 10, preferably at least 25, with a fuel composition of the invention.
- 2. Operating a single automobile for an extended period of time, e.g., at least six months, or for at least 2,000 consecutive miles (3,218 kilometers), with a fuel composition of the invention.
- 3. Consuming at least 500 gallons (1,893 liters) of a fuel composition of the invention in one vehicle.
- 4. Consuming at least 2,000 gallons (7,570 liters) of a fuel composition of the invention in either one automobile or a fleet of automobiles.

Yet greater consumption can be attained by, for example:

- Supplying, via gasoline service stations and the 1. like, at least 1,000 vehicles, preferably at least 10,000 vehicles, per day with a fuel composition of the invention.
- 2. Supplying, via gasoline service stations and the like, at least 10,000,000 gallons (37,850,000 liters) per week of a fuel composition of the invention to automotive vehicles.

In order to supply and consume a gasoline composition of the invention on a large volume basis, it follows 60 that the gasoline composition must be produced at a petroleum refinery or the like in large volumes. Typically, a refinery has a capacity to process at least 20,000 barrels per day (132,500 liters per hour), preferably at least 30,000 barrels per day (198,750 liters per hour), of encompassing a population of 500,000 or more people. 65 crude oil and to produce at least 30,000 gallons (113,550 liters), preferably at least 50,000 gallons (189,250 liters), and most preferably at least 100,000 gallons (378,500 liters) of gasoline per day. While the invention would

best be taken advantage of if all the gasoline fuel produced in a refinery were a composition of the invention. good results can be obtained if a significant fraction thereof-e.g., at least **10%**, were a fuel composition of the invention. In commercial practice, it is contem- 5 plated that usual procedures will result in at least 25%, often at least 50%, and sometimes at least 75% of the daily refinery output being a fuel composition of the invention. Such output would then be delivered to gasoline service stations for introduction into automobiles, 10 with, again, the greatest significant advantage being if all the gasoline service stations so supplied--or some significant portion thereof, e.g., at least 25%, more preferably at least SO%, and most preferably at least **75%—are** located in a congested area of high popula- 15 Table 2 as A/O AVE and that in Table 5 as Fuel Q. tion density, e.g., a city or county as described above.

Accordingly, in view of the foregoing, it will be seen that there are many ways of employing the inventive concept on a large volume basis. Obviously, the best results will be obtained when the fuel composition of 20 the invention is so blended in a refmery or the like as to reduce the emissions of hydrocarbons, CO, and NOx to the lowest possible levels, then combusting such fuel in automobiles on a large volume basis over extended periods of time, e.g., at least one month, preferably at 25 a fuel inherently having properties which reduce or least six months, and with the most advantage to be realized in the most densely populated areas, e.g., counties or cities of populations exceeding 1.000.000, or more than 2,500,000, or more than 5,000,000, or, in areas like Los Angeles county, more than 10,000,000 30 the "D-86 Distillation Point" refers to the distillation persons. To provide for the needs of such high population density areas, it may be necessary to supply the fuel composition of the invention from more than one refinery, and to deliver it to a large fraction of the gasoline service stations in such area, e.g., at least 25%, prefera- 35 bly at least 50%, most preferably at least 75%, so that a large number of automobiles can be supplied with the inventive fuel on a daily basis, e.g., at least 100,000, preferably at least 500,000 automobiles.

In view of the foregoing, it can be seen that the inven- 40 New Light-Duty Vehicles and New Light-Duty tion offers many advantages, not the least of which are the obvious health benefits associated with reduced air pollutants emitted to the atmosphere from automobiles, trucks, and other gasoline powered motor vehicles. Additionally, the invention can be put into immediate 45 vapor pressure of petroleum products. In essence, a practice; current refining equipment can be employed to produce the low polluting fuels of the invention. great deal of Hexibility, for the invention is highly adaptable to a wide variety of hydrocarbon refinery 50 duced streams. More specifically, since the description herein-before shows the effect of different variables, the refiner is not constrained to producing one particular field has several options, depending on what hydrocarbon streams are at hand and what properties of the fuel can 55 be most easily altered.

By offering such flexibility with no needed hardware changes in a refmery, the invention is relatively easy to implement-and all the more so in light of the fact that the invention can be taken advantage of without need 60 for additives specific for reducing polluting emissions. As an example, many current fuels contain methyl **ter**tiary butyl ether as an additive for reducing CO emissions. The present invention, however, requires no methyl tertiary butyl ether to be present. Thus, while 65 in an automotive engine having the following properthe invention in its broadest embodiment encompasses fuels with additives that may aid in reducing such emissions, the advantages of the invention can be obtained

without the necessity, for example, of a refinery having to deliberately' change its practices to provide for the continuous blending of an emission-reducing additive into the fuel.

The invention, of course, as described hereinbefore, offers significant reductions in NOx, CO, and hydrocarbon emissions. Present indications are that, on a side-byside basis, preferred fuels of the present invention offer at least a **10%**, usually at least a **20%**, sometimes at least 40%, reduction in emissions when tested in identical vehicles (e.g., the 1988 Oldsmobile Regency 98 described above) with identical engines and identical catalytic converter systems as compared to results obtained with a typical fuel, for example, the fuel identified in

(These fuels are, in essence, identical, having been made in identical fashion but at different times; the slight differences in results shown in the two tables being within normal tolerance variations.)

It should also be recognized that the invention offers an advantage for automobile manufacturers. As government regulations progressively become more stringent in the amount of pollutants that can be emitted from motor vehicles, the present invention, by providing for

minimize such emissions, allows an automobile manufacturer to meet such regulations with fewer-if any--hardware design changes being needed.

It will be understood that reference hereinabove to point obtained by the procedure identified as ASTM D 86-82, which can be found in the 1990 Annual Book of ASTM Standards, Section 5, Petroleum Products, Lubricants, and Fossil Fuels, herein incorporated by reference in its entirety.

The FTP (Federal Test Procedure) specified hereinabove refers to Code of Federal Regulations, volume 40, "Protection of the Environment," Subpart B, "Emission Regulations for 1977 and Later Model Year Trucks; Test Procedures, herein incorporated by reference in its entirety.

"Reid Vapor Pressure" is a pressure determined by a conventional analytical method for determining the liquid petroleum sample is introduced into a chamber, then immersed in a bath at 100° F. (37.8" C.) until a Section 5, Petroleum Products, Lubricants, and Fossil Fuels, herein incorporated by reference in its entirety.

While the invention has been described in conjunction with preferred embodiments thereof, various modifications and substitutions can be made thereto without departing from the spirit and scope of the present invention. The invention has also been described with refer**ence** to examples, which are presented for illustration only, and thus no limitation should be imposed other than those indicated by the following claims:

We claim:

1. An unleaded gasoline fuel, suitable for combustion ties:

(1) a 50% D-86 distillation point no greater than 205' F.: and

20

35

(2) a Reid Vapor Pressure less than 7.5 psi.

2. An unleaded gasoline fuel as defined in claim 1 having an olefm content less than 10 percent by volume.

3. An unleaded gasoline fuel as defined in claim 2 having a 50% D-86 distillation point no greater than 5 **204°** F.

4. An unleaded gasoline fuel as defined in claim 3 comprising at least 65 percent by volume paraffins.

5. An unleaded gasoline fuel as defined in claim 3 wherein the olefm content is less than 5.0 volume per- 10 cent and the 50% D-86 Distillation Point is greater than 180' F. (82' C.).

6. An unleaded gasoline fuel as defined in claim 5 wherein the olefm content is less than 0.5 volume percent.

7. An unleaded gasoline fuel as **defined** in claim **5** wherein the olefm content is essentially zero.

8. An unleaded gasoline fuel as defined in claim 2 wherein the 50% D-86 distillation point is less than 205' F.

9. An unleaded gasoline fuel as defined in claim 2 wherein the 50% D-86 distillation point is no greater than 203" F.

10. An unleaded gasoline fuel as defined in claim 9 wherein the paraffin content is greater than 75 volume  $_{25}$  percent.

11. An unleaded gasoline fuel as defined in claim 9 wherein the olefm concentration is less than 5 volume percent.

12. An unleaded gasoline fuel as defined in claim 2 30 wherein the Reid Vapor Pressure is no greater than 7.2 psi.

13. An unleaded gasoline fuel as defined in claim 2 wherein the Reid Vapor pressure is no greater than about 7.0 psi.

14. An unleaded gasoline fuel as defined in claim 1 wherein the 50% D-86 distillation point is less than 204 F.

15. An unleaded gasoline fuel as defined in claim 14 wherein the olefm concentration is less than 2 volume 40 percent.

16. An unleaded gasoline fuel as defined in claim 1 wherein the 50% D-86 distillation point is no greater than 203" F.

17. An unleaded gasoline fuel as defined in claim 16 45 wherein the olefm concentration is less than 1 volume percent.

18. An unleaded gasoline fuel as defined in claim 17 wherein the olefm concentration is less than 0.5 volume **percent.** 50

19. An unleaded gasoline fuel as defined in claim 18 wherein the 50% D-86 distillation point is greater than 180' F. (82.2' C.).

**20.** An unleaded gasoline fuel as defined in claim 19 wherein the paraffin content is above 75 volume per-55 cent.

21. An unleaded gasoline fuel as defined in claim 19 wherein the olefm concentration is essentially zero volume percent.

22. An unleaded gasoline fuel as defined in claim 16 **60** wherein the Reid Vapor Pressure is no greater than 7.3 psi.

23. An unleaded gasoline fuel as defined in claim 16 wherein the Reid Vapor Pressure is no greater than about 7.0 psi (0.48 atm).

24. An unleaded gasoline fuel as defined in claim 1 wherein the Reid Vapor Pressure is no greater than 7.4 psi.

25. An unleaded gasoline fuel as defined in claim 24 wherein the 50% D-86 Distillation Point is no more than  $204^{\circ}$  F.

26. An unleaded gasoline fuel as defined in claim **1** wherein the Reid Vapor Pressure is no greater than 7.3 psi.

27. An unleaded gasoline fuel as defined in claim 26 wherein the 50% D-86 Distillation Point is no more **than 204° F.** 

**28**. An unleaded gasoline fuel as defined in claim **1** wherein the Reid Vapor Pressure is no greater than 7.1 psi.

29. An unleaded gasoline fuel as defined in claim **28** wherein the 50% D-86 distillation point is no greater than **203° F**.

30. An unleaded gasoline fuel, suitable for combustion in an automotive engine, having an olefin content less than 3.0 volume percent, a 50% D-86 distillation point no greater than 205' F., and a Reid Vapor Pressure less than 7.6 psi.

31. An unleaded gasoline fuel as defined in claim 30 wherein the Reid Vapor Pressure is no greater than 7.0 psi.

32. An unleaded gasoline fuel as defined in claim 1 wherein the Reid Vapor Pressure is no greater than about 7.0 psi (0.51 atm).

33. An unleaded gasoline fuel as defined in claim 32 wherein the 50% D-86 Distillation Point is no more than  $204^{\circ}$  F.

34. An unleaded gasoline fuel as defined in claim 1 wherein the olefm content is less than 5 volume percent.

35. An unleaded gasoline fuel as defined in claim 1 wherein the olefm content is less than 2 volume percent. 36. An unleaded gasoline fuel as defined in claim 1 wherein the olefm content is less than 0.5 volume per-

cent. 37. An unleaded gasoline fuel as defined in claim 1

wherein the 50% D-86 Distillation Point is no more than 204° F.

**38.** An unleaded gasoline fuel as defined in claim 1 wherein the olefm concentration is less than 6 volume percent.

39. An unleaded gasoline fuel as defined in claim **38** wherein the 50% D-86 distillation point is less than 204 F.

40. An unleaded gasoline fuel as defined in claim 39 wherein the Reid Vapor pressure is no greater than about 7.0 psi.

41. An unleaded gasoline fuel as defined in claim 1 having a 90% D-86 distillation point no greater than 315" F.

42. An unleaded gasoline fuel, suitable for combustion in a spark ignition automotive engine, having an octane value of at least 87, an olefm content less than 3.0 volume percent, a 50% D-86 distillation point less than 204' F., and a Reid Vapor Pressure no greater than 8.0 psi (0.54 atm).

43. An unleaded gasoline fuel as defined in claim 42 wherein the Reid Vapor Pressure is no greater than 7.0 psi.

44. An unleaded gasoline fuel as defined in claim 30 wherein the Reid Vapor pressure is no greater than 7.5 65 psi.

**45.** An unleaded gasoline fuel as defined in claim 42 wherein the 50% D-86 distillation point is less than 203" F.

46. An unleaded gasoline fuel as defined in claim 45 wherein the Reid Vapor pressure is no greater than 7.5 psi.

47. An unleaded gasoline fuel as defined in claim **45** wherein the Reid Vapor pressure is no greater than 7.0 **5** psi.

**48.** An unleaded gasoline fuel as defined in claim 45 wherein the 50% D-86 distillation point is no greater than 200' F.

49. An unleaded gasoline fuel, suitable for **combus-**¹⁰ tion in a spark ignition automotive engine, having an octane value of at least 87, a Reid Vapor Pressure no greater than 8.0 psi, containing above 77 volume percent **paraffins,** and having an olefm content less than 10 volume percent.

**50.** An unleaded gasoline fuel as defined in claim 49 wherein the olefm content is less than 8 volume percent.

51. An unleaded gasoline fuel as defined in claim **50** having a Reid Vapor pressure no greater than 7.5 psi.

52. An unleaded gasoline fuel as defined in claim 49 wherein the Reid Vapor Pressure is no greater than 7.0 psi.

53. An unleaded gasoline fuel as defined in claim 52 having a paraffin content greater than 85 **volume** per-25 cent.

**54.** An unleaded gasoline fuel as defined in claim 53 having an octane value of at least 92.

55. An unleaded gasoline fuel as defined in claim 52 having a paraffm content greater than 80 volume per- 30 cent.

**56.** An unleaded gasoline fuel as defined in claim 55 having an octane value of at least 92.

57. An unleaded gasoline fuel as defined in claim 52 having an octane value of at least 92. 35

**58.** An unleaded gasoline fuel as defined in claim 52 having an olefm content less than 6 volume percent.

59. An unleaded gasoline fuel, suitable for combustion in a spark ignition automotive engine, having an octane value of at least 87, a Reid Vapor Pressure no **40** greater than 7.5 psi, less than 15 volume percent **olefins,** and a 50% D-86 distillation point no greater than 205' F.

60. An unleaded gasoline fuel as defined in claim 59 containing less than 10 volume percent olefms.

61. An unleaded gasoline fuel as defined in claim **60** wherein the Reid Vapor Pressure is no greater than 7.0 psi.

62. An unleaded gasoline fuel as defined in claim 61 so having a 50% D-86 distillation point no greater than 200° F.

63. An unleaded gasoline fuel, suitable for combustion in an automotive engine, having a Reid Vapor Pressure no greater than 7.5 psi (0.51 atm), less than 6 55 volume percent olefms, and a 50% -D-86 distillation point no greater than 210' F.

64. An unleaded gasoline fuel as defined in claim 63 wherein the Reid Vapor Pressure in no greater than 7.0 psi.

65. An unleaded gasoline fuel suitable for combustion in a spark ignition automotive engine, said fuel having an octane value of at least 92, a Reid Vapor pressure less than 7.8 psi, and a 50% D-86 distillation point less than 211' F.

66. An unleaded gasoline fuel as defined in claim 65 wherein the Reid Vapor pressure is no greater than 7.5 psi.

67. An unleaded gasoline fuel as defined in claim 66 wherein the 50% D-86 distillation point is no greater than 205' F.

68. An unleaded gasoline fuel as **defined** in churn 67 wherein the 50% D-86 distillation point is no greater than  $210^{\circ}$  F.

69. An unleaded gasoline fuel as defined in claim 68 wherein the Reid Vapor Pressure is no greater than 7.0 psi.

70. An unleaded gasoline fuel as defined in claim 69 having an olefm content less than 10 volume percent.

71. An unleaded gasoline fuel as defined in claim 70 having a 50% D-86 distillation point no greater than 205' F.

72. An unleaded gasoline fuel as defined in claim 70 having a 50% D-86 distillation point no greater than **200°** F.

73. An unleaded gasoline fuel as defined in claim 72 having an olefm content less than 6 volume percent.

74. An unleaded gasoline fuel as defined in claim 73 having a 90% D-86 distillation point no greater than **300°** F.

75. An unleaded gasoline fuel as defined in claim 72 having an olefm content less than 4 volume percent.

76. An unleaded gasoline fuel as defined in claim 70 having a 90% D-86 distillation point no greater than 315' F.

77. An unleaded gasoline fuel as defined in claim 70 having a 90% D-86 distillation point no greater than **300°** F.

78. An unleaded gasoline fuel as defined in claim 69 having an olefin content less than 6 volume percent.

79. An unleaded gasoline fuel as defined in claim 69 having an olefin content less than 4 volume percent.

**80.** An unleaded gasoline fuel as defined in claim 69 having a 50% D-86, distillation point no greater than 200" F.

81. An unleaded gasoline fuel as defined in claim 80 having a 90% D-86 distillation point no greater than 300" F.

82. An unleaded gasoline fuel as defined in claim 69 having a 90% D-86 distillation point no greater than 315' F.

45 83. An unleaded gasoline fuel as defined in claim 68 wherein the 50% D-86 distillation point is no greater than 200" F.

**84.** An unleaded gasoline fuel as defined in claim 65 having an olefm content less than 15 volume percent.

85. An unleaded gasoline fuel as defined in claim 65 having an olefm content less than 10 volume percent.

**86.** An unleaded gasoline fuel as defined in claim 85 having a Reid Vapor pressure no greater than 7.5 psi and a 50% D-86 distillation point no greater than 210 F.

87. An unleaded gasoline fuel suitable for combustion in a spark ignition automotive engine, said fuel having an octane value of at least 87, a Reid Vapor pressure no greater than 7.5 psi, and a 50% D-86 distillation point
60 less than 204° F.

**88.** An unleaded gasoline fuel suitable for combustion in an automotive engine, said fuel having a Reid Vapor pressure less than 7.0 psi, and a 50% D-86 distillation point no greater than 210' F.

**89.** An unleaded gasoline fuel as defined in claim **88** having an olefm content less than 15 volume percent.

90. An unleaded gasoline fuel as defined in claim 88 having an olefm content less than 10 volume percent.

65

91. An unleaded **gasoline fuel** as defined in claim 88 having an olefin content less than 4 volume percent.

92. An unleaded gasoline fuel suitable for combustion in a spark ignition automotive engine, said fuel having an octane value of at least 87, a Reid Vapor pressure no **5** greater than 7.8 psi, a 50% D-86 distillation point no greater than 215' F., and an olefm content no greater than 1.5 volume percent.

93. An unleaded gasoline fuel as defined in claim 92 wherein the Reid Vapor pressure is no greater than 7.5 10 psi.

94. An unleaded gasoline fuel as defined in claim 93 wherein the 50% D-86 distillation point is no greater than 210' F.

95. An unleaded gasoline fuel as defined in claim 93 wherein the 50% D-86 distillation point is no greater than 205' F.

**96.** An unleaded gasoline fuel as defined in claim 92 wherein the 50% D-86 distillation point is no greater  $\frac{1}{20}$  than 210' F.

97. An unleaded gasoline fuel as defined in claim 92 wherein the 50% D-86 distillation point is no greater than 205" F.

98. An unleaded gasoline fuel as defined in claim 92 **25** having a Reid Vapor pressure less than 7.8 psi and a 50% D-86 distillation point less than 215' F.

99. An unleaded gasoline fuel as defined in claim 98 having a 50% D-86 distillation point no greater than 212" F. 30

100. An unleaded gasoline fuel suitable for combustion in an automotive engine, said fuel having a Reid Vapor pressure no greater than 7.5 psi, a 50% D-86 distillation point no greater than 215" F., and an **olefin** content less than 4.0 volume percent.

101. An unleaded gasoline fuel as defined in claim 100 wherein the 50% D-86 distillation point is no greater than 210" F.

102. An unleaded gasoline fuel as defined in claim 100 wherein the 50% D-86 distillation point is no greater 40 than 205" F.

103. An unleaded gasoline fuel suitable for combustion in a spark ignition automotive engine, said fuel having an octane value of at least 87, a Reid Vapor pressure no greater than 8.0 psi, a 50% D-86 distillation point less than 205" F., and an olefm content less than 5.0 volume percent.

104. An unleaded gasoline fuel as defined in claim 103 wherein the Reid Vapor pressure is no greater than 7.5 psi.

105. An unleaded gasoline fuel as defined in claim 103 wherein the Reid Vapor pressure is no greater than 7.0 psi.

106. An unleaded gasoline fuel suitable for **combus**tion in a spark ignition automotive engine, said fuel having an octane value of at least 87, a Reid Vapor pressure no greater than 7.5 psi, and a 50% D-86 distillation point no greater than 205" F., and an olefm content less than 15.0 volume percent.

less than 15.0 volume percent. 60 107. An unleaded gasoline fuel suitable for combustion in an automotive engine, said fuel having a Reid Vapor pressure no greater than 7.5 psi, and a 50% D-86 distillation point no greater than 210" F., and a paraffin content greater than 65 volume percent. 65

108. An unleaded gasoline fuel as defined in claim 107 wherein the paraffin content is greater than 72 volume percent.

109. An unleaded gasoline fuel as defined in claim 107 wherein the olefm content is less than 10 volume percent.

110. An unleaded gasoline fuel as defined in claim **109** having a Reid Vapor pressure no greater than 7.0 psi.

111. An unleaded gasoline fuel as defined in claim 110 having a 50% D-86 distillation point no greater than **200°** F.

112. An unleaded gasoline fuel as defined in **claim** 110 10 having a **paraffin** content greater than 75 volume percent.

113. An unleaded gasoline fuel as **defined** in claim 112 having an olefm content less than 4 volume percent.

114. An unleaded gasoline fuel as defined in claim 113 15 having a **paraffin** content greater than 85 volume percent.

115. An unleaded gasoline fuel as **defined** in claim 113 having a 50% D-86 distillation point no greater than **200°** F.

116. An unleaded gasoline fuel as defined in claim 115 having a 90% D-86 distillation point no greater than **300°** F. and a **paraffin** content greater than 85 volume percent.

117. An unleaded gasoline fuel as defined in claims 1, 32, 38, 43, 52, 60, 65, 61, 115, 118, 45, 48, 99, 104, 109, 112, 44, 13, 93, 94, 72, 80, 75, 53, 113, 115, or 78 wherein the maximum 10% distillation point is 158' F. (70" C.).

118. An unleaded gasoline fuel as defined in claim 110 having a 90% D-86 distillation point no greater than 315" F.

119. An unleaded gasoline fuel as defined in claim 110 having a 90% D-86 distillation point no greater than **300°** F.

120. An unleaded gasoline fuel as defined in claim 1,
35 2, 49, 64, 90, 91, 103, 112, 125, 127, 93, 94, 72, 80, 82 or
55 wherein the Reid Vapor Pressure is no greater than
6.8 psi. and the maximum 10% distillation point is 158'
F. (70' C.).

121. An unleaded gasoline fuel as defined in claim **120** wherein the Reid Vapor Pressure is no greater than 6.5 psi.

122. An unleaded gasoline fuel as defined in claim 107 wherein the olefm content is less than 6 volume percent.

123. An unleaded gasoline fuel as defined in claim 122 wherein the 50% D-86 distillation point is no greater than 205' F.

124. An unleaded gasoline fuel as defined in claim 122 wherein the 50% D-86 distillation point is no greater than 205" F. and the paraffin content is greater than 75 50 volume percent.

**125.** An unleaded gasoline fuel as defined in claim 124 wherein the Reid Vapor pressure is no greater than 7.0 psi.

126. An unleaded gasoline fuel as defined in claim 12555 having a 50% D-86 distillation point no greater than 200° F.

127. An unleaded gasoline fuel as defined in claim 126 having a 90% D-86 distillation point no greater than 315' F.

128. An unleaded gasoline fuel as defined in claim **122** wherein the Reid Vapor pressure is no greater than 7.0 psi.

129. An unleaded gasoline fuel as defined in claim **107** wherein the Reid Vapor pressure is no greater than 7.0 psi.

130. An unleaded gasoline fuel as defined in claim 129 having a paraffin content greater than 70 volume percent.

10

.

131. An unleaded gasoline fuel as defined in claim 129 having a paraffin content greater than 72 volume percent.

132. An unleaded gasoline fuel as defined in claim 129 having a 50% D-86 distillation point no greater than 5 205' F. and a paraffin content greater than 75 volume percent.

133. An unleaded gasoline fuel as defined in claim 132 having a paraffin content greater than 85 volume percent.

134. An unleaded gasoline fuel as defined in claim 133 having a 50% D-86 distillation point no greater than 200° F.

135. An unleaded gasoline fuel as defined in claim 129 having a paraffin content greater than 85 volume per-15 having an olefin content less than 4 volume percent. cent.

An unleaded gasoline fuel as defined in claim 129 136. having a 50% D-86 distillation point no greater than 200° F.

**137. An unleaded gasoline** f'uelasdefmedinclaim 136 20 having a paraffin content greater than 75 volume percent.

138. An unleaded gasoline fuel as defined in claim 129 having a 50% D-86 distillation point no greater than 205' F. 25

139. An unleaded gasoline fuel as defined in claim 129 having a 90% D-86 distillation point no greater than 315" F.

140. An unleaded gasoline fuel as defined in claim 107 having a 50% D-86 distillation point no greater than 30 200° F.

141. An unleaded gasoline fuel as defined in claim 140 having a paraffin content greater than 70 volume percent.

142. An unleaded gasoline fuel, suitable for combus- 35 tion in a spark ignition automotive engine, having an olefm content less than 3.0 volume percent, a 50% D-86 distillation point no greater than 205" F. (96" C.), the Reid Vapor Pressure is no greater than 8.0 psi (0.54 40 atm), and an octane value of at least 92.

143. An unleaded gasoline fuel suitable for combustion in an automotive engine, said fuel having a Reid Vapor pressure no greater than 7.0 psi, and a 50% D-86 distillation point no greater than 215" F., and an olefm content less than 8 volume percent.

144. An unleaded gasoline fuel as defined in claim 143 having an olefm content less than 6 volume percent.

143. An unleaded gasoline fuel as defined in claim 144 having a 50% D-86 distillation point no greater than 200° F.

146. An unleaded gasoline fuel as defined in claim 144 having a 90% D-86 distillation point no greater than 315' F.

147. An unleaded gasoline fuel as defined in claim 143

148. An unleaded gasoline fuel as **defined** in claim 147 having a 50% D-86 distillation point no greater than 210' F.

149. An unleaded gasoline fuel as defmed in claim 148 having a 50% D-86 distillation point no greater than 200° F.

150. An unleaded gasoline fuel as defined in claim 143 having a 50% D-86 distillation point no greater than 200" F.

151. An unleaded gasoline fuel, suitable for combustion in a spark ignition automotive engine, having an octane value of at least 87, a Reid Vapor Pressure no greater than 8.0 psi., a paraffin content above 77 volume percent, and a maximum 10% distillation point of 158' F. (70' C.).

152. An unleaded gasoline fuel as defined in claim 151 wherein the Reid Vapor Pressure is less than 7.0 psi.

153. An unleaded gasoline fuel as defined in claim 152 having a paraffin content above 80 volume percent.

154. An unleaded gasoline fuel as defined in claim 151 wherein the Reid Vapor Pressure is no greater than 6.8 psi.

155. An unleaded gasoline fuel as defined in claim 154 having a paraffin content above 82 volume percent. .

45

50

55

60